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A B S T R A C T   

Traditional irrigation control systems is characterized with inefficient management of water and often results in 
low water productivity index and reduced cultivation yield. In addition, insufficient water supply and high rate 
of water loss due to evapotranspiration increases plant stress which often affects its growth and development. 
Therefore, to address this issues, this paper is aimed at developing a model predictive control (MPC) strategy for 
water saving drip irrigation experiment that will regulate the soil moisture content within the desired field 
capacity and above the wilting point, while scheduling irrigation to replace the loss of water from soil and plant 
due to evapotranspiration in the greenhouse environment. The controller design involves a data driven predictive 
model identified and integrated with the MPC designer in MATLAB and thereafter exported in Simulink for 
simulation. The generate controller code was modified and deployed on a Raspberry Pi 4 controller to generate a 
pulse width modulated signal to drive the pump for the control water mixed with fertilizer. To achieve 
enhancement of controller an Internet of Things (IoT) integration was used for easy soil, weather, and plant 
monitoring which are used to update the MPC model for the irrigation control. The performance of the proposed 
MPC controller deployed drip irrigated Greenhouse(GH1) is benchmarked against an existing automatic 
evapotranspiration (ETo) model based controller in Greenhouse(GH2), with each greenhouse containing 80 poly 
bags of Cantaloupe plant with similar growth stage. The results obtained shows that, the proposed MPC-based 
irrigation system has higher water productivity index of 36.8 g/liters, good quality of fruit with average 
sweetness level of 13.5 Brix compared to automatic ETo-based irrigation system with 25.6 g/liters and 10.5 Brix, 
respectively. However, the total mass of harvested fruit for ETo-based irrigation system is higher than MPC-based 
irrigation system by 21.7%. The performance of the proposed MPC controller was achieved through the inte
gration of event based scheduling with IoT monitoring as well as inclusion of evapotranspiration effect in the 
plant dynamics.   

1. Introduction 

Water is one of the most precious resources on the earth, it is 
therefore imperative to measure, control and preserve for sustainable 
agricultural production and healthy living. The severe global competi
tion for food and water is due to the effect of increase in world’s pop
ulation and climate change. This has increased the interest on how to 
achieve optimal use of scarce resources such as water using precision 
irrigation aimed at increasing food production and water saving [1]. The 
rate of water loss known as reference evapotranspiration (ETo) from 

plant and soil is dependant on the nonlinear dynamic change of soil, 
plant, and weather interaction. The regular change in evapotranspira
tion has effect in the available water in the soil for plant use, as a very 
high rate of ETo could lead to plant wilting. This remains a significant 
issue affecting the control strategies for crop irrigation, as there is a need 
for irrigation controller to adaptively adjust to the dynamic variations of 
soil, plant and weather parameters to ensure effective irrigation man
agement [2]. Commonly, most farmers do not consider these dynamic 
varying factors when making irrigation scheduling decisions, which may 
lead to many draw backs such as low water use efficiency, reduced yield 
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and more energy usage in driving pumps to supply of water for irrigation 
[3]. Consequently, the real time monitoring of weather, soil, and plant 
parameters within a cultivation environment using Internet of things 
(IoT) as well as wireless sensor networks (WSN) can enable the reali
zation of smart management of different methods irrigation systems 
[4–10]. 

