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ABSTRACT 

Stress is the body’s natural reaction to life events and chronic stress disrupts 

the physiological equilibrium of the body which ultimately contributes to negative 

impact on physical and mental health. For this reason, an endeavour to develop stress 

level monitoring system is necessary and important to clinical intervention and 

diseases prevention. Various standardized questionnaires for assessing stress are 

available, yet they are based on individual perceptions and not subtle enough to capture 

mental state. Since an array of stress responses is initiated by the brain, thus, it is highly 

desirable to capture the stress non-invasively through neuroimaging technique, 

specifically electroencephalography (EEG) acquisition tool. The EEG acquisition tool 

was exploited in this study to capture the brainwave signals at prefrontal cortex from 

50 participants and to investigate the brain states related to stress induced by virtual 

reality (VR) horror video and intelligence quotient (IQ) test in order to provide 

objective inspection of the brain functions. The collected EEG signals were pre-

processed to remove artifacts and divided into four frequency bands including Delta 

(0.5 – 4 Hz), Theta (4 – 8 Hz), Alpha (8 – 13 Hz) and Beta (13 – 30 Hz) respectively. 

This was followed closely by extracting power spectral density (PSD) features from 

EEG frequency domain using Welch’s fast Fourier transform (FFT). In particular, 

absolute power of Theta, Alpha, Beta frequency bands, Alpha asymmetry and 

Theta/Beta power ratio were further analysed. Wilcoxon signed-rank test was carried 

out to find out the statistically significant features that react sensitively to stress-related 

changes. The results showed that Theta absolute power was significantly increased at 

Fp1 electrode (p<0.001) and Fp2 electrode (p<0.015) during post-IQ. Whereas Beta 

absolute power at Fp2 electrode was observed to significantly increase during both 

conditions, the post-VR (p<0.024) and post-IQ (p<0.011) respectively. However, 

Alpha asymmetry and Theta/Beta ratio did not significantly differ from the resting 

baseline. Evidently, these two parameters were indeed a good indicator of underlying 

bioregulatory responses especially the emotional regulation, behavioural motivation 

and attentional control. Following this, the significant features were selected for k-

means clustering to assign the features into three groups of stress levels according to 

their inherent homogeneity whereby each group share similar patterns of stress 

response and finally, the labelled data based on clustering method were fed into support 

vector machine (SVM) to classify the stress level. The performance of SVM classifier 

was validated by 10-fold cross validation method and the result affirmed the highest 

performance of 98% accuracy by using only the feature of Beta-band absolute power 

(Fp2) on account of the significant changes of Beta activity during pre- and post-

stimuli. In essence, stress pattern has been found in brain activity of Beta frequency 

band within right prefrontal cortex that has shown to be significantly more active under 

stimuli. The hybrid approach of classification using k-means clustering and SVM has 

been proven to be effective methods in lieu of pre-labelling the stress level to reduce 

individual differences in stress response, and in turn to improve the reliability and 

detection rate of mental stress. More future studies can be conducted to further validate 

and implement a stress level classification system. The system can be of assistance to 

support the current practice of stress diagnosis as well as be a beneficial future health 

indicator to improve stress management. 
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ABSTRAK 

Stres merupakan tindak balas semula jadi badan terhadap peristiwa kehidupan 

dan stres kronik mengganggu keseimbangan fisiologi badan yang akhirnya 

menyumbang kepada kesan negatif terhadap kesihatan fizikal dan mental. Atas sebab 

ini, usaha untuk membangunkan sistem pemantauan tahap stres perlu dan penting 

untuk intervensi klinikal dan pencegahan penyakit. Pelbagai soal selidik standard 

untuk menilai stres boleh didapatkan, namun kaedah tersebut berdasarkan persepsi 

individu dan tidak dapat menangkap keadaan mental yang rinci. Oleh kerana pelbagai 

tindak balas stres dimulakan daripada otak, khususnya alat pemerolehan 

elektroensefalografi (EEG) telah dieksploitasi dalam kajian ini untuk menangkap 

isyarat gelombang otak di korteks prefrontal daripada 50 peserta dan mengkaji keadaan 

otak yang berkaitan dengan stres yang disebabkan oleh realiti maya (VR) video seram 

dan ujian kecerdasan (IQ) untuk pemeriksaan objektif terhadap fungsi otak. Isyarat 

