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ABSTRACT 

Landslides are recurring geological disasters resulted in many human- and 

economic losses, even so with the rapid urbanization and extreme climate. 

Approximately, 21,000 landslides – debris flows were recorded in Malaysia. There are 

many uncertainties in the underlying root causes, understanding triggering factors, and 

ways to reduce local risk in a changing environment. Even more challenging to 

prepare a cost-effective Early Warning System (EWS) and to enhance resilient

communities in a tectonically active region. This study aims to develop an integrated 

framework for debris flow EWS with the case study in Mesilau watershed, 

Kundasang, Sabah. These are the three objectives; (i) to map and characterize the 

debris flow induced by the 2015 Ranau earthquake, (ii) to model and simulate the 

debris flow runout, and (iii) to develop an integrated framework for debris flow 

EWS, in supporting local disaster risk reduction and resilience strategy. The study 

started by characterizing the watershed and landslide areas using the Geographic 

Information System. The results showed that the earthquake stripped at least 1.44 

km2 of vegetation cover within the upstream of Mesilau watershed, and increased 

the Stripped Earth Material (SEM) by 1.32 km2. Thus, the increased SEM 

contributed to the temporary landslide damming formation. Next, critical rainfall, 

discharge, and hydrographs were extracted using the empirical method, and 

Hydrological Modelling System to understand the triggering factor for debris flow 

event. The extractions suggested the breaching of temporary landslide dam was due 

to the rainfall intensity of 14.2 mm/h, and 7-days critical rainfall that exceeded 66.3 

mm. Hence, remobilized the temporary landslide dam, and initiated the debris flow

that travelled for 18.6 km to Liwagu Dam, Ranau town. The extracted parameters

were imported into the HyperKANAKO software to model and simulate the best-fit

debris flow runout. The obtained best-fit debris flow runout was utilized to estimate

the debris flow velocity and the lead time to evacuate. The best-fit simulation results

suggested that the debris flow velocity as 12.5 m/s, with the suitable discharge at 550

m3/s. The result indicates that the required lead time for the community to evacuate is

4.5 min before the debris flow arrives at Mesilau village. These simulation results

were validated through the field evidence, image correlations, expert and local

judgments. Subsequently, the debris flow EWS was designed by referring to the

TAKUWA’s guideline. All the obtained scientific results were then used to gain

societal inputs by understanding demands and needs for people-centered EWS

via structured EWS surveys and open-ended interviews. The societal inputs highlight

that the EWS is critically needed for Mesilau watershed, as the area is prone

to the earthquake and cascading geohazards (i.e., debris flows). In conclusion, the

proposed integrated framework for debris flow EWS is aligned to Malaysia’s

commitment to increase the access to multi-hazard EWS and disaster risk

information (Target G) of the Sendai Framework for Disaster Risk Reduction 2015 –

2030.
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ABSTRAK 

Tanah runtuh adalah bencana geologi berkala, yang mengakibatkan kehilangan 

nyawa, dan kerugian ekonomi, ditambah lagi dengan pembandaran yang pesat, dan 

iklim yang melampau. Hampir 21,000 tanah runtuh – aliran debris telah 

direkodkan di Malaysia. Terdapat banyak ketidaktentuan berkenaan punca asas, 

pemahaman faktor pencetus, dan kaedah pengurangan risiko setempat di dalam 

persekitaran yang berubah. Bahkan lebih mencabar untuk menyediakan Sistem 

Amaran Awal (EWS) dengan penjimatan kos, dan untuk meningkatkan daya tahan 

komuniti di persekitaran tektonik aktif. Kajian ini bertujuan untuk menghasilkan satu 

kerangka bersepadu EWS aliran debris, dengan kajian kes di lembangan 

Mesilau, Kundasang, Sabah. Tiga objektif disenaraikan; (i) untuk memetakan 

dan mencirikan aliran debris yang disebabkan oleh gempa bumi Ranau 2015, 

(ii) untuk membuat model dan simulasi aliran debris, dan (iii) untuk menghasilkan 

kerangka bersepadu EWS aliran debris, bagi menyokong pengurangan risiko bencana 

setempat, dan strategi berdaya tahan. Kajian dimulakan dengan pencirian 

lembangan dan tanah runtuh dengan menggunakan Sistem Maklumat Geografi. 

Hasil kajian mendapati gempa bumi telah memusnahkan 1.44 km2 litupan 

tumbuhan di kawasan hulu lembangan, dan telah meningkatkan Bahan Bumi 

Terlucut (SEM) sebanyak 1.32 km2. Peningkatan SEM telah menyumbang kepada 

pembentukan empangan tanah runtuh sementara. Seterusnya, hujan kritikal, aliran 

air, dan hidrograf diekstrak menggunakan kaedah empirikal dan Sistem 

Pemodelan Hidrologi bagi memahami faktor pencetus aliran debris. 
Pengekstrakan hujan mencadangkan keruntuhan empangan tanah runtuh 

sementara adalah disebabkan oleh intensiti hujan sebanyak 14.2 mm/j, dan 

hujan kritikal selama 7 hari yang melebihi 66.3 mm. Justeru itu, menggerakkan 

empangan tanah runtuh sementara dan menghasilkan aliran debris sepanjang 

18.6 km ke empangan Liwagu, Pekan Ranau. Parameter yang terhasil 

dimasukkan ke dalam perisian HyperKANAKO bagi memodelkan dan 

mensimulasikan aliran debris yang terbaik. Hasil simulasi yang terbaik 

kemudiannya digunakan bagi mengganggarkan halaju aliran debris dan masa 

evakuasi yang diperlukan. Hasil simulasi terbaik mencadangkan halaju aliran 

debris adalah 12.5 m/s, dengan bacaan aliran air 550 m3/s. Hasil kajian juga 

menunjukkan masa evakuasi yang diperlukan oleh komuniti adalah 4.5 minit 

sebelum aliran debris tiba di Kampung Mesilau. Simulasi ini dibuktikan melalui 

bukti lapangan, korelasi imej, penilaian pakar dan tempatan. Seterusnya, reka 

bentuk EWS aliran debris dibina dengan merujuk kepada panduan TAKUWA. 

Kesemua hasil kajian saintifik yang terhasil digunapakai bagi mendapatkan input 

masyarakat dengan memahami tuntutan dan keperluan EWS berasaskan 

komuniti melalui kaji selidik EWS berstruktur, dan temu ramah. Input sosial 

menunjukkan bahawa EWS aliran debris amat diperlukan bagi lembangan 

Mesilau kerana ia terdedah kepada gempa bumi dan bencana susulan (aliran 

debris). Kesimpulannya, kerangka kerja bersepadu EWS aliran debris seperti yang 

dicadangkan adalah seiring dengan komitmen Malaysia bagi meningkatkan 

akses kepada EWS pelbagai bahaya, dan maklumat risiko bencana (Sasaran G) 

Kerangka Sendai Pengurangan Risiko Bencana 2015 – 2030.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Landslides depicted as one of the recurring geological disasters resulted in 

many human- and economic losses around the world. The International Disaster 

Database (EM-DAT) recorded at least 378 cases of major landslides from the year of 

1998 until 2017 (CRED, 2018). Approximately, about 4.8 million people were 

affected, with 18,414 deaths were reported globally (CRED, 2018). Besides, the 

landslides have been placed as the top five disasters that caused the impacts to the 

economy and environment with the total loss of 8 billion US dollars (CRED, 2018). 

Aside from the EM-DAT, the National Aeronautics and Space Administration 

(NASA) also published the “Global Landslides Catalogue” (GLC) dated from 2007 

until 2017 (Kirschbaum and Stanley, 2018). Statistically, 10,804 cases of landslides 

were recorded around the world regardless of sizes, impacts or locations. 8,369 from 

the total landslides have been recorded as zero fatality (white dots), while the colour 

dots (pink, red and maroon) indicate the total fatalities (Figure 1.1). Both the EM-DAT 

and NASA databases have proven that the landslide disasters were a serious threat to 

human life and possibly led to the destruction of properties, and deaths. 

Rahman & Mapjabil (2017) highlighted at least 21,000 landslide prone-areas 

were recorded in Malaysia. Approximately, 76% of landslides were recorded in 

Peninsular, whereas the remaining 34% was reported in East Malaysia (Figure 1.2). 