There are various control strategies that can be used for irrigation 
management. The irrigation control strategies are basically categorized 
in open loop and close loop control methods. Irrigation decisions using 
open-loop control approach are managed based on the farmer intuition 
and using either on or off irrigation timers to control opening and 
closing of valves. The irrigation timing and volume is often specified and 
applied based on the farmers experience without considering sensors 
feedback on the changing parameters that has effect on plant such as soil 
moisture contents, and other weather parameters [11–13] The issues 
affecting with open-loop control of irrigation system affected by various 
environmental disturbances such as evapotranspiration, effect of 
different growth stage requirement of plants (Kc), and requires regular 
adjustment to ensure better performance [14]. The close loop control 
approach has been reported to be able to address the issue associated 
with open loop through the use of sensor based signal as feedback to 
keep the measured output condition close to the desired trajectory while 
deciding the duration of water supply to plants [14,15]. Research work 
on close loop control of irrigation have been implemented through 
simulation using the linear control approach such as proportional inte
gral differential (PID) [16–20] and also linear quadratic regulator (LQR) 
[21–26]. The works reported a good control performance through 
simulation, but their real time deployment on hardware was not thor
oughly explored. Similarly, several works on intelligent control such as 
fuzzy logic and expert system approach where rules and formulated 
based on expert knowledge of the dynamics of the system was used to 
decide the timing and volume irrigation were carried out [27–36]. This 
method has proven to be effective, but the drawback of this method is 
that no matter how well formulated the rules are, there will always be 
situations that don’t exist in the rules. In most cases fuzzy based irri
gation controllers are not often adaptive to the varying dynamics of 
plant, weather, and soil parameters. Also, reported in literatures is the 
use of artificial neural networks for soil moisture prediction [37–48] as 
well as metaheuristic algorithm for irrigation optimization [49–55]. The 
works were carried out as a good proof of concept through simulation, 
but the need for training of the ANN models on embedded hardware 
makes their real time implementation for irrigation of plant cultivation 
challenging, hence difficult to access their performance and suitability 
for farmers use. Also, the use of predictive models for irrigation sched
uling has been reported in Refs. [56–59]. The predictive models were 
used to predict the future trajectory of the control variable, while opti
mizing the cost function according to the reference trajectory. However, 
the work was only conducted through simulation only without experi
mental validation. In addition, the use of generalized predictive control 
(GPC) method for scheduling irrigation for tomato plant was reported to 
have achieved 20% water saving. However, the controller was not 
designed to handle constraint management on the control variables as 
well as the changing dynamics of the crop coefficient effect on ETo [60, 
61]. 

MPC is a model based algorithm that utilizes the model of a process 
to predict the future trajectory of the system controlled, by solving an 
online optimization at every time stamp to compute the future control 
action [62]. One of the issue reported in literature is on the applicability 
of MPC for process control application will provide a burden on pro
ducing high computational complexity associated with solving online 
optimization repeatedly on hardware [63]. Since the application of the 
MPC controller is in the area of precision irrigation agriculture has a 
slow process response, the integration of the concept of hourly event 
based triggering has been considered in this paper to decide the sam
pling instant at which the controller will solve online optimization to 
compute the optimal control action needed to minimize the error Ta
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between the predicted moisture content of the soil and the set point 
trajectory can be used to address this issue. The summary of the com
parison of the various related literatures to the proposed technique is 
illustrated in Table 1, where the proposed technique has more features 
considered in terms of monitored parameters, performance evaluation 
as well as implementation in both simulation and hardware. 

This paper is aimed at the design and experimental implementation 
of a data driven MPC controller on Raspberry Pi that will regulate the 
volumetric water content of the soil within a desirable limit known as 
field capacity and wilting point towards water saving drip irrigation. 
These is achieved through the scheduling irrigation to replace the water 
loss due to high ETo in the greenhouse environment. The performance 
on the proposed MPC controller deployed in greenhouse 1 (GH1) was 
benchmarked with an existing automatic ETo based controller deployed 
in greenhouse 2 (GH2). The significant contribution of this paper as 
illustrated in Table 1 which includes the consideration of soil, plant and 
weather dynamic change using a predictive model and image processing 
to estimate the value of Kc in a greenhouse. The simulation and real time 
experimental implementation of the predictive control algorithm for 
greenhouse cultivation experiment leveraging on the developed IoT 
frame work towards effective monitoring of the various sensed variables 
to update the model of the controller. 

2. Methodology 

MPC requires a good model that captures the dynamics of a process, 
to formulate an optimal control action that can drive the process 
through it reference trajectories. The process of model formulation for a 
drip irrigation system is based on the hydrological balance model as 
illustrated in Fig. 1, which has established that the change in soil 
moisture content during a period of time is as result of water inflow 
actions such as rainfall, irrigation as well as water outflows such as 
evapotranspiration, capillary rise, deep percolation and surface run off 

effect. The reference evapotranspiration also known as water loss from 
the process, is an important parameter of the model that depend on the 
weather variable, namely speed of wind, solar radiation, air tempera
ture, air humidity, and the plant characteristic such as crop coefficient 
(Kc). Some measurable and estimated parameters of the hydrological 
process dynamics can be formulated into input and output data and use 
to fit an existing model structure through data driven modelling. The 
model that best fit to the data was further use for the MPC controller 
design needed for optimal water saving in a drip irrigation system. 

