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Abstract: Aspergillus niger is one of the major pathogenic fungi causing postharvest grape decay. The
development of antifungal agents is beneficial to reduce the loss of grapes during storage. The aim of
this study was to investigate the antifungal mechanism of cyclosporin A (CsA). It was indicated that
the rot development on grapes caused by A. niger was almost completely inhibited with CsA in vivo
at a concentration of 200 mg/L. The transcriptomic analysis revealed that the expression levels of
genes involved in rRNA processing and ribosome biogenesis were down-regulated, whereas those
related to β-glucosidases and chitinases were up-regulated. The results implied that CsA may disturb
rRNA and ribosome formation to obstruct protein synthesis, accelerate chitin and glucan degradation
to destruct cell walls, and ultimately reduce postharvest decay caused by A. niger in grapes. This
study evaluated the potential of CsA as a grape preservative and provided new insights into the
mechanisms underlying the molecular response in A. niger with the treatment of CsA.

Keywords: cyclosporins A–C; Aspergillus niger; antifungal; postharvest grape; transcriptome

1. Introduction

Grapes (Vitis vinifera L.) have been cultivated worldwide and consumed by humans for
thousands of years [1,2]. As a highly perishable, non-climacteric fruit, grapes are vulnerable
to postharvest decay caused by Aspergillus niger. This pathogen not only causes significant
losses but also produces a large number of mycotoxins, making it one of the main causes of
postharvest decay in table grapes [3–5]. Currently, sulfur dioxide (SO2) fumigation is often
used to control A. niger, but it has limited effectiveness and can cause bleaching spots on
the berries as well as pose health hazards to humans. Therefore, it is important to develop
alternative methods to prevent and control postharvest grape decay [6–8].

Fungal secondary metabolites are an important ingredient for developing antifungal
and antibacterial drugs [9]. The corn fermentation of Fusarium sp. HU0298, an endophytic
fungus of plants, showed strong antifungal activity against A. niger. The subsequent sec-
ondary investigation of metabolites led to the isolation of three cyclopeptides: cyclosporins
A–C (CsA–C, Figure 1). These compounds were abundant in the metabolites of Fusarium sp.
HU0298 and showed potent antifungal activities against Aspergillus spp. CsA and its anti-
fungal properties have been studied for over 70 years [10–12], but the primary mechanism
of action, which involves impairing the selective permeability of cytoplasmic membranes
and disrupting protein and RNA synthesis in A. niger, is not yet fully understood at the
transcriptional level [13,14]. In this study, in order to provide further insights into the mech-
anisms underlying the molecular response in A. niger and evaluate the potential of CsA
as an antifungal agent, high-dimensional biological data transcriptomics was applied to
investigate the effect and the mechanism of CsA on A. niger, scanning electron microscopy
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(SEM) was used to observe the ultrastructural changes in this pathogen after CsA treatment,
and the efficacy of CsA against the incidence and severity of black rot disease in postharvest
grapes was also studied in vivo.
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2. Materials and Methods
2.1. Producing Fungus and Fermentation

The endophytic fungus Fusarium sp. HU0298 was isolated from Rumex acetosa collected
from the beach near Huanghuashan Village of Nanao County, Guangdong Province, China,
in April 2018. It was identified based on its morphological characteristics and ITS sequence
data (National Microbiology Data Center number NMDCN0000PR2). The fermentation
of this fungus was performed as previously described [15]. The mycelia grown on potato
dextrose agar (PDA, Huankai Microbial, Guangdong, China) were prepared, inoculated
into two 100 mL Erlenmeyer flasks, each containing 30 mL of potato dextrose broth (PDB,
Huankai Microbial, Guangdong, China), and shaken at 28 ◦C for two days on a rotatory
(150 rpm). The culture medium was then transferred into twenty 500 mL culture flasks
that each contained 200 mL of PDB at the same incubation conditions. Finally, 5 mL of
the culture medium was added into each of five hundred 500 mL culture flasks that each
contained 60 mL of pure water and 60 g of corn grains. Fermentation was carried out at
28 ◦C under stationary conditions for 45 days in the dark.