Majority of the landslides were induced by; the rainfall, mass movement, storm, flood, 

and earthquake to name a few. The examples for the rainfall-induced landslides were 

such as in; Genting Sempah (1995) (Sum et al., 1996; Abd Rasid, 2006; Chigira et al., 

2011), Pos Dipang (1996) (PWD, 2009; Abdullah et al., 2015), and Simunjan (2002) 

(Hashim and Among, 2003; Singh et al., 2014); mass movement-induced landslide 
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was such as in; Kuala Lumpur (1993) (Gul et al., 2017; Kazmi et al., 2017); storm-

induced landslide such as in Keningau (1996) (JICA, 2015); flood-induced landslide 

in Malacca (2006) (Chan, 2012); and earthquake-induced landslide in Sabah (2015) 

(Tongkul, 2016; USGS, 2018).  

Figure 1.1 Global Landslide Catalogue (GLC) from NASA database that recorded 

landslides around the world with colours (white, pink, red, maroon) indicating the 

number of fatalities in the area (Kirschbaum and Stanley, 2018). 

Figure 1.2 Landslide-prone areas (red polygon) as depicted in the National Slope 

Master Plan 2009-2023 (PWD, 2009). 
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Recently, the Mw 6.0 Ranau earthquake on 5th of June 2015 has been recorded 

as one of the strongest earthquakes, since Mw 6.2 Lahad Datu earthquake in 1976 

(Tongkul, 2016; USGS, 2018). The earthquake was the fatal geophysical related 

disaster in the recent history of Malaysia. Many cascading geohazards were induced 

within the vicinity of Mount Kinabalu, the first UNESCO World Heritage Site in 

Malaysia (Hall et al., 2008; Cottam et al., 2013; Tongkul, 2016; Rosli et al., 2020b). 

This includes; the rock avalanches, rock falls, landslides, and debris flows. A total of 

18 climbers perished due to the rock falls along the summit trail, with 137 others were 

injured on the summit area (Shah, 2015; Tongkul, 2016; Abd Razak et al., 2018).  

The preliminary analysis by Tongkul (2016) suggested at least 1,500 hectares 

of earth surfaces were stripped off during the earthquake, and produced many earth 

materials accumulated on the upstream area. Hence, resulted in the formation of the 

temporary landslide dam that later breached and remobilized as debris flow (Tongkul, 

2016; Rosli, 2020a). Two of the determined debris flow areas after the 2015 Ranau 

earthquake includes; the Mesilau watershed, Kundasang, and Kedamaian watershed, 

Kota Belud, Sabah. The impacts were experienced mostly by the community residing 

near the river (Rosli et al., 2020a). For example, the Mesilau village (a village located 

within the midstream of Mesilau river), and Polumpung Base Camp (a recreational site 

located within the downstream of Kedamaian river). 

To date, the debris flow induced by the earthquake and prolonged rainfall have 

received less observations among Malaysian researchers. In fact, Malaysia has no 

dedicated national policy, integrated framework, or standard operating procedures to 

address this sediment-related disaster in a holistic manner (Rosli et al., 2020b). 

Moreover, a very limited Early Warning System (EWS) related to the debris flows 

were installed or published in this seismically active region, Sabah. This might be due 

to the lack of scientific studies, deep understanding, engagement with the affected 

communities, and risk reduction strategies to reduce the current risk, and preparing for 

the future risk. Therefore, this study aims at developing an integrated framework for 

debris flow EWS, in supporting local disaster risk reduction (DRR) and resilience 

strategy. A case study of debris flow induced by the earthquake and prolonged rainfall 

in the Mesilau watershed was selected for the purpose of this study. 
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This study implied a “multi-disciplinary” research to better analyse the past 

debris flow event, and a way forward to utilize the outputs for DRR. The “multi-

disciplinary” refers to the different types of analysis including the scientific, and social 

analysis. The scientific analysis was conducted to obtain the scientific evidence of the 

past debris flow event, while the social analysis was performed to gather the EWS 

inputs from the local community and stakeholders. Both outputs were then correlated 

to achieve the final outcomes in terms of the proposed integrated framework. The final 

outcomes also aims to increase the national and local DRR strategies by 2020 (Target 

E), and to increase the availability and access to multi-hazard EWS and disaster risk 

information to people by 2030 (Target G) (UNDRR, 2017). The Target E emphasizes 

on developing the integrated EWS framework, whereas the Target G underlines the 

awareness, and knowledge for the community by making the research outcomes, and 

EWS framework visible and accessible to the public. Both the “Target E” and “Target 

G” are in line with Malaysia’s commitment to achieve the global target of The Sendai 

Framework for Disaster Risk Reduction (SFDRR) 2015 – 2030 (UNDRR, 2017). 

1.2 Problem Statements 

The Mw 6.0 Ranau earthquake dated on 5th of June 2015 has attracted many 

researchers to conduct comprehensive research in various fields within the study area. 

For example, the post-earthquake landslide inventory (Bibi et al., 2017; Habibah, 

2017), landslide susceptibility (Asmadi, 2018), and landslide hazard and risk (JMG, 

2017). However, the researches focused only on the mapping in Kundasang area, 

whereby Habibah (2017) and Asmadi (2018), did a detailed landslide inventories and 

susceptibilities in the Mesilau river respectively. Despite the several studies conducted, 

very limited studies have emphasized the debris flow. To date, a brief report on the 

debris flow impacts were documented by Tongkul (2016). However, the discussions 

on the debris flow characteristics, processes, and DRR remained elusive. Therefore, 

the need for this study is timely and of utmost importance, since to date there are no 

scientific debris flow studies carried out in the Mesilau watershed. 
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This study becomes challenging since the source area of Mesilau watershed 

was located in the highly elevated, steep, and rugged topography. Mapping approach 

through the conventional geological survey was inadvisable without the preliminary 

assessments on the source area. This may be due to the possibilities of rock avalanches, 

and rock falls that probably risked the researcher’s life during the field observation. 

Thus, resulted in the difficulty of field data collection, field evidence, and field 

mapping to physically characterize the source area. Characterizing the source area is 

essential for debris flow modelling (Iverson, 1997; Rengers et al., 2016; Gong et al., 

2020). Therefore, the complexity in debris flow modelling is escalated since the 

mapping accessibility is limited, and in an area of high risk to a rock fall hazard. Given 

the difficulty of data collections, dangerous mapping, and limited access to the 

upstream area, this study investigates the suitable mapping approaches, by utilizing 

the advanced geospatial datasets available for the study area.  

An intensive literature review and series of interviews were preliminary 

conducted to collect the past debris flow information, and available spatial datasets 

closest to the debris flow event. The preliminary findings identified the study area was 

having the limited datasets due to its high-altitude geographic locations, and located 

in the rural area. The limited datasets include; the unavailable rain gauge station in the 

Mesilau village, outdated Digital Terrain Model (DTM) of before the debris flow 

event, and dense cloud cover resulting in void filling the datasets. These conditions 

resulted in the uncertainties to determine the usable datasets for further processing. In 

overcoming the limitations, the extensive data collections regardless of open-sources 

or commercials are conducted. 

The debris flow studies in Malaysia have received numbers of research in 

recent years. For example, the earliest cases of debris flow in Peninsular Malaysia (Tan 

and Ting, 2008), the rainfall intensities that initiated the debris flow (Jamaludin et al., 

2014), the triggering mechanisms of the debris flow (Norhidayu et al., 2016), and the 

identification of debris flow within the initiation area (Lay and Pradhan, 2019). Even 

so, very few researchers attempted to simulate the debris flow runout due to the 

aforementioned uncertainties, limited datasets, and complexity in parameters. The 

closest attempt for debris flow modelling that emphasized on the hydraulic physical 
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model was reported by Zainol and Awahab (2018). In fact, no simulation studies were 

carried out in the Mesilau watershed. Globally, the simulation studies have proven to 

support and provide scientific evidence of the past event, and predict the future event 

(Christen et al., 2010; Hussin, 2011; Quan, 2012; Nakatani et al., 2016). Therefore, 

this study employs the simulation analysis, despite the uncertainties, and complex 

parameters in analysing the debris flow in the Mesilau watershed, and utilizes the 

outputs for DRR.  