The sequence of methodology that was adopted in the research is 
illustrated using Fig. 2. The setting of IoT framework for open loop 
experimental cultivation of Cantaloupe and Mustard leaf cultivation is 
designed to assist the data collection needed for the data driven 
modelling [70]. Thereafter, a data driven system identification was 
carried out based on the data collected in the open loop experiment. The 
developed model was used to design the proposed model predictive 
controller, and subsequent deployment of the proposed controller on 
Raspberry Pi 4 as a target hardware for cultivation experiment. 

Fig. 3 illustrate an IoT based framework setup in an experimental 
greenhouse environment situated within Universiti Teknologi Malaysia 
(10 33.554′N, 1030 37.507′ E), which was initially described in 
Ref. [70]. In this setup, an on and off decision based scheduling algo
rithm was embedded in Raspberry Pi and was it is used for to collect 
experimental data soil, plant, and weather between 30th July, 2019 to 
24th August, 2019 as well as 15th September 2019 to 30th November, 
2019 for Mustard leaf cultivated in GH2 and Cantaloupe plant cultivated 
in GH1 respectively. The experimental dataset were analysed, while the 
development of data driven models that captures the changing dynamics 
of the system was implemented through system identification [70]. 

However, an improvement has been made as shown in Fig. 3 where 
an integration of model predictive controller has been designed in 
Raspberry Pi to control the pulse width modulated signal to drive the 
pump for supply of water through the drip irrigation network. Through 

Fig. 1. Hydrological balance model for plant dynamics.  

Fig. 2. The block diagram of the main stages of the methodology.  
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the aid of a real-time IoT based weather station that senses weather 
parameters, an hourly computation of reference evapotranspiration 
(ETo) inferring the loss of water from soil surface and plant leafs is 
estimated based on Modified FAO-56 Penman–Monteith equation as 
shown in Eq. (1). The equation was developed in a customized IoT 
controller interfaced with the Davis weather station. 

Similarly, the real time computation of the crop coefficient (Kc) 
using image processing method which has effect on the rate of reference 
evapotranspiration (ETo) shown in Eq. (2) is also known as water loss 
which acts as disturbance to the process. 

ETO=

0.408Δ(Rn) + γ 900
T+273 U2 (e2 )

Δ + γ(1 + 0.34U2 )
(1)  

where, ETO denotes the reference evapotranspiration (mm/hour); Rn 
represents the reference crop canopy net radiation (W/m2); Δ represents 
the slope of saturation vapour pressure (kPa ◦C-1); λ represent the latent 
heat of vaporization (kPa ◦C − 1); T represents the mean air temperature 
in Celsius; U2 is the Mean daily or hourly wind speed at 2 m height 
(ms− 1) and e2 represent the stream pressure of saturation vapour (kPa) 
[71]. The estimated ETo is used to derive the actual evapotranspiration 
(ETC), which is the loss of water from a specific crop, from where the 
estimated amount of water to replace the water loss is computed for 
further application to the plant, based on the crop coefficient (KC) which 
is of different value from one crop to another. 

ETC = ETO ∗ KC (2) 

Based on the framework shown in Fig. 3, the real time sensing of soil 
moisture in terms of volumetric water content (vwc) was carried out 
using a VH400 sensor connected to the IoT Expresso board. The VH400 
sensor probe is a resistance based soil moisture content sensor which 
measures the dielectric constant of the soil when inserted vertically into 
the ground close to the root area of the plant [72]. The VH400 soil 
moisture sensor was calibrated using the piecewise linear equations as 
described in Eqs. (3)–(5). 

y = mx + c (3)  

vwc = mV + c (4)  

m =
vwc2 − vwc1

V2 − V1
, c = mv − vwc (5)  

where, m is the slope of the line. The VH400’s voltage (v) to the vwc 
curve can be approximated with 4 segments of the form in Eq. (3) and 
Eq. (4), respectively [73]. Similarly, V1 and V2 are the voltages recorded 
at the respective vwc levels of vwc1 and vwc2. The sensor has an inbuilt 
voltage regulator that operates with a DC input voltage of 3.5 to 20 
Volts, which requires an input current of less than 7 mA. It produces a 
DC output voltage in the range of 0 to 3V which infers different level of 
the soil water content [74]. 

