# OPTIMIZATION OF COST-EFFECTIVENESS FOR SOIL-NAILED SYSTEM IN RETAINING WALL

MOHD SUKRY BIN MOHAMED

UNIVERSITI TEKNOLOGI MALAYSIA

# OPTIMIZATION OF COST-EFFECTIVENESS FOR SOIL-NAILED SYSTEM IN RETAINING WALL

#### MOHD SUKRY BIN MOHAMED

A dissertation submitted in fulfilment of the requirements for the award of the degree of Doctor of Engineering (Engineering Business Management)

Razak Faculty of Technology and Informatics
Universiti Teknologi Malaysia

**APRIL 2021** 

## **DEDICATION**

This dissertation is dedicated to my supervisor, who taught and guides me with the best kind of knowledge along this journey. It is also dedicated to my mother, wife and children who always pray for me and told me that stay focus to finish the writing.

#### ACKNOWLEDGEMENT

In preparing this dissertation, I was in contact with many people, researchers, academicians, and practitioners. They have contributed direct or indirectly towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main dissertation supervisor, Associate Professor Dr Samira Albati Kamaruddin, for encouragement, guidance, supervision and motivation. I am very thankful to my industry supervisor Ir. Redzuan Bin Ahmad for his guidance, advice and critics. Without their continued support and interest, this dissertation would not have been the same as presented here.

I am also indebted to Ministry of Higher Education (MOHE) for funding my Engineering Doctorate study. Librarians at UTM also deserve special thanks for their assistance in supplying the relevant literature and software program. My fellow postgraduate student should also be recognised for their support. My sincere appreciation also extends to all my colleagues and others who have aided on various occasions. Their views and tips are useful indeed.

Unfortunately, it is not possible to list all of them in this limited space. In the name of Allah, of going through this academic journey together was indeed very memorable.

#### **ABSTRACT**

Soil nailing is one of in situ soil reinforcement method to improve stabilization of slopes, retaining system, and excavation works. Soil nailing designs are optimized to be cost-effective in construction management. This dissertation aims to analyze the optimization of the soil nailing with three different parameters: inclination, spacing, and length of the nail. All optimizations must meet the factor of safety (FOS) permissible limit. The case data was collected from three selected sites in Selangor. The slope with soil nailing was reanalyzed using SLOPE/W software program based on the limit equilibrium method (LEM) and also Morgenstern and Price Method (M-P) to optimize the design and compute the FOS. During reanalysis, all three nail parameters were separately optimized based on the case conditions and FOS requirements. The results of the reanalysis showed that reducing nail length can reduce the FOS, meanwhile reducing the nail inclination and nail spacing can increase the FOS. The reanalysis results proved that increased nail inclination does not increase the cost, but the cost decreases by the reduced nail length. Cost reduction is mainly affected by reducing nail length, and the number of nails. In addition, the problems of soil nailing such as rebar encroaching on neighbouring land can be solved by using a crib wall because it can be constructed on a small space. The combination of soil nailing and crib wall systems complement the drawback with each other's advantages and made the retaining system ideal to strengthen the hillside. When a cutting slope occurs in a narrow area bordering neighbouring land, combining these two systems is necessary for reducing construction costs. The construction costs of soil nailing and crib wall were compared and merged to prove the effectiveness of the combination system. The cost-benefit analysis results of the combined system is a good option when the benefit-cost ratio is greater than one and the net present value is greater than zero. The results indicated that the cost savings of the combined system are acceptable. Therefore, the optimization of the soil nailing and the combined systems contribute to cost-effective construction management.

#### **ABSTRAK**

Memaku tanah adalah salah satu kaedah pengukuhan tanah di situ untuk meningkatkan penstabilan cerun, sistem penahan, dan kerja penggalian. Reka bentuk paku tanah dioptimumkan untuk menjimatkan kos dalam pengurusan pembinaan. Disertasi ini bertujuan untuk menganalisis pengoptimuman paku tanah dengan tiga parameter yang berbeza: kecondongan, jarak, dan panjang paku. Semua pengoptimuman mesti memenuhi had faktor keselamatan (FOS) yang dibenarkan. Beberapa data kes diambil dari tiga tapak bina yang terpilih di Selangor. Cerun yang telah dipaku tanah dianalisis semula menggunakan program perisian SLOPE/W berdasarkan kaedah batas keseimbangan (LEM) dan juga kaedah Morgenstern dan Price (M-P) untuk mengoptimumkan reka bentuk dan mengira FOS. Semasa analisis semula, ketiga-tiga parameter paku dioptimumkan secara berasingan berdasarkan keadaan kes dan keperluan FOS. Hasil analisis semula menunjukkan bahawa dengan mengurangkan panjang paku dapat mengurangkan FOS, sementara itu mengurangkan kecondongan dan jarak paku dapat meningkatkan FOS. Hasil analisis semula membuktikan bahawa peningkatan kecondongan paku tidak meningkatkan kos, tetapi kosnya menurun dengan panjang paku yang dikurangkan. Pengurangan kos terutamanya dipengaruhi oleh pengurangan panjang dan jumlah paku. Di samping itu, masalah paku tanah seperti pencerobohan rebar di tanah bersebelahan dapat diselesaikan dengan menggunakan tembok krib kerana ia dapat dibina di ruangan kecil. Kombinasi sistem paku tanah dan tembok krib melengkapkan kelemahan dengan kelebihan masing-masing dan menjadikan sistem penahan sesuai untuk mengukuhkan lereng bukit. Apabila cerun pemotongan berlaku di kawasan sempit yang bersempadan dengan tanah bersebelahan, penggabungan dua sistem ini diperlukan untuk mengurangkan kos pembinaan. Kos pembinaan paku tanah dan tembok krib dibandingkan dan digabungkan untuk membuktikan keberkesanan sistem gabungan berkenaan. Hasil analisis kos-faedah sistem gabungan adalah pilihan yang baik apabila nisbah kos-faedah lebih besar daripada satu dan nilai kini bersih lebih besar daripada sifar. Hasil kajian menunjukkan bahawa penjimatan kos sistem gabungan dapat diterima. Oleh itu, pengoptimuman paku tanah dan sistem gabungan menyumbang kepada pengurusan pembinaan yang menjimatkan.

# TABLE OF CONTENTS

|           |      | TITLE                                        | PAGE  |
|-----------|------|----------------------------------------------|-------|
|           | DEC  | LARATION                                     | iii   |
|           | DED  | ICATION                                      | iv    |
|           | ACK  | NOWLEDGEMENT                                 | v     |
|           | ABS' | TRACT                                        | vi    |
|           | ABS' | TRAK                                         | vii   |
|           | TAB  | LE OF CONTENTS                               | viii  |
|           | LIST | OF TABLES                                    | xi    |
|           | LIST | OF FIGURES                                   | xiii  |
|           | LIST | OF ABBREVIATIONS                             | xvii  |
|           | LIST | OF SYMBOLS                                   | xviii |
|           | LIST | OF APPENDICES                                | xix   |
|           |      |                                              |       |
| CHAPTE    | R 1  | INTRODUCTION                                 | 1     |
|           | 1.1  | Introduction                                 | 1     |
|           | 1.2  | Research Background                          | 1     |
|           | 1.3  | Statement of the Problem                     | 2     |
|           | 1.4  | Aim and Objectives of the Research           | 4     |
|           | 1.5  | Research Questions                           | 4     |
|           | 1.6  | Scope and Limitation of the Research         | 6     |
|           | 1.7  | Significance of the Research                 | 7     |
|           | 1.8  | Contribution of the Research                 | 7     |
| CHAPTER 2 |      | LITERATURE REVIEW                            | 9     |
|           | 2.1  | Introduction                                 | 9     |
|           | 2.2  | Different Methods of Retaining System        | 11    |
|           | 2.3  | Construction and Materials of Soil Nailing   | 12    |
|           |      | 2.3.1 Construction                           | 14    |
|           |      | 2.3.2 Component and Material of Soil Nailing | 18    |

|        |      | 2.3.3 Ground Water                                 | 19 |
|--------|------|----------------------------------------------------|----|
|        |      | 2.3.4 Subsoil Pipe                                 | 20 |
|        | 2.4  | Crib Wall                                          | 22 |
|        | 2.5  | Hybrid and Combined System                         | 28 |
|        | 2.6  | Existing Software Analysis for Slope Stability     | 31 |
|        | 2.7  | Parameters and Design Method                       | 32 |
|        | 2.8  | Failure Modes                                      | 33 |
|        | 2.9  | Slope Stabilization Analysis                       | 37 |
|        | 2.10 | Limit Equilibrium Method                           | 37 |
|        | 2.11 | Optimization of Design                             | 39 |
|        | 2.12 | Comparison of Stability Analysis Method in SLOPE/W | 43 |
|        |      | 2.12.1 Ordinary or Fellenius Method                | 44 |
|        |      | 2.12.2 Bishop's Simplified Method                  | 45 |
|        |      | 2.12.3 Janbu's Simplified Method                   | 47 |
|        |      | 2.12.4 Morgenstern-Price Method                    | 48 |
|        | 2.13 | Factor of Safety                                   | 50 |
|        | 2.14 | Cost Ranges and Differences                        | 52 |
|        | 2.15 | Research Gap                                       | 53 |
|        | 2.16 | Summary                                            | 54 |
| CHAPTE | R 3  | RESEARCH METHODOLOGY                               | 55 |
|        | 3.1  | Introduction                                       | 55 |
|        | 3.2  | Data Collection and Process Operation              | 58 |
|        | 3.3  | Parametric Study and Numerical Analysis            | 61 |
|        | 3.4  | Reanalysis Method and Optimization Design          | 62 |
|        |      | 3.4.1 Input and Output Data for SLOPE/W            | 63 |
|        |      | 3.4.2 Computations of SLOPE/W                      | 64 |
|        | 3.5  | Factor of Safety                                   | 64 |
|        | 3.6  | Slope Analysis Using Morgenstern-Price Method      | 65 |
|        | 3.7  | Optimization Analysis                              | 69 |
|        | 3.8  | Cost Comparison and Cost-Benefit Analysis Method   | 70 |
|        | 3.9  | Summary                                            | 72 |

| CHAPTER 4  | RI                   | ESUI            | LTS AND DISCUSSION                                                      | 73  |
|------------|----------------------|-----------------|-------------------------------------------------------------------------|-----|
| 4.         | 1 Int                | trodu           | ction                                                                   | 73  |
| 4.         | 2 Nu                 | ımeri           | cal Analysis and Reanalysis Parameters                                  | 74  |
| 4.         | 3 Op                 | otimiz          | zation of Nail Length                                                   | 74  |
|            | 4.3                  | 3.1             | Before Slope Stability Analysis                                         | 75  |
|            | 4.3                  | 3.2             | After Reanalysis                                                        | 76  |
| 4.         | 4 Op                 | otimiz          | zation of Nail Inclination and Nail Length                              | 80  |
|            | 4.4                  | 4.1             | Before Slope Stability Analysis                                         | 80  |
|            | 4.4                  | 1.2             | After Reanalysis                                                        | 82  |
| 4          |                      | otimiz<br>ength | zation of Nail Spacing, Nail Inclination and Nail                       | 87  |
|            | 4.5                  | 5.1             | Before Slope Stability Analysis                                         | 88  |
|            | 4.5                  | 5.2             | After Reanalysis                                                        | 90  |
| 4.         | 6 Re                 | elatio          | n Optimum Factors and FOS                                               | 98  |
| 4.         | 7 Co                 | st Re           | eduction with the Adjustment of Nail length                             | 100 |
| 4.         |                      |                 | eduction with the Adjustment of Nail Inclination il Length              | 103 |
| 4.         |                      |                 | eduction with the Adjustment of Nail Spacing, clination and Nail Length | 107 |
| 4.         | 10 Co                | st Co           | omparison Before and After Reanalysis                                   | 113 |
| 4.         | 11 Fac               | ctors           | Influencing Cost Savings                                                | 114 |
| 4.         | 12 Slo               | ope S           | tabilization Using Crib Wall and Soil Nailing                           | 116 |
| 4.         | 13 Co                | st Be           | enefits on the Hybrid System                                            | 118 |
| 4.         | 14 Re                | sults           | and Discussion of Cost-Benefit Analysis                                 | 120 |
| 4.         | 15 Su                | mma             | ry                                                                      | 123 |
| CHAPTER 5  | CC                   | ONC             | LUSION AND RECOMMENDATIONS                                              | 125 |
| 5.         | 1 Int                | trodu           | ction                                                                   | 125 |
| 5.         | 2 Co                 | onclus          | sion                                                                    | 125 |
| 5.         | 3 Re                 | comi            | mendations                                                              | 127 |
| REFERENC   | ES                   |                 |                                                                         | 129 |
| LIST OF PU | LIST OF PUBLICATIONS |                 | 189                                                                     |     |

# LIST OF TABLES

| TABLE NO. | TITLE                                                                                                                                                 | <b>PAGE</b> |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Table 2.1 | Comparison between categories of retaining systems                                                                                                    | 12          |
| Table 2.2 | Benefits and comparison to retaining system                                                                                                           | 31          |
| Table 2.3 | Bounds of optimum design for soil nailed wall system based on practice and requirement (FHWA, 2015; Geoguide 7, 2008, Slope Engineering Branch, 2010) | 40          |
| Table 2.4 | The forces of soil nailing in various ranges in horizontal spacing (Jin et al., 2014)                                                                 | 42          |
| Table 2.5 | Parameters of soil (Liu et al., 2013)                                                                                                                 | 42          |
| Table 2.6 | Comparison of the different method in SLOPE/W (Asoudeh, 2016)                                                                                         | 50          |
| Table 2.7 | The recommended minimum FOS against failure for every category Soil-nailed Cut Slopes (Geoguide 7, 2008)                                              | 51          |
| Table 2.8 | The recommended minimum FOS against failure for existing cut slopes (Geoguide 7, 2008)                                                                | 51          |
| Table 2.9 | The Recommended Minimum FOS against External Failure for Existing Retaining Walls Upgraded (Geoguide 7, 2008)                                         | 52          |
| Table 3.1 | The numbers of blows and penetrated description                                                                                                       | 58          |
| Table 3.2 | Properties of Verification Model                                                                                                                      | 59          |
| Table 3.3 | The minimum local and global specification FOS (Slope Engineering Branch, 2010)                                                                       | 65          |
| Table 3.4 | Price of soil nail based on numbers                                                                                                                   | 70          |
| Table 4.1 | Ten types of cases with different slope height, gradient and degrees                                                                                  | 73          |
| Table 4.2 | Classification adjustment during analysis and optimization factors                                                                                    | 74          |
| Table 4.3 | Force slip surface in individual polygon                                                                                                              | 97          |
| Table 4.4 | Summary of the optimization design before and after reanalysis                                                                                        | 100         |
| Table 4.5 | Example to be filled in the auto-calculate form (a) blank form and (b) after result appear                                                            | 101         |

| Table 4.6 | Cost reduction and percentage saving after reanalysis                                                                                                         | 115 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 4.7 | Comparison of the costs of machinery, materials and construction of the soil nailing and crib wall systems according to a common bill of quantity in Selangor | 118 |
| Table 4.8 | Comparison of the costs of building 100 m retaining systems and 2 years maintenance after project completion                                                  | 122 |