EEG yang dikumpul telah diproses sebelum menghilangkan artifak dan dibahagikan 

kepada empat kumpulan frekuensi termasuk Delta (0.5 – 4 Hz), Theta (4 – 8 Hz), Alpha 

(8 – 13 Hz) dan Beta (13 – 30 Hz). Diikuti dengan menggunakan transformasi Fourier 

cepat (FFT) Welch untuk mengekstrak ciri kuasa ketumpatan spektrum (PSD) daripada 

domain frekuensi EEG. Khususnya, kuasa mutlak Theta, Alpha, band frekuensi Beta, 

asimetri Alpha dan nisbah kuasa Theta kepada Beta telah dianalisis selanjutnya. Ujian 

pangkat bertanda Wilcoxon dijalankan untuk mengenal pasti ciri-ciri signifikan secara 

statistik terhadap perubahan yang berkaitan dengan stres. Hasil kajian menunjukkan 

bahawa kuasa mutlak Theta meningkat secara signifikan pada elektrod Fp1 (p<0.001) 

dan elektrod Fp2 (p<0.015) semasa pasca-IQ. Manakala kuasa mutlak Beta pada 

elektrod Fp2 diperhatikan meningkat secara signifikan semasa kedua-dua syarat, 

pasca-VR (p<0.024) dan pasca-IQ (p<0.011). Walau bagaimanapun, asimetri Alpha 

dan nisbah Theta/Beta tidak berbeza secara signifikan daripada garis dasar rehat. 

Malah, kedua-dua parameter ini merupakan petunjuk yang baik untuk mendasari 

tindak balas bioregulatori terutamanya peraturan emosi, motivasi tingkah laku dan 

kawalan perhatian. Berikutan itu, ciri-ciri penting dipilih dalam pengelompokan cara-

k untuk memperuntukkan ciri-ciri ke dalam tiga kumpulan tahap stres mengikut 

kehomogenan yang wujud dalam setiap kumpulan yang berkongsi corak tindak balas 

stres yang sama dan akhirnya, memasukkan data yang dilabel berdasarkan kaedah 

kelompok ke dalam mesin vektor sokongan (SVM) untuk mengklasifikasikan tahap 

stres. Prestasi pengelas SVM telah disahkan oleh kaedah pengesahan silang 10 kali 

ganda dan hasilnya mengesahkan prestasi tertinggi dengan ketepatan 98% yang hanya 

menggunakan ciri kuasa mutlak Beta-band (Fp2) kerana perubahan signifikan aktiviti 

Beta semasa pra-dan selepas rangsangan. Pada dasarnya, corak stres didapati dalam 

aktiviti otak band frekuensi Beta dalam korteks prefrontal kanan yang menunjukkan 

secara signifikan lebih aktif di bawah rangsangan. Pendekatan hibrid klasifikasi 

menggunakan pengelompokan cara-k dan SVM telah terbukti sebagai kaedah yang 

berkesan bagi pengganti pra-label tahap stres untuk mengurangkan perbezaan individu 

dalam tindak balas stres, dan seterusnya untuk meningkatkan kebolehpercayaan dan 

kadar pengesanan stres mental. Lebih banyak kajian masa depan boleh dilakukan untuk 

mengesahkan dan melaksanakan sistem klasifikasi tahap stres. Sistem ini boleh 

menjadi pembantu untuk menyokong amalan semasa diagnosis stres serta dijadikan 

sebagai petunjuk untuk kesihatan masa depan dalam meningkatkan pengurusan stress. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Stress is a term easily used by everyone on daily basis as it occurs unavoidable 

from time to time. Modern life offers challenges and human beings are surrounded by 

stressful situations due to busy work schedule and deadline, relationship difficulties, 

family matters and financial problems. Stress is not a negative process at all times 

because it plays a factor in motivation to deal with challenges and lead to success. 