Similarly, the irrigation volume and reference evapotranspiration 
ETowas computed using an IoT based flow metre and weather station. 
Similarly, the irrigation volume of the IoT based flowmeter produces an 
output digital pulse and then further counted by the IoT Expresso board 
to calculate the amount of water flow per each irrigation event. The 
water flowrate R is calibrated using Eqs. (6) and (7). 

R =
N ∗ 60(Pulse per minute)

M(Pulse per litre)
(6)  

where, the number of pulses M generated per litre of water flowing 
through the sensor can be found in the water flow sensors specification 
datasheet, while N is the number of pulse count generated by the flow 
sensor. The water flow volume can be calculated by summing up the 
product of flowrate and the time interval. 

Water flow volume =
∑N

k=0
Flowrate ∗ Time Interval (7) 

Water loss also known as disturbance of the process plant which 
requires an estimation of real time crop coefficient (KC) to guide an 
efficient water management [75]. To accurately estimate the water loss 

Fig. 3. An IoT based model predictive control framework.  
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actual evapotranspiration (ETc) termed water loss requires real time 
monitoring of Kc at different growth stage as well as measurement of 
real time of reference evapotranspiration (ETo). Determining the height 
of the plant as well as the leaf area index (LAI) using image processing to 
compute the KC can guide the accurate determination for the actual 
water loss and enable the model predictive controller to be able to 
compensate for the loss [75]. The computation of the KC was carried out 
using the ratio of LAI and plant height estimated based on Eq. (8) using 
and computed on Raspberry pi with camera. 

KC =
LAI

Plant Height
(8)  

2.1. Data driven system identification of the system 

The data driven system identification of the process was carried out 
offline in MATLAB using the input and output data collected from a 
previous open loop experiment on similar plant. The experimental data 
collected was pre-processed and split into two, one for estimation and 
the other for validation. The data driven model is obtained using a 
system identification method, in which 3700 data point of input and 
output experimental dataset with sampling time of 10 min was used for 
the identification. 

Different time series model structures were selected to get a good 
model of the best fit, but the discrete-time state space model was chosen 
due to it suitability for controller design. The identified state space 
model is represented by Eqs. (9) and (10) with, B, C, and D matrices was 
used to represent the dynamics of the real system. Also, x(k) is the state 
variable at time instant k, u(k) is the manipulated variable (irrigation 
flow), y(k) is the measured output (volumetric water content of the soil). 

x(k+ 1) = Ax(k) + Bu(k) (9)  

y(k) = Cx(k) + Du(k) (10)  

where, 

A =

[
0.9996 0

0 0

]

B =

[
− 9.062 × 10− 9

− 7.245 × 10− 6

]

C = [− 5530 0] D =

[
0
0

]

2.2. Model predictive control for drip irrigation system 

Model predictive control (MPC) is a process control algorithm that 
uses a model of a system to predict the future evolution of the system to 
optimize the control signal according to the cost function, while 
bringing the predictive output of the system to track the desired refer
ence trajectory [76]. MPC requires a model that fully capture the 
varying dynamics of the plant to allow a good estimation of the future 
process while the controller takes decision based on the forecasting of 
the system’s behaviour through optimization. The prediction horizon 
Npis the future number of samples to which the controller can predict the 
output of the plant, while the control horizon is the number of samples 
within the prediction horizon to which the controller have effect on the 
control signal. 

The MPC irrigation controller block diagram illustrated by Fig. 4 
shows the irrigation system (plant) which is the cultivation environment 
with crop whose major monitoring and control parameter is the soil 
moisture, and often disturbed by high ETc, hence that requires the 
control action in terms of irrigation volume u(k) to compensate for the 
water loss in order to maintain the desired reference trajectory of the soil 
moisture content implied as the control variable. The MPC controller 
needs to predict the volume of irrigation in order to optimize some 
desired characteristics of the plant required at each sampling instance. 