# LIST OF FIGURES

| FIGURE NO   | . TITLE                                                                                                                                                                                                  | <b>PAGE</b> |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Figure 2.1  | Construction of soil nailing technique in steep slope a) Drilling hole using machine, b) marking the position of soil nailing to be drilled (Menkiti et al., 2014)                                       | 14          |
| Figure 2.2  | Steps of soil nailing work in details (Arindam, 2015)                                                                                                                                                    | 15          |
| Figure 2.3  | Shotcrete spraying on the surface of the slope at a project in Selangor                                                                                                                                  | 17          |
| Figure 2.4  | Typical Detail of a Soil-nail Head (Geoguide 7, 2008)                                                                                                                                                    | 18          |
| Figure 2.5  | (a) Typical horizontal drain (b) Section A-A (c) Section B-B from Case 6 at project in Selangor                                                                                                          | 21          |
| Figure 2.6  | Typical longitudinal section of perforated un-plasticized polyvinyl chloride pipes (uPVC subsoil pipes) from Project Case 6 at Selangor                                                                  | 21          |
| Figure 2.7  | a) Residential building sit on top of the soil nailing system after strengthening slope commences b) Combining soil nailing at the bottom and crib wall at top as a retaining system in Selangor project | 22          |
| Figure 2.8  | Crib wall lean against soil nailing system as a hybrid retaining system at Petaling Jaya project                                                                                                         | 23          |
| Figure 2.9  | Earth and slope pressure resultant incline angle of illustration wall (Acharya, 2018)                                                                                                                    | 25          |
| Figure 2.10 | Calculation of safety against bearing capacity and overturning shown as a schematic diagram of normal pressure and forces (Acharya, 2018)                                                                | 26          |
| Figure 2.11 | Illustration of the forces acting on vertical and inclined crib walls made from precast concrete elements (Acharya, 2018)                                                                                | 27          |
| Figure 2.12 | Combination as a hybrid system between soil nails and sheet pile and rubble wall, soil nails and crib wall, and RC retaining wall in one slope area (Bathurst, 2001)                                     | 29          |
| Figure 2.13 | a) Hybrid soil nail and MSE wall (FHWA, 2015) b)<br>Combination soil nail and crib wall system at Cheras,<br>Selangor. Photograph courtesy of CTSB                                                       | 30          |

| Figure 2.14 | a) Nail does not passing through slipe surface b) Nail passing through slipe surface in active and passive zone (Abhar, 2012) | 33 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2.15 | Typical types of failure mechanism (Geoguide 7, 2008)                                                                         | 35 |
| Figure 2.16 | Potential soil nailing system's external failure modes (Geoguide 7, 2008)                                                     | 35 |
| Figure 2.17 | Potential internal failure modes of soil nailing systems (Geoguide 7, 2008)                                                   | 36 |
| Figure 2.18 | Definition of the FOS (FOS) from Rawat and Gupta (2016)                                                                       | 38 |
| Figure 2.19 | Combined system between crib wall and soil nailing as a retaining system at Selangor.                                         | 43 |
| Figure 2.20 | Case for hand-calculations divided by 14 slices (Geo-Slope, 2012)                                                             | 44 |
| Figure 2.21 | Free body diagram has no shear force and force polygon cannot close for Slice 9 of the Ordinary Method (Geo-Slope, 2012)      | 45 |
| Figure 2.22 | Bishop's Simplified FOS (Geo-Slope, 2012)                                                                                     | 46 |
| Figure 2.23 | Free body diagram and force polygon for Slice 3 and Slice 13 of the Bishop's Simplified Method (Geo-Slope, 2012)              | 46 |
| Figure 2.24 | Free body diagram and force polygon for Slice 9 of the Janbu's Simplified Method (Geo-Slope, 2012)                            | 47 |
| Figure 2.25 | Janbu's Simplified FOS (Geo-Slope, 2012)                                                                                      | 48 |
| Figure 2.26 | Slices result of M-P analysis (Geo-Slope, 2012)                                                                               | 48 |
| Figure 2.27 | Free body diagram and force polygon for Slice 9 of the M-P Method (Geo-Slope, 2012)                                           | 49 |
| Figure 2.28 | M-P method of the FOS (Geo-Slope, 2012)                                                                                       | 49 |
| Figure 3.1  | Flowchart reanalysis design                                                                                                   | 56 |
| Figure 3.2  | Research design                                                                                                               | 57 |
| Figure 3.3  | Tabulation process for determining the cost for each case before the comparison proceed                                       | 60 |
| Figure 3.4  | Slope Model for 10 cases                                                                                                      | 61 |
| Figure 3.5  | Reanalysis process                                                                                                            | 63 |
| Figure 3.6  | Using M-P analysis type (Geo-Slope, 2012)                                                                                     | 66 |
| Figure 3.7  | Half-sine interslice force function (Geo-Slope, 2012)                                                                         | 67 |

| Figure 3.8  | Intersection point as an indicator to FOS with half-sine function (Geo-Slope, 2012)                                                                                             | 68 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 3.9  | M-P method for slice number 5 of free body and force polygon (Geo-Slope, 2012)                                                                                                  | 68 |
| Figure 4.1  | Before reanalysis: (a) Using nailed length 15 and 12 m (b) Using nailed length 9 m and 6 m, respectively                                                                        | 75 |
| Figure 4.2  | Before reanalysis, (a) Case 1, lambda value is 0.24127 and (b) Case 6, lambda value is 0.1575                                                                                   | 76 |
| Figure 4.3  | After reanalysis: (a) Using nailed length 9 m and 12 m (b) Using nailed length 6 m                                                                                              | 77 |
| Figure 4.4  | Half-sine specified function vs. distance in graphs (a) and (c), and applied interslice force functions vs. distance in graphs (b) and (d) for Cases 1 and 6 respectively       | 78 |
| Figure 4.5  | After reanalysis for (a) Case 1, lambda value is 0.48875 and (b) Case 6, lambda value is 0.59418                                                                                | 79 |
| Figure 4.6  | Free body diagram and force polygon of (a) slice number 9 for Case 1 and (b) for Case 6 obtained using the M-P method                                                           | 80 |
| Figure 4.7  | Before analysis: (a) Using nailed length 9 m, (b) Using nailed length 12 m, (c) Using nailed length 12 m and 15 m                                                               | 81 |
| Figure 4.8  | Before reanalysis, Lambda values for (a) Case 3 is 0.16699 (b) Case 7 is -0.23275 and (c) Case 9 is 0.37283                                                                     | 82 |
| Figure 4.9  | After reanalysis: (a) Using nailed length 6 m, (b) Using nailed 3 m and 6 m, (c) Using nailed length 9 m and 12 m                                                               | 84 |
| Figure 4.10 | Half-sine specified functions for (a) Case 3, (c) Case 7 and (e) Case 9 and applied interslice force functions for (b) Case 3, (d) Case 7 and (f) Case 9                        | 85 |
| Figure 4.11 | After reanalysis lambda values for (a) Case 3 is 0.35945 (b) Case 7 is -0.25959 and (c) Case 9 is 0.50135                                                                       | 86 |
| Figure 4.12 | Free body diagram and force polygon for (a) Case 3, (b) Case 7 and (c) Case 9 obtained using the M-P method                                                                     | 87 |
| Figure 4.13 | Before analysis: (a) Using nailed length 6 m and 9 m, (b) Using nailed length 12 m, (c) Using nailed length 12 m, (d) Using nailed length 15 m, (e) Using nailed length 9 m and |    |
| Figure 4 14 | 12 m  Refore reanalysis, lambda values for (a) Case 2 is 0.14825                                                                                                                | 89 |
| Figure 4.14 | Before reanalysis, lambda values for (a) Case 2 is 0.14825 (b) Case 4 is 0.413765 (c) Case 5 is 0.27439 (d) Case 8 is 0.227807 and (e) Case 10 is -0.106982                     | 90 |

| Figure 4.15 | After reanalysis Cases 2, 4, 5, 8 and 10 using nailed length: (a) 6 m and 9 m, (b) 9 m and 12 m, (c) 9 m, (d) 12 m and 15 m, (e) 12 m, respectively   | 93  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 4.16 | Half-sine specified and applied interslice force functions for (a, b) Case 2, (c, d) Case 4, (e, f) Case 5, (g, h) Case 8 and (i, j) Case 10          | 95  |
| Figure 4.17 | After reanalysis, lambda values for (a) Case 2 is 0.26999 (b) Case 4 is 0.44324 (c) Case 5 is 0.52041 (d) Case 8 is 0.29506 and (e) Case 10 is 0.1000 | 96  |
| Figure 4.18 | Free body diagram and force polygon for (a) Case 2, (b) Case 4, (c) Case 5, (d) Case 8 and (e) Case 10, was obtained using the M-P method             | 98  |
| Figure 4.19 | FOS before and after reanalysis for the 10 cases                                                                                                      | 99  |
| Figure 4.20 | Optimum designs for (a) Case 1 and (b) Case 6 were selected in the optimum range                                                                      | 103 |
| Figure 4.21 | Optimum designs for (a) Case 3, (b) Case 7 and (c) Case 9 selected from the required range.                                                           | 107 |
| Figure 4.22 | Optimum designs for (a) Case 2, (b) Case 4, (c) Case 5, (d) Case 8 and (d) Case 10 selected from the required range                                   | 113 |
| Figure 4.23 | Comparison percentage decreased from previous case                                                                                                    | 113 |
| Figure 4.24 | Cost comparison after obtaining the optimum results                                                                                                   | 114 |
| Figure 4.25 | Retaining slope model a) soil nalling b) Crib wall c) Hybrid system crib wall and soil nailing from project at Petaling Jaya                          | 117 |
| Figure 4.26 | Comparison between construction cost of soil nailing and crib wall                                                                                    | 121 |
| Figure 4.27 | Building cost and benefits of soil nailing and crib wall                                                                                              | 123 |

## LIST OF ABBREVIATIONS

UTM - Universiti Teknologi Malaysia

DDH - Drill hole diameter

SPT - Standard Penetration Test

FOS - Factor of Safety

BQ - Bill of Quantities

CBA - Cost-Benefit Analysis

PV (B) - Present Value Benefits

PV (C) - Present Value Costs

NPV - Net Present Value

BCR - Benefits Cost Ratio

BEM - Board of Engineers Malaysia

Nos. - Numbers

i.e. - In other word

# LIST OF SYMBOLS

B - The inclination of Soil Nail

ßs - Slope Angle

δ - The angle of Wall Friction

ru - Pore Water Pressure

D - Diameter of nail

Mpa - Mega Pascal

Kpa - Kilo Pascal

kN - Kilo Newton

kN/m<sup>3</sup> - Kilo Newton per meter cube

c - Cohesion

B - Slice base length

N - Base normal (W cos α)

φ - Phi or Friction angle

W - Slice weight

A - Slice base inclination

λ - Lambda

ft - Foot

 $au_{\rm f}$  - Shear strength

R - Distribution in elevation

# LIST OF APPENDICES

| APPENDIX   | TITLE                                                                             | <b>PAGE</b> |
|------------|-----------------------------------------------------------------------------------|-------------|
| Appendix A | Example Reanalysis Report Case 1                                                  | 141         |
| Appendix B | Example Free Body Diagram and Force Polygon Data                                  | 150         |
| Appendix C | Calculation, details parameters used and cost involved                            | 151         |
| Appendix D | Sensitivity Check on Soil Nail Spacing, Inclination and<br>Length                 | 163         |
| Appendix E | Construction Cost of Soil Nailing and Crib Wall and Crib Wall/Soil Nailing System | 168         |
| Appendix F | Sample of Crib Wall/ Soil Nails Design Analysis                                   | 172         |
| Appendix G | Sample of Soil Nails Design                                                       | 184         |

### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Introduction

Malaysia faces two monsoon seasons: the Southwest Monsoon from May to September, and the Northeast Monsoon from October to March. Northeast Monsoon brings high rainfall compared to the Southwest Monsoon. Most of the landslides occur within a month, especially in December (Habibah and Jamilah, 2011). They mentioned that a landslide is a deadly hazard that occurs quite frequently during the rainy seasons. However, landslides can happen any day. Landslide emerges on man-made slopes and is related to human factors. These human factors are hard to consider during the design process but can cause pressure on structural integrity (Qasim et al., 2013).

The average rainfall is 250 centimeters in a year that can contribute to an unstable slope, especially when the earth cannot retain a lot of continuous runoff water (Alsubal et al., 2018). Slope failure usually occurs in mountainous landscapes and is also common along river valleys and coastlines. Therefore, heavy rainfall becomes the main factor of landslide and it is recognized as the physical response to external triggers (Hu, 2016).

#### 1.2 Research Background

Currently, most of the construction of a retaining system in Malaysia proposed for strengthening the slope. The different level of the earth or steep slopes makes the earth unstable. Landslide potential occurs in the highlands and steep slopes. This mechanism occurs because of geological and physical disturbance of soil suction as well as external factors such as water, snow, wind, and temperature changes. The addition of water from rainwater adds a burden to the slope. Water seeps into the soil

or rock and replaces the air in the pore space or fractures. Since water is heavier than air, this increases the weight of the soil. Weight is a force, and force is stress divided by area, so the stress increases, and this leads to slope uncertainty. Alsubal et al. (2018) stated that the rise of the groundwater table due to rainfall could trigger a landslide. In the covetousness of human beings to meet the demand for land, many forests have been exploited and destroyed. Forest areas are exploited for the construction of buildings or logging, these areas become exposed to the weather and this leads to the possibility of disasters such as the frequent occurrence of landslides (Manap, Jeyaramah, and Syahrom, 2018). Therefore, the occurrence of landslides results in loss of property and human life and the worst scenario is a loss for the economy and tourism (Amashi et al., 2019; Dewedree and Jusoh, 2019).

The retaining system could be designed and constructed to minimize this problem. Stabilization of landslide is carried out with the built retaining system and managing it properly. During and after a defect liability period (DLP) ends, monitoring is the best way to minimize the hazard. Many types of retaining system methods can tackle this problem such as a reinforced concrete wall, cantilevered wall, gravity walls, sheet piling wall, bored pile wall, and soil nailing wall. There are alternative wall systems in the market such as anchor wall system, crib wall, gabion meshes, mechanical stabilization earth (MSE), and soil nailing technique. This research, therefore, chooses soil nail walls and crib walls to evaluate the best option for strengthening the slope.

## 1.3 Statement of the Problem

Generally, high-risk slope area needs a structure designed as a retaining system. The major concern is the suitability of structure that serves as the best solution to prevent the occurrence of any landslides (Galve, 2016). According to Dewedree and Jusoh (2019), slope failure problems result in death, and disrupt human safety. Therefore, local authorities presently require developers to engage Accredited Checkers as independent checkers for slopes with high risk to ensure safety (Gue and Tan, 2014). Slope Engineering Branch (2010) also mentioned that all the geotechnical

designs should be checked by Independent Geotechnical Checker (IGC) appointed by the contractor.