2.2. Preparation of CsA–C

CsA–C were isolated from Fusarium sp. HU0298 metabolites and identified using
nuclear magnetic resonance (NMR, Quantum-I, 400 MHz, Qone Instruments, Wuhan,
China) and electrospray ionization mass spectrometry (ESI-MS, LCMS-8040, Shimadzu,
Kyoto, Japan). The obtained solid culture of Fusarium sp. HU0298 was extracted three
times at room temperature with 95% EtOH. After excluding EtOH, the resulting extract
was successively partitioned with petroleum ether and EtOAc. The EtOAc–soluble extract
(311.7 g) was separated using a silica gel column and eluted with CH2Cl2–MeOH mixtures
of increasing polarity (100:0 to 80:20) to afford Frs.1–24. Fr. 10 (5.0 g of 24.0 g), obtained via
elution of CH2Cl2–MeOH (90:10), which was then separated with preparative HPLC (LC-
16P, Shimadzu, Japan) with 80% aqueous MeOH as the mobile phase to yield CsA (248.6 mg,
tR = 34.7 min, flow rate 4 mL/min), CsB (91.2 mg, tR = 28.4 min) and CsC (258.0 mg,
tR = 24.2 min). For the 1H NMR, 13C NMR, (+) ESI-MS, and (−) ESI-MS data, together with
the structural determination of CsA-C, see Supplementary Figures S1–S12 [16–18].

2.3. Fruit Material and Fungal Culture

Grapes (Vitis vinifera L. var. Thompson seedless) were harvested in September from a
commercial orchard in Shuikou, Huizhou, China. Mature fruits in uniform shape, color,
size, and absence of stains or diseases were selected for experiments.

The testing fungus A. niger HUSGT008 was isolated from the decayed grapes and
stored in our laboratory. The conidia of A. niger arthroconidium (1 × 106 CFU/mL) were
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incubated in the PDA culture at 28 ◦C for three days and suspended in a sterile physiological
saline solution containing 0.5% yeast extract for subsequent use.

2.4. Antifungal Activities of CsA–C In Vitro

A paper disk agar diffusion assay was performed to evaluate the antifungal activity of
CsA, CsB, and CsC against A. niger, A. japonicas, A. tubingensis, A. brasiliensis, and A. flavus.
Filters (6 mm in diameter) containing 100 µg of the sample were applied to the surface
of PDA inoculated with A. niger spore suspensions. The inhibition zone diameter was
measured after three days of incubation. The mycelial growth inhibition activity of CsA
against A. niger was also evaluated [19]. Different concentrations of CsA, specifically, 1, 10,
100, 250, 500, 1000, and 10,000 ng/mL, were added to the PDA medium. Methanol and
imazalil were used as the negative and positive controls, respectively.

2.5. Effect of CsA on the Disease Development in Postharvest Grapes Inoculated with A. niger

Grapes were treated as per Duan et al. [20,21]. The wounded fruits were then treated
for 3 min with 50, 100, and 200 mg/L of CsA in 0.1% ethanol. Subsequently, 5 µL of spore
suspension was added to the wound with a pipette and incubated at 28 ◦C. The fruit was
infiltrated with 0.1% ethanol without CsA as a negative control, whereas thiram, bellkute,
and imazalil were used as positive controls. The experiment was repeated in triplicate, with
each treatment consisting of 10 berries. Each row of grape berries in the figure represents
a treatment repetition (Figure 2). All treated berries were sealed in plastic containers and
stored at 28 ◦C in the dark for 7 days.
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Figure 2. The disease control efficacy of control (0.1% ethanol), cyclosporin A (CsA), thiram, imazalil,
and bellkute with concentration at 50 mg/L against A. niger on grapes.

The disease incidence was calculated using the following formula: disease incidence
(%) = decay number/10 × 100%.

2.6. Scanning Electron Microscopy (SEM) Observation

Fungal mycelia grown on PDB medium for three days with 1 mg/L CsA were observed
using SEM [22]. The ultrastructures of the samples were observed using a JSM-6360 LV
scanning electron microscope (NEC, Tokyo, Japan).

2.7. RNA Extraction and Real-Time Quantitative PCR (RT-qPCR) Analysis

The 3-day-old mycelia of A. niger grown in the PDB medium with or without 1 mg/L
CsA were collected. The total RNA was extracted using the Hipure Fungal RNA Mini
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Kit (Magen, Guangzhou, China) and purified with DNase (TaKaRa Bio, Inc., Otsu, Shiga,
Japan). DNA-free RNA was reverse-transcribed for first-strand cDNA synthesis. The
specific primers designed with Primer Premier 6.0 are shown in Supplementary Table S1.
Q-PCR was performed with a 7500 Fast Real-Time PCR System (Applied Biosystems, Foster
City, CA, USA). Actin was used as the housekeeping gene to normalize the cDNA content.
The formula 2−∆∆CT was used for calculating the relative expression levels of the target
genes [23]. Three independent biological replicates were used in the experiment.

