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ABSTRACT

Non-Orthogonal Multiple Access (NOMA) can address overloaded multi-user
communications systems within some limits, in which Sparse Code Multiple Access
(SCMA) is one of the favourable techniques. SCMA can provide reliability, spectrum
efficiency, and higher overloading of resources. However, the current SCMA techniques
are complex to be implemented in machine-to-machine (M2M) communication systems
involving devices with limited capabilities. Moreover, the concerns about the practical
implementation of SCMA needs to be addressed, mainly when the devices have limited
processing power with acceptable performance degradation. The analysis of existing
systems shows that the most processing-complex part of the SCMA architecture is the
decoder, while the overloading of the system depends on the optimised multiplexing of
user data on the resource elements. The main objective of this thesis is to propose a
new SCMA decoder with a soft-demapping technique which can reduce computational
complexity and improve the error rate performance of the system. For the practical
implementation of the system, this thesis proposes optimised control parameters: Log-
Likelihood Ratio (LLR) limiter Z , and noise variance threshold 𝜓; to handle the
stability of the system. Then, the proposed technique is analysed for higher overloading
conditions with multi-device handling using an irregular factor matrix in terms of Bit
Error Rate (BER) analysis. The higher overloading clarifies the performance of SCMA
in dense massive IoT communication system. The results using MATLAB simulation
show that for regular factor matrix, the proposed soft-demapper technique improves
33% in the execution time of the decoding operation compares to conventional SCMA.
In terms of the number of iteration (𝑇), the proposed technique shows a 63% reduction
compares to conventional SCMA. For the practical implementation, it is found that the
system has an optimised value of Z = ±700 for both regular and irregular matrices.
Meanwhile, the optimised value for noise variance threshold is 𝜓 = 0.4 and 𝜓 = 0.1
for regular and irregular soft-demapper matrix, respectively. Comparing with the
conventional SCMA, BER analysis of regular matrix demapper system under block
Rayleigh fading channel shows an SNR gain of 2.5 dB at 10−3 BER, and under fast
Rayleigh fading channel shows 1.1 dB SNR gain at 10−5 BER. Because of the difference
in channels variation, different BER target is used for both channels. The system is also
simulated with an irregular matrix and it achieved a higher overloading factor of 200%
than regular matrix demapper with 150% overloading. It shows that the proposed
SCMA decoder with soft-demapping technique is practical to be implemented even
with the irregular matrix system with improved performance and additional capability to
handle more users. The proposed technique allows improvements in SCMA adaptability
in the Internet of Things (IoT) domain, which has the bottleneck of not having high-end
computational hardware that requires higher multi-device access.
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ABSTRAK

Capaian Berbilang Tidak Orthogon (NOMA) dapat mengatasi masalah
multipengguna yang sarat di dalam sistem komunikasi dengan beberapa kekangan,
di mana Kod Tatasusunan Capaian Berbilang (SCMA) adalah salah satu teknik pilihan
yang terbaik. SCMA dapat menyediakan kebolehpercayaan, spektrum yang efisien, dan
sarat dengan sumber yang tinggi. Walau bagaimanapun, teknik SCMA semasa adalah
kompleks untuk diimplementasikan dalam sistem komunikasi mesin-ke-mesin (M2M)
yang melibatkan kemampuan peranti yang terhad. Tambahan pula, implementasi
SCMA yang praktikal perlu diberi perhatian, terutamanya apabila sesuatu peranti
mempunyai kuasa pemprosesan yang terhad dengan prestasi yang menurun. Analisis
pada sistem sedia ada menunjukkan bahagian yang paling kompleks di dalam seni bina
SCMA adalah penyahkod, manakala sistem yang sarat bergantung kepada pemultipleks
data pengguna yang optimum pada sumber elemen. Objektif utama tesis ini ialah
untuk mencadangkan satu penyahkod SCMA dengan teknik penyahmeta lembut yang
baru di mana ia dapat mengurangkan kompleksiti pengkomputeran dan meningkatkan
kadar ralat prestasi sistem. Untuk implementasi sistem yang praktikal, tesis ini