Soil nailing system is used for strengthening slope. The design of slope stability is dependable on the value of the Factor of Safety (FOS) and the types of slope stabilization methods used. The important issue is the condition of the slope design that is directly related to the cost. The analysis should consider diversification situation to make the effectiveness of soil nailing more valuable. Furthermore, the selection of a combined retaining system adds advantage and enhances efficiency (FHWA, 2015). Clients have faced problems relating to limited buffer zone to construct a building, boundary issues, cutting slope issues, slope height, surcharge load, and high active pressure. Reducing slope inclination also increases the costs, directly and indirectly, such as increasing the number of nails or the involvement of the construction cost of mobilizing machinery and increasing materials. These increase the duration of the construction time that narrows client's desire to get more profit (FHWA, 2015). Any slope, especially near the boundary side, needs to be retained or trimmed to the required level. It would be a problem in the future when making the wrong decision. Soil nailing technique is a method either implemented in steep slope or vertical slope. However, the aesthetics of soil nailing can be an important decision-making factor.

Controlling the design of soil nailing cost can be done at the design stage. The consultant practices design optimum to make the system more efficient and cost-saving (FHWA, 2015). The soil nailing system has its limitations, especially if this system is used in a very active earth pressure. The aesthetic façade is not on the soil nailing side, but the crib wall system can cover the disadvantages, besides using the soil-nailed system only in the cut section and a crib wall system for the filler section (Rabie, 2016; Acharya, 2018). The crib wall also has its disadvantages, earth pressure from the backfilling works can lower the stability of the wall (Seewook, 2006; Acharya, 2018). Therefore, this research suggested a combination of soil nailing and crib wall system as an innovative and economical design alternative for implementing on a construction site.

### 1.4 Aim and Objectives of the Research

This research aims to analyze the optimization of the soil nailing system that stabilizes slopes from various conditions such as inclination, spacing, and length of the nail. All optimizations must according to the FOS permissible limit. The target of this research is to achieve the optimal soil nail design that is done through reanalysis and to evaluate cost differences after optimization. The construction cost to the crib wall and soil nailing system to be calculated for comparison. The last objective is to evaluate cost benefits combined system to solve an expected problem such as when facing the less buffer zone, encroaching neighbouring land, and filling soil area. The construction of the soil nailing system is not suitable in backfilling conditions, but not in the crib wall system that can cover the soil nailing weakness. The combined retaining system is the solution idea that can be used to stabilize slopes in both situations. Besides, to evaluate the cost benefits of both systems can proceed or not. The findings of this research will guide the decisions of clients and consultants in soil nailing construction activity. The research objectives (RO) are detailed as follows:

- 1. To optimize soil nailing design through reanalysis of various parameters including different degrees of nails inclination, nails spacing and nails length.
- 2. To evaluate the cost differences before and after optimization of soil nailing through reanalysis.
- 3. To compare slope stabilization of soil nailing to the crib wall system in terms of cost.
- 4. To evaluate the cost benefits of the soil nailing and crib wall when they are combined as a retaining system.

#### 1.5 Research Questions

The research questions are created to fulfil the objectives stated and classified in the analysis stage. These research questions are important in guiding the researcher to the solutions from the research objectives. These also help focus the attention on the relationship between theories and concepts. The questions are relevant, manageable,

and realistic within the scope of the research. Following are the research questions that generate the discourse throughout this dissertation:

Objective 1: To optimize soil nailing design through reanalysis of various parameters including different degrees of nails inclination, nails spacing and nails length.

- RQ1. What are the parameters of soil nailing to optimize during reanalysis? How can the reanalysis of soil nailing contribute to the optimization?
- Objective 2: To evaluate the cost differences before and after optimization of soil nailing through reanalysis.
- RQ2. How much difference cost is before and after reanalysis in soil nailing system? Do these costs give value to the developer?

Objective 3: To compare the slope stabilization of soil nailing to the crib wall in terms of cost.

RQ3. How can construction of soil nailing reduce the cost of slope stabilization? Why is soil nailing system cheaper than other types of retaining system? How can the combination benefit each other?

Objective 4: To evaluate the cost benefits of the soil nailing and crib wall when they are combined as a retaining system.

RQ4. What are the cost benefits of soil nailing and crib walls when combined as a retaining system?

## 1.6 Scope and Limitation of the Research

The focus of this research is on cost evaluation and optimization methods. The study is limited to the soil nailing technique used in cutting slope only. The crib wall system uses a precast concrete wall type with granular infill material. Therefore, an evaluation was done with a combination of these two systems and a cost comparison between soil nailing and the crib wall system. This research carries out cost analysis using cost-benefit analysis (CBA). CBA is for projects that involve small to mid-level capital expenditures having short to intermediate terms of completion because, for mega projects with a long-term time horizon, CBA typically fails to account for important financial concerns such as inflation, interest rates, varying cash flows, and the present value of money.

SLOPE/W program was used to reanalyse design soil nailing that only observes different situations such as degrees of inclination, length, and spacing of the nail. Limit Equilibrium Method (LEM) was applied by comparing the shear strength of the soil and the current shear stress in the soil; this is the only method present in the SLOPE/W program. The determination of global and local FOS using Morgenstern and Price methods deliver the required design. The comparison cost is based on cost-benefit analysis and is limited to the cost involved in construction; it does not elaborate on the design of crib walls.

Data were taken from previous soil nailing design, previous cost estimation from Bill of Quantity (BQ), and crib wall details on the project in Klang Valley; a location in Selangor and Kuala Lumpur, chosen to proceed and explore. List of rates from BQ was compared to the estimated cost of the Public Works Department (JKR) for confirmation of cost estimates. The wastage is also taken into consideration. The area is in the environment of the hilly slope and has a valley view, in a rapidly developing area on the road. The projects are a residential building and a Mass Rapid Transit (MRT) project.

## 1.7 Significance of the Research

Soil nailing has become a famous technique in the industry. Soil nailing has merit and limitation techniques compared to other types of slope stabilization. The significance of the study is important to help design engineers in the determination of the optimum method in improving slope stability and time-saving cost. Optimization should be done at the design stage to make this method more cost-effective. This research serves as reference for organizations such as consultants and clients. Consultants need to ensure the design is in the right dimensions to meet the optimum requirement. The client chooses this system because it saves cost and period of construction. The decision-making should be fast in addressing some of the landslide problems with immediate construction as landslide occurrences are unpredictable, and time is essential especially as it involves human lives. The effectiveness of the combined system and a comparison of the construction costs of soil nailing and crib wall proved the relevant optimization results.

## 1.8 Contribution of the Research

The present study is a contribution to the existing literature for practical implications. In the early stage of innovation, the soil nailing system improves conceptual definitions of the original retaining system. The innovation in combining soil nail and crib wall system as a retaining system can reduce the potential problems such as nails protruding to the boundary line and hitting the building behind the wall since construction soil nailing system needs wider space compared to the crib wall system. The study contributed to the current understanding of achieving allowable FOS. Reengineered, the optimum results target to achieve a few guidelines. This also proved that the combined retaining system is the cost-effective engineered solution and a final decision to implementing the system. Clients have specific options to their requirements. They can select a range of mass-gravity retaining systems and reinforced soil structures to suit different site conditions, performance, and aesthetic requirements.

This research encourages clients to employ accredited checkers as independent checking works for slopes with high risk to ensure safety. Moreover, the study contributes to prior theory by applying and validating a soil nailing system analysis in the early stages of the innovation process in both retaining systems. This study plays a significant role in design innovation to improving the existing design as well as to get the optimum condition. Hence, contractors and developers benefit in terms of cost and time saving resulting in faster construction. Therefore, the research is adopted to present a choice and alternative to the clients.

#### REFERENCES

- Abbas H., El Sherbiny, Salam, A (2020). Numerical Analysis of Soil Nail Walls in Hybrid Retaining Wall Systems. *Engineering, monitoring, and management of geotechnical infrastructure (geo-congress 2020).* 316(2), 394-405
- Abdul Amir (2011). Comparative Evaluation of Conventional Soldier Pile/Lagging Retention Systems Versus Soil Nailing Retention Systems. Doctor of Philosophy, University of Loisville Kentucky.
- Abouzar Sadrekarimi (2016). Seismic Distress of Broken-Back Gravity Retaining Walls, J. Geotech. Geoenviron. Eng., 143(4): 04016118.
- Acharya, M. S. (2018). Analytical Approach to Design Vegetative Crib Walls. Geotechnical and Geological Engineering, 36(1), 483-496.
- A.Mohamed (2010). *Design Charts for Soil Nailing*. Master of Science in Civil Engineering, Shobra Benha University, Cairo.
- Ahmadi, & Borghei. (2018). Numerical investigation into the static behavior of stepped soil nail walls. *Scientia Iranica*, 25(1), 140 151. doi:10.24200/sci.2017.4532
- Alsubal, S., Sapari, N., & Harahap, I. S. H. (2018). The rise of groundwater due to rainfall and the control of landslide by zero-energy groundwater withdrawal system. *International Journal of Engineering and Technology(UAE)*, 7(2.29 Special Issue 29), 921 926. doi:10.14419/ijet.v7i2.29.14284
- Amashi, A. R., Hulagabali, A. M., Solanki, C. H., & Dodagoudar, G. R. (2019). Landslide Risk Assessment and Mitigation-A Case Study, Singapore.
- Atefeh Asoudeh (2016). *Identifying Residual Soil Parameters for Numerical Analysis* of Soil Nailed Wall. Doctor of Philosophy, Griffith School of Engineering, Science Group, Griffith University.
- Auer, M. (2015). Soil nailing, the variable static system of the future. *Springer Series in Geomechanics and Geoengineering*, 2015, 307 322. doi:10.1007/978-3-319-11053-0\_25
- Azzam, & Basha. (2017). Utilization of soil nailing technique to increase shear strength of cohesive soil and reduce settlement. *Journal of Rock Mechanics*

- and Geotechnical Engineering, 9(6), 1104 1111. doi:10.1016/j.jrmge.2017.05.009
- Basudhar, Anubhav, & Lakshminarayana. (2017). Three-dimensional limit-equilibrium stability analyses of slopes and effect of inclusion of soil nails. *International Journal of Geomechanics*, 17(9). doi:10.1061/(ASCE)GM.1943-5622.0000932
- Belay, A. M., Torp, O., Thodesen, C., & Odeck, J. (2016). A framework for Organizing a Resilient Cost Benefit Analysis for Construction Projects.

  \*Procedia Engineering, 145, 1169-1176.\*\*

  doi:https://doi.org/10.1016/j.proeng.2016.04.151
- Bella, G., Barbero, M., Barpi, F., Borri-Brunetto, M., & Peila, D. (2017). An innovative bio-engineering retaining structure for supporting unstable soil. *Journal of Rock Mechanics and Geotechnical Engineering*, 9(2), 247-259. doi:https://doi.org/10.1016/j.jrmge.2016.12.002
- Cao, J., Liu, T., & Liu, H. M. (2014). Soil Nailing reliability Optimization Design of Foundation Pit Based on Response Surface Method. In X. D. Xu, B. Li, Q. M. Lu, X. Y. Yan, & J. L. Li (Eds.), *Mechatronics Engineering, Computing and Information Technology* (Vol. 556-562, pp. 4655-4659).
- Cindy Low Gauvreau (2011). The Application of Cost-Effectiveness Analysis in Developing Countries. Doctor of Philosophy, University of Toronto
- Chan, C. M., & Raman, M. H. A. (2017). Screw-in soil nail for slope reinforcement against slip failure: A lab-based model study. *International Journal of GEOMATE*, 12(29), 148-155. doi:10.21660/2017.29.160501
- Chavan, D., Mondal, G., & Prashant, A. (2017). Seismic analysis of nailed soil slope considering interface effects. *Soil Dynamics and Earthquake Engineering*, 100, 480-491. doi:https://doi.org/10.1016/j.soildyn.2017.06.024
- Chen, Y., Zhang, Z. & Liu, H. (2017). Study of the seismic performance of hybrid A-frame micropile/MSE (mechanically stabilized earth) wall. *Earthq. Eng. Eng. Vib.* 16, 275–295. https://doi-org.ezproxy.utm.my/10.1007/s11803-017-0382-0.
- Chen, Z., Wang, Z., Xi, H., Yang, Z., Zou, L., Zhou, Z., & Zhou, C. (2016). Recent advances in high slope reinforcement in China: Case studies. *Journal of Rock Mechanics and Geotechnical Engineering*, 8(6), 775 788. doi:10.1016/j.jrmge.2016.11.001

- Cheng-Yu Hong, Jian-Hua Yin, M.ASCE, Wan-Huan Zhou and Hua-fu Pei (2012). *Journal of Geotechnical and Geoenvironmental Engineering*. Analytical Study on Progressive Pullout behavior of a Soil Nail. 138, 500-507.
- Cheng, Au, & Yeung, A. T. (2016). Laboratory and field evaluation of several types of soil nails for different geological conditions. *Canadian Geotechnical Journal*, 53(4), 634 645. doi:10.1139/cgj-2015-0267
- Cheung, R. W. M. (2017). Quality Assurance of Soil Nailing Works in Hong Kong. *Geotechnical Special Publication* (GSP 286), 350 - 373. doi:10.1061/9780784480731.028
- Chung, C.-C., Lin, C.-P., Ngui, Y.-J., Wang, K., & Lin, C.-H. (2016). Laboratory evaluation of soil-nailing quality inspection by an improved TDR method. *Journal of GeoEngineering*, 11(3), 143 149. doi:10.6310/jog.2016.11(3).4
- Cyr, M., Trinh, M., Husson, B., & Casaux-Ginestet, G. (2013). Design of eco-efficient grouts intended for soil nailing. *Construction and Building Materials*, 41, 857-867. doi:http://dx.doi.org/10.1016/j.conbuildmat.2012.12.020
- Da Costa, A., & Sagaseta, C. (2010). Analysis of shallow instabilities in soil slopes reinforced with nailed steel wire meshes. *Engineering Geology*, 113(1–4), 53-61. doi:http://dx.doi.org/10.1016/j.enggeo.2010.02.005
- Dashtara, Kolahdouzan, Saeedi, A., & Baziar. (2019). Numerical Investigation on the Displacements and Failure Mechanism of Soil-Nailed Structures in Seismic Conditions. *Geotechnical Special Publication*, 2019-March (GSP 308), 160 168. doi:10.1061/9780784482100.017
- Deng, D.-p., Li, L., & Zhao, L.-h. (2017). Limit equilibrium analysis for stability of soil nailed slope and optimum design of soil nailing parameters. *Journal of Central South University*, 24(11), 2496-2503. doi:10.1007/s11771-017-3662-y
- Deng, G., Xu, T., Chen, R., Lu, Z., & Liu, J. (2018). Numerical Analysis on Stabilizing Mechanism of Soil Nails in Steep Fill Slopes Subjected to Rainfall Infiltration Using a Hypoplastic Model. *Arabian Journal for Science and Engineering*, 43(10), 5079 - 5090. doi:10.1007/s13369-017-2937-9
- Department of Transportation Federal Highway Administration (2015). *Soil Nail Walls Reference Manual*. U.S. Publication No. FHWA-NHI-14-007, FHWA GEC 007, National Highway Institute.