2.3. Model predictive control formulation 

Assuming that the soil moisture that is denoted as the state variable 
SM(t) is x(k), i.e. x(k + 1), x(k + 2),…, x(k + N), where x(k + N), is the 
state variable predicted at the sampling instant k+ N. The prediction 

Fig. 4. Model predictive control for drip irrigation system.  
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horizon Np, denotes the number of future predicted samples. The 
objective of the MPC is to optimize the future control effort 
trajectory ΔU(k) = [u(k) u(k + 1)……..u(k + Nc − 1)]T where u(k) is 
the control input or applied irrigation, Nc is the control horizon that 
denotes the number of parameters that determines the future control 
trajectory. Note that Nc ≤ Np, while E(k) denote the reference evapo
transpiration which act as disturbance on the plant state variable. Ac
cording to Ref. [77], in order to calculate the set of predicted state and 

output variables as a function of the future control variable using a state 
space model (A, B, C and D) over a prediction horizon of Np as follows: 

x(k+ 1) = axe(k) + Bu(k)

x(k+ 2) = Ax(k + 1) + Bu(k+ 1) (11)  

x(k+ 2) = A(Ax(k) +Bu(k)) + Bu(k+ 1)

x(k+ 2) = A2x(k) + ABu(k) + Bu(k+ 1) (12)  

x
(
k+Np

)
= ANpx(k) + ANp− 1Bu(k) + ANp− 2Bu(k+ 1)

+… + ANp− NcBu(k+Nc − 1) (13) 

Similarly, the predicted output variables can be derived using the set 
of future control variables as follows 

y(k+ 1) = CAx(k) + Du(k) (14)  

y(k+ 2) = CAx(k+ 1) + Du(k+ 1)

y(k+ 2) = CA(axe(k) +Bu(k)) + Du(k)

y(k+ 2) = CA2x(k) + CABu(k) + Du(k+ 1) (15)  

y
(
k+Np

)
= CANpx(k) + ANp− 1Bu(k) + ANp− 2Bu(k+ 1)+

… + ANp− NcBu(k+Nc − 1) (16) 

Therefore the future control moves and the future state variable are 
calculated from the augmented matrix and based on this the predicted 
output variable derived from Eqs. (9) to (16) and is given by Eq. (17). 

YPR = φx(k) + ∅ ΔU(k) + γE(k) (17)  

Table 2 
Parameters of the proposed MPC controllers.  

Parameters Description Value Unit 

TS Sampling Time 10 0.4 
Nc Control Horizon 5 – 
Np Prediction Horizon 10 – 
SMmin Wilting Point 0.1 m3/m3 

SMmax Field Capacity 0.4 m3/m3  

Table 3 
Model predictive control algorithm.  

Algorithm 1: MPC optimal control signal for the current interval 
Get measurements of the plant Input Ir[ki − 1], ETc[ki − 1], Output θ[ki − 1]

Use the previous input and output data to identify a predictive model 
While simulation is ongoing do 
Use the process model, predict the process output θp[ki] over a horizon 
Estimate the error e[ki] ie θp[ki] − θ[ki] and Minimize J 
If θp[ki] − θ[ki] > 0 or ETc ≥ ETcmax 

Solve an optimal control problem to compute u(k), k = 1,…..,m, considering the 
constraints and future ones in a prediction horizon (N) steps to minimize the error 
e[ki]

Apply the first decision to implement the first event computed move u(k)
end 
Move to the event and repeat the procedure from the beginning k = k + 1  

Fig. 5. Implementation diagram of MPC irrigation controller in Simulink.  
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Where E(k) =

⎡

⎢
⎣

e(k)

e(k + 1)

⋮

e(k + Nc − 1)

⎤

⎥
⎦ (18)  

YPR =

⎡

⎢
⎣

y(k + 1)

y(k + 2)

⋮

y(k + N)

⎤

⎥
⎦ (19)  

ΔU =

⎡

⎢
⎣

u(k)

u(k + 1)

⋮

u(k + Nc − 1)

⎤

⎥
⎦ (20)  

φ =

⎡

⎢
⎣

CA

CA2

⋮

CANp− 1

⎤

⎥
⎦ (21)  

and 

∅ =

⎡

⎢
⎢
⎢
⎢
⎣

CB 0 ⋯

CAB CB ⋯

CANp CAB ⋯

0

0

0

⋮

CANp− 1B CANp− 2B ⋯ CANp− NcB

⎤

⎥
⎥
⎥
⎥
⎦

(22)  