2.8. RNA-Seq Analysis

RNA samples from the same treatment in Section 2.7 were used for RNA-Seq analysis.
RNA-Seq was performed as previously described [24]. RNA concentration was determined
using Qubit, and RNA quality was evaluated with a NanoDrop spectrophotometer. The
mRNA was purified, adenylated, ligated, built, and then sequenced on an Illumina Hiseq
4000 platform. Single-read sequencing (expected library size, 150 base pairs; read length,
50 nucleotides) was performed in the present study. The analysis of differentially expressed
genes (DEGs) was based on the Poisson distribution method. For the significance of digital
gene expression profiles, Padj < 0.05 and |log2 foldchange| ≥ 2 were used as the threshold.
RNA-Seq analysis was performed in triplicate.

2.9. Statistical Analysis

The data are expressed as mean ± standard deviation. The mean separations were
analyzed using Duncan’s multiple range tests, and differences between treatments were
determined using SPSS version 25 at the 5% level.

3. Results and Discussion
3.1. Antifungal Activities of CsA–C against A. niger In Vitro

Aspergillus spp. is one of the most common pathogenic fungi in fruits and vegetables.
CsA, CsB, and CsC exhibited potent antifungal activity at a dose of 100 µg. The inhibition
zone radius of CsA was greater than those of CsB and CsC (Table 1). Moreover, CsA
strongly inhibited the mycelial growth of A. niger at a concentration of 1 ng/mL (Figure 3).
Colony diameter decreased by 55.6% after three days of treatment with 1 ng/mL CsA for,
which was significantly higher than the positive control, imazalil (28.9%).

Table 1. Inhibition zone radius (mm) of cyclosporins A–C (CsA–C) against A. niger.

Compound CsA CsB CsC

A. niger 8.0 ± 0.0 a 7.0 ± 0.0 b 4.2 ± 0.2 c

Different letters within a column of the same Aspergillus strain represent significant differences according to the
least significant difference (LSD) test (p < 0.05).
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3.2. Inhibition Effects of CsA on Disease Development in Artificially Inoculated Grapes

CsA showed strong inhibitory effects on A. niger growth in vitro. The control grape
berries showed a disease incidence of 100%, whereas the disease incidences of grape
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berries treated with 50 and 100 mg/L CsA were 26.7 and 23.3%, respectively. CsA almost
completely inhibited the rot development on grapes caused by A. niger at a concentration
of 200 mg/L, with a disease incidence of 6.7% (Table 2). These results showed that CSA
significantly inhibited the growth of A. niger. Moreover, the coverage area of mycelial
growth was significantly larger than the wounded area in control, whereas most grape
berries treated with CsA showed minimal browning around the inoculation site (wound)
and little mycelial growth (Figure 2). Furthermore, the therapeutic effect of CsA was
better than that of the positive controls thiram, bellkute, and imazalil at a concentration of
50 mg/L, with disease incidences of 36.7, 40.0, and 70.0%, respectively.

Table 2. The disease incidences of cyclosporin A (CsA) against A. niger on grapes.

Treatment Concentration (mg/L) Disease Incidence (%) †

control 0 100.0 ± 0.0 a

CsA
50 26.7 ± 4.7 c
100 23.3 ± 4.7 c
200 6.7 ± 4.7 d

Thiram
50 36.7 ± 9.4 c
100 43.3 ± 9.4 c
200 23.3 ± 4.7 c

Bellkute
50 40.0 ± 8.2 c
100 23.3 ± 4.7 c
200 0.0 ± 0.0 d

Imazalil
50 70.0 ± 8.2 b
100 26.7 ± 9.4 c
200 10.0 ± 0.0 d

† Mean ± standard deviations indicated with letters are significantly different according to the least significant
difference (LSD) test (n = triplicates; p < 0.05).

There are numerous latent diseases in fruits, which usually occur in postharvest
storage. The most common postharvest pathogenic fungi reported for grape berries
are B. cinerea, A. niger, and Penicillium expansum [25,26]. Thiram, bellkute, and imazalil
have been widely used for postharvest preservation of fruits and vegetables in past
decades [27–29]. CsA showed a significantly stronger effect than bellkute and imazalil at
50 mg/L in vivo. The results demonstrate that CsA effectively inhibits the growth and
reproduction of A. niger in grapes and may prolong the storage life of grapes.