- Dewedree, S., & Jusoh, S. N. (2019). Slope stability analysis under different soil nailing parameters using the SLOPE/W software. *Journal of Physics:*Conference Series, 1174(1). doi:10.1088/1742-6596/1174/1/012008
- Ehrlich, M., & Silva, R. C. (2015). Behavior of a 31 m high excavation supported by anchoring and nailing in residual soil of gneiss. *Engineering Geology*, 191, 48-60. doi:http://dx.doi.org/10.1016/j.enggeo.2015.01.028
- Eldiasty, W. A., Altahrany, A. I., & Elmeligy, M. M. (2019). Comparison between monotype and hybrid earth retaining structures. *Innovative Infrastructure Solutions*, 4(1), 30. doi:10.1007/s41062-019-0213-4
- Elias Okede Ikpe (2009). Development of Cost Benefit Analysis Model of Accident Prevention on Construction Projects. Doctor of Philosophy, University of Wolverhampton
- Esmaeili, F., Varshosaz, M., & Saadatseresht, M. (2013). Displacement Measurement of Soil Nail Walls using Close Range Photogrammetry. *Procedia Engineering*, 54, 516-524. doi:http://dx.doi.org/10.1016/j.proeng.2013.03.047
- Esmaeili, M., Khodaverdian, A., Neyestanaki, H. K., & Nazari, S. (2016). Investigating the effect of nailed sleepers on increasing the lateral resistance of ballasted track. *Computers and Geotechnics*, 71, 1-11. doi:http://dx.doi.org/10.1016/j.compgeo.2015.08.006
- F Benayoun, D Boumezerane, S Rehab Bekkouche, and L Bendada (2020). Application of genetic algorithm method for soil nailing parameters optimization. IOP Conference Series: *Materials Science and Engineering*. 5th International Conference on New Advances in Civil Engineering (ICNACE 2019).
- Galve, J. P., Cevasco, A., Brandolini, P., Piacentini, D., Azañón, J. M., Notti, D., & Soldati, M. (2016). Cost-based analysis of mitigation measures for shallow-landslide risk reduction strategies. *Engineering Geology*, 213(Supplement C), 142-157.
- Geoguide 7 (2008), *Guide to Soil Nail Design and Construction*, Geotechnical of Engineering Office the Government of Hong Kong vol. 7, pp. 81.
- Gerald D. Lehmer, and Chukwuma G. Ekwueme (2009). Description and Analysis of Crib Wall Failures. *Fifth Forensic Engineering Congress*.
- G.Lorenzo (2011). Flexible Facing for Soil Nailing Retaining Systems. Master of Civil Engineering, Bologna University, Bologna.

- GEO-SLOPE International Ltd (2012). *Stability Modelling with SLOPE/W*. An Engineering Methodology, 6th Ave SW Calgary, Alberta, Canada.
- Ghareh, S. (2015). Parametric assessment of soil-nailing retaining structures in cohesive and cohesionless soils. *Measurement*, 73, 341-351. doi:http://dx.doi.org/10.1016/j.measurement.2015.05.043.
- Giacchetti, G., Grimod, A., & Cheer, D. (2013). Soil Nailing with Flexible Structural Facing: Design and Experiences. In C. Margottini, P. Canuti, & K. Sassa (Eds.), Landslide Science and Practice: Volume 6: Risk Assessment, Management and Mitigation (pp. 655-660). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Goldscheider, M. (2018). Slip circle calculation with the slice method and consideration of anchors and soil nails. *Geotechnik*, 41(2), 109 123. doi:10.1002/gete.201700021
- Gu, H.-D., & Luo, C.-H. (2018). Experiment on soil arching effect of pit supporting structure with scattered row piles and soil nail wall. *Jilin Daxue Xuebao* (*Gongxueban*)/*Journal of Jilin University* (*Engineering and Technology Edition*), 48(6), 1711 1724. doi:10.13229/j.cnki.jdxbgxb20170805
- Gue S.S. & Tan Y.C. (2014). Current Status & Future Development of Geotechnical Engineering Practice in Malaysia.
- Gunawan, I., Surjandari, N. S., & Purwana, Y. M. (2017). The study on length and diameter ratio of nail as preliminary design for slope stabilization. *Journal of Physics: Conference Series*, 909(1). doi:10.1088/1742-6596/909/1/012073
- Guo, H.-X., & Zhou, D. (2018). Discussion on stability of soil nailing in excavation in soft clay. *Yantu Lixue/Rock and Soil Mechanics*, 39, 398 404. doi:10.16285/j.rsm.2018.1296
- Guo, Y., Wang, H., & Zhang, C. (2016). Research on effect of rain infiltration on stability of soil nailing retaining system. *World Information on Earthquake Engineering*, 32(2), 264 269.
- Habibah Lateh and Jamilah Ahmad (2011). Malaysia Journal of Society and Space. Landslide issues in Penang, Malaysia: *Students' environmental knowledge, attitude and practice*. 7(4), 65-72.
- Hafizi Md Lani N., Syafiuddin A., Yusop Z. (2019). Comparison of Cost Benefits of New Installation and Retrofitted Rainwater Harvesting Systems for Commercial Buildings. In: Mannina G. (eds) New Trends in Urban Drainage

- Modelling. UDM 2018. Green Energy and Technology. Springer, Cham. https://doi-org.ezproxy.utm.my/10.1007/978-3-319-99867-1\_30
- Hajialilue-Bonab, M., & Razavi, S. K. (2016). A study of soil-nailed wall behaviour at limit states. *Proceedings of the Institution of Civil Engineers: Ground Improvement*, 169(1), 64 76. doi:10.1680/jgrim.14.00021
- Haseeb Jamal. (2017). Retaining Wall Definition and Types of Retaining Walls. Structural Engineering.
- Hong, C.-Y., Yin, J.-H., & Zhang, Y.-F. (2016). Deformation monitoring of long GFRP bar soil nails using distributed optical fiber sensing technology. Smart Materials and Structures, 25(8). doi:10.1088/0964-1726/25/8/085044
- Hu, X., Wang, T., Pierson, T. C., Lu, Z., Kim, J., & Cecere, T. H. (2016). Detecting seasonal landslide movement within the Cascade landslide complex (Washington) using time-series SAR imagery. *Remote Sensing of Environment*, 187(Supplement C), 49-61.
- Huang, J. H. (2012). Finite Element Analysis of Composite Soil-nail Retaining Structure in Foundation Pit Engineering. In W. J. Yang & Q. S. Li (Eds.), Progress in Industrial and Civil Engineering, Pts. 1-5 (Vol. 204-208, pp. 163-167).
- J. David Rogers (2016). Geotechnical Input for the Design of Retention Structures. Geological Engineering. Missouri University of Science & Technology.
- Jamilah Ahmad, Habibah Lateh, and Saifudin Saleh (2014). Journal of Education and Human Development. Landslide hazards: Household Vulnerability, Resilience and Coping in Malaysia. 3(3), 149-155.
- Jaya V and Anie Joy (2013). Journal of Civil Engineering and Science. *An Investigation on the Dynamic Behaviour of Soil Nail Walls*. 2(4), 241-249.
- Jin, Q. P., Zheng, Z. J., Chen, Z., & Lei, X. W. (2014). Simulation and Optimization on GFRP Soil Nailing Support. In S. B. Choi, Y. H. Kim, & P. Yarlagadda (Eds.), Applied Mechanics and Materials Ii, Pts 1 and 2 (Vol. 477-478, pp. 543-546).
- Kim, Y., Lee, S., Jeong, S., & Kim, J. (2013). The effect of pressure-grouted soil nails on the stability of weathered soil slopes. *Computers and Geotechnics*, 49, 253-263.

- Koerner, R. M. (2014). In-Situ Stabilization of Soil Slopes Using Nailed or Anchored Geosynthetics. *International Journal of Geosynthetics and Ground Engineering*, 1(1), 2. doi:10.1007/s40891-014-0002-2
- Kojima, K., & Sato, T. (2018). Development of slope protection work using geocell and soil nailing. *Japanese Railway Engineering*, 2018-October(202), 1 3.
- Kulczykowski, M., Przewcki, J. a., & Konarzewska, B. a. (2017). Application of Soil Nailing Technique for Protection and Preservation Historical Buildings. *IOP Conference Series: Materials Science and Engineering*, 245(2). doi:10.1088/1757-899X/245/2/022055
- Kun-Ming, W., & Jin-Miao, F. (2019). A study on the method of stability calculation of soil nailing expansive soil slope. *IOP Conference Series: Earth and Environmental Science*, 218(1). doi:10.1088/1755-1315/218/1/012028
- Li, J. (2010). Application and study of cement mixed pile composite soil nailing in excavation retaining. (10441346 Master), Central South University (People's Republic of China), Ann Arbor. Retrieved from https://vpn.utm.my/docview/1869205254?accountid=41678 ProQuest Dissertations & Theses Global database.
- Li, LH (2020). Behavior of Tire-Geogrid-Reinforced Retaining Wall System under Dynamic Vehicle Load. International Journal of Geomechanics (Vol. 20, Issue: 4). doi: 10.1061/(ASCE)GM.1943-5622.0001566
- Liao, Y. (2013). Study on reliability of bracing structure for foundation pit by Excel optimization algorithm. In T. Li (Ed.), *Advances in Civil Structures, Pts 1 and* 2 (Vol. 351-352, pp. 1722-1725).
- Lin, P., & Liu, J. (2017). Analysis of resistance factors for LFRD of soil nail walls against external stability failures. *Acta Geotechnica*, 12(1), 157-169.
- Liu, T., Cao, J., Liu, H. M., & Zhao, H. M. (2013). Soil Nailing Optimization Design of Foundation Pit Based on Response Surface of SVM Technology. In B. Xu & H. Y. Li (Eds.), *Building Materials and Structural Engineering Ii* (Vol. 743, pp. 27-30).
- Mamon, A. M., Salem, M. A., & Lotfi, H. A. (2019). Three-Dimensional Finite Element Analysis of Soil-Nailed Walls: Effects of Wall Configuration and Soil Properties. *Geotechnical Special Publication*, 2019-March(GSP 306), 34 43.
- Manap, Jeyaramah, & Syahrom. (2018). Factor and prevention method of landslide event at FELCRA Semungkis, Hulu Langat, Selangor. *IOP Conference Series:*

- Earth and Environmental Science, 109(1). doi:10.1088/1755-1315/109/1/012027
- Menkiti, C. O., Long, M., Milligan, G. W. E., & Higgins, P. (2014). Soil Nailing in Dublin Boulder Clay. *Geotechnical and Geological Engineering*, 32(6), 1427-1438. doi:10.1007/s10706-013-9679-6
- Mohamad Ismail, M. A., Ng, S. M., Zainal Abidin, M. H., & Madun, A. (2018).
  Subsurface Characterization using Geophysical Seismic Refraction Survey for Slope Stabilization Design with Soil Nailing. *Journal of Physics: Conference Series*, 995(1). doi:10.1088/1742-6596/995/1/012107
- Monsberger, C., Lienhart, W., Hirschmller, S., & Marte, R. (2018). Monitoring of soil nailed slope stabilizations using distributed fiber optic sensing. *Proceedings of SPIE The International Society for Optical Engineering*, 10598. doi:10.1117/12.2296674
- Mun, B., & Oh, J. (2017). Hybrid soil nail, tieback, and soldier pile wall case history and numerical simulation. *International Journal of Geotechnical Engineering*, 11(1), 1-9. doi:10.1080/19386362.2016.1177157
- Munawir, A. (2017). On the Nailed Soil Slopes Research Development. *International Journal of GEOMATE*, 13(38), 69-78. doi:10.21660/2017.38.51501
- Nadher Hassan Al-Baghdadi (2013). Kufa Journal of Engineering. Stabilization of Earth Slopes by Using Soil Nailing. 5(1), 1-12
- Pan, X., Zhang, G., Zhang, Y., & Gao, Y. (2017). Study on Properties of Nano-SiO2

  Blended Cement Pastes for Grouting Soil Nailing. *Jianzhu Cailiao Xuebao/Journal of Building Materials*, 20(2), 255 260. doi:10.3969/j.issn.1007-9629.2017.02.017
- Pang, P. (2013). Soil Nailing and Template for the Basement Exterior Wall Waterproof Construction Technology. In W. Yang & J. Liang (Eds.), *Progress in Industrial* and Civil Engineering Ii, Pts 1-4 (Vol. 405-408, pp. 3090-3093). Stafa-Zurich: Trans Tech Publications Ltd.
- Patel, A. (2019). 7 Soil reinforcement. In A. Patel (Ed.), *Geotechnical Investigations* and *Improvement of Ground Conditions* (pp. 61-76): Woodhead Publishing
- Pizarro Quintanar, F. (2014). Development of a comprehensive database and selection model for optimum retaining wall construction, cost and production. (1558439 M.C.E.), The University of Texas at Arlington, Ann Arbor. Retrieved from

- https://vpn.utm.my/docview/1553769031?accountid=41678 ProQuest Dissertations & Theses Global database
- Primoz Jelusic and Bojan Zlender (2013). Acta Geotechnica Slovenica. *Soil-Nail Wall Stability Analysis Using Anfis.* 1, 61-73
- Rabie, M. (2016). Performance of hybrid MSE/Soil Nail walls using numerical analysis and limit equilibrium approaches. *HBRC Journal*, *12*(1), 63-70. doi:http://dx.doi.org/10.1016/j.hbrcj.2014.06.012
- Rawat, & Gupta. (2016). An experimental and analytical study of slope stability by soil nailing. *Electronic Journal of Geotechnical Engineering*, 21(17), 5577 5597
- Rawat, P., & Chatterjee, K. (2018). Seismic Stability Analysis of Soil Slopes Using Soil Nails. *Geotechnical Special Publication*, 2018-June(GSP 293), 79 87. doi:10.1061/9780784481486.009
- Ravindra Budania, R.P Arora (2016). Soil Nailing for Slope Stabilization: An Overview. *International Journal of Engineering Science and Computing*. Volume 6 Issue No. 12
- R. J. Bathurst and C. J. F. P. Jones. (2001). Earth Retaining Structures and Reinforced Slopes. Geotechnical and Geoenvironmental Engineering Handbook pp 501-537
- S. Qasim, Harahap and S.B.S. Osman (2013). Research Journal of Applied Sciences, Engineering and Technology. *Causal Factors of Malaysia Landslides: A Narrative Study*. 5(7), 2303-2308
- Saeedi, A., Baziar, Dashtara, & Kolahdouzan. (2018). Investigation on the Effects of Different Nail Diameters, Soil Elastic Moduli and Pullout Rates on the Pullout Shear Resistance of Soil-Nail Interface. *Geotechnical Special Publication*, 2018-March(GSP 297), 54 64. doi:10.1061/9780784481608.006
- Seo, H.-J., Lee, I.-M., & Lee, S.-W. (2014). Optimization of soil nailing design considering three failure modes. *KSCE Journal of Civil Engineering*, 18(2), 488-496
- Sewook, Kwon, Youngcheul, Bae, Wooseok (2006). The Earth Pressure Distribution of Crib Wall. *Journal of the Korean GEO-environmental Society*. Volume 7 Issue 5 / Pages.41-48 / 2006 / 1598-0820(pISSN) / 2714-1233(eISSN)
- Shan, R.-L., Zheng, Y., & Wei, L.-F. (2016). Model tests on supporting mechanism of soil nailing wall in silty clay deep foundation. *Yantu Gongcheng*