γ =

⎡

⎢
⎢
⎢
⎢
⎣

CBd 0 ⋯

CABd CB ⋯

CANpBd CAB ⋯

0

0

0

⋮

CANp− 1Bd CANp− 2Bd ⋯ CANp− NcBd

⎤

⎥
⎥
⎥
⎥
⎦

(23) 

The cost function (J) of the optimization is formulated in Eq. (24) as 
follows: 

J =
(
Rf − YPr

)T Qδ
(
Rf − YPr

)
+ ΔuT QλΔU (24) 

Rf is the reference trajectory of the target soil moisture value, YPr is 
the future value of the soil moisture content, Q is the function of the state 
x(k) and input u(k) variable. Where RT = [1, 1, 1,……,1]SM(k) the 
vector of the references over is Np, SM(k)is the current reference. Qδ is 
the weighting matrix of the tracking error while Qλ is the weighting 
matrix of the control increase. The tuning of Qδ and Qλ can enhance the 
error and control tracking performance of the MPC irrigation controller. 
The goal of the controller cost function to satisfy the dynamics of the 
system. That is to make the future output as close to the set point or 
reduce the error e(k) between the future output and the set point Rf , ie 
reduce e(k) = YPr − Rf by generating the sequence of the appropriate 
control input action u(k) in steady state where the change in control 
signal is eliminated. The formulation optimization problem for the MPC 
irrigation system design is to find the n sequence of input that will 
minimize the cost function in Eq. (25). 

min
Δu J =

(
Rf − YPr

)T Qδ
(
Rf − YPr

)
+ ΔuT QλΔU (25) 

Subject to the constraints that the initial state are measured at any 
time is known and measured and maintained between the field capacity 

Fig. 6. Hardware implementation of the data driven MPC on Raspberry Pi with IoT integration.  
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of the soil (SMmax) and wilting point (SMmin). The minimization also need 
to satisfy the system dynamics as well as the irrigation volume so as not 
to over irrigate the greenhouse to prevent over flooding with water and 
also maintain the soil moisture between the field capacity and wilting 

point. 

0 ≤ u(k) ≤ EImax  

Fig. 7. Flowchart for the MPC based irrigation control system.  
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Fig. 8. (a) IoT based monitoring dashboard for GH 1 and GH2 with cultivated plant at maturity (b) Deployed model predictive controller in a GH1 cultiva
tion experiment. 

Fig. 9. Simulation of the MPC controller in Simulink.  
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SMmin ≤ Z ≤ SMmax  

where, EImax is the allowable optimal effective irrigation effort, 
SMmin andSMmax are the wilting point and field capacity of the plant root 
zone deficit which serves as constraints to the irrigation system. The 
optimal control signal is obtained as follows in Eq. (26). 

∂J
∂ΔU

= 0

ΔU =
(
∅T ∅ + R

)− 1 ∅T ( Rf − φx(k)
)

(26)  

2.4. Real time implementation of data driven MPC design in Simulink 

This section describe the application of MPC for designing a real time 
irrigation controller simulation via Simulink. The MPC controller block 
was designed with the state space model identified using the data driven 
modelling through system identification, and imported into the MPC 
designer app for configuration and tuning as described by algorithm 1 in 
Table 3, while flowchart guiding the controller is also illustrated using 
Fig. 8. The performance of the MPC also depends on the choice of the 
control and prediction horizon, and constraints on the control variable. 
The parameters used to design the predictive controller are, the pre
diction horizon of 5 and control horizon of 10 was chosen as seen in 
Table 2. One of the main strength is the ability to handle constraint on 

Fig. 10. Experimental Results (a) Daily Reference Evapotranspiration (mm/day) (b) Volumetric water content of the soil (m3/m3) (c) Daily Hourly irrigation 
volume (Liters). 

Fig. 11. Comparison of both controllers in GH1 and GH2 in terms of the total mass of the harvested Cantaloupe yield.  
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the plant. The constraint on the control variable (soil moisture) y is set 
within the lower limit (0.2m3 /m3) and upper limit (0.45 m3 /m3) called 
wilting point and field capacity respectively. 