3.3. Morphology and Ultrastructural Alterations of A. niger

The hyphae and sporangiophores in the control groups appeared regular, smooth, and
normal after three days of cultivation. The spores and sporangium showed a regular and
spherical shape with a clear outline (Figure 4A–C). However, treatment with 1 mg/L CsA
significantly inhibited the hyphae growth of A. niger, resulting in a short and rhabdoid
shape, and no sporangia or spores were detected (Figure 4D).

3.4. Transcriptomic Analysis of A. niger in Response to CsA

The transcriptomes of mycelium samples were analyzed to determine the global RNA
changes induced by CsA treatment at 1 mg/L. In total, 13,095 genes were detected in
both the control and treatment groups. After CsA treatment, 820 DEGs were obtained,
with 480 of them up-regulated and 340 down-regulated (Figure 5A). Based on the cell
components category, DEGs belonging to “membrane” and “nucleus/nucleolus” were
enriched (Figure 5B). GO enrichment analysis was also performed to investigate the bio-
logical functions of these DEGs. DEGs associated with “rRNA processing” and “ribosome
biogenesis” were enriched and down-regulated (Figure 5B). However, DEGs for cell wall
organization and xylan catabolism were up-regulated. According to the recorded molecular
functions, DEGs for “metal ion binding,” “ATP binding,” “oxidoreductase activity,” and
“RNA binding” were enriched (Figure 5C).
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Furthermore, the first ten variable pathways from a total of 128 KEGG pathways were
used to screen out important genes in the KEGG enrichment pathway. Most of the genes
were enriched in metabolic pathways. Ribosome biogenesis in eukaryotes, starch and
sucrose metabolism, carbon metabolism, and pentose and glucuronate interconversions
were also involved (Figure 6). Based on GO enrichment, KEGG pathways, and the String
database, 36 genes were identified as important genes associated with the results of the
phenotypic study; their PPI networks and descriptions are shown in Figure 7 and Table S2,
respectively. It is hypothesized that the antifungal mechanism of CsA involves rRNA
synthesis, ribosome biogenesis, and fungal cell wall disruption.

Ribosomes and rRNA are essential for protein synthesis, which is necessary for biolog-
ical growth, development, and reproduction. The DEGs of rRNA processing and ribosome
biogenesis were down-regulated in the top eleven variable categories of biological processes
(Figure 5C). ATP-dependent RNA helicases (An08g07790, An01g09040, An15g01160, and
An02g06750) were involved in multiple rRNAs or in pre-rRNA formation. The keys to
tRNA processing and maturation were the methyltransferases of structural modification of
tRNA (An01g09640, TRM82, An01g00070, and An02g03410). tRNA maturation was closely
related to the transport of protein synthesis precursors and products [30]. DNA-directed
RNA polymerase III subunits (CADANGAP00012024 and An18g04850) affected DNA tran-
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scription into RNA using the four ribonucleoside triphosphates as substrates [31,32]. RNA
recognition motif family proteins (An11g10760, An11g10020, An16g08640, CAN33_4095,
and CAN33_4035) played an essential role in rRNA processing [33]. The component of
the NOP7 complex (YTM1) was required for 25S, and 5.8S rRNA maturation and RNA-3’-
phosphate cyclase family protein (An16g08220) were required for 18S rRNA synthesis [34].
The proteins (An05g00960, An12g00450, CAN33_2620, and An03g06850) were involved
in rRNA processing and maturing. Furthermore, ribosome biogenesis regulatory pro-
teins (An13g01010, YTM1, An02g03520, CAN33_5400, and An15g00680) were involved
in ribosome biogenesis and subunit assembly, especially the formation of the 60S ribo-
some [35]. Moreover, the nucleolar protein consisted of ribosomal RNA processing proteins
(An08g03290 and An14g03620). These results indicate that the down-regulation of rRNA
processing and ribosome biogenesis genes may reduce the protein required for normal cell
biogenic activities and growth.
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It is well known that α-amanitin, a highly toxic cyclopeptide isolated from Amanita
spp., can inhibit mRNA synthesis by interrupting RNA polymerase II translocation and
suppressing nuclear maturation [36]. Rifampicin, an antibiotic for the treatment of nocar-
diosis and numerous mycobacterial infections, can inhibit protein biosynthesis by blocking
RNA transcription in bacteria by binding to the β-subunit of the DNA-dependent RNA
polymerase [37]. Sazykin et al. suggested that cyclosporine affects the RNA and protein
synthesis of A. niger [14], but the molecule mechanism was not explained. CsA may inhibit
the transcription and translation of RNA polymerase III complex in the current study. The
results demonstrated that CsA treatment inhibited DNA transcription, tRNA transport,
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and the processing and maturation of 5.8S, 18S, and 25S rRNA, as well as the biogenesis
of 40S and 60S ribosome subunits and assembly in the cell, inhibiting A. niger growth as a
result. SEM observations revealed that the growth and development of mycelium treated
with CsA was inhibited and could not develop completely (Figure 4D).