The absence of scientific studies to provide evidence-based decision making 

has made the study difficult to achieve the DRR. Many studies around the globe have 

demonstrated the advantages of scientific studies to quantify the risk from the local to 

the national scale (Dai et al., 2002; Van Western et al., 2006; Liu and Miao, 2018). 

Besides, the scientific studies also have been beneficial to the stakeholders, 

practitioners, and local communities to understand the local risk and way forwards in 

planning for the suitable DRR. Thus, improving their awareness and preparedness in 

facing the future hazards and risks  (Makia, 2012; Klimeš et al., 2019). To date, there 

are no publications related to the debris flow DRR available in Malaysia. This was due 

to the lack of debris flow events, and social engagements. In the support of scientific 

studies and debris flow DRR, this study also considers societal inputs by engaging 

with the community and stakeholders. The societal input is considered to gain more 

inputs related to the DRR suitable for future debris flow in the Mesilau watershed. 

The debris flow in the Mesilau watershed was chosen for this study because of 

several factors. This includes; (i) the existence of closest element-at-risk near the 

Mount Kinabalu and the Mesilau river, (ii) well-known as the touristic demanding 

areas (Rosli et al., 2020b), and (iii) on-going land-use developments to satisfy human 

needs (Mohd Kamal et al., 2019). The closest element-at-risk in the watershed area 

was known as the Mesilau village, where several homestays were collapsed, and a 

connecting bridge was destroyed. The further social study by Chong et al., (2019) 

described the local incomes increased drastically after the earthquake and debris flow 

event. This shows that the village received high numbers of tourists every year. Thus, 

resulted in the increase of land-use developments to build homestays and resorts within 

the village. The evidence as described have proven that the Mesilau village is highly 
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exposed towards the future earthquake and debris flow hazard. Due to this, an 

integrated framework for debris flow DRR is significantly needed to reduce the current 

risk, and prepare for the future risk.  

1.3 Research Aim and Objectives 

The aim of this study is to develop an integrated framework for debris flow 

EWS, in supporting local DRR and resilience strategies. The aim is achieved by 

emphasizing the multi-disciplinary research including; the scientific and social study. 

To achieve the aim, three research objectives are constructed as follows; 

1. To map and characterize the debris flow induced by the 2015 Ranau earthquake  

2. To model and simulate the debris flow runout 

3. To develop an integrated framework for debris flow EWS, in supporting local DRR 

and resilience strategy 

1.4 Research Questions 

For solving the research aim and objectives, six (6) research questions have 

been constructed, and listed as follows; 

1. To map and characterize the debris flow induced by the 2015 Ranau earthquake  

a) What are the datasets used to characterize the debris flow? 

b) What is the significance of mapping and characterizing the debris flow area? 

2. To model and simulate the debris flow runout 

a) How to model the debris flow induced by earthquake, and rainfall in a poorly 

treated data, inaccessible terrain, and mountainous environment? 



8 

b) How to validate the simulation runout with the actual past event?

3. To develop an integrated framework for debris flow EWS, in supporting local DRR

and resilience strategy

a) To what extend the results from the mapping, characterizing, and modelling

processes help in formulating the integrated framework?

b) How the debris flow EWS supports the local DRR and resilience strategies?

1.5 Significance of Study 

The past debris flow events around the world have recorded a high number of 

fatalities and major destruction towards any element-at-risks located within the 

downstream area. For example, the debris flow in Sichuan, China (2003) that killed 51 

people (N. S. Chen et al., 2005), Wenchuan, China (2008) that killed nearly 1600 

people (Wu et al., 2010; Wang et al., 2014), Hiroshima, Japan (2014) that killed 74 

people (Fawu et al., 2015) and Putumayo, Columbia (2017) that killed 409 people 

(Petley, 2019). In fact, Malaysia also recorded a high number of fatalities with the 

human losses of 302, and 100 others remained unfound (Borneo, 1996; PWD, 2009; 

JiCA, 2015). The event was induced by a typhoon recorded in Keningau, Sabah (1996) 

(Borneo, 1996; PWD, 2009; JiCA, 2015). Thus, remarked as the fatal geological 

disasters in Malaysia. To date, 23 debris flow events were recorded across Malaysia, 

and very few emphasized on the event in the Mesilau watershed, Kundasang. 

Therefore, this study has taken the first initiative to analyse the past debris flow 

induced by the earthquake, followed by the prolonged rainfall within this area, in better 

understanding the past event, as well as providing scientific evidence in preparing for 

the future event.  

Besides, understanding any disasters, including debris flow has become one of 

the initiatives to achieve the first “Priority in Action” of “The Sendai Framework for 

Disaster Risk Reduction (SFDRR) 2015 – 2030” (United Nations for Disaster Risk 

Reduction, 2015). The conducted analysis such as; mapping the watershed area, 
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modelling the past event, and gathering EWS inputs from various stakeholders and 

local communities have given a better understanding towards the disaster risk, and way 

forwards for DRR. Additionally, the understanding also provided an evidence-based 

decision making for the government, district, and local community to prepare for the 

future hazard and risk. Thus, leading the study to achieve the other three priorities of 

SFDRR, including; “Strengthening the disaster risk governance to manage disaster 

risk”, “Investing in disaster risk reduction for resilience”, and “Enhancing disaster 

preparedness for effective response and to ‘Build Back Better’ in recovery, 

rehabilitation and reconstruction” (UNDRR, 2015).  

This study becomes more significant as there is no integrated early warning 

system framework available within this area. Extensive literature reviews as well as 

interviewing the local communities were conducted to determine the existence of 

EWS. The preliminary findings highlighted no EWS has been installed within this 

tectonically active region. This statement was also validated by the interview session 

with the local government such as; The Department of Mineral and Geoscience of 

Sabah (JMG Sabah). Hence, opening a research gap for this study to design a suitable 

people-centred EWS framework based on the scientific and social studies conducted. 

According to the USGS earthquake archives, the Ranau district has experienced three 

earthquakes greater than Mw 5.0 within the 50-year records from 1965 until 2015. The 

earthquakes were dated in 1966 (Mw 5.3), 1991 (Mw 5.2), and 2015 (Mw 6.0), with 

the approximate return periods for every 24 to 25 years (Tongkul, 2016; USGS, 2018). 

By taking the return period as the issue, it has been predicted that the future earthquake 

could possibly trigger in another 24 or 25 years from 2015. The return period was also 

highlighted by Tongkul (2016); and Abd Razak et al. (2018). Hence, increasing the 

possibilities of the future cascading geohazards, including debris flow. Therefore, the 

needs for this study are essential to analyze the past event, predict the future event, and 

plan for the suitable DRR measures. As quoted by Doe (1983), “The Past is the key to 

the Future”. Thus, to study the debris flow event in a tectonically active region is 

relevant since there is a possibility of a large earthquake that may initiate a debris flow. 

In addition, a guidance for future researchers on the methodologies conducted can also 

be applied from this study. 
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The debris flow in the Mesilau watershed was described as the first ever event 

induced by the earthquake and prolonged rainfall recorded in Malaysia. The event was 

different with the other reported events where the triggering factors were mostly 

rainfall, and less triggered by the storm. Though the event did not cause any fatalities, 

the impacts were still observed along the channelized river. Geographically, three 

element-at-risks were affected within the watershed area, namely as; Mesilau village 

(i.e., collapse of homestays, destroyed bridge), Naradau village (i.e., damaged bridge), 

and Ranau town (i.e., accumulated log within the Liwagu Dam). From these three 

element-at-risks, the Mesilau village was the most affected village, as it was; (i) 

located close to the foot slope of Mount Kinabalu, (ii) a close living community near 

the river, and (iii) known as the touristic demanding areas. Hence, making the village 

highly exposed towards the future event as well. This statement has provided a strong 

justification to select this area as a case study due to the existence of closest element-

at-risks near the source area, and the river. 

1.6 Scope of Study 

The conducted analysis for this study focused on the Mesilau watershed only. 

Despite the other reported events across Malaysia, this event was considered as a non-

common event, where it was triggered by the earthquake followed by the prolonged 

rainfall. The study area covered the channelized Mesilau river from the foot slope of 

Mount Kinabalu until the Liwagu Dam, Ranau town. The channelized river was 

selected in order to understand the landslide damming formation within the upstream 

area, and debris flow mobilization processes to the downstream area.  