Similarly, the weights on the control and manipulated variable (MV) 
was use to adjust the controller performance. The weight on the MV was 
used to penalise the control action, meaning that because the system is 
strongly nonlinear, with rapid variations of some variable with time, if 
the sampling interval is set too long, the process will be out of control for 
a long time simulation [59,78]. The input weights were chosen as close 
to zero (0.01), to provide more good control response. After the design, 
the controller is exported to the MATLAB workspace and saved as mat 
file. The MPC controller was exported and integrated with the event 
generator function in Simulink as shown in Fig. 5. In order to ensure 
optimal computational and controller performance and event based 
generator was integrated to update the controller based on a triggering 

event at one hour interval and when ETo is more than 1 mm/day for up 
to 10 min. 

3.5. The hardware implementation for experimental cultivation validation 

The close loop simulation of the MPC controller design implemented 
in Simulink was deployed through of it support package for Raspberry Pi 
the hardware implementation realization as illustrated in Fig. 6. The 
model predictive irrigation algorithm generates the control action in 
form of pulse width modulated (PWM) signal a with a varying duty cycle 
to drive the manipulated variable while compensating for the loss and 
disturbance on the plant. The motor driver receives PWM control action 
signal from the GPIO pin 12 and 13 of the Raspberry Pi and provides the 
necessary driving current to the direct current (DC) water pump from 
the power supply. Raspberry-Pi 4 micro-computer was used to 

Fig. 12. Comparison of both controllers in GH1 and GH2 in terms of the sweetness of the harvested Cantaloupe yield.  

Fig. 13. Cumulative Irrigation water use (Liters).  
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implement the model-based irrigation control system in real-time. The 
Raspberry pi uses a 1.5 GHz quad-core Broadcom processor, 64 bit SoC 
with 4 GB DDR4 of RAM, GPU 500 MHz video core vi. With this SoC 
specification, the model predictive control algorithm was able to run 
efficiently. The deployed MPC controller illustrated using the flowchart 
in Fig. 7 was used to adaptively control irrigation volume based on the 
rate of water loss for Cantaloupe plant cultivation in greenhouse 1 (GH1) 
from 10th September, 2020 and 29th October, 2020. Similarly, the 
automatic ET-based controller deployed in greenhouse 2 (GH2) was 
used to bench mark the performance of the proposed MPC controller. 

3. Results 

The results comprises of both the controller simulation outcome as 
well as the deployment of the controller in a greenhouse for the exper
imental cultivation of Cantaloupe. The dashboard in Fig. 8 shows the 
greenhouse monitoring for both GH1 and GH2. The model predictive 
controller as deployed in GH1 for experiment, while the controller 
deployed in GH2 is an automatic ETo based irrigation controller. The 
controller in GH2 work based on feed forward control strategy, where 
estimation of irrigation is based on rate of water loss due to evapora
tions, and used for benchmarking purpose. The dashboard enhances the 
real-time monitoring of the process in the greenhouse, with data of soil, 
weather and plant that have been uploaded on the server to be viewed 
remotely. Also the mini dashboard in Fig. 9(a) contains details of the 
experiment and controller performance. 

The simulation result of the proposed MPC controller in Simulink is 
shown in Fig. 9. The graphs show the interaction plot of the soil moisture 
content, actual evapotranspiration, and irrigation flow against several 
sampling instant. The simulation results shows that the control variable, 
also the volumetric water content of the soil was brought to the set point 
of 0.35 m3/m3 even when the disturbance (water loss) in terms of actual 
evapotranspiration ETc is high, there is also corresponding control 

action to replace the water loss from the soil. The simulation result of the 
proposed MPC controller in Fig. 8 has similar trend with the bench 
marked works of [66,79], in terms of the control action denoted as 
irrigation volume, used to compensated for the water loss while regu
lating the soil moisture content within field capacity and wilting point. 

Similarly, the Fig. 10(a)–(c) further shows the relationship between 
the measured daily ETo, daily soil moisture content, and the daily hourly 
irrigation volume in (Liters) measured in MPC controlled GH1 respec
tively. The proposed controller was able to regulate the soil moisture 
content within the field capacity and wilting point, even when the rate of 
water loss in terms of ETo is high, while the pumped irrigation water was 
able to adaptively compensate the water loss (ETo). 