The cell wall organization is the most significant pathway in the biological process
(Figure 5C). The glucosidases (An03g05330, An17g00520, and eglB), xylanases (xlnC and
An01g14600), furanosidases (axhA and An08g01710), galacturonases (pgxA, pgxB, pga1,
and An11g00390), and Pectin lyases (pelB and pelf) involved in cell wall organization were
up-regulated. Moreover, the expression levels of chitinases (CAN33_0014840 and P36362)
were significantly up-regulated with the log2 fold changes of 1.8 and 1.2, respectively
(Table S2). The results indicated that the antifungal mechanism of CsA was related to the
upregulation of cell wall hydrolase expression.

The fungal cell wall can be targeted with antifungal drugs [38]. It was reported that
1, 3-β-D-glucan and chitin were the most abundant cell wall polymers of both yeasts and
filamentous fungi as well as the important components of the supra-molecular complex
in the cell wall [39,40]. β-1,3-glucanase and chitinase may play an important role in cell
wall remodeling and modification [41]. Dreyfuss et al. reported that CsA blocked chitin
synthesis in Neurospora crassa [10]. The cell wall organization pathway was the most signifi-
cant biological process in this study (Figure 5C). Several regulation-related genes in A. niger
were significantly up-regulated in response to CsA. The β-glucosidases (An17g00520,
An03g05330, An16g06800, and eglB) with various endoglucanase activities may be in-
volved in 1, 3-β-D-glucan degradation [42]. In contrast, chitinases (CAN33_0014840 and
P36362, with the log2 fold changes of 1.8 and 1.2, respectively) had endo-hydrolysis of
N-acetyl-β-D-glucosaminide (1→4)-β-linkages in chitin and chitodextrins (Table S2) [43,44].
Furthermore, the phenomenon of hyphae splitting into particles was observed (Figure 4D).
High expression of β-glucosidases and chitinases enhanced cell wall hydrolase activity
that augmented cell wall destruction, thereby inhibiting the growth of A. niger after CsA
treatment.

The expression levels of some DEGs from the PPI network were analyzed using RT-
qPCR analysis to confirm the effect of CsA treatment on A. niger. The expression patterns of
17/20 genes were consistent with that of the transcriptome (Figure 8). The results indicated
that the transcriptomic analysis was stable and reliable. Transcriptomic analysis revealed
that the antifungal mechanism of CsA was related to rRNA processing, ribosome biogenesis,
and cell wall hydrolysis. Moreover, CsA was shown to induce leakage of low-molecular
weight intracellular components by impairing the selective permeability of cytoplasmic
membranes in A. niger [13]. In conclusion, CsA can significantly inhibit the mycelial growth
of fungi by interrupting protein synthesis from the “inside” and by destroying the integrity
and permeability of the cell membrane and cell wall from the “outside.”
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4. Conclusions

The antifungal mechanism of CsA was systematically investigated for the first time
by using transcriptomic and ultrastructural observations. The results revealed that CsA
treatment can inhibit the growth of A. niger, disrupt normal morphology, and impede pro-
tein synthesis by disturbing rRNA and ribosome formation. Additionally, CsA accelerates
the degradation of chitin and glucan in the cell wall, ultimately leading to its destruction.
These findings provide a new understanding of the inhibitory mechanisms of CsA and
can serve as a reference for evaluating its potential as a preservative for grapes. To ensure
the safe utilization of CsA, future studies should focus on assessing its toxicity during
consumption as well as determining optimal dosage and application methods. Only with
this information can CsA be considered for widespread use.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/foods12030567/s1, Table S1: Primers used for real-time PCR; Table S2: Rep-
resentative DEGs in different comparisons between CsA treatment and control; Figures S1–S12: NMR
spectra and ESI-MS for CsA–C.
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