The scope of the study started with collecting the geospatial datasets through 

the available remotely-sensed datasets from the archives and commercial platforms. 

This study considered the high-resolution datasets to produce the more accurate 

outcomes. The datasets include; the satellite images, digital elevation model (DEM), 

and rainfall dataset. However, the available high-resolution datasets were limited since 

the area was located in a rural and highland area. Therefore, the data collections were 
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acquired based on the closest date available to the earthquake and debris flow event. 

For example, the available DEM before the debris flow event dated on 2008.  

The second scope of the study was the conducted analyses towards the obtained 

datasets. The three aforementioned datasets were utilized to derive the hydro-

geomorphological causal factors, extract the hydrologic watershed parameters, extract 

the parameters for debris flow modelling, characterize the landslides dam, and analyze 

the critical rainfall. Due to the time constraint, the analyses were limited to the 

available processing platforms, such as; eCognition 9.3, ArcGIS 10.8, QGIS 2.8, 

HyperKANAKO.  

 The third scope of the study was related to the debris flow modelling. Globally, 

there were many modelling software that have been developed by various researchers 

across the world. The details of the developed models were presented in the literature 

reviews under the debris flow modelling section. For this study, the selected model 

software was the HyperKANAKO model developed by Nakatani et al. (2016). The 

HyperKANAKO was selected as it was in line with the JICA’s project. The contract-

license was received from Professor Nakatani, Kyoto University, Japan. The 

simulation was conducted along the channelized Mesilau river from the source of 

initiation, until the depositional area. However, the analyses and interpretations were 

limiting to the area in the Mesilau village only. Due to the time constraint, few of the 

parameters were set as default as suggested by the developer. 

Next, the fourth scope of the study was focusing on gathering the societal 

inputs for DRR from the local community and stakeholders. This study only 

emphasized the interview and questionnaire methods in validating the past debris flow 

event, and in obtaining the suitable DRR measures for the localized area. To obtain the 

societal inputs, this study involved several community-based programs conducted by 

Universiti Teknologi Malaysia (UTM) Kuala Lumpur in Kundasang, Sabah. Two of 

the involved programs include; Science and Technology for Disaster Risk Reduction 

(STDRR 2019), and “International Workshop and Field Practice on Disaster Risk 

Management (IDRM)”. 
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Finally, the fifth scope of the study was to develop the integrated framework 

for debris flow as the final product for this study. The base of the integrated framework 

was referred to the people-centered Early Warning System (EWS) published by 

UNDRR (2006). Both scientific and social findings were correlated in developing the 

framework. Since the selected study area is prone to the earthquake and cascading 

geohazards, therefore the proposed framework aims to reduce the future debris flow 

hazard induced by the earthquake. 

1.7 Description of Study Area 

In general, the study site is a rural area situated within the North-western Coast 

of Borneo Island, Sabah. The state consisted of five divisions, namely as; Tawau, 

Kudat, Sandakan, Interior, and West Coast (Jesselton, 2000). From these five 

divisions, the study area belongs to the West Coast division, with the total approximate 

area of 7,588 km2 (10.3%) from the total area of Sabah state (Jesselton, 2000). 

Precisely, the study area is located within the Ranau district that covers 2,978 km2 

(4%) from the total area of the West Coast division. The area is mostly popular with 

its highest mountain in Malaysia, known as Mount Kinabalu, and has been officially 

gazette as Malaysia’s First UNESCO World Heritage site, under the Kinabalu National 

Park in the year of 2000 (Hall et al., 2008). The panoramic view of Mount Kinabalu 

is shown as in Figure 1.3. Most of the land is covered with the tropical rainforest (State 

Government of Sabah, 2018). 

 

Figure 1.3 The panoramic view of Mount Kinabalu, taken at Maragang Hill. 
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The mountain was a part of the uplifting process due to the tectonic plate 

compression during the middle of the Miocene period (Cottam et al., 2010) (Figure 

1.4). Hall et al. (2008) justified the uplifting of Mount Kinabalu as the results of either 

the delamination of the lithosphere, or a break off of a subducted slab. Currently, the 

highest summit of Mount Kinabalu was 4,095 m from the mean sea level (Hall et al., 

2008). However, the mountain was expected to arise at a long-term rate of 0.5 mm 

every year as the uplifting rate was approximately 7 mm (Hall et al., 2008). As the 

elevation rises to the summit, the tropical rainforest landscape changes to the subalpine 

range. Due to its high altitude, the temperature of this area dropped to 10°C at night, 

making it one of the coolest places in Sabah (Malaysia Travel Information Centre, 

2012). 

Figure 1.4 The cross-sectional of uplifted Mount Kinabalu due to the tectonic plate 

compression in the middle of Miocene period (Cottam et al., 2010). 

The chosen area for this study is situated within the Southeast flank of Mount 

Kinabalu, Kundasang, Sabah. To be specific, the area of interest is located along the 

channelized Mesilau river, covering the foot slope of Mount Kinabalu, until the 
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Liwagu Dam, Ranau town (Figure 1.5). The latitudes are recorded from 06°05’02.0" 

and 05°57’34.6", while the longitudes are recorded from 116°32’53.3" and 

116°41’01.6". Geographically, many villages are observed in Kundasang town, with 

Mesilau village as the closest village to the foot slope of the mountain. Kundasang 

town and its villages have been popularly known for its market that open seven days a 

week, with the businesses related to the fresh vegetables, and fruits (Dambul and 

Buang, 2008; Asmadi, 2018). Besides, the Mesilau village offers many attraction 

places, such as; the Mesilau Golf Club, Desa Cattle Farm, Mini Strawberry Farm 

Mesilau, Mesilau Cat’s Village, Maragang Hill, and Sosodikon Hill. Thus, making the 

village as one of the top visited places either by the local or international tourist. The 

common population in this area is mainly native Dusun and a small portion of other 

races (Sarman et al., 2000; Kamarudin et al., 2016). 

 

Figure 1.5 The overall map of the study area within Mesilau watershed. 

 

Geologically, the study area was associated with the weak geological materials, 

and many active faults that induced many landslides within any existing slope profile. 

As highlighted in Figure 1.6, five lithologies were identified within the watershed area, 

namely as; Serpentinite, Crocker Formation, Trusmadi Formation, Granite, and 

Pinousok gravel (Kirk, 1968; Jacobson, 1970; Hall et al., 2008; JMG, 2010). The 

Pinosouk gravel was the dominant lithology within Mesilau village, whereas the 

Granite, and Serpentinite was the most observed lithologies within the source area. 

The Pinosouk gravel comprises of poorly consolidated gravels of various 
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compositions. This can be observed by its rounded big boulders in the Mesilau village 

(Figure 1.7). Additionally, two major active faults were determined within this area, 

known as Lobou-Lobou fault, a left lateral strike faulting N20E, and Mensaban fault 

that was trending Northwest-Southeast (Tjia, 2007). Both evidence of the weak 

geological materials, and active faults have categorized the area as the high geohazard-

prone areas (Sharir et al., 2017; Tongkul, 2017; Roslee and Tongkul, 2018). 

Figure 1.6 The derived geological map of the study area within Mesilau watershed 

(Kirk, 1968; Jacobson, 1970; Hall et al., 2008; JMG, 2010). 

Figure 1.7 The evidence of rounded big boulders representing the Pinosuk gravel. 
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The Mw 6.0 Ranau earthquake dated on 5th June 2015 was the fatal geo-

physical related disaster in the recent history of Malaysia. The earthquake induced 

many cascading geohazards including rock falls, landslides, and debris flows in the 

vicinity of UNESCO World Heritage site, Mount Kinabalu. As described by Tongkul 

(2016) and USGS (2018), the earthquake epicentre was located in the highland of 

Kundasang town, and was triggered by the slip of Lobou-Lobou fault at a shallow 

depth of 10 km. The direct impacts have perished 18 climbers due to the rock falls 

along the summit area, with 137 others remained injured and stranded along the trail 

(Tongkul, 2016). In addition, the earthquake stripped lots of earth surfaces resulting in 

the landslide occurrences within Mount Kinabalu. Thus, accumulating the earth 

materials on the upstream channel forming a temporary landslide dam. The following 

days of prolonged rainfalls then initiated a cascading geohazard known as debris flows. 