(LLR) Z dan ambang varians hingar 𝜓; untuk mengendalikan kestabilan sistem.
Kemudian, teknik cadangan dianalisa melalui analisis Kadar Ralat Bit (BER) untuk
situasi yang sarat dengan berbilang pengguna menggunakan kaedah faktor matriks tidak
teratur. Keputusan kajian menggunakan simulasi MATLAB menunjukkan, bagi kaedah
faktor matriks teratur, teknik cadangan iaitu penyahmeta lembut menambah baik masa
pelaksanaan operasi penyahkod sebanyak 33% berbanding SCMA konvensional. Dari
segi bilangan lelaran (𝑇), teknik cadangan menunjukkan pengurangan sebanyak 63%
berbanding SCMA konvensional. Untuk implementasi yang praktikal, telah didapati

dua teknik penyahmeta lembut matriks teratur dan tidak teratur. Sementara itu, nilai
optimum bagi ambang varians hingar adalah masing-masing, 𝜓 = 0.4 dan 𝜓 = 0.1 bagi
penyahmeta lembut matriks teratur dan tidak teratur. Untuk membandingkan dengan
SCMA konvensional, analisis BER bagi matriks teratur pada saluran pudaran blok
Rayleigh menunjukkan 2.5 dB gandaan SNR pada BER 10−3, dan pada saluran pudaran
laju Rayleigh menunujukkan 1.1 dB gandaan SNR pada BER 10−5. Disebabkan
perbezaan pada variasi saluran, sasaran BER adalah berbeza untuk kedua-dua saluran.
Sistem ini juga disimulasi dengan matriks tidak teratur dan ia mencapai faktor sarat
yang tinggi sebanyak 200% berbanding matriks teratur dengan 150% faktor sarat. Ini
menunjukkan yang cadangan penyahkod SCMA dengan teknik penyahmeta lembut
adalah praktikal untuk diimplementasi sekalipun menggunakan matriks tidak teratur
dengan prestasi yang lebih baik dan mepunyai kebolehan menguruskan pengguna yang
banyak. Teknik cadangan dapat menambah baik sistem SCMA untuk diadaptasi
di dalam domain Internet Pelbagai Benda (IoT), yang tidak mempunyai perkakasan
komputer atasan yang memerlukan banyak capaian berbilang peranti.
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mencadangkan parameter terkawal yang optimum:penghad Log Nisbah Kebolehjadian

bahawa sistem ini mempunyai nilai optimum bagi penghad,   =   ±  700 untuk kedua-
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Wireless communication has passed through a broad span of research and

development, which has shaped it into the modern advanced structure [1]. It has

gone through four significant generations, incorporating advancements in different

parameters and improving the system’s capability [2]. Over the generations of wireless

communication, there have been improvements in resource utilisation, where resources

are either time or frequency blocks. Each generation has incorporated new ways of

passing the maximum amount of user data through the limited bandwidth with the best

possible benchmarks [3]. Different multiplexing techniques have been proposed in each

1-4 Generation (1G, 2G, 3G and 4G) mobile system, and each generation is unique

in its use of a multiple access technique. Specifically, 1G wireless communication

used Frequency Division Multiple Access (FDMA) in handling resource utilisation,

while 2G incorporated Time-Division Multiple Access (TDMA). 3G communication

was mainly based on Code Division Multiple Access (CDMA); in contrast, 4G used

an advanced FDMA version called orthogonal FDMA (OFDMA) [4]. The techniques

incorporated in 1G-4G systems use the orthogonal allocation of resources for users. The

orthogonal multiple access (OMA) idea exists in dividing single narrow-band frequency

resource among different users orthogonally. The technique allows the mitigation of

interference among various users and improving communication reliability.

The exponentially growing Internet of Things (IoT) has created many challenges

for wireless communication systems. The main drawbacks are mobile wireless

communication systems that were not designed for machine-to-machine (M2M)

communication. The difference is that M2M needs high multi-device access because

of the very high density of devices on a small spatial scale. The challenge mainly

exists when the requirements grow even further since, according to International

Data Corporation (IDC) predictions, the number of IoT devices in operation by 2025
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will be 41.6 billion [5]. Further, these devices need communication systems with

low computational overhead and hardware optimised system designs. The M2M

communication in IoT is mostly through short-range communication protocols like

Bluetooth, Wi-Fi and Zigbee; however, long-range communication is carried using

mobile communication systems. M2M IoT communication’s good point is its low

bandwidth, leading to narrow-band communication with highly optimised architecture

to be ideal for such transmissions [6, 7].