However, unrelenting stress in the long run can lead to a host of negative and 

detrimental consequences in terms of physiological functioning, physical health, 

emotional and behavioural changes [1, 2]. According to the National Institutes of 

Health (NIH), long-term stress can cause mental health problems and trigger the risk 

of developing various physical health problems such as heart disease, high blood 

pressure and diabetes [3]. 

In Malaysia, the National Health and Morbidity Survey (NHMS) conducted in 

year 2015 reported that 29.2% of the Malaysian adults aged 16 years and above were 

suffering from mental health problems like depression and anxiety disorder. The 

statistic was increased from 10.7% in 1996 to 29.2% in 2015 [4]. Furthermore, the 

NHMS in year 2017 revealed that adolescents aged 13 to 17 years old experienced 

stress, depression and anxiety with prevalence of 9.6%, 18.3% and 39.7% respectively 

[5]. A recent NHMS in year 2019 have demonstrated that 2.3% which was about half 

of a million Malaysian adults aged 18 years and above were reported to have 

depression, while 7.9%, approximately 424,000 of children aged 5 to 15 were found 

to have mental health problems [6]. 

NHMS 2019 indicated 18.3% which was about 3.9 million of Malaysian adults 

and above had diabetes and 30% which was about 6.4 million of Malaysian adults had 
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raised blood pressure. On top of that, the survey reported that 35.1% of Malaysian 

adults possessed low health literacy including health-related information, promotion 

and disease prevention. Hence, it is important to educate the general public on the 

impacts of prolonged exposure to stress on both physical and mental health. 

Furthermore, it is crucial to monitor stress levels for early diagnosis in order to prevent 

possible future illnesses since all are equally at risk of experiencing stress. 

Consequences of neglecting stress may trigger the risk of developing various health 

issues, thus research efforts are continuously being made on detecting and classifying 

stress levels [7-18]. 

Stress response originates from the brain but involving various biochemical 

and physiological effects [19]. Researchers have extracted the presence of specific 

hormones and features from different kinds of physiological sensors such as blood 

pressure, heart rate variability (HRV) and galvanic skin response (GSR) to assess 

stress [20, 21]. Besides that, brainwave activity has been revealed as potential 

biomarker and proved to represent important information of the brain function in 

responding to stress [22]. The use of electroencephalogram (EEG) device is becoming 

increasingly popular as its capabilities to see rapid changes of cortical activity across 

time to detect the brain activities [23] and specific diagnosis [24, 25]. Recent studies 

of using single modality EEG have empowered researchers to distinguish stress and 

relax state [26, 27] among human and further classify the stress into different levels 

[28-32]. 

Based on the study done by Fares Al-shargie et al. [33], Alpha power was 

identified to be significantly decreased at all the three levels of stress when each of the 

level compared to baseline. Classification was done on support vector machine (SVM) 

and the average accuracy obtained for recognition of three stress states was 94.79%. 

The study also proved that right prefrontal cortex was highly involved during mental 

stress in all the three levels. In the work of Jun and Smitha [34], they induced three 

stress levels by using Stroop colour-word test and mental arithmetic test. The result 

had recognized and confirmed the three levels of stress using SVM classifier 

commenting 75% accuracy. The study reported that Alpha power was higher than 

Theta and Beta power during baseline resting state. Conversely, Beta power was 
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noticed to be relatively higher. Arsalan et al. [35] found that only Theta power was 

found significantly different from pre- and post-stimulus. Their study achieved 

classification accuracy at 46.42% for three levels of stress using SVM. 

In order to model EEG based three-level stress classification system, the class 

label information of stress levels is given within the dataset for training the classifier. 

The previous studies mentioned above have classified the EEG signals through the 

pre-labelled stress levels. Nevertheless, individuals have different stress signals or 

perceptions in different situations or stress exposure because every individual cope 

with stress uniquely. The constraint can be overcome by quantifying the similar and 

identical EEG characteristics using clustering method [36] prior to building a stress 

level classification model. The purpose of this study is to reduce subjective bias shaped 

from human stress reactivity by working in conjunction with clustering method to 

improve the overall performance of stress level classification. 