Two of the well-reported damages from the event includes; the collapse of homestay 

into the Mesilau river (Figure 1.8) (NST, 2015; The Star, 2015), and the destructed 

bridge from Mesilau Village to Mesilau Nature Resort (Figure 1.9) (Min and Hwee, 

2015). Theoretically, the concept was similar to the Gorkha earthquake resulting to the 

accumulation of landslides, and later, remobilized the materials as debris flow (Rosser 

et al., 2016). 

Figure 1.8 The collapse of homestay into the Mesilau river due to the earthquake 

induced landslides (source from NST, 2015; The Star, 2015). 
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Figure 1.9 The destroyed connecting bridge to the Mesilau Nature Resort (MNR) 

due to the debris flow (Min and Hwee, 2015). 

 

1.8 Thesis Structure 

The thesis consisted of five chapters beginning with the introduction (Chapter 

1), followed by the literature review (Chapter 2), research methodology (Chapter 3), 

results and discussion (Chapter 4), and finally conclusion and recommendations 

(Chapter 5). The whole structure of this thesis can be referred to Figure 1.10. 

The Chapter 1 introduces the topic and central idea of this thesis. Chapter 1 

consisted of eight subchapters starting with; the problem background, problem 

statements, research aim and objectives, research questions, significance of study, 

scope of study, description of study area, and finally thesis structure. The introductory 

subchapter began with the issues regarding the landslides around the world. Then, the 

scopes are narrowed down into the cases in Malaysia, with the details focusing on the 

debris flow in the Mesilau watershed.  

The Chapter 2 is the chapter of reviewing all the literature related to the study. 

Chapter 2 is the crucial chapter where the author needs to conduct an extensive review, 

reading, and watching the video documents in order to obtain the overall understanding 

and extract the debris flow information that has been published by various researchers 
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across the world. This chapter mainly consisted of eight main topics, that started with; 

the Disaster Risk Reduction (DRR) and its published frameworks, landslides, debris 

flow, mapping techniques, image classification, debris flow modelling, social survey, 

and global published debris flow framework.  

The Chapter 3 discusses the methodological structures applied in order to 

achieve the overall aim and research objectives of this study. The scopes have been 

divided into eight major subchapters, that are; the data collections and data sources, 

data pre-processing, data processing and data analysis, field mapping, debris flow 

modelling, debris flow warning system, survey data analysis, framework design and 

development.  

The Chapter 4 is the chapter of presenting the results, and discussing the 

findings obtained. Chapter 4 highlights the major contribution of this study as the 

assessments, understanding, and outputs are presented in this chapter. The results that 

are discussed in this chapter includes; the hydro-geomorphological factors, channel 

profiles, object-based image analysis (OBIA), landslide recognition and inventory 

mapping, characterizations of landslide dam, discharge and hydrographs, debris flow 

modelling, people-centered early warning system, interview response, correlation of 

outputs, design of framework, justification of framework, and finally, the discussions.  

Lastly, Chapter 5 concludes the whole analysis performed in this study. 

Besides, the improvements, and recommendations were also presented to improve the 

outcomes in the future. Purposely, the Chapter 5 summarizes the research work 

conducted, and how the future researchers can improve the findings from this study.  

Chapter 1

(Introduction)

Chapter 2

(Literature Review)

Chapter 3

(Research Methodology)

Chapter 4

(Result and Discussion)

Chapter 5

(Conclusion and 

Recommendation)

Figure 1.10 Flowchart of the thesis structure. 
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Appendix A The people-centred Early Warning System (EWS) survey. 

 

 

STAKEHOLDER’S SURVEY FORM 

SURVEY ON THE UNDERSTANDING AND READINESS OF STAKEHOLDERS IN DEBRIS 

FLOW DISASTER RISK REDUCTION AND WAY FORWARD IN DESIGNING AN 

INTEGRATED FRAMEWORK FOR EARLY WARNING SYSTEM (EWS) 

Sir/Madam, 

This survey is conducted to study the level of understanding and readiness of 

department/agency in debris flow disaster risk reduction, in the past and in the present, along 

with the suggestions/opinions in implementing an integrated framework for early warning 

system (EWS) to reduce the future debris flow risk. There are four sections to this Q&A, based 

on the four objectives in this form as depicted in the figure below. The outputs will be used to 

propose an integrated framework for debris flow within the tectonically active region in 

Malaysia. 

 

 
 

The survey requires your honest response and if you do not know the answer to a question, 
please leave the answer blank or choose “Do not know”. All response, and answer will be 
confidential and will only be used for research purposes only.   

Thank you for your time and cooperation. 

Razak Faculty of Technology and Informatics 
Malaysia-Japan International Institute of Technology (MJIIT) 
Universiti Teknologi Malaysia 
57000 Jalan Sultan Yahya Petra 
Kuala Lumpur. 

 

Contact: 

Dr. Sumiaty Binti Amran (sumiaty.kl@utm.my) 

PM Dr Suriayati Chuprat (suriayati.kl@utm.my) 

En Iylia Rosli (iyliarosli96@gmail.com) 

mailto:sumiaty.kl@utm.my
mailto:suriayati.kl@utm.my
mailto:iyliarosli96@gmail.com
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SECTION A: PERSONAL INFORMATIONS AND RESPONDENT BACKGROUND 

Please tick (/) which relevant to you. 

A.1 Gender: 

  Male     Female 

A.2 Age: _____ years  

A.3 Contact information (email, mobile#): 

A.4 Highest Education: 

  Lower Secondary School (PMR) 

  Higher Secondary School (SPM) 

  Pre-University (Foundation/Diploma/Matric/STPM) 

  Tertiary Education (Degree) 

  Master/PhD 

  Others: ______________________ 

A.5 Which department/agency that you are currently working for? 

_________________________________________________ 

A.6 How long have you been working in this department/agency? _______ years 

A.7 What is the type of disasters you ever experienced with? 

  Flood 

 Landslides 

  Earthquake 

  Debris Flow 

A.8 Have you ever been involved in disaster management operation? 

  Yes     No 

SECTION B.1: RISK KNOWLEDGE ON DEBRIS FLOW 

Tick (/) for the appropriate answer 

B.1.1 In general, do you know the existence of landslide hazards induced by the

Sabah Earthquake on 5th June 2015? 

  Yes     No 
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B.1.2 If yes, where do you think is the most vulnerable landslide areas after the 2015 

Sabah earthquake?      (Please tick two of the dominant areas) 

  Kota Kinabalu    Kundasang 

  Ranau     Kota Belud 

  Sandakan    Keningau 

  Lahad Datu    Don’t know  

  Others: _______________ 

B.1.3 Do you know the existence of debris flow hazards after the 2015 Sabah 

Earthquake?  

  Yes     No 

 

B.1.4 If yes, do you know any location(s) in which debris flow (mud flow) disaster 

had occurred? 

  Mesilau River    Kedamaian River 

  Padas River    Melangkap River 

  Don’t know    Others: _______________ 

B.1.5 Do you know the existence of landslide hazard and risk map developed in 

2016 by the Projek Pemetaan Bahaya dan Risiko Cerun? 

  Yes     No 

B.1.6 If yes, did you or your organization take any actions for disaster management?  

Please specify your actions (by location):  ___________________________ 

B.1.7 Where do you get your information about landslide/debris flow risk?  

  Newspaper    Radio/TV   

  Research papers   SNS (e.g. Whatsapp, Facebook, etc) 

  Government     Experts (e.g. workshops, seminar) 

  Others: _________________ 

B.1.8 From your opinion, what are the factors contributing to the debris flow 

initiation? 

  Geomorphology (e.g. steep slopes)   Hydrology (e.g, rainfall)  

  Geology (e.g. weak materials)    Don’t know 

  Others: ____________________ 
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SECTION B.2: KNOWLEDGE ON EARLY WARNING SYSTEM  

Tick (/) for the appropriate answer 

B.2.1 Do you know any existing Early Warning System (EWS) in Malaysia? 

  Yes     No 

B.2.2 If yes, what is the EWS type that you have ever known? 