The existing division of time/frequency resources among users has limited

spectrum utilisation and connectivity capability. Non-orthogonal multiple access

(NOMA) techniques exist in modern telecommunication systems to improve spectrum

efficiency and achieve better resource utilisation [8]. It assigns resources to users on a

sharing basis rather than division. The sharing allows improved utilisation of a single

resource, thereby improving spectral efficiency [9]. The sharing is necessary for the

modern wireless and telecommunication systems because of mobile internet, and the

IoT [10].

Like the OMA, NOMA also has several techniques under its umbrella. These

techniques or methods are categorised based on the type of sharing mechanism used,

mainly classified into power domain, code-domain, and multiple domain NOMA [11].

The power domain NOMA is a single carrier technique multiplexing various users in

the same resource block by varying their power levels based on individual channel

conditions. This multiplexed data is separated at the receiver through successive

interference cancellation (SIC) technique, in which user data is extracted. Power domain

NOMA has a significant spectral advantage over the OMA techniques. Additionally,

due to SIC based receiver having a more straightforward decoding mechanism, the

power domain NOMA has a simpler receiver architecture. Based on this, the power

domain NOMA is suitable for downlink communication [12].

Unlike power domain NOMA, code domain NOMA includes multi-carrier

techniques and can accommodate multiple users within the same resource block. Like

the power domain, in code domain NOMA, various users are differentiated based on

codes. The main techniques preferred for reliability under code-domain NOMA are
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low-density spreading (LDS) and sparse code multiple access (SCMA). In LDS, data

of different users are distributed sparsely in assigned resource blocks. Therefore, each

user is assigned a subset of resource blocks, and this subset is not common among the

different users. The LDS data assignment is based on the repetition of constellation

points, based on which data is spread in the assigned resource blocks. Due to the

sparse nature of data being distributed in resource blocks, it is easier to separate user

data at the receiver end. The complexity of the receiver is significantly reduced. The

standard message passing algorithm (MPA) is used to detect multi-user at the receiver

end [13]. The other code domain scheme, SCMA, is an advanced version of LDS

and works on the same principle of sharing resources among multi-users by sparsely

spreading data in the assigned resource blocks. The difference between the two exists

in the data encoding. SCMA uses multidimensional constellations to map the input bits

into codewords instead of repeating constellation points over all the assigned resource

blocks. In SCMA, different characters are used for each resource block, making it more

robust and complex [14].

Multiple-domain NOMA incorporates power, code, and spatial domain in

multiplexing user data [15]. To achieve this, the prominent techniques in this category

are pattern division multiple access (PDMA) and lattice partition multiple access

(LPMA). PDMA sparsely spread user data on the assigned resource blocks like SCMA.

Still, the number of allocated resources is not fixed, and a variable number of resources

are available for different users [16]. The differentiating domain is also not constant,

and data can be multiplexed in either power, code, or spatial domain. Additional areas

for different data clusters require SIC and Maximum a posteriori (MAP) decoder in

conjugation for multi-user separation. In contrast, LPMA uses code and power domains

combined for user data multiplexing. Based on the channel conditions, a multilevel

lattice code allocates different codes to different users. Comparable to power domain

NOMA, SIC is used at the receiver end for user recognition [17].

There has been extensive study on the comparison of different NOMA

techniques considering various aspects. In the literature, [15], the superiority of code

and multiple domain NOMA techniques is presented because, unlike power domain

NOMA, these are less affected by channel conditions. Also, the MPA detector used in
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code and multiple domain NOMA has a near-optimal detection than the SIC detector.

