Universiti Teknologi Malaysia Institutional Repository

Investigation of the heat release rate and particle generation during fixed bed gasification of sweet sorghum stalk

Olanrewaju, Francis O. and Andrews, Gordon E. and Li, Hu and Phylaktou, Herodotos N. and Mustafa, Bintu G. and Mat Kiah, Miss H. (2023) Investigation of the heat release rate and particle generation during fixed bed gasification of sweet sorghum stalk. Fuel, 332 (NA). NA-NA. ISSN 0016-2361

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1016/j.fuel.2022.126013

Abstract

Sweet sorghum (SS) is an agricultural crop that is produced commercially in Nigeria. The crop has a high biowaste energy in its stalk, which is an attractive source of bioenergy in rural areas where it is produced. The residue–to-produce ratio (RPR) of the crop is 1.25 kg of biowaste for 1 kg of SS produced. The solid residue that results from the crop can be subjected to gasification to produce combustible gases: carbon monoxide (CO), hydrocarbon gases (total hydrocarbons) and hydrogen. The combustible gases can be piped into a burner for heat or into a Compression Ignition (CI) engine for electricity generation. This will enhance energy security as well as energy equity in rural areas in Nigeria and sub-saharan African countries where the crop is also produced. This research was aimed at optimising the gasification of SS stalk residue to maximise the yield of combustible gases from the first stage of the process. The restricted ventilation cone calorimeter method was used to gasify SS stalks on a laboratory scale. The test was carried out at air flow rates per exposed flat surface area of 9, 11.2, 12.9, 14.3, 15.5, 16.3, and 19.2 g/s·m2 respectively, which controls the gasification rate or power output. The speciation of the gases that evolved from the gasification of the biomass samples was carried out by an FTIR that was calibrated for 60 species. Current uses of biomass residues in open fire heating generates toxic fine particulate emissions and this work aimed to show that this was not a greater problem with gasification. A dynamic electrical mobility particle spectrometer (DMS500) was used to measure the particulate size distribution and concentration, as an efficient gasifier should not be generating major yields of soot, which would be a problem for a downstream reciprocating engine. The optimum equivalence ratio (?) for the best energy transfer to the gaseous products was 2.1, which was similar to previous work on pine using this equipment where the optimum equivalence ratio was 2.8. The hot gases efficiency at the optimum ? was 81%, which compares well to that of 78% for pine.

Item Type:Article
Uncontrolled Keywords:Biomass, Equivalence ratio, Gasification, Particulate number
Subjects:T Technology > TP Chemical technology
Divisions:Chemical and Energy Engineering
ID Code:107174
Deposited By: Widya Wahid
Deposited On:28 Aug 2024 06:54
Last Modified:28 Aug 2024 06:54

Repository Staff Only: item control page