- Xuebao/Chinese Journal of Geotechnical Engineering, 38(7), 1175 1180. doi:10.11779/CJGE201607002
- Sharma, M., Samanta, M., & Punetha, P. (2019). Experimental investigation and modelling of pullout response of soil nails in cohesionless medium. *International Journal of Geomechanics*, 19(3). doi:10.1061/(ASCE)GM.1943-5622.0001372
- Shin, Changgun Paik, Moonyeol, Hong, Cheolhwa, Bae, WooseokCase (2013). Type of Wooden Crib Wall. *Journal of the Korean Geo-environmental Society*. Volume 14 Issue 7 / Pages.39-50 / 2013 / 1598-0820(pISSN)
- Singh, B. B., Kostoulas, P., Gill, J. P. S., et al. (2018). Cost-benefit analysis of intervention policies for prevention and control of brucellosis in India. Plos Neglected Tropical Diseases, 12(5), 16. https://doi.org/10.1371/journal.pntd.0006488
- Sivakumar Babu, G. L., & Jaladurgam, R. (2015). Rehabilitation of distressed retaining walls using soil nails. *Proceedings of the Institution of Civil Engineers: Ground Improvement*, 168(1), 22 32. doi:10.1680/grim.12.00036
- Slope Engineering Branch (2010). *Guidelines for Slope Design*. Public Works Department, Malaysia
- Stauffer, K. D. (2015). Three-Dimensional Stability Analyses of Soil-Nailed Slopes by Finite Element Method. (3702043 PhD), West Virginia University, Ann Arbor
- Sterpi, D., Rizzo, F., Renda, D., Aguglia, F., & Zenti, C. L. (2013). Soil nailing at the tunnel face in difficult conditions: A case study. *Tunnelling and Underground Space Technology*, 38, 129-139. doi:http://dx.doi.org/10.1016/j.tust.2013.05.009
- Sundaravel, V., Dodagoudar, G.R. (2020). Deformation and Stability Analyses of Hybrid Earth Retaining Structures. *Int. J. of Geosynth. and Ground Eng.* 6, 37. https://doi-org.ezproxy.utm.my/10.1007/s40891-020-00222-1
- Tokhi, Ren, & Li. (2018). Laboratory pullout resistance of a new screw soil nail in residual soil. *Canadian Geotechnical Journal*, 55(5), 609 619. doi:10.1139/cgj-2017-0048
- Villalobos, F. A., Villalobos, S. A., & Orstegui, P. L. (2018). Observations from a parametric study of the seismic design of soil nailing. *Proceedings of the Institution of Civil Engineers: Ground Improvement*, 171(2), 112 122. doi:10.1680/jgrim.17.00027

- Wang, H., Cheng, J.-h., Guo, Y.-c., & Gao, X.-j. (2016). Failure Mechanism of Soil Nail—Prestressed Anchor Composite Retaining Structure. *Geotechnical and Geological Engineering*, 34(6), 1889-1898. doi:10.1007/s10706-016-9998-5
- Wang, J.-H., Li, J.-T., & Liao, J. (2016). Several issues on the soil nailing wall combined with row piles in bracing the deep foundation pits of open cut tunnel. *Yantu Lixue/Rock and Soil Mechanics*, 37(4), 1109 - 1117. doi:10.16285/j.rsm.2016.04.025
- Wang, Q., Song, Z. G., & Xu, Q. (2013). Soil nailing Optimization design based on improved response surface. In Y. Huang, T. Bao, & H. Wang (Eds.), Construction and Urban Planning, Pts 1-4 (Vol. 671-674, pp. 126-132)
- Wang, Q., Ye, X., Wang, S., Sloan, S. W., & Sheng, D. (2016). Degree of saturation effect on the grout-soil interface shear strength of soil nailing. *E3S Web of Conferences*, 9. doi:10.1051/e3sconf/20160915007
- Wang, Y., Zhong, Y., Li, J., Zhang, J., Lyu, B., Zhao, Y., & Wu, Y. (2018). Occurrence of perfluoroalkyl substances in matched human serum, urine, hair and nail. *Journal of Environmental Sciences*, 67, 191-197. doi:https://doi.org/10.1016/j.jes.2017.08.017
- Wei, W. B., & Cheng, Y. M. (2010). Soil nailed slope by strength reduction and limit equilibrium methods. *Computers and Geotechnics*, 37(5), 602-618. doi:http://dx.doi.org/10.1016/j.compgeo.2010.03.008
- William S., Kaggwa & Nick Stassinopoulos (2000). Diagnosis of a defective crib retaining wall using a probabilistic approach. The University of Adelaide Stassinopoulos, Nick, Ginos and Associates Pty Ltd. IS-2000-555 ISRM Conference Paper
- Xu, W., & Feng, J. S. (2013). Parameter Optimization Design of Soil Nail Supporting to Deep Foundation Pits. In Y. Huang, T. Bao, & H. Wang (Eds.), Construction and Urban Planning, Pts 1-4 (Vol. 671-674, pp. 235-239)
- Yang, K., Xun, P., Carnethon, M., Carson, A. P., Lu, L., Zhu, J., & He, K. (2019). Low to moderate toenail arsenic levels in young adulthood and incidence of diabetes later in life: findings from the CARDIA Trace Element study. *Environmental Research*, 171, 321-327. doi:https://doi.org/10.1016/j.envres.2019.01.035
- Yazdandoust, M. (2017). Experimental study on seismic response of soil-nailed walls with permanent facing. *Soil Dynamics and Earthquake Engineering*, 98, 101-119. doi:https://doi.org/10.1016/j.soildyn.2017.04.009

- Yazdandoust, M. (2019). Shaking table modeling of MSE/soil nail hybrid retaining walls. *Soils and Foundations*, 59(2), 241-252. doi:https://doi.org/10.1016/j.sandf.2018.05.013
- Ye, X., Wang, S., Wang, Q., Sloan, S. W., & Sheng, D. (2017). Numerical and experimental studies of the mechanical behaviour for compaction grouted soil nails in sandy soil. *Computers and Geotechnics*, 90, 202-214. doi:https://doi.org/10.1016/j.compgeo.2017.06.011
- Yuan, J., Lin, P., Huang, R., & Que, Y. (2019). Statistical evaluation and calibration of two methods for predicting nail loads of soil nail walls in China. *Computers and Geotechnics*, 108, 269 279. doi:10.1016/j.compgeo.2018.12.028
- Yu, Y. X. (2010). Study of the working characteristics in deep foundation pit supported by composite soil-nailed wall (Order No. 10341386). Available from ProQuest Dissertations & Theses Global. (1870503681)
- Zabuski, L., & Przewlocki, J. (2019). Stability Analysis of a Road Scarp in the Carpathian Mountains and Methods of its Protection. *IOP Conference Series:*Materials Science and Engineering, 471(4). doi:10.1088/1757-899X/471/4/042004
- Zeng, K. H., Liang, Y. W., Zhang, H., Guo, J. W., & Destech Publicat, I. (2016). Soil Nailing-Pile Anchor Composite Supporting System in the Application of the Deep Foundation Pit. 2016 International Conference on Architecture and Civil Engineering (Icace 2016), 232-236
- Zevgolis, I. E., & Daffas, Z. A. (2018). System reliability assessment of soil nail walls.

  \*Computers and Geotechnics, 98, 232-242.

  doi:https://doi.org/10.1016/j.compgeo.2017.10.020
- Zhang, G., Cao, J., & Wang, L. (2014). Failure behavior and mechanism of slopes reinforced using soil nail wall under various loading conditions. *Soils and Foundations*, 54(6), 1175-1187. doi:http://dx.doi.org/10.1016/j.sandf.2014.11.011

## Appendix A Example Reanalysis Report Case 1

# Reanalysis Report Case 1, Slope Stability\_normal\_1.5x1.5m\_19m\_t25\_global

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

#### **Project Settings**

Unit System: International System of Units (SI)

#### **Analysis Settings**

#### Slope Stability\_normal\_1.5x1.5\_15m\_t25\_global

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Side Function

Interslice force function option: Half-Sine

PWP Conditions from: Piezometric Line

Apply Phreatic Correction: No

Use Staged Rapid Drawdown: No

Unit Weight of Water: 9.807 kN/m<sup>3</sup>

Slip Surface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack Option: (none)

Distribution

F of S Calculation Option: Constant

Advanced

**Geometry Settings** 

Minimum Slip Surface Depth: 0.1 m

Number of Slices: 30

Factor of Safety Convergence Settings

Maximum Number of Iterations: 100

Tolerable difference in F of S: 0.001

Solution Settings

Search Method: Root Finder

Tolerable difference between starting and converged F of S: 3

Maximum iterations to calculate converged lambda: 20

Max Absolute Lambda: 2

#### **Materials**

#### **SPT<10**

Model: Mohr-Coulomb

Unit Weight: 17 kN/m<sup>3</sup>

Cohesion': 2 kPa

Phi': 30 ° Phi-B: 0 °

Pore Water Pressure

Piezometric Line: 1

## SPT 10-30

Model: Mohr-Coulomb

Unit Weight: 18.5 kN/m<sup>3</sup>

Cohesion': 3 kPa Phi': 31 °

Phi-B: 0°

Pore Water Pressure

Piezometric Line: 1

#### **SPT>50**

Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion': 10 kPa

Phi': 35 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 1

## Slip Surface Entry and Exit

Left Type: Range

Left-Zone Left Coordinate: (17.75, 27.8) m Left-Zone Right Coordinate: (17.97, 27.8) m

Left-Zone Increment: 10 Right Type: Range

Right-Zone Left Coordinate: (35, 8.6) m

Right-Zone Right Coordinate: (35.860302, 8.6) m

Right-Zone Increment: 10 Radius Increments: 10

#### Slip Surface Limits

Left Coordinate: (0.2, 27.8) m Right Coordinate: (52.35, 8.6) m

## **Piezometric Lines**

#### Piezometric Line 1

## Coordinates

|               | X       | Y       |
|---------------|---------|---------|
| Coordinate 1  | 0.2 m   | 24.8 m  |
| Coordinate 2  | 0.7 m   | 24.8 m  |
| Coordinate 3  | 4 m     | 24.8 m  |
| Coordinate 4  | 5.4 m   | 24.8 m  |
| Coordinate 5  | 6.9 m   | 24.8 m  |
| Coordinate 6  | 7.9 m   | 24.6 m  |
| Coordinate 7  | 9.2 m   | 24.2 m  |
| Coordinate 8  | 10.9 m  | 23.5 m  |
| Coordinate 9  | 12 m    | 22.9 m  |
| Coordinate 10 | 13.1 m  | 22 m    |
| Coordinate 11 | 14.1 m  | 20.7 m  |
| Coordinate 12 | 15.3 m  | 18.75 m |
| Coordinate 13 | 16.85 m | 16.1 m  |
| Coordinate 14 | 18.15 m | 14.15 m |
| Coordinate 15 | 19 m    | 13.15 m |
| Coordinate 16 | 20.4 m  | 11.7 m  |
| Coordinate 17 | 21.5 m  | 10.4 m  |
| Coordinate 18 | 23.3 m  | 8.4 m   |
| Coordinate 19 | 25.45 m | 7.25 m  |
| Coordinate 20 | 27.7 m  | 6.7 m   |
| Coordinate 21 | 29.8 m  | 6.25 m  |
| Coordinate 22 | 31.95 m | 5.9 m   |
| Coordinate 23 | 35.35 m | 5.45 m  |

| Coordinate 24 | 39.05 m | 5.25 m |
|---------------|---------|--------|
| Coordinate 25 | 52.3 m  | 5.3 m  |

#### Reinforcements

#### Reinforcement 1

Type: Nail

Outside Point: (34.55, 9.5) m Inside Point: (23.273688, 5.39576) m

Slip Surface Intersection: (33.423865, 9.0901207) m

Length: 12 m
Direction: 20 °
F of S Dependent: Yes
Force Distribution: Distributed

Face Anchorage: Yes
Pullout Resistance: 250 kPa
Resistance Reduction Factor: 2
Bond Diameter: 0.125 m
Nail Spacing: 1.5 m
Tensile Capacity: 196 kN
Reduction Factor: 1.5
Shear Force: 0 kN
Shear Reduction Factor: 1

Shear Reduction Factor: 1 Apply Shear: Parallel to Slip

Factored Pullout Resistance: 32.724923 kN/m

Max. Pullout Force: 87.111111 kN Factored Tensile Capacity: 87.111111 kN

Pullout Force: 56.31724 kN

Pullout Force per Length: 21.156628 kN/m

Available Length: 10.801592 m Required Length: 2.6619195 m

Governing Component: Tensile Capacity

#### Reinforcement 2

Type: Nail

Outside Point: (33.875, 10.85) m Inside Point: (22.598689, 6.745758) m

Slip Surface Intersection: (31.341628, 9.9279277) m

Length: 12 m Direction: 20 ° F of S Dependent: Yes Force Distribution: Distributed Face Anchorage: Yes

Pullout Resistance: 250 kPa
Resistance Reduction Factor: 2
Bond Diameter: 0.125 m
Nail Spacing: 1.5 m
Tensile Capacity: 196 kN
Reduction Factor: 1.5
Shear Force: 0 kN
Shear Reduction Factor: 1
Apply Shear: Parallel to Slip

Factored Pullout Resistance: 32.724923 kN/m

Max. Pullout Force: 87.111111 kN Factored Tensile Capacity: 87.111111 kN

Pullout Force: 56.31724 kN

Pullout Force per Length: 21.156628 kN/m

Available Length: 9.304041 m Required Length: 2.6619195 m

Governing Component: Tensile Capacity

#### Reinforcement 3

Type: Nail

Outside Point: (33.205, 12.19) m Inside Point: (21.928688, 8.085759) m Slip Surface Intersection: (29.533828, 10.853803) m

Length: 12 m
Direction: 20 °
F of S Dependent: Yes

Force Distribution: Distributed

Face Anchorage: Yes
Pullout Resistance: 250 kPa
Resistance Reduction Factor: 2
Bond Diameter: 0.125 m
Nail Spacing: 1.5 m
Tensile Capacity: 196 kN
Reduction Factor: 1.5
Shear Force: 0 kN
Shear Reduction Factor: 1