However, the optimised nature of MPA is due to the sophisticated algorithm in its

operation, thereby increasing receiver complexity. A comparison between the power

and code domain NOMA [16] also concludes that although code domain SCMA has a

highly complex receiver architecture than the power domain NOMA still its performance

is much better. Research also shows that within multi and code domain SCMA,

SCMA has a much better performance than PDMA because of the multidimensional

constellation design [18]. From the performance point of view, SCMA is found to have

higher robustness and can work better under high resource utilisation [19]. SCMA is

also a better option for uplink communication [20] and has a low latency communication

suitable for modern systems [21]. The technique has already been studied for M2M

transmission in the uplink, providing high multiplexing capability [20].

SCMA can be incorporated in the IoT M2M communication and has

already been used in various scenarios. However, to incorporate SCMA into

different application scenarios, specific requirements need to be fulfilled. Like in

M2M communication, the SCMA architecture needs customisation and must pass

compatibility challenges to be integrated. Regarding IoT, these challenges are related

to hardware optimisation and the enhancement of mass communication capabilities.

The subsequent section discuss the specific problems under these broad domains and

what study objectives are set to mitigate these challenges.

1.2 Problem Statement

Current SCMA technique is complex to be implemented in machine-to-machine

(M2M) communication system involving devices with limited capabilities. Analysis of

existing systems shows that the most processing-complex part of the SCMA architecture

is the decoder. SCMA system require decoder which can reduce computational

complexity and improve the error rate performance of the system. Many research

approaches are using different techniques for decoder enhancement. Maximum a

posteriori (MAP) based MPA and log-MPA decoders are frequently used in SCMA

architecture considering their low complexity, but, it induces performance limitations
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in the system implementation [22]. Maximum likelihood (ML) is considered for multi-

user detection. However, due to high computational complexity, its implementation

is quite limited [23]. Modern machine learning technique has also been presented

to be effective [24]. However, such a technique is problematic when the number

of users/devices increases. Considering all the cases, the commonly used iterative

message-passing algorithm leads to a higher number of iterations for convergence and

causing processing and delay as an overhead. Soft-demapping based decoding serves

as an alternate for achieving higher convergence efficiency. It has been studied as an

optimised decoder in [25], where the decision threshold algorithm is used for demapping

the data with low computational complexity and with high throughput. Alhamdi in [26]

also used Optimal Soft Demapper for 5G new radio (NR) Wireless Communication

Systems proposing thresholds for practical applications. Considering the requirement

of M2M communication in IoT, soft demapper is preferred as a computationally better

and fast converging decoder. However, incorporating a soft demapper based decoder

and its practical implementation for SCMA architecture needs to be researched.

Considering the limited resource in M2M communication of IoT, the practical

implementation of SCMA needs to be addressed with acceptable performance

degradation. SCMA system needs to have parameters and thresholds for operating

the system in a controlled manner considering data path complexities in SCMA.

SCMA system is also required to multiplex the data in a more efficient way

without effecting the BER performance. For improving multi-device communication,

various research approaches exist. Full-duplex communication is presented in [27]

for ultra-reliable and low latency communications (URLLC) in the IoT to enhance the

multi-user capability by using the short packet transmission of IoT devices in both

uplink and downlink communication. Frequency hopping based SCMA has also been

studied for handling the massive connectivity improvements in IoT communication

[28], but the receiver complexity due to hopping has not been considered in the

study. The mapping matrix’s nature is studied in [29], which proposes irregular

degree distribution in the mapping matrix for higher connectivity. Comparing a regular

and irregular matrix has shown that with better system design, the SCMA system’s

performance can be improved using an irregular mapping matrix. Yu et al. in [30]
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showed that irregular SCMA has a better bit error rate (BER) performance, especially

at higher SNRs. However, the challenges concerning decoder complexity and decoding

performance are not considered. So, concerning IoT, there is a need to have a study on

the trade-off between decoding complexity and performance considering high multi-

device communication.

1.3 Research Objectives (RO)

The research aims to design an SCMA system for massive IoT M2M

communication through encoder and decoder optimisation. Concerning that, the

research objectives are,

• to propose a new SCMA decoder with soft demapping technique having reduced

computational complexity,

• to optimise the soft demapper parameters for practical implementation of SCMA

for IoT application,

• to evaluate the performance of the proposed design based on complexity and

BER analysis under high overloading machine type communication (MTC)

scenario.