  Flood     Tsunami   

  Landslide    Debris flow 

 

Please specify the location or type of EWS: ________________________ 

 

B.2.3 If yes, where did you get your information about the contents of EWS? 

  Newspaper    Radio/TV   

  Research papers   SNS   

  Government     Experts (e.g. workshops) 

  Others: ___________________ 

 

B.2.4 If no, do you know of any working EWS outside of Malaysia? 

  Yes     No 

 

What is this EWS? _____________________________ 

 

B.2.5 Have you been involved in developing or installing an EWS? If yes, what have 

you done? 

  No     Yes – Please describe: 

 

B.2.6 What are the challenges in developing and operating an EWS? 

   Cost     Time   

  Installation    Expertise   

  Maintenance     Others: _______________ 

B.2.7 In your opinion, how critical is it to install EWS in Kundasang Sabah for 

reducing debris flow disaster risk? 

  Not Critical    Less critical 

  Critical     Very critical 
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B.2.8 What kind of EWS is suitable to be installed in Kundasang Sabah?

  Full-spec EWS by government (e.g. SAIFON) 

  Low-cost, small-scale community-based EWS 

  Others: _________________________ 

B.2.9 Which organization(s) should design and install the EWS in Kundasang

Sabah? 

Please specify: ______________________________________________ 

B.2.10 What do you think the important elements when designing a debris flow EWS

in Kundasang Sabah? 

  Inventory of past debris flow   Record of rainfall 

  Risk map of potential debris flow   Debris flow simulation 

  Know the elements-at-risk   Others: ______________ 

B.2.11 Which organization(s) should be responsible for each of the debris flow EWS

components?

a. Risk data and assessment: __________________________________

b. Observation/Monitoring: _____________________________________

c. Communication/Dissemination: _______________________________

d. Response Capability Building: ________________________________
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SECTION C: OBSERVATION/MONITORING 

Tick (/) for the appropriate answer 

C.1 In your opinion, what is the suitable method in monitoring a debris flow event? 

  CCTV    Rainfall station 

  Wire sensor   Vibration sensor  

  Drone   Others:___________________________ 

C.2 Does your organization play a role in monitoring a debris flow event? 

  Yes   No 

C.3 If yes, what are the actions/methodologies used to monitor the debris flow 

event? 

Please specify: ________________________________________________ 

C.4 Does your organization work with local stakeholders for making on-site real 

time monitoring? 

  Yes   No 

C.5 If yes, who are the local stakeholders who do the monitoring? 

  Fire Department    Village Leader 

  Police   District Officers  

  Civil Defense Force   Others: __________________________ 

SECTION D: WARNING DISSEMINATION AND COMMUNICATION 
Tick (/) for the appropriate answer  

D.1 From past experiences, how are disaster information disseminated during 

disaster events? 

  Mosque Speaker   Phone call/FAX   Email 

  Radio/TV Broadcast   SNS   Others: _________ 

D.2 Based on your answer in D.1, how well did the community react to the EWS 

messages? 

  No action    Some action 

  Very reactive   Not sure 
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D.3 In your opinion, how fast and effective were the disaster information 

disseminated? 

  Not effective   Less effective 

  Effective    Very effective 

D.4 At what percentage do you think the disaster information reached the 

community? 

  0 – 25%   25 – 50%  

  50 – 75%    75 – 100% 

D.5 For answers (in D.4) below 50%, what do you think was the reason for the low 

percentage? 

  Distrust in information   Late in dissemination  

  Ignored the information   Others: ______________ 

D.6 In your opinion, what is the effective medium that can be used to warn the 

local communities about the possible debris flow disaster? (Please rank in 

numbers 1-6) 

  Siren (speaker)   SNS 

  Email   Phone call (incl. SMS) 

  News (radio/TV)   Others: _______________ 

D.7 What is the communication level of your organization with local government 

and communities? 

  Low   Medium 

  High   Very High 
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SECTION E: RESPONSE CAPABILITY 

Tick (/) for the appropriate answer 

E.1 How do you evaluate the general response capability of communities to EWS 

messages in Malaysia? 

  Low     Medium   

  High     Very High 

E.2 What are the first steps that can be taken in improving the response and 

preparedness towards debris flow risk? 

Please suggest: ________________________________________________ 

E.3 What kind of programs and activities should be implemented for communities 

in reducing the debris flow risks? 

Please suggest: ________________________________________________ 

 

E.4 Who do you think should lead or initiate capacity building programs related to 

debris flow disaster response? 

  Federal government   State government  

  District office    NGOs/CBOs   

  Universities    Others ___________________________ 

 

E.5 What specifically can be done by your organization to implement the programs 

suggested in E.3? 

Please suggest: ________________________________________________ 

 

E.6 How often do the evacuation drills be conducted in Kundasang? 

  Once a year    Every 6M   

 When needed    Other: ____________________________ 

 

E.7 Have you ever been involved in debris flow disaster response operation? 

  Yes     No 

E.8 If yes, what were your roles in debris flow disaster response operation? 

Please write your actions: ________________________________________ 
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Appendix B The procedures to extract the hydrologic watershed model, using 

the ArcHydro, and Hec-GeoHMS. 

1. On the first step, the user is required to install the extensions of ArcHydro, and

Hec-GeoHMS, suitable with the version of the ArcGIS. The extensions can be

downloaded from the link: http://downloads.esri.com/archydro/HECGeoHMS/

2. Once installed, the user must allow both of the extensions in the ArcGIS software,

under the customize window > toolbars.

3. Both of the extensions are then popped out on the workspace, highlighting the

parameters used by the extension.

4. The user is then required to import the DTM dataset for the watershed extraction.

5. The first procedure to extract the watershed model is by using the ArcHydro

extension.

6. The steps are conducted in order from step 1 – 14, as shown in Figure B-1, and B-

2. To note with, the output for each step is used for the next step. For examples,

the output for step 1, is used in the step 2, while the output for step 2, is used in 

the step 3.  

7. However, the ArcHydro extension has made the processing goes easier, where the

user just required to execute the function without importing each output.

Figure B-1 The steps conducted in ArcHydro, under Terrain Processing (Step: 1 – 

14). 

http://downloads.esri.com/archydro/HECGeoHMS/
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Figure B-2 The steps conducted in ArcHydro, under Watershed Processing (Step: 

12 – 13). 

 

8. The next step after all the ArcHydro steps have been conducted is to proceed with 

the steps in the Hec-GeoHMS.  

9. Beforehand, the user must import all the produced outputs or parameters, under 

the Project Setup > Data Management (Step 15) (Figure B-3).  

10. The steps conducted in the Hec-GeoHMS (step 15 – 39) are shown as in Figure 

B-4, Figure B-5, and Figure B-6 respectively. 

 
Figure B-3 The imported outputs/steps in the Project Setup > Data Management. 
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Figure B-4 The steps conducted in the Hec-GeoHMS, under Project Setup (Step: 

15 – 18). 

 

 
Figure B-5 The steps conducted in the Hec-GeoHMS, under Basin Processing 

(Step: 19). 
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Figure B-6 The steps conducted in the Hec-GeoHMS, under Characteristics (Step: 

20 – 26). 

Figure B-7 The steps conducted in the Hec-GeoHMS, under Parameters (Step: 27 

– 30).
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Figure B-8 The steps conducted in the Hec-GeoHMS, under HMS (Step: 31 – 39). 
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Appendix C The accuracy assessment results for; (A) before earthquake, and 

(B) after earthquake.

A. The detailed accuracy assessment results for before the earthquake are as follows.

A.1. The classification results with respect to the correct sampling points (CSP)

(grey), the ground truth point (blue), and the total class (red). 

R
A

W
 

Classifications Ref. SEM Ref. Vegetation Ref. Bare earth Ground Truth 

SEM 50 0 2 52 

Vegetation 0 49 1 50 

Bare earth 0 1 47 48 

Total Class 50 50 50 150 

A.2. The CSP with respect to the total class.

C
SP

 

Classifications 

Ref. SEM 

(%) 

Ref. Vegetation 

(%) 

Ref. Bare earth 

(%) 

SEM 100 0 4 

Vegetation 0 98 2 

Bare earth 0 2 94 

Total 100 100 100 

A.3. The commission results in representing the points that are incorrectly classified

against the row. 