Apply Shear: Parallel to Slip Factored Pullout Resistance: 32.724923 kN/m

Max. Pullout Force: 87.111111 kN Factored Tensile Capacity: 87.111111 kN

Pullout Force: 56.31724 kN

Pullout Force per Length: 21.156628 kN/m

Available Length: 8.0932203 m Required Length: 2.6619195 m

Governing Component: Tensile Capacity

#### Reinforcement 4

Type: Nail

Outside Point: (32.53, 13.54) m Inside Point: (21.253688, 9.435759) m

Slip Surface Intersection: (27.913551, 11.859751) m

Length: 12 m
Direction: 20 °
F of S Dependent: Yes

Force Distribution: Distributed

Face Anchorage: Yes
Pullout Resistance: 250 kPa
Resistance Reduction Factor: 2
Bond Diameter: 0.125 m
Nail Spacing: 1.5 m
Tensile Capacity: 196 kN
Reduction Factor: 1.5
Shear Force: 0 kN
Shear Reduction Factor: 1

Apply Shear: Parallel to Slip Factored Pullout Resistance: 32.724923 kN/m

Max. Pullout Force: 87.111111 kN Factored Tensile Capacity: 87.111111 kN

Pullout Force: 56.31724 kN

Pullout Force per Length: 21.156628 kN/m

Available Length: 7.0872785 m Required Length: 2.6619195 m

Governing Component: Tensile Capacity

#### **Reinforcement 5**

Type: Nail

Outside Point: (29.548243, 15.51) m Inside Point: (18.271931, 11.405759) m

Slip Surface Intersection: (25.259315, 13.948958) m

Length: 12 m
Direction: 20 °
F of S Dependent: Yes

Force Distribution: Distributed

Face Anchorage: Yes
Pullout Resistance: 225 kPa
Resistance Reduction Factor: 2
Bond Diameter: 0.125 m
Nail Spacing: 1.5 m
Tensile Capacity: 196 kN

Reduction Factor: 1.5 Shear Force: 0 kN Shear Reduction Factor: 1 Apply Shear: Parallel to Slip

Factored Pullout Resistance: 29.452431 kN/m

Max. Pullout Force: 87.111111 kN Factored Tensile Capacity: 87.111111 kN

Pullout Force: 56.31724 kN

Pullout Force per Length: 19.040965 kN/m

Available Length: 7.4358184 m Required Length: 2.9576883 m

Governing Component: Tensile Capacity

#### Reinforcement 6

Type: Nail

Length: 12 m

Outside Point: (28.869331, 16.84) m Inside Point: (17.593019, 12.735759) m

Slip Surface Intersection: (24.081946, 15.097535) m

Direction: 20 °
F of S Dependent: Yes
Force Distribution: Distributed
Face Anchorage: Yes
Pullout Resistance: 198 kPa
Resistance Reduction Factor: 2
Bond Diameter: 0.125 m
Nail Spacing: 1.5 m
Tensile Capacity: 196 kN

Nail Spacing: 1.5 m
Tensile Capacity: 196 kN
Reduction Factor: 1.5
Shear Force: 0 kN
Shear Reduction Factor: 1
Apply Shear: Parallel to Slip

Factored Pullout Resistance: 25.918139 kN/m

Max. Pullout Force: 87.111111 kN Factored Tensile Capacity: 87.111111 kN

Pullout Force: 56.31724 kN

Pullout Force per Length: 16.756049 kN/m

Available Length: 6.9053719 m Required Length: 3.3610094 m

Governing Component: Tensile Capacity

#### Reinforcement 7

Type: Nail

Outside Point: (28.185314, 18.18) m Inside Point: (16.909002, 14.075759) m

Slip Surface Intersection: (23.008655, 16.295851) m

Length: 12 m
Direction: 20 °
F of S Dependent: Yes
Force Distribution: Distributed
Face Anchorage: Yes
Pullout Pagistance: 170 kPa

Pullout Resistance: 170 kPa Resistance Reduction Factor: 2 Bond Diameter: 0.125 m Nail Spacing: 1.5 m Tensile Capacity: 196 kN Reduction Factor: 1.5 Shear Force: 0 kN Shear Reduction Factor: 1 Apply Shear: Parallel to Slip

Factored Pullout Resistance: 22.252948 kN/m

Max. Pullout Force: 87.111111 kN
Factored Tensile Capacity: 87.111111 kN

Pullout Force: 56.31724 kN

Pullout Force per Length: 14.386507 kN/m

Available Length: 6.4911149 m Required Length: 3.9145875 m Governing Component: Tensile Capacity

#### **Reinforcement 8**

Type: Nail

Outside Point: (27.501297, 19.52) m Inside Point: (16.224985, 15.415759) m

Slip Surface Intersection: (22.044495, 17.533887) m

Length: 12 m Direction: 20 ° F of S Dependent: Yes Force Distribution: Distributed

Face Anchorage: Yes
Pullout Resistance: 145 kPa
Resistance Reduction Factor: 2
Bond Diameter: 0.125 m
Nail Spacing: 1.5 m
Tensile Capacity: 196 kN
Reduction Factor: 1.5
Shear Force: 0 kN
Shear Reduction Factor: 1

Factored Pullout Resistance: 18.980456 kN/m

Max. Pullout Force: 87.111111 kN Factored Tensile Capacity: 87.111111 kN

Pullout Force: 56.31724 kN

Apply Shear: Parallel to Slip

Pullout Force per Length: 12.270844 kN/m

Available Length: 6.1929932 m Required Length: 4.5895163 m

Governing Component: Tensile Capacity

#### **Reinforcement 9**

Type: Nail

Outside Point: (24.5, 21.5) m

Inside Point: (16.042766, 18.421819) m

Slip Surface Intersection: (20.451525, 20.026476) m

Length: 9.0000003 m Direction: 20 ° F of S Dependent: Yes Force Distribution: Distributed

Face Anchorage: Yes
Pullout Resistance: 145 kPa
Resistance Reduction Factor: 2
Bond Diameter: 0.125 m
Nail Spacing: 1.5 m
Tensile Capacity: 196 kN
Reduction Factor: 1.5

Shear Force: 0 kN Shear Reduction Factor: 1 Apply Shear: Parallel to Slip

Factored Pullout Resistance: 18.980456 kN/m

Max. Pullout Force: 87.111111 kN Factored Tensile Capacity: 87.111111 kN

Pullout Force: 56.31724 kN

Pullout Force per Length: 12.270844 kN/m

Available Length: 4.691703 m Required Length: 4.5895163 m

Governing Component: Tensile Capacity

#### Reinforcement 10

Type: Nail

Outside Point: (23.83, 22.84) m Inside Point: (15.372766, 19.761819) m

Slip Surface Intersection: (19.769402, 21.362063) m

Length: 9.0000003 m Direction: 20 ° F of S Dependent: Yes Force Distribution: Distributed Face Anchorage: Yes
Pullout Resistance: 145 kPa
Resistance Reduction Factor: 2
Bond Diameter: 0.125 m
Nail Spacing: 1.5 m
Tensile Capacity: 196 kN
Reduction Factor: 1.5
Shear Force: 0 kN
Shear Reduction Factor: 1
Apply Shear: Parallel to Slip

Factored Pullout Resistance: 18.980456 kN/m

Max. Pullout Force: 87.111111 kN Factored Tensile Capacity: 87.111111 kN

Pullout Force: 56.31724 kN

Pullout Force per Length: 12.270844 kN/m

Available Length: 4.6788023 m Required Length: 4.5895163 m

Governing Component: Tensile Capacity

#### **Reinforcement 11**

Type: Nail

Outside Point: (23.16, 24.18) m

Inside Point: (14.702766, 21.101819) m

Slip Surface Intersection: (19.181715, 22.732023) m

Length: 9.0000003 m

Direction: 20 °

F of S Dependent: Yes

Force Distribution: Distributed

Eace Anchorage: Yes

Face Anchorage: Yes
Pullout Resistance: 145 kPa
Resistance Reduction Factor: 2
Bond Diameter: 0.125 m
Nail Spacing: 1.5 m
Tensile Capacity: 196 kN
Reduction Factor: 1.5
Shear Force: 0 kN
Shear Reduction Factor: 1

Apply Shear: Parallel to Slip Factored Pullout Resistance: 18.980456 kN/m

Max. Pullout Force: 87.111111 kN Factored Tensile Capacity: 87.111111 kN

Pullout Force: 56.31724 kN

Pullout Force per Length: 12.270844 kN/m

Available Length: 4.7663983 m Required Length: 4.5895163 m

Governing Component: Tensile Capacity

#### Reinforcement 12

Type: Nail

Outside Point: (22.485, 25.53) m Inside Point: (14.027766, 22.451819) m

Slip Surface Intersection: (18.671937, 24.142159) m

Length: 9.0000003 m Direction: 20 ° F of S Dependent: Yes Force Distribution: Distributed

Face Anchorage: Yes
Pullout Resistance: 131 kPa
Resistance Reduction Factor: 2
Bond Diameter: 0.125 m

Nail Spacing: 1.5 m
Tensile Capacity: 196 kN
Reduction Factor: 1.5
Shear Force: 0 kN
Shear Reduction Factor: 1
Apply Shear: Parallel to Slip

Factored Pullout Resistance: 17.14786 kN/m

Max. Pullout Force: 87.111111 kN Factored Tensile Capacity: 87.111111 kN

Pullout Force: 54.789854 kN

Pullout Force per Length: 11.086073 kN/m

Available Length: 4.9422238 m Required Length: 4.9422238 m

Governing Component: Pullout Resistance

#### **Surcharge Loads**

### Surcharge Load 1

Surcharge (Unit Weight): 10 kN/m<sup>3</sup>

Direction: Vertical

#### **Coordinates**

| X      | Y      |
|--------|--------|
| 0.2 m  | 28.8 m |
| 16.6 m | 28.8 m |

#### **Points**

| 5        | The state of the s | 47          |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y           |
| Point 1  | 0.2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.8 m      |
| Point 2  | 21.35 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.8 m      |
| Point 3  | 24.95 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.6 m      |
| Point 4  | 26.95 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.6 m      |
| Point 5  | 30 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.625 m    |
| Point 6  | 32 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.626338 m |
| Point 7  | 35 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.6 m       |
| Point 8  | 52.35 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.6 m       |
| Point 9  | 52.3 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -4.2 m      |
| Point 10 | 0.25 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -4.25 m     |
| Point 11 | 22.85 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.8 m      |
| Point 12 | 0.2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.8 m      |
| Point 13 | 32.2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.2 m      |
| Point 14 | 17.2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.3 m      |
| Point 15 | 0.2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.3 m      |

#### Regions

|          | Material  | Points                 | Area                  |  |  |  |
|----------|-----------|------------------------|-----------------------|--|--|--|
| Region 1 | SPT<10    | 1,2,11,12              | 65.7 m <sup>2</sup>   |  |  |  |
| Region 2 | SPT 10-30 | 3,4,5,6,13,14,15,12,11 | 279.59 m²             |  |  |  |
| Region 3 | SPT>50    | 7,8,9,10,15,14,13      | 857.53 m <sup>2</sup> |  |  |  |

## **Slip Results**

Slip Surfaces Analysed: 121 of 1331 converged

## **Current Slip Surface**

Slip Surface: 130 Factor of Safety: 1.547 Volume: 98.406281 m<sup>3</sup> Weight: 1,841.0899 kN

Resisting Moment: 44,812.819 kN·m
Activating Moment: 28,969.043 kN·m
Resisting Force: 2,068.8436 kN
Activating Force: 1,337.6158 kN
Slip Rank: 1 of 1,331 slip surfaces

Exit: (35, 8.6) m Entry: (17.772, 27.8) m Radius: 23.776175 m

Center: (41.252278, 31.539387) m

#### Slip Slices

| onp suces | X           | Y           | PWP            | Base<br>Normal<br>Stress<br>(kPa) | Frictional<br>Strength | Cohesive<br>Strength | Suction<br>Strength | Base<br>Material |
|-----------|-------------|-------------|----------------|-----------------------------------|------------------------|----------------------|---------------------|------------------|
| Slice 1   | 17.961 m    | 26.85939 m  | -121.8607 kPa  | 3.1877535                         | 1.8404503 kPa          | 2 kPa                | 0 kPa               | SPT<10           |
| Slice 2   | 18.300622 m | 25.35939 m  | -111.66832 kPa | 14.037494                         | 8.1045509 kPa          | 2 kPa                | 0 kPa               | SPT<10           |
| Slice 3   | 18.725622 m | 23.982135 m | -103.06507 kPa | 26.754175                         | 16.07553 kPa           | 3 kPa                | 0 kPa               | SPT 10-30        |
| Slice 4   | 19.35 m     | 22.331724 m | -93.600208 kPa | 44.093639                         | 26.494131 kPa          | 3 kPa                | 0 kPa               | SPT 10-30        |
| Slice 5   | 20.05 m     | 20.807695 m | -85.764124 kPa | 62.487753                         | 37.54643 kPa           | 3 kPa                | 0 kPa               | SPT 10-30        |
| Slice 6   | 20.6375 m   | 19.702584 m | -81.233991 kPa | 83.731061                         | 50.310697 kPa          | 3 kPa                | 0 kPa               | SPT 10-30        |
| Slice 7   | 21.1125 m   | 18.910216 m | -78.968531 kPa | 94.083975                         | 56.531356 kPa          | 3 kPa                | 0 kPa               | SPT 10-30        |
| Slice 8   | 21.425 m    | 18.418143 m | -77.764673 kPa | 145.58651                         | 87.477198 kPa          | 3 kPa                | 0 kPa               | SPT 10-30        |
| Slice 9   | 21.8375 m   | 17.826962 m | -76.513838 kPa | 97.267192                         | 58.444025 kPa          | 3 kPa                | 0 kPa               | SPT 10-30        |
| Slice 10  | 22.5125 m   | 16.91659 m  | -74.94107 kPa  | 93.94724                          | 56.449197 kPa          | 3 kPa                | 0 kPa               | SPT 10-30        |
| Slice 11  | 23.075 m    | 16.217143 m | -74.210975 kPa | 100.81732                         | 60.57716 kPa           | 3 kPa                | 0 kPa               | SPT 10-30        |
| Slice 12  | 23.57211 m  | 15.647489 m | -72.503503 kPa | 89.48728                          | 53.769382 kPa          | 3 kPa                | 0 kPa               | SPT 10-30        |
| Slice 13  | 24.11633 m  | 15.061777 m | -69.614193 kPa | 93.012489                         | 55.887542 kPa          | 3 kPa                | 0 kPa               | SPT 10-30        |
| Slice 14  | 24.66922 m  | 14.505448 m | -67.058511 kPa | 84.609822                         | 84.609822 50.83871 kPa |                      | 0 kPa               | SPT 10-30        |
| Slice 15  | 25.2 m      | 14.003254 m | -64.917761 kPa | 94.157614                         | 65.929871 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 16  | 25.7 m      | 13.558179 m | -62.463625 kPa | 104.26206                         | 73.005081 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 17  | 26.2 m      | 13.137456 m | -59.53623 kPa  | 114.35164                         | 80.069882 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 18  | 26.7 m      | 12.739448 m | -56.831598 kPa | 124.39339                         | 87.10119 kPa           | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 19  | 27.325 m    | 12.274827 m | -53.773356 kPa | 114.24588                         | 79.995829 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 20  | 27.9625 m   | 11.826751 m | -50.829687 kPa | 115.41625                         | 80.815328 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 21  | 28.4875 m   | 11.482715 m | -48.559019 kPa | 110.74064                         | 77.541433 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 22  | 29.0125 m   | 11.15801 m  | -46.477921 kPa | 98.359342                         | 68.871953 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 23  | 29.5375 m   | 10.851723 m | -44.577456 kPa | 91.626839                         | 64.157804 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 24  | 29.9 m      | 10.648736 m | -43.298055 kPa | 107.93919                         | 75.579836 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 25  | 30.325 m    | 10.426189 m | -41.794041 kPa | 85.893152                         | 60.143032 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 26  | 30.975 m    | 10.102174 m | -39.654142 kPa | 93.3882                           | 65.391122 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 27  | 31.625 m    | 9.8024224 m | -37.752198 kPa | 108.4264                          | 75.920986 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 28  | 31.975 m    | 9.6478856 m | -36.787964 kPa | 327.66                            | 229.43 kPa             | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 29  | 32.1 m      | 9.5955832 m | -36.437282 kPa | 146.81296                         | 102.79954 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 30  | 32.48 m     | 9.4427167 m | -35.431355 kPa | 93.092301                         | 65.183931 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 31  | 33.04 m     | 9.2284945 m | -34.05735 kPa  | 70.648877                         | 49.468876 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 32  | 33.6 m      | 9.0302414 m | -32.839953 kPa | 64.688268                         | 45.295213 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 33  | 34.16 m     | 8.8475385 m | -31.775057 kPa | 43.921152                         | 30.753922 kPa          | 10 kPa               | 0 kPa               | SPT>50           |
| Slice 34  | 34.72 m     | 8.6800126 m | -30.859003 kPa | 7.2032664                         | 5.0437814 kPa          | 10 kPa               | 0 kPa               | SPT>50           |