1.4 Research Scope

The research deals with the solution to reduce the complexity of the

iterative MPA decoders and improve the decoding convergence efficiency. The

designed/proposed solution is to be tested for practical implementation using various

parameters, and the challenges in its execution are thereby addressed. Lastly, the

optimised architecture is tested for higher overloading conditions suitable for dense

M2M communication, and results will be analysed for improvements.

The designed system provide a computationally less intensive and fast

converging decoder that allow the SCMA system to be incorporated into devices
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with less processing capabilities. The proposed system help to handle the IoT M2M

communication scenario in an optimised way. Multiple IoT devices are considered

using multiple channels for uplink data communication to test the proposed system.

The higher overloading capability of the SCMA system is simulated using an optimised

factor graph matrix for encoding multi-user data on the resource blocks. An optimised

matrix allow more users to share the same number of resource blocks without

compromising communication reliability.

Evaluation of data mapping and demapping is simulated using the simulation

environment in Matrix Laboratory (MATLAB). The study is limited to handling six

to eight users on a single frequency resource. The BER is considered to identify the

factor graph’s optimal design and demapper capabilities. Performance evaluation of

the system is performed against existing systems referenced in articles/patents.

The study has the limitation of lacking real-time system testing with actual user

data. Since the task requires real telecommunication hardware for the base station and

corresponding user equipment, the research help get the system’s true performance.

However, the current study is limited to the simulation domain analysing the offline

results of the system.

1.5 Research Contribution

This study undertake the multi-device communication optimisation problem in

the IoT domain, considering the use of massive IoT devices. The main contributions of

this research are as follows:

• To propose and implement a fast converging and computationally better SCMA

decoder utilising soft-demapping technique to improve the system’s adaptability

in IoT devices.

• Evaluating the overloading capability of the SCMA system by incorporating

optimal decoder with the high order factor graph for MTC/M2M application

and overloading scenario.
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1.6 Thesis Organization

The document consists of five chapters: introduction, literature review,

methodology, results, and conclusion. The introduction described the research

background and related issues, objectives, problem statement, and work scope.

The second chapter covers the literature review providing an overview and a

critical review of various system designs and system analysis of NOMA techniques.

It initially explains the OMA techniques and their limitation from the literature; then,

NOMA is described with emphasis on research presenting its effectiveness compared

to OMA systems. SCMA literature and its implementation in uplink and downlink

systems are explained in the next part. It also encapsulates the advancements carried

out in developing methods for IoT networks using the SCMA technique.

The third chapter presents the research methodology and the proposed SCMA

system, which covers different design aspects. The flow chart based on the research

objectives is presented. The practical soft demapper system design is developed, and

the mathematical model is presented. The system performance considered in this thesis

is explained in this chapter.

In chapter four, the results of the proposed system for various channel models

is presented. Based on the objectives, the BER and complexity analysis are carried

out for overloading and decoder optimisation. Initially, the parameter optimisation for

various control and tuning parameters is performed. The parameters are used in the

complexity analysis of the decoding sequence to test the algorithm convergence. These

same parameters are then used in the BER analysis of overloaded and soft demapper

based SCMA. Testing under different scenarios ensures the system’s durability and

presents the actual picture of the system response.

The last chapter presents the concluding remarks emphasising the linkage

between the system results and the real-world application. The chapter also handles

future work, which can further benefit the problem statement.
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Appendix A Forward Error Correction Coding

A.1 Repetition Coding

In the repetition codes, the typical transmission faults can be rectified at the

receiver without re transmission using the error correction coding technique. Through

the repetition coding error correction coding approach, common transmission errors

can be corrected at the receiver without re transmission. The redundancy in the data

bits ensures the opportunity to repair errors. In the case of n number of repetitive data

bits, the number of error bits that can be corrected is given by (𝑛 − 1)/2 .