1.2 Problem Statement 

Various psychological tests have been devised in research and clinical practice 

for the purpose to obtain statistically useful information and measure stress levels such 

as Stress Response Inventory [37], Holmes-Rahe Stress Inventory [38], Hamilton 

Rating Scale for Depression [39] and Perceived Stress Scale [40]. The assessments 

involve self-report or clinician-rated by using subjective perceptions and estimations 

to extract specific information on cognitive, emotional or behavioral stress responses. 

However, these methods are subjective and not sensitive enough to capture subtle 

patterns of mental state. Subjective self-reported stress has been reported to be 

insufficiently reflected by respective physiological parameters of the stress 

measurement [41, 42]. 

As compared to self-assessment questionnaires, physiological variables such 

as cortisol level [43], skin conductivity [44], heart rate [45], blood pressure [46] and 

EEG signal [47-50] served as an additional fairly objective and straightforward ways 

to measure stress. The high temporal resolution of electroencephalography (EEG) 
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constitutes a possibly practicable and feasible neuroimaging technique. Despite the 

fact that there are a number of EEG related studies have been done to classify stress 

into different levels, yet the EEG features were classified according to the pre-marked 

stress levels, that is, the difficulties of stressors and/or self-perceived questionnaire. 

In particular, Fares Al-shargie et al. [33] utilized mental arithmetic task with 

three levels of difficulty to induce variations in the brain cortical activities and 

collected by EEG signals. The stress features induced by the three levels of difficulty 

were labelled accordingly. By comparing the three levels of stress elicited by mental 

arithmetic tasks, the study showed that the Alpha power has greatly decreased from 

the first level to the second level of stress. But the power increased again from the 

second level to the third level. This result has also been verified that cortical activation 

failed at task level-three. The questionnaire survey on task load showed that with the 

increase of task difficulty, especially in the third level, the engagement of participants 

decreased significantly [51]. On the other hand, Arsalan et al. [35] arranged the 

participants to prepare and present on an unknown topic and classified the perceived 

stress into three different levels using the score obtained from perceived stress scale 

(PSS) questionnaire. 

Likewise, Nagar and Sethia [28] used the stress scores calculated from the PSS 

questionnaire to specify three target stress levels. In fact, veridical stress state is 

potentially inaccurate and limited by the factors like unwilling to appear fragile and 

also lacking of conscious perception [52]. Consequently, the result based on the self-

reported stress labelling and the labelling using the levels of task difficulty might be 

less convincing due to incapable of dealing with the difference between subjects. Inter-

subject variability is apparent and indisputable because of the time-variant and subject-

specific brain processes rely on the experimental setting, psychological and 

neurophysiological factors. In accordance with that, clustering method has been 

suggested to have effective quantification of subjects who share similar and identical 

EEG signal characteristics [36]. 

Clustering method was introduced in a study to cluster the inherent 

homogeneity of all subjects’ stress response into subgroups through trained and tested 
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various physiological features such as EEG, electrocardiography (ECG), 

electromyography (EMG), galvanic skin response (GSR) and saturation of 

peripheraloxygen (SpO2). The study found that a small number of clusters showed a 

good balance between within-cluster homogeneity and between-cluster heterogeneity 

[53]. To the best of our knowledge, cluster related method and results solely based on 

the EEG signals and stress remain limited in the literature [54, 55]. The EEG data in 

these studies was processed using discrete wavelet transformation (DWT) and k-means 

clustering, followed by calculating stress indices value of cognitive data and physical 

data for clustering and establishing low and high stress level. 

The present study has utilized EEG signal processing technique with clustering 

method to develop a three-level stress classification model. Stress response was 

triggered through stimuli in laboratory settings and the features were extracted for 

investigation to determine the significant and related stress features. Subsequently, 

clustering was applied in order to overcome the inter-subject differences to divide and 

assign the features into three groups of stress levels. Cluster assignment is vital to 

modify the problem to find a fair solution before proceeding to classification. The 

clustered data with known class labels was then split into training and testing sets to 

build a classification model. 

1.3 Research Objectives 

The objectives of the research are as follow: 

(a) To determine the significant features in distinguishing stress response. 

(b) To cluster the inherent homogeneity of stress features into three groups. 