149

## Appendix B Example Free Body Diagram and Force Polygon Data

#### **Case 1: Slice Information**

Slice 19 - Morgenstern-Price Method

Factor of Safety 1.547

Phi Angle 35 ° C (Strength) 10 kPa

Pore Water Pressure -53.773 kPa Pore Water Force -49.766 kN

Pore Air Pressure 0 kPa

Pore Air Force 0 kN

Phi B Angle 0°

Slice Width 0.75 m

Mid-Height 7.5905 m

Base Length 0.92547 m

Base Angle -35.865 °

Anisotropic Strength Mod. 1 Applied Lambda 0.48875

Weight (incl. Vert. Seismic) 107.52 kN

Base Normal Force 105.73 kN Base Normal Stress 114.25 kPa

Base Shear Res. Force83.288 kN

Base Shear Res. Stress 89.996 kPa
Base Shear Mob. Force 53.846 kN
Base Shear Mob. Stress 58.182 kPa
Left Side Normal Force 262.68 kN

Left Side Shear Force 127.71 kN

Right Side Normal Force 262.63 kN Right Side Shear Force 124.69 kN

Horizontal Seismic Force 0 kN

Point Load 0 kN

Reinforcement Load Used 19.549 kN Reinf. Shear Load Used 0 kN

Surcharge Load 0 kN

Polygon Closure 0.53761 kN
Top Left Coordinate 26.95, 20.6 m
Top Right Coordinate 27.7, 19.130738 m

Bottom Left Coordinate 26.95, 12.545933 m Bottom Right Coordinate 27.7, 12.003722 m

# Appendix C Calculation, details parameters used and cost involved

(i) Nail inclination, spacing, length and cost per number of nails before reanalysis to the Case 1 and Case 6

\*Note: All calculation in a computer-generated and all decimal places is taken into

account for more precise value.

|                       | Nail | Nail        | Nail    | Tensile  | Bond     | Nail   | Cost per |
|-----------------------|------|-------------|---------|----------|----------|--------|----------|
|                       | Row  | inclination | Spacing | Capasity | Diameter | Length | Number   |
|                       |      | (degrees)   | (m)     | (KN)     | (m)      | (m)    | (RM)     |
|                       | 1    | 20          | 1.5     | 196      | 0.125    | 15     | 2,856.50 |
| S<br>II               | 2    | 20          | 1.5     | 196      | 0.125    | 15     | 2,856.50 |
| FOS                   | 3    | 20          | 1.5     | 196      | 0.125    | 15     | 2,856.50 |
| 1,                    | 4    | 20          | 1.5     | 196      | 0.125    | 15     | 2,856.50 |
| Case                  | 5    | 20          | 1.5     | 196      | 0.125    | 15     | 2,856.50 |
| reanalysis C<br>1.984 | 6    | 20          | 1.5     | 196      | 0.125    | 15     | 2,856.50 |
| 1.9si                 | 7    | 20          | 1.5     | 196      | 0.125    | 15     | 2,856.50 |
| ana                   | 8    | 20          | 1.5     | 196      | 0.125    | 15     | 2,856.50 |
| re                    | 9    | 20          | 1.5     | 196      | 0.125    | 12     | 2,570.00 |
| ore                   | 10   | 20          | 1.5     | 196      | 0.125    | 12     | 2,570.00 |
| Before                | 11   | 20          | 1.5     | 196      | 0.125    | 12     | 2,570.00 |
|                       | 12   | 20          | 1.5     | 196      | 0.125    | 12     | 2,570.00 |
|                       |      |             |         |          |          |        |          |
| se                    | 1    | 20          | 1.5     | 322      | 0.125    | 9      | 2133.00  |
| Case 5                | 2    | 20          | 1.5     | 322      | 0.125    | 9      | 2133.00  |
| rsis (                | 3    | 20          | 1.5     | 322      | 0.125    | 9      | 2133.00  |
| laly<br>= 1           | 4    | 20          | 1.5     | 322      | 0.125    | 9      | 2133.00  |
| rean<br>FOS           | 5    | 20          | 1.5     | 322      | 0.125    | 6      | 1560.00  |
|                       | 6    | 20          | 1.5     | 322      | 0.125    | 6      | 1560.00  |
| efor<br>6,            | 7    | 20          | 1.5     | 322      | 0.125    | 6      | 1560.00  |
| Ř                     | 8    | 20          | 1.5     | 322      | 0.125    | 6      | 1560.00  |

# (ii) Calculation cost before reanalysis to Case 1 and Case 6

Case 1

| Unit Price per number of nail (RM) | 18 m = | 8m = 3060 15 $m = 2856.5$ 12 $m = 2570$ 9 $m = 2133$ 6 $m = 1560$ 3 $m = 849$ |          |            |           |            |          |   |    |     |            |  |
|------------------------------------|--------|-------------------------------------------------------------------------------|----------|------------|-----------|------------|----------|---|----|-----|------------|--|
| Wall Length                        | 81     | m                                                                             |          |            |           |            |          |   |    |     |            |  |
| Nail Spacing                       | 1.5    | m                                                                             |          |            |           |            |          |   |    |     |            |  |
| Berm                               | 3      | no./no                                                                        | no./nos. |            |           |            |          |   |    |     |            |  |
| Total of point in one              | Length | - Edge                                                                        | d both s | side ÷ Nai | l Spacing | ; + Starti | ing poin | t |    |     |            |  |
| row (point)                        | 81     | -                                                                             | 1        | ÷          | 1.5       | +          | 1        |   | =  | 54  | points     |  |
| Total points per berm              | 54     | X                                                                             | 4        | Rows       |           |            |          |   | =  | 217 | points     |  |
| Grand Total Point                  | 217    | х                                                                             | 3        | Berms      | 48        |            |          |   | =  | 652 | points     |  |
| First Berm (RM)                    | 4      | rows                                                                          |          | Rate =     | 2856.5    | X          | 4        | Х | 54 | =   | 620,812.67 |  |
| Second Berm (RM)                   | 4      | rows                                                                          |          | Rate =     | 2856.5    | X          | 4        | Х | 54 | =   | 620,812.67 |  |
| Third Berm (RM)                    | 4      | rows                                                                          |          | Rate =     | 2570      | х          | 4        | Х | 54 | =   | 558,546.67 |  |
|                                    |        | Total cost RM 1,800,172.00                                                    |          |            |           |            |          |   |    |     |            |  |

# Case 6

| Case o                                |      |            |      |                |              |        |       |       |        |        |              |
|---------------------------------------|------|------------|------|----------------|--------------|--------|-------|-------|--------|--------|--------------|
| Unit Price per<br>number of nail (RM) | 18 m | = 3060     | 15   | m = 2856.5     | 12 m = 25    | 570    | 9 m = | 2133  | 6 m :  | = 1560 | 3 m = 849    |
| Wall Length                           | 125  | m          |      |                |              |        |       |       |        |        |              |
| Nail Spacing                          | 1.5  | m          |      |                |              |        |       |       |        |        |              |
| Berm                                  | 2    | no./nos.   |      |                |              |        |       |       |        |        |              |
| Total of point in one                 | Leng | th - Edged | both | side ÷ Nail Sp | acing + Star | ting p | oint  |       |        |        |              |
| row (point)                           | 125  | -          | 1    | ÷              | 1.5          | +      | 1     |       | =      | 84     | points       |
| Total points per<br>berm              | 84   | х          | 4    | rows           |              |        |       |       | =      | 335    | points       |
| Grand Total Point                     | 335  | х          | 2    | Berms          |              |        |       |       | =      | 669    | points       |
| First Berm (RM)                       | 4    | rows       |      | Rate =         | 2133.0       | х      | 4     | Х     | 84     | =      | 713,844.00   |
| Second Berm (RM)                      | 4    | rows       |      | Rate =         | 1560.0       | х      | 4     | X     | 84     | =      | 522,080.00   |
| Third Berm (RM)                       |      | rows       |      | Rate =         |              | Х      | 0     | X     | 84     | =      | 0.00         |
|                                       |      |            |      |                |              |        |       | Total | cost R | M      | 1,235,924.00 |

# (iii) After nail length adjusted and cost per number of nails **after** reanalysis to Case 1 and Case 6

|                   | Nail<br>Row | Nail inclination (degrees) | Nail<br>Spacing<br>(m) | Tensile<br>Capasity<br>(KN) | Bond<br>Diameter<br>(m) | Nail<br>Length<br>(m) | Cost per<br>Number<br>(RM) |
|-------------------|-------------|----------------------------|------------------------|-----------------------------|-------------------------|-----------------------|----------------------------|
| 1.547             | 1           | 20                         | 1.5                    | 196                         | 0.125                   | 9                     | 2133.00                    |
|                   | 2           | 20                         | 1.5                    | 196                         | 0.125                   | 9                     | 2133.00                    |
| <b>∞</b><br>      | 3           | 20                         | 1.5                    | 196                         | 0.125                   | 9                     | 2133.00                    |
| FOS               | 4           | 20                         | 1.5                    | 196                         | 0.125                   | 9                     | 2133.00                    |
| <u> </u>          | 5           | 20                         | 1.5                    | 196                         | 0.125                   | 12                    | 2570.00                    |
| Case              | 6           | 20                         | 1.5                    | 196                         | 0.125                   | 12                    | 2570.00                    |
|                   | 7           | 20                         | 1.5                    | 196                         | 0.125                   | 12                    | 2570.00                    |
| lysis             | 8           | 20                         | 1.5                    | 196                         | 0.125                   | 12                    | 2570.00                    |
| reana             | 9           | 20                         | 1.5                    | 196                         | 0.125                   | 12                    | 2570.00                    |
| 100               | 10          | 20                         | 1.5                    | 196                         | 0.125                   | 12                    | 2570.00                    |
| After             | 11          | 20                         | 1.5                    | 196                         | 0.125                   | 12                    | 2570.00                    |
| A                 | 12          | 20                         | 1.5                    | 196                         | 0.125                   | 12                    | 2570.00                    |
|                   | 100         |                            |                        | z.                          |                         |                       |                            |
| 9,                | 1           | 20                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |
| Case<br>0         | 2           | 20                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |
| ysis C<br>1.660   | 3           | 20                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |
| nalysis<br>= 1.66 | 4           | 20                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |
| eana<br>OS =      | 5           | 20                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |
| <u> </u>          | 6           | 20                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |
| ţe.               | 7           | 20                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |
| Af                | 8           | 20                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |

# (iv) Calculation cost after reanalysis to Case 1 and Case 6

# Case 1

| Unit Price per<br>number of nail (RM) | 18 m    | = 3060     | 3060 $15 m = 2856.5$ $12 m = 2570$ $9 m = 2133$ $6 m = 1560$ |                |               |       |      |       |        | 3 m = 849 |              |  |
|---------------------------------------|---------|------------|--------------------------------------------------------------|----------------|---------------|-------|------|-------|--------|-----------|--------------|--|
| Wall Length                           | 81      | m          |                                                              |                |               |       |      |       |        |           |              |  |
| Nail Spacing                          | 1.5     | m          |                                                              |                |               |       |      |       |        |           |              |  |
| Berm                                  | 3       | no./nos.   | no./nos.                                                     |                |               |       |      |       |        |           |              |  |
| Total of point in one                 | Leng    | th - Edged | both                                                         | side ÷ Nail Sp | acing + Start | ing p | oint |       |        |           |              |  |
| row (point)                           | 81      | _          | 1                                                            | ÷              | 1.5           | +     | 1    |       | =      | 54        | points       |  |
| Total points per<br>berm              | 54      | x          | 4                                                            | rows           |               |       |      |       | =      | 217       | points       |  |
| Grand Total Point                     | 21<br>7 | х          | 3                                                            | Berms          |               | 4     |      |       | =      | 652       | points       |  |
| First Berm (RM)                       | 4       | rows       |                                                              | Rate =         | 2133.0        | х     | 4    | x     | 54     | =         | 463,572.00   |  |
| Second Berm (RM)                      | 4       | rows       |                                                              | Rate =         | 2570.0        | х     | 4    | x     | 54     | =         | 558,546.67   |  |
| Third Berm (RM)                       | 4       | rows       |                                                              | Rate =         | 2570.0        | х     | 4    | х     | 54     | = 1       | 558,546.67   |  |
|                                       |         |            |                                                              |                |               |       |      | Total | cost R | M         | 1,580,665.33 |  |