For instance, considering the most basic repeating codes, When the sent bit is

1, we can transmit it five times, resulting in bit sequence 11111 being sent out. The

majority rule is used by the decoder, which means that the most common bit in the

received sequence is used to decide. As a result, if the decoder receives bits 01111 due

to a transmission fault, the decoder can claim that the information bit is one and repair

the error. The transmission rate, commonly abbreviated as R, is the ratio of the number

of information bits to coded bits. The transmission rate of the repetition code in the

example above is 1/5. The corresponding code is represented by a generator matrix G

and a parity–check matrix H defined as follows

𝐺 = (1 1 1 1 1) (A.1)

and

H =



1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1


. (A.2)

The smaller R, the more redundancies are incorporated, and the more reliable

the transmission becomes; nevertheless, a smaller R requires more communication

bandwidth because the transmitter must send out more coded bits in the same amount

of time. A balance between reliability and resource use is required.
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Figure A.1: Repetition decoding sequence

Figure A.2: Receiver operations for Repetition Coding

Practically, the EC decoder has two outputs, one it generates the priori data for

the decoder by decoding the individual redundant data elements through subtracting

their value from the sum of all the repetitive parts. Secondly, it outputs the transmitted

user data by summation of all the repetitive data elements. This addition omits errors

less then (𝑛 − 1)/2 from data and generates a correct value for transmitted user/device

data.Considering ’a’ to be the user data, the sequence of operation in the repetition

decoding and its main blocks are shown in Figure A.1 and Figure A.2 respectively.
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Appendix B Interleaving

There are three main types of interleaving techniques presented in the literature.

Namely block interleaver, convolutional interleaver, and random interleaver. A block

interleaver rearranges the input matrix in a way that the data in the output matrix is

written row wise and read out column wise [129] as shown in Figure B.1.

Like interleaver, the block deinterleaver reads the matrix with data elements

column by column and then sends the matrix contents in the form of row by row to the

output, as shown in Figure B.2.

Block interleaver is suitable for the case hen error patterns are limited to a single

row. If error is spread in several consecutive rows like in the case of concatenated errors

which are spread over a number of rows, then the interleaving method needs to be altered

in a way that column of interleaving matrix is read out in a specific format to spread as

many error patterns as possible [130].

Convolutional interleaver consist of commutator at the input and output nodes

along with a bank of shift registers. Input data in the form of blocks is inserted

cyclically into the shift registers by the commutator. The placement generates a delay

in the transmission by the shift registers. The output commutator in the same way

samples the data cyclically from the shift registers. At the deinterleaver end the inverse

operation is performed i.e. each bit in the block is delayed by the same shift registers,

thereby generating the original data [131].

Figure B.1: Block interleaver sequence
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Figure B.2: Block de-interleaver

In the case of random interleaver a block of bits is taken as input which is read out

randomly. The interleaver vector Π(𝑖), where 𝑖 ∈ 1, 2...𝑁 for N steps of interleaver can

be generated by choosing randomly an integer i from the set 𝐴 = 1, 2, ..., 𝑁 , according

to a uniform distribution between 1 and N [132].
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Appendix C Fading Channel Types

The appendix presents explanation on different fading channels existing,

1. Flat Fading Channel: Flat fading is the name given to the case when the

channel coherence bandwidth is larger than the signal bandwidth and hence all

frequencies of the transmitted signal experience the same channel condition;

i.e., over the signal bandwidth, the channel frequency response is essentially

flat; and hence the name Flat Fading. In the time domain, this corresponds to

having an expected smaller than the signal symbol period.

2. Block Rayleigh Fading Channel: The block-fading channel model assumes that

the channel coefficients remain constant for a block of T consecutive symbols

and change to an independent realization in the next block [7]. The parameter T

can be thought of as the channel’s coherence time, or more generally, the number

of time-frequency slots over which the channel stays constant.A codeword of

length n = LT spans L independent channel realizations

3. Fast Rayleigh Fading Channel: In a fast Rayleigh fading channel, the rate of

change of the channel is higher than the signal symbol period and hence the

channel changes over one period. In other words, the channel coherence time,

Tc, is smaller than the symbol period.

4. Frequency Selective Fading Channel: if the channel bandwidth is narrower

than the signal bandwidth, different frequency bands of the signal are affected

differently. The time domain analogue is that the channel is larger than the

signal symbol period.

5. Slow Fading Channel: In a slow fading channel, the channel coherence time

is larger than the symbol period and hence the channel remains approximately

static over a symbol or multiple symbols. Slow fading is usually expected

with low Doppler spread values; i.e. with slower moving obstacles and

receiver/transmitter.
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