(c) To verify the accuracy performance in classifying three levels of stress. 
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1.4 Research Scopes 

The scope of the research is divided into four categories as follows: 

(a) Participants: 50 healthy students from Universiti Teknologi Malaysia, Kuala

Lumpur were chosen. They were undergraduate and postgraduate students

aged ranging from 19 to 38 years old.

(b) Stimuli: Virtual reality (VR) horror video and non-verbal intelligence quotient

(IQ) test.

(c) Parameter: 5 electrodes (Ag/AgCl material) with conductive gel were used to

attach on the surface of forehead and connect with bio-signal acquisition

software (g.MOBIlab+) to transmit EEG signals to PC via Bluetooth.

(d) Data Analysis: Brainstorm application under Matlab software was used for

EEG signal processing and feature extraction. Statistical test was performed

using IBM SPSS to recognize significant feature. Weka tool was selected for

feature clustering and classification.

1.5 Research Significance 

The stress level classification model can be employed for the implementation 

of stress monitoring system or health indicator which potentially provides better health 

care. The reliability and accuracy on the application can be used to facilitate traditional 

tools such as the self-report or clinician-rated questionnaires. Moreover, the system 

can be adopted clinically or perhaps by individuals to monitor stress levels. Physicians, 

clinicians, psychologists or counsellors can perform stress prediction in real-time and 

save time for mental stress assessment. The enhancement of the diagnosis accuracy 

enables clinicians to support their decision during treatment of patients about the 

severity of stress. The decision can prevent patients from getting more intense 

disorders like anxiety and depression by identifying it at an early stage. Indeed, such 
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study is important for future development of stress diagnosis system to help people 

and assist clinicians by providing reliable information and giving maximum treatment 

benefits before significant physical and mental disorders occur. 

1.6 Thesis Outline 

The research proposal is organized in five chapters as follows: 

(a) Chapter 1 presents the background information related to this research project.

It also introduces the problem statement, objectives, scopes and expected

contributions of the project.

(b) Chapter 2 elaborates the current literatures related to the study which were

mainly about the stress, EEG and brain signal processing techniques. The

previous works related to classifying stress levels based on EEG signals are

presented as well.

(c) Chapter 3 illustrates the methodologies which were used to complete this

research such as experimental procedure during data collection, EEG

measurement and steps of data processing including features extraction and

selection as well as data clustering, classification and model validation.

(d) Chapter 4 reports the findings from the experiments that were conducted with

the purpose of extracting and identifying significant stress features jointly with

the performance of stress level classification model.

(e) Chapter 5 summarizes the study that has been conducted with the purpose of

achieving the objectives of the research and recommends some directions for

further research works on possible expansion that could be done in future.
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Appendix A Consent Form 

Informed Consent Release 

Part A: Explain by the Investigator 

“My name is Tee Yi Wen, and I am a postgraduate student at Razak Faculty of 

Technology and Informatics.  I am inviting you to participate in a research study.  

Involvement in the study is voluntary, so you may choose to participate or not.  I am 

now going to explain the study to you.  Please feel free to ask any questions that you 

may have about the research; I will be happy to explain anything in greater detail. 

 

“I am now working under Dr Siti Armiza Mohd Aris from Razak Faculty of 

Technology and Informatics. We are interested in learning more about THE 

BRAIN RESPONSE BEFORE AND AFTER USING THE VIRTUAL 

REALITY (VR) TOOLS.  You will be asked to wear Electroencephalogram (EEG) 

wires to have an initial baseline recording.  After the recording, you will be asked 

to use a VR device and we will record your EEG brain signals one more time after 

the VR session completed.  This will take approximately ONE (1) hour of your time.  

All information will be kept confidential.  If anonymous, this means that your name 

will not appear anywhere and no one except me will know about your specific 

answers.  If confidential, I will assign a number to your responses, and only I will 

have the key to indicate which number belongs to which participant.  In any articles 

I write or any presentations that I make, I will use a made-up name for you, and I 

will not reveal details or I will change details about where you work, where you live, 

any personal information about you, and so forth. 