C
o

m
m

is
si

o
n

s Classifications 
Incorrect Points 

(Row) 
Ground Truth % 

SEM 2 52 3.9 

Vegetation 1 50 2 

Bare earth 1 48 2.1 

A.4. The omission results in representing the point pixels that are incorrectly

classified against the column. 

O
m

is
si

o
n

s 

Classifications Incorrect Points 
(Column) 

Total Class % 

SEM 0 50 0 

Vegetation 1 50 2 

Bare earth 3 50 6 
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A.5. The end result for the producer’s accuracy assessment 

P
ro

d
u

ce
r 

ac
c.

 
Classifications CSP Total Class % 

SEM 50 50 100 

Vegetation 49 50 98 

Bare earth 47 50 94 

 

A.6. The end result for the user’s accuracy assessment. 

U
se

r 
ac

c.
 Classifications CSP Ground Truth % 

SEM 50 52 96 

Vegetation 49 50 98 

Bare earth 47 48 97 

 

A.7. The accuracy assessments summary for before the earthquake. 

Su
m

m
ar

y 

Classifications 
User’s accuracy 

(%) 
Producer’s accuracy 

(%) 

SEM 96 100 

Vegetation 98 98 

Bare earth 97 94 

 

Overall classifications accuracy for before the earthquake: 97.3% 

Kappa Coefficient: 0.96 
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B. The detailed accuracy assessment results for after the earthquake are as follows.

B.1. The classification results with respect to the correct sampling points (CSP)

(grey), the ground truth point (blue), and the total class (red). 

R
A

W
 

Classifications Ref. SEM Ref. Vegetation Ref. Bare earth Ground Truth 

SEM 46 0 3 49 

Vegetation 0 50 0 50 

Bare earth 4 0 47 51 

Total Class 50 50 50 150 

B.2. The CSP with respect to the total class.

C
SP

 

Classifications 

Ref. SEM 

(%) 

Ref. Vegetation 

(%) 

Ref. Bare earth 

(%) 

SEM 92 0 6 

Vegetation 0 100 0 

Bare earth 8 0 94 

Total 100 100 100 

B.3. The commission results in representing the points that are incorrectly classified

against the row. 

C
o

m
m

is
si

o
n

s Classifications 
Incorrect Points 

(Row) 
Ground Truth % 

SEM 3 49 6.1 

Vegetation 0 50 0.0 

Bare earth 4 51 7.8 

B.4. The omission results in representing the point pixels that are incorrectly

classified against the column. 

O
m

is
si

o
n

s 

Classifications Incorrect Points 
(Column) 

Total Class % 

SEM 4 50 8 

Vegetation 0 50 0 

Bare earth 3 50 6 

B.5. The end result for the producer’s accuracy assessment

P
ro

d
u

ce
r 

ac
c.

 

Classifications CSP Total Class % 

SEM 46 50 92 

Vegetation 50 50 100 

Bare earth 47 50 94 

B.6. The end result for the user’s accuracy assessment.
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U
se

r 
ac

c.
 Classifications CSP Ground Truth % 

SEM 46 49 94 

Vegetation 50 50 100 

Bare earth 47 51 92 

B.7. The accuracy assessments summary for after the earthquake.

Su
m

m
ar

y 

Classifications 
User’s accuracy 

(%) 
Producer’s accuracy 

(%) 

SEM 94 92 

Vegetation 100 100 

Bare earth 92 94 

Overall classifications accuracy for before the earthquake: 95.3% 

Kappa Coefficient: 0.93 
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Appendix D The raw outputs for the people-centred survey, extracted using 

the SPSS software. 

A. Respondents Demographic

[A.1] Gender 

Frequency Percent 

Valid Male 32 68.1 

Female 15 31.9 

Total 47 100.0 

[A.3] Age Range 

Frequency Percent 

Valid 20 - 29 3 6.4 

30 - 39 18 38.3 

40 - 49 15 31.9 

50 - 59 7 14.9 

> 60 4 8.5 

Total 47 100.0 

[A.4] Respondent’s Highest Education 

Frequency Percent 

Valid Higher Secondary School (SPM) 1 2.1 

Pre-University 
(Foundation/STPM/Diploma/Matric) 

2 4.3 

Tertiary Education (Degree) 22 46.8 

Master/PhD 22 46.8 

Total 47 100.0 

[A.6] Range of Respondents Working Experience 

Frequency Percent 

Valid < 5 12 25.5 

6 - 10 11 23.4 

11 - 15 13 27.7 

16 - 20 1 2.1 

> 21 10 21.3 

Total 47 100.0 

[A.7] Rank of the Respondent Experiences in Disaster 

Percent of Cases 

Valid Flood 36 35.3% 76.6% 

Landslide 29 28.4% 61.7% 

Debris flow 20 19.6% 42.6% 

Earthquake 17 16.7% 36.2% 

Total 102 100.0% 217.0% 
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[A.8] Respondent’s Involvement in Disaster Management 

    Frequency Percent 

Valid Yes 29 61.7 

  No 18 38.3 

  Total 47 100.0 

 

B. Knowledge of Landslide and Debris Flow 

 

[B1.1] Respondent Knowledge on the Existence of the 2015 Sabah Earthquake 

    Frequency Percent 

Valid Yes 43 91.5 

  No 4 8.5 

  Total 47 100.0 

 

[B1.2] Rank of the Vulnerable Landslide Area 

  Percent of Cases 

Valid Kundasang 40 41.7% 87.0% 

  Ranau 25 26.0% 54.3% 

  Kota Belud 19 19.8% 41.3% 

  Kota Kinabalu 9 9.4% 19.6% 

  Lahad Datu 3 3.1% 6.5% 

Total   96 100.0% 208.7% 

 

[B1.3] Respondent Knowledge on the Cascading Debris Flow Hazard and Risk 

    Frequency Percent 

Valid Yes 40 85.1 

  No 7 14.9 

  Total 47 100.0 

 

[B1.4] Rank of the Debris Flow Occurrences 

  Percent of Cases 

Valid Mesilau river 34 39.5% 82.9% 

  Melangkap river 26 30.2% 63.4% 

  Kedamaian river 26 30.2% 63.4% 

Total   86 100.0% 209.8% 

 

[B1.7] Rank of the Retrieved Debris Flow Information 

  

Percent of 
Cases 

Valid Expert 30 21.0% 63.8% 

  Newspaper 27 18.9% 57.4% 

  SNS 23 16.1% 48.9% 

  Radio and TV 23 16.1% 48.9% 

  Government 22 15.4% 46.8% 

  Research paper 18 12.6% 38.3% 

Total   143 100.0% 304.3% 
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[B1.8] Rank of the Debris Flow Contributing Factors 

Percent of 
Cases 

Valid Hydrological factor 46 40.7% 97.9% 

Geomorphological factor 33 29.2% 70.2% 

Geological factor 30 26.5% 63.8% 

Human made 4 3.5% 8.5% 

Total 113 100.0% 240.4% 

B2. Knowledge of Early Warning System 

[B2.1] Do you know any Existing Early Warning System (EWS) in Malaysia? 

Frequency Percent 

Valid Yes 36 76.6 

No 11 23.4 

Total 47 100.0 

[B2.2] Rank of the Common or Known EWS in Malaysia 

Percent of Cases 

Valid Flood 27 42.9% 75.0% 

Tsunami 25 39.7% 69.4% 

Landslide 8 12.7% 22.2% 

Debris flow 3 4.8% 8.3% 

Total 63 100.0% 175.0% 

[B2.3] Rank of the Retrieved EWS Information 

Percent of Cases 

Valid Expert 25 31.3% 71.4% 

Government 20 25.0% 57.1% 

Research paper 13 16.3% 37.1% 

Newspaper 10 12.5% 28.6% 

Radio and TV 7 8.8% 20.0% 

SNS 5 6.3% 14.3% 

Total 80 100.0% 228.6% 

[B2.4] Known of Any Working EWS outside of Malaysia? 

Frequency Percent 

Valid Yes 15 31.9 

No 32 68.1 

Total 47 100.0 

[B2.5] Respondent’s Involvement in Installing EWS. 