# Case 6

| Unit Price per<br>number of nail (RM) | 18 m | = 3060     | = 3060 $15 m = 2856.5$ $12 m = 2570$ $9 m = 2133$ $6 m = 1560$ |                |               |        |      |       |        | 3 m = 849 |              |
|---------------------------------------|------|------------|----------------------------------------------------------------|----------------|---------------|--------|------|-------|--------|-----------|--------------|
| Wall Length                           | 125  | m          |                                                                |                |               |        |      |       |        |           |              |
| Nail Spacing                          | 1.5  | m          |                                                                |                |               |        |      |       |        |           |              |
| Berm                                  | 2    | no./nos.   |                                                                |                |               |        |      |       |        |           |              |
| Total of point in one                 | Leng | th - Edged | both                                                           | side ÷ Nail Sp | acing + Start | ing po | oint |       |        |           |              |
| row (point)                           | 125  | -          | 1                                                              | ÷              | 1.5           | +      | 1    |       | =      | 84        | points       |
| Total points per<br>berm              | 84   | x          | 4                                                              | rows           |               |        |      |       | =      | 335       | points       |
| Grand Total Point                     | 335  | x          | 2                                                              | Berms          |               |        |      |       | =      | 669       | points       |
| First Berm (RM)                       | 4    | rows       |                                                                | Rate =         | 1560.0        | X      | 4    | х     | 84     | ==        | 522,080.00   |
| Second Berm (RM)                      | 4    | rows       |                                                                | Rate =         | 1560.0        | X      | 4    | X     | 84     | =         | 522,080.00   |
| Third Berm (RM)                       |      | rows       |                                                                | Rate =         |               | X      | 0    | X     | 84     | =         | 0.00         |
|                                       |      |            |                                                                |                |               |        |      | Total | cost R | M         | 1,044,160.00 |

# (v) Nail inclination, spacing, length and cost per number of nails **before** reanalysis to the Case 3, Case 7 and Case 9

| Case 5                                      | Nail<br>Row | Nail inclinatio | Nail<br>Spacing | Tensile<br>Capasity | Bond<br>Diamete | Nail<br>Length (m) | Cost per<br>Number |
|---------------------------------------------|-------------|-----------------|-----------------|---------------------|-----------------|--------------------|--------------------|
| lysis<br>2.11                               |             | n<br>(degrees)  | (m)             | (KN)                | r (m)           |                    | (RM)               |
| eana<br>SS =                                | 1           | 20              | 1.5             | 322                 | 0.125           | 9                  | 2133.00            |
| ore rear<br>3, FOS                          | 2           | 20              | 1.5             | 322                 | 0.125           | 9                  | 2133.00            |
| for 3                                       | 3           | 20              | 1.5             | 322                 | 0.125           | 9                  | 2133.00            |
| Be                                          | 4           | 20              | 1.5             | 322                 | 0.125           | 9                  | 2133.00            |
|                                             |             |                 |                 |                     |                 |                    |                    |
| Sis OS                                      | 1           | 25              | 1.5             | 322                 | 0.125           | 12                 | 2570.00            |
| Before<br>analysi<br>se 7, F(<br>= 2.306    | 2           | 25              | 1.5             | 322                 | 0.125           | 12                 | 2570.00            |
| Before<br>reanalysi<br>ase 7, FC<br>= 2.306 | 3           | 25              | 1.5             | 322                 | 0.125           | 12                 | 2570.00            |
| Be<br>rean<br>Case<br>= 2                   | 4           | 25              | 1.5             | 322                 | 0.125           | 12                 | 2570.00            |

| II              | 1  | 10 | 1.5 | 196 | 0.125 | 15 | 2856.50 |
|-----------------|----|----|-----|-----|-------|----|---------|
| 10.000          | 2  | 10 | 1.5 | 196 | 0.125 | 15 | 2856.50 |
| Case 9, FOS     | 3  | 10 | 1.5 | 196 | 0.125 | 15 | 2856.50 |
| 6 9             | 4  | 10 | 1.5 | 196 | 0.125 | 15 | 2856.50 |
| asc             | 5  | 10 | 1.5 | 196 | 0.125 | 12 | 2570.00 |
| 7sis (          | 6  | 10 | 1.5 | 196 | 0.125 | 12 | 2570.00 |
| 1.5             | 7  | 10 | 1.5 | 196 | 0.125 | 12 | 2570.00 |
| ana             | 8  | 10 | 1.5 | 196 | 0.125 | 12 | 2570.00 |
| fore reanalysis | 9  | 10 | 1.5 | 196 | 0.125 | 12 | 2570.00 |
| o.<br>O.        | 10 | 10 | 1.5 | 196 | 0.125 | 12 | 2570.00 |
| Bef             | 11 | 10 | 1.5 | 196 | 0.125 | 12 | 2570.00 |
|                 | 12 | 10 | 1.5 | 196 | 0.125 | 12 | 2570.00 |

# (vi) Calculation cost before reanalysis to the Case 3, Case 7 and Case 9

# Case 3

| 215       | rows<br>rows            | 1                                     | Berms Rate = Rate =                                 | 2133.0                                                                                                                                  | x<br>x                                                                                                                                                           | 0                                                                                                                                                                             | x .5                                                                                                | = 215<br>54 =<br>54 =                                                                               | points 457,884.00 0.00 0.00                                                                                                                                                                            |
|-----------|-------------------------|---------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 215       | rows                    | 1                                     | Berms Rate =                                        | 2133.0                                                                                                                                  | 9 30000                                                                                                                                                          | 87                                                                                                                                                                            | х .                                                                                                 | 54 =                                                                                                | 457,884.00                                                                                                                                                                                             |
| 215       | х                       | 1                                     | Berms                                               | 2133.0                                                                                                                                  | х                                                                                                                                                                | 4                                                                                                                                                                             |                                                                                                     | PC 19900 FOR 505 12                                                                                 |                                                                                                                                                                                                        |
| 1070 161  | 4450)<br>15040          | 1                                     | N 99 90 2 90 9 0 0 1                                |                                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                               | 0                                                                                                   | = 215                                                                                               | points                                                                                                                                                                                                 |
| 10000 181 | 7-50                    | 9332                                  | NOSECONSTON                                         |                                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                               |                                                                                                     | **************************************                                                              |                                                                                                                                                                                                        |
| 54        | X                       | 4                                     | rows                                                |                                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                               | 0                                                                                                   | = 215                                                                                               | points                                                                                                                                                                                                 |
| 80        | -                       | 1                                     | ÷                                                   | 1.5                                                                                                                                     | +                                                                                                                                                                | 1                                                                                                                                                                             |                                                                                                     | = 54                                                                                                | points                                                                                                                                                                                                 |
| Lengt     | th - Edged              | both                                  | side ÷ Nail Sp                                      | acing + Star                                                                                                                            | ting p                                                                                                                                                           | oint                                                                                                                                                                          |                                                                                                     |                                                                                                     |                                                                                                                                                                                                        |
| 1         | no./nos.                |                                       |                                                     |                                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                               |                                                                                                     |                                                                                                     |                                                                                                                                                                                                        |
| 1.5       | m                       |                                       |                                                     |                                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                               |                                                                                                     |                                                                                                     |                                                                                                                                                                                                        |
| 80        | m                       |                                       |                                                     |                                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                               |                                                                                                     |                                                                                                     |                                                                                                                                                                                                        |
| 18 m      | = 3060                  | 15                                    | 5 m = 2856.5                                        | $12 \ m = 25$                                                                                                                           | 70                                                                                                                                                               | 9 m = 21.                                                                                                                                                                     | 33 (                                                                                                | 6 m = 1560                                                                                          | 3 m = 849                                                                                                                                                                                              |
|           | 80<br>1.5<br>1<br>Lengt | 1.5 m 1 no./nos.  Length - Edged 80 - | 80 m  1.5 m  1 no./nos.  Length - Edged both 80 - 1 | 80       m         1.5       m         1       no./nos.         Length - Edged both side ÷ Nail Sp         80       -         1       ÷ | 80       m         1.5       m         1       no./nos.         Length - Edged both side ÷ Nail Spacing + Start         80       -         1       ÷         1.5 | 80       m         1.5       m         1       no./nos.         Length - Edged both side ÷ Nail Spacing + Starting p         80       -         1       ÷         1.5       + | 80 m  1.5 m  1 no./nos.  Length - Edged both side ÷ Nail Spacing + Starting point  80 - 1 ÷ 1.5 + 1 | 80 m  1.5 m  1 no./nos.  Length - Edged both side ÷ Nail Spacing + Starting point  80 - 1 ÷ 1.5 + 1 | 80       m         1.5       m         1       no./nos.         Length - Edged both side ÷ Nail Spacing + Starting point         80       -       1       ÷       1.5       +       1       =       54 |

| Case /                                |      |           |       |                 |               |        |       |        |        |        |            |
|---------------------------------------|------|-----------|-------|-----------------|---------------|--------|-------|--------|--------|--------|------------|
| Unit Price per<br>number of nail (RM) | 18 m | = 3060    | 15    | 5 m = 2856.5    | 12 m = 25     | 70     | 9 m = | = 2133 | 6 m :  | = 1560 | 3 m = 849  |
| Wall Length                           | 70   | m         |       |                 |               |        |       |        |        |        |            |
| Nail Spacing                          | 1.5  | m         |       |                 |               |        |       |        |        |        |            |
| Berm                                  | 1    | no./nos   |       |                 |               |        |       |        |        |        |            |
| Total of point in one                 | Leng | th - Edge | d bot | h side ÷ Nail S | pacing + Star | ting p | ooint |        |        |        |            |
| row (point)                           | 70   | -         | 1     | ÷               | 1.5           | +      | 1     |        | =      | 47     | points     |
| Total points per<br>berm              | 47   | х         | 4     | rows            |               |        |       |        | =      | 188    | points     |
| Grand Total Point                     | 188  | x         | 1     | Berms           |               |        |       |        |        | 188    | points     |
| First Berm (RM)                       | 4    | rows      |       | Rate =          | 2570.0        | х      | 4     | X      | 47     | =      | 483,160.00 |
| Second Berm (RM)                      |      | rows      |       | Rate =          |               | х      | 0     | X      | 47     | =      | 0.00       |
| Third Berm (RM)                       |      | rows      |       | Rate =          |               | х      | 0     | х      | 47     | =      | 0.00       |
|                                       | (A)  |           |       |                 | A.S.          |        |       | Total  | cost R | M      | 483,160.00 |

Case 9

| Unit Price per<br>number of nail (RM) | 18 m | = 3060     | 15     | 5 m = 2856.5    | 12 m = 25     | 70     | 9 m = | = 2133 | 6 m :  | = 1560 | 3 m = 849    |
|---------------------------------------|------|------------|--------|-----------------|---------------|--------|-------|--------|--------|--------|--------------|
| Wall Length                           | 105  | m          |        |                 |               |        |       |        |        |        |              |
| Nail Spacing                          | 1.5  | m          |        |                 |               |        |       |        |        |        |              |
| Berm                                  | 3    | no./nos.   | ä      |                 |               |        |       |        |        |        |              |
| Total of point in one                 | Leng | th - Edgeo | l botl | h side ÷ Nail S | pacing + Star | ting p | oint  |        |        |        |              |
| row (point)                           | 105  | -          | 1      | ÷               | 1.5           | +      | 1     |        | =      | 70     | points       |
| Total points per<br>berm              | 70   | x          | 4      | rows            |               |        |       |        | =      | 281    | points       |
| Grand Total Point                     | 281  | x          | 3      | Berms           |               |        |       |        | =      | 844    | points       |
| First Berm (RM)                       | 4    | rows       |        | Rate =          | 2856.5        | х      | 4     | X      | 70     | =      | 803,628.67   |
| Second Berm (RM)                      | 4    | rows       |        | Rate =          | 2570.0        | х      | 4     | X      | 70     | =      | 723,026.67   |
| Third Berm (RM)                       | 4    | rows       |        | Rate =          | 2570.0        | х      | 4     | X      | 70     | Ξ      | 723,026.67   |
|                                       |      |            |        |                 |               |        |       | Total  | cost R | М      | 2,249,682.00 |

# (vii) Nail inclination, spacing, length and cost per number of nails **after** reanalysis to the Case 3, Case 7 and Case 9

| ysis Case<br>1.696                            | Nail<br>Row | Nail inclination (degrees) | Nail<br>Spacing<br>(m) | Tensile<br>Capasity<br>(KN) | Bond<br>Diameter<br>(m) | Nail<br>Length<br>(m) | Cost per<br>Number<br>(RM) |
|-----------------------------------------------|-------------|----------------------------|------------------------|-----------------------------|-------------------------|-----------------------|----------------------------|
| न्द्र ॥                                       | 1           | 15                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |
| rean                                          | 2           | 15                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |
| ig.                                           | 3           | 15                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |
| After 3,                                      | 4           | 15                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |
|                                               |             |                            |                        |                             |                         |                       |                            |
| sis<br>OS                                     | 1           | 20                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |
| After<br>reanalysis<br>Case 7, FOS<br>= 1.534 | 2           | 20                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |
| After<br>analyse 7, F                         | 3           | 20                         | 1.5                    | 322                         | 0.125                   | 6                     | 1560.00                    |
| Ca Ca                                         | 4           | 20                         | 1.5                    | 322                         | 0.125                   | 3                     | 849.00                     |
|                                               |             |                            |                        |                             |                         |                       |                            |
| .528                                          | 1           | 20                         | 1.5                    | 196                         | 0.125                   | 12                    | 2570.00                    |
| <u> </u>                                      | 2           | 20                         | 1.5                    | 196                         | 0.125                   | 12                    | 2570.00                    |
| S                                             | 3           | 20                         | 1.5                    | 196                         | 0.125                   | 12                    | 2570.00                    |
| FOS                                           | 4           | 20                         | 1.5                    | 196                         | 0.125                   | 12                    | 2570.00                    |
| 6,                                            | 5           | 20                         | 1.5                    | 196                         | 0.125                   | 9                     | 2133.00                    |
| Case                                          | 6           | 20                         | 1.5                    | 196                         | 0.125                   | 9                     | 2133.00                    |
|                                               | 7           | 20                         | 1.5                    | 196                         | 0.125                   | 9                     | 2133.00                    |
| S                                             | 8           | 20                         | 1.5                    | 196                         | 0.125                   | 9                     | 2133.00                    |
| eanalysis                                     | 9           | 20                         | 1.5                    | 196                         | 0.125                   | 9                     | 2133.00                    |
| re                                            | 10          | 20                         | 1.5                    | 196                         | 0.125                   | 9                     | 2133.00                    |
| ţe                                            | 11          | 20                         | 1.5                    | 196                         | 0.125                   | 9                     | 2133.00                    |
| Af                                            | 12          | 20                         | 1.5                    | 196                         | 0.125                   | 9                     | 2133.00                    |

# (viii) Calculation cost after reanalysis to the Case 3, Case 7 and Case 9

# Case 3

|                                       |      |            |      |                |               |       |       | Total  | cost R | M      | 334,880.  | .00 |
|---------------------------------------|------|------------|------|----------------|---------------|-------|-------|--------|--------|--------|-----------|-----|
| Third Berm (RM)                       |      | rows       |      | Rate =         |               