 

“The benefit of this research is that you will be helping us to understand more about 

EARLY DETECTION OF DEMENTIA IN EEG SIGNALS USING 

ADVANCED SIGNAL PROCESSING TECHNIQUES.  This information 

should help us to benefit of the research and better understanding.  The risks to you 

for participating in this study affect your brain for those who have their brain surgery 

before.  These risks will be minimized.  If you do not wish to continue, you have the 

right to withdraw from the study, without penalty, at any time.” 

 

Part B: Fill up by the Participant 

“All of my questions and concerns about this study have been addressed.  I choose, 

voluntarily, to participate in this research project.  I certify that I am at least 18 years 

of age. 

            

Name of participant 

 

 

              

Signature of participant       Date 
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Name of investigator 

Signature of investigator  Date 
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Appendix B Depression Anxiety Stress Scale (DASS-21) 

DASS-21          Name:    Date: 

Please read each statement and circle a number 0, 1, 2 or 3 which indicates how 

much the statement applied to you over the past week.  There are no right or wrong 

answers.  Do not spend too much time on any statement. 

 

The rating scale is as follows: 

0 Did not apply to me at all 

1 Applied to me to some degree, or some of the time 

2 Applied to me to a considerable degree, or a good part of time 

3 Applied to me very much, or most of the time 

 

1 I found it hard to wind down 0 1 2 3 

2 I was aware of dryness of my mouth 0 1 2 3 

3 I couldn’t seem to experience any positive feeling at all 0 1 2 3 

4 I experienced breathing difficulty (e.g. excessively rapid 

breathing, breathlessness in the absence of physical 

exertion) 

0 1 2 3 

5 I found it difficult to work up the initiative to do things 0 1 2 3 

6 I tended to over-react to situations 0 1 2 3 

7 I experienced trembling (e.g. in the hands) 0 1 2 3 

8 I felt that I was using a lot of nervous energy 0 1 2 3 

9 I was worried about situations in which I might panic and 

make a fool of myself 
0 1 2 3 

10 I felt that I had nothing to look forward to 0 1 2 3 

11 I found myself getting agitated 0 1 2 3 

12 I found it difficult to relax 0 1 2 3 

13 I felt down-hearted and blue 0 1 2 3 

14 I was intolerant of anything that kept me from getting on 

with what I was doing 
0 1 2 3 

15 I felt I was close to panic 0 1 2 3 

16 I was unable to become enthusiastic about anything 0 1 2 3 

17 I felt I wasn’t worth much as a person 0 1 2 3 

18 I felt that I was rather touchy  0 1 2 3 
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19 I was aware of the action of my heart in the absence of 

physical exertion (e.g. sense of heart rate increase, heart 

missing a beat) 

0 1 2 3 

20 I felt scared without any good reason 0 1 2 3 

21 I felt that life was meaningless 0 1 2 3 
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Appendix C IQ Test (40 Questions) 



 

148 

 



 

149 

 



150 



 

151 
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Appendix D Self-Report Assessment (Post-VR Questionnaire) 

 

Please rate your experience during or after the Virtual Reality (VR) experience. 

* Mark only one oval per row. 

 

 Not at all A little bit Somewhat Very much Extremely 

Headache      

Dizzy      

Stressed      

Frightened      

Excited      

Enjoyed      
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Appendix E NASA-Task Load Index (Post-IQ Questionnaire) 

NASA Task Load Index 

Hart and Staveland’s NASA Task Load Index (TLX) method assesses work load 

on five 7-point scales. Increments of high, medium and low estimates for each 

point result in 21 gradations on the scales. 

 
Mental Demand                                            How mentally demanding was the task?  

 
 
 

Very Low               Very High 

                
 

 
Physical Demand                                          How physically demanding was the task?  

 
 
 

Very Low               Very High 

                
 

 
Temporal Demand                                How hurried or rushed was the pace of the task?  

 
 
 

Very Low               Very High 

                
 

 
Performance  How successful were you in accomplishing what you were asked to do?  

 
 
 

Very Low               Very High 

                
 

 
Effort                                          How physically demanding was the task?  

 
 
 

Very Low               Very High 

                
 

 
Frustration                                          How physically demanding was the task?  

 
 
 

Very Low               Very High 
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