Frequency Percent 

Valid Yes 10 21.3 

No 37 78.7 

Total 47 100.0 
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[B2.6] Rank of the Challenges in Installing EWS 

Percent of 
Cases 

Valid Cost 38 30.4% 80.9% 

Maintainance 36 28.8% 76.6% 

Expertise 25 20.0% 53.2% 

Time 14 11.2% 29.8% 

Installation 12 9.6% 25.5% 

Total 125 100.0% 266.0% 

[B2.7] Respondent’s Opinion in Installing EWS for Kundasang, Sabah. 

Frequency Percent 

Valid Less critical 1 2.1 

Critical 16 34.0 

Very critical 30 63.8 

Total 47 100.0 

[B2.8] Rank of the suitable debris flow EWS for Kundasang case 

Percent of Cases 

Suitable debris 
flow EWS 

Full spect, by 
government 

29 50.0% 61.7% 

Low-cost, 
community-based 
program 

29 50.0% 61.7% 

Total 58 100.0% 123.4% 

[B2.10] Rank of the Important EWS Elements 

Percent of Cases 

Valid Hazard and risk 
map 

41 24.7% 87.2% 

Rainfall record 33 19.9% 70.2% 

Simulation of 
past event 

32 19.3% 68.1% 

Inventory of past 
events 

31 18.7% 66.0% 

Analysing 
element at risk 

29 17.5% 61.7% 

Total 166 100.0% 353.2% 

[B2.11] (a) Rank of the Responsible Agencies for the Risk Assessment 

Percent of 
Cases 

Risk assessment JMG 28 46.7% 66.7% 

DID 15 25.0% 35.7% 

JMG 6 10.0% 14.3% 

JKR 5 8.3% 11.9% 

MCDF 3 5.0% 7.1% 

NADMA 3 5.0% 7.1% 
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Total   60 100.0% 142.9% 

 

[B2.11] (b) Rank of the Responsible Agencies for the Observation and 
Monitoring 

  Percent of Cases 

Observation and 
Monitoring 

JMG 15 27.3% 41.7% 

  DID 13 23.6% 36.1% 

  Local 
Community 

8 14.5% 22.2% 

  Local Authority 5 9.1% 13.9% 

  MCDF 5 9.1% 13.9% 

  MMD 5 9.1% 13.9% 

  NADMA 2 3.6% 5.6% 

  Sabah Parks 2 3.6% 5.6% 

Total   55 100.0% 152.8% 

 

[B2.11] (c) Rank of the Responsible Agencies for the Warning 
Communication and Dissemination 

  

Percent of 
Cases 

Communication and 
dissemination 

NADMA 18 40.0% 43.9% 

  Local Authority 9 20.0% 22.0% 

  Local 
Community 

9 20.0% 22.0% 

  DID 4 8.9% 9.8% 

  JMG 3 6.7% 7.3% 

  MMD 2 4.4% 4.9% 

Total   45 100.0% 109.8% 

 

[B2.11 (d) Rank of the Resposible Agencies for the Response Capability 

  Percent of Cases 

Response and 
Capabilitya 

NADMA 14 31.1% 35.0% 

  Local Authority 10 22.2% 25.0% 

  MCDF 8 17.8% 20.0% 

  JKR 5 11.1% 12.5% 

  Local Community 4 8.9% 10.0% 

  DID 3 6.7% 7.5% 

  JMG 1 2.2% 2.5% 

Total   45 100.0% 112.5% 
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C. Knowledge of Early Warning System

[C1] Rank of the Suitable Monitoring Methods 

Percent of Cases 

Valid Rainfall station 34 26.4% 72.3% 

Vibration 
sensor 

32 24.8% 68.1% 

CCTV 28 21.7% 59.6% 

Wiring sensor 20 15.5% 42.6% 

Drone 15 11.6% 31.9% 

Total 129 100.0% 274.5% 

[C2] Does your organization play a role in monitoring a debris flow event? 

Frequency Percent 

Valid Yes 11 23.4 

No 36 76.6 

Total 47 100.0 

[C4] Respondent’s Agencies that Worked with the Local Stakeholders for the 
Real-Time Monitoring 

Frequency Percent 

Valid Yes 15 31.9 

No 32 68.1 

Total 47 100.0 

[C5] Rank of the Responsible Local Stakeholders for the Real-Time Monitoring 

Percent of Cases 

Valid Village Leader 11 26.2% 61.1% 

District Officers 9 21.4% 50.0% 

Civil Defense 
Force 

7 16.7% 38.9% 

University 6 14.3% 33.3% 

Police 5 11.9% 27.8% 

Fire Department 4 9.5% 22.2% 

Total 42 100.0% 233.3% 
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D. Warning Dissemination and Communication 

 

[D1] Rank of the Disaster Dissemination During the Past Event 

  

Percent of 
Cases 

Valid Mosque 
speaker 

27 27.0% 42.6% 

  Radio and TV 25 25.0% 66.0% 

  Phone Call 24 24.0% 51.1% 

  SNS 21 21.0% 44.7% 

  Email 4 3.0% 8.5% 

Total   100 100.0% 212.8% 

 
[D2] Rank of the Well-Reacted EWS messages by the Community 

    Frequency Percent 

Valid Very reactive 10 21.3 

  Some Action 24 51.1 

  Not Sure 11 23.4 

  No Action 2 4.3 

  Total 47 100.0 

 
[D3] The Effectiveness of the Disaster Information Disseminated. 

    Frequency Percent 

Valid Very Effective 2 4.3 

  Effective 22 46.8 

  Less Effective 21 44.7 

  Not Effective 2 4.3 

  Total 47 100.0 

 
[D4] Percentage Level of the Disaster Information Reached the Community 

    Frequency Percent 

Valid 0 - 25% 5 10.6 

  25 - 50% 19 40.4 

  50 - 75% 19 40.4 

  75 - 100% 4 8.5 

  Total 47 100.0 

 
[D5] Rank of The Reasons for the Low Percentage as in D4 

  

Percent of 
Cases 

Valid Late in 
Dissemination 

22 44.9% 64.7% 

  Ignored the 
Information 

17 34.7% 50.0% 

  Distrust in 
Information 

10 20.4% 29.4% 

Total   49 100.0% 144.1% 
[D6] Rank of the Effective Medium to Warn the Community 
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Percent of 
Cases 

Valid Sirens 43 31.4% 91.5% 

  Phone Call 30 21.9% 63.8% 

  SNS 29 21.2% 61.7% 

  Newspaper 26 19.0% 55.3% 

  Email 9 6.6% 19.1% 

Total   137 100.0% 291.5% 

 
[D7] Respondent’s Agencies Communication Level with the Local 
Government and Local Communities 

    Frequency Percent 

Valid Very High 6 12.8 

  High 15 31.9 

  Medium 18 38.3 

  Low 8 17.0 

  Total 47 100.0 

 

E. Warning Dissemination and Communication 

 
[E1] General Response Capability by the Community 

    Frequency Percent 

Valid Low 14 29.8 

  Medium 25 53.2 

  High 8 17.0 

  Total 47 100.0 

 
[E2] Respondent’s Recommendation for the First Step to Improve the Local 
Responses 

    Frequency Percent 

Valid Education 27 57.4 

  Community 
Engagement 

10 21.3 

  Early Warning System 9 19.1 

  Data Sharing 1 2.1 

  Total 47 100.0 
 
[E3] Suggested Programs/Actions to be Implemented 

    Frequency Percent 

Valid Community 
Program 

22 46.8 

  Education 10 21.3 

  School Education 3 6.4 

  Simulation Drill 12 25.5 

  Total 47 100.0 
[E4] Rank of the Lead Agency for the Capacity Building Programs 

  Percent of Cases 
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Valid State 
governments 

36 31.6% 81.8% 

  District offcer 35 30.7% 79.5% 

  Federal 
governments 

22 19.3% 50.0% 

  University 21 18.4% 47.7% 

Total   114 100.0% 259.1% 
 
[E6] Rank of the Suitable Evacuation Drill and Training 

  

Percent of 
Cases 

Suggested 
Evacuation Drill 

Every 6 months 26 59.1% 59.1% 

  When Needed 10 22.7% 22.7% 

  Once a Year 8 18.2% 18.2% 

Total   44 100.0% 100.0% 
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