Universiti Teknologi Malaysia Institutional Repository

Lamellar-structured fibrous silica as a new engineered catalyst for enhancing CO2 methanation

Aziz, M. A. and Abdul Jalil, Aishah and Hamid, Muhamed Yusuf Shahul and Hassan, Nurul Sahida and Khusnun, Farah and Bahari, Mahadi and Hatta, Abdul Hakim and Aziz, M. A. H. and Matmin, Juan and Zein, S. H. and Saravanan, R. (2023) Lamellar-structured fibrous silica as a new engineered catalyst for enhancing CO2 methanation. Fuel, 352 (NA). NA-NA. ISSN 0016-2361

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1016/j.fuel.2023.129113

Abstract

Recently, Centre of Hydrogen Energy (CHE) has developed new structures of fibrous mesoporous silica nanoparticles (FMSN) and fibrous Mobil composition of matter-41 (FMCM-41) called CHE-SM and CHE-S41, respectively. Both are used as a support, along with adding 5 wt% Ni as active metal and examined on carbon dioxide (CO2) methanation. The low angle x-ray diffraction (XRD) and transmission electron microscopy (TEM) results proved that Ni/CHE-S41 possessed a hexagonal structure while Ni/CHE-SM was discovered in a lamellar structure. In addition, the XRD and N2 adsorption–desorption revealed that Ni particles were deposited on the surface of CHE-SM due to the smaller support pore size (4.41 nm) than the average Ni particles diameter (5.61 nm) resulting in higher basicity and reducibility. Meanwhile, Ni/CHE-S41 revealed deposition of Ni particles in the pore due to difference in support pore size (4.89 nm) compared to average Ni particles diameter (4.01 nm). Consequently, Ni/CHE-SM performed higher CO2 conversion (88.6 %) than Ni/CHE-S41 (82.9%) at 500 °C, while both achieved 100 % selectivity towards methane. Furthermore, the Ni/CHE-SM displayed excellent resistance towards coke formation during 50 h stability test at 500 °C. It is confirmed as Ni/CHE-SM exhibited a weight loss of 0.469% in TGA analysis and a G:D band ratio of 0.43 in Raman spectroscopy, both of which were lower than the corresponding values of Ni/CHE-S41 (0.596% weight loss and 0.74 G:D band ratio). These properties of Ni/CHE-SM are beneficial in methane production field as coke formation could affect the equilibrium of CO2 methanation process.

Item Type:Article
Uncontrolled Keywords:Coke resistance, Fibrous-silica, Lamellar structure, Pore size, Stability
Subjects:T Technology > TP Chemical technology
Divisions:Chemical and Energy Engineering
ID Code:107188
Deposited By: Widya Wahid
Deposited On:28 Aug 2024 06:58
Last Modified:28 Aug 2024 06:58

Repository Staff Only: item control page