The result of the performance evaluation is presented in Figs. 11–13. 
Different indices were used to determine the performance comparison of 
the two irrigation methods on the cultivated Cantaloupe plants, which 
are cumulative water consumption (litre), water use efficiency, weight 
of fruit (kg), and sweetness of fruit (brix). From the bar chart in Figs. 11 
and 12 illustrates the performance comparison of the both controllers 
deployed in both greenhouse in terms of the mass of the harvested 
Cantaloupe fruit and the quality of the fruit. 

4. Discussion 

Based on the comparison of the yield performance from the two 
greenhouses controlled by the MPC controller (GH1) and ETo based 
controller (GH2), the total mass of the harvested fruit in GH2 is higher 
than that of the GH1 as seen in Fig. 11. This could be as a result of the 
fact that a lot of water was consumed during the irrigation process in 
GH2, when compared to that of GH1. However the quality of fruits 
harvested in terms of sweetness was recorded in GH1 is observed to be 
better that the harvested fruits in GH2 as illustrated in Fig. 12. There
fore, the GH1 irrigated using the MPC has better fruit quality in terms of 
sweetness and improved water use efficiency. This could be due to the 

Fig. 14. IoT based monitoring devices in GH1 and GH2.  
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gradual increase of water supply to the plant root area based on the 
plant, soil and weather demand. 

Furthermore, the computation of the daily cumulative water use was 
carried out to be able to track the water saving capability of both con
trollers. From the graph of cumulative irrigation water use (Liters) 
shown in Fig. 13, it can be seen that irrigation water consumed by the 
automatic ETo controller is higher than that of the MPC controller. 
Similarly, about 2022 liters of water was saved in GH1 controlled by 
MPC. It can also be deduced from Fig. 13, the MPC controller in GH1 was 
able to achieve a 30.4% water saving when compared to automatic ETo 
based controller in GH2. This is due to the fact that MPC in GH1 was able 
to adaptive to the changing dynamics of the process as compared with 
the GH2 controller. 

Water productivity index =
Total mass of the harvested Cantaloupe (kg)
Total cummulative irrigation volume (Liters)

(27) 

In addition, the performance of both controllers in GH2 and GH1, in 
terms of the water productivity index which relates the total mass on 
Cantaloupe produced with the total irrigation water use was further 
estimated using Eq. (27). According to Fig. 13, the total cumulative 
irrigation volume for GH2 and GH1 is 4467 and 2445 liters respectively, 
while total mass of equal samples of yield in GH2 and GH1 is 115.3 kg 
and 90 kg. Therefore, the water productivity index of GH1 is 36.8 kg/ 
litres as against 25.6 kg/litres in GH2. It can be further deduced that the 
MPC controller in GH1 gives water productivity of 30.4% higher than 
the automatic ETo based controller in GH2, hence, highly suitable for 
water saving agriculture. The Fig. 14 illustrates the IoT based moni
toring devices in GH1 and GH2 used to enable the deployment of both 
controllers for the experimental cultivation of the Cantaloupe plant. 

5. Conclusion 

This paper presents the design and experimental implementation of 
data driven MPC for precision irrigation. The MPC controller was 
designed using a data driven identified state space model that captures 
the changing dynamics of the process, with the ability to adaptive 
control the irrigation volume required to compensate for the water loss 
within the greenhouse environment and also minimise the error be
tween the measured soil moisture and the reference trajectory of the 
volumetric water content of the soil. The performance of the MPC 
controller deployed on Raspberry Pi 4 was put to test on the experi
mental cultivation of Cantaloupe plant using drip irrigation in GH1. The 
MPC irrigated greenhouse (GH1) recorded a good quality of fruit with 
average sweetness level of 13.5 Brix and higher water productivity index 
of 36.8 g/liters compared to automatic ETo based controller irrigated 
greenhouse (GH2) with 10.5 Brix and 25.6 g/liters respectively. How
ever, the total mass of harvested fruit in GH2 is higher than that of GH1. 
From the performance comparison, both irrigation methods have their 
strength and weakness on Cantaloupe plant cultivation. Therefore, it is 
expected that this research effort will guide farmers to adopt an effective 
irrigation controller which comply with their cultivation objectives such 
as water saving, improve yield, and quality. 

Data availability 

Data will be made available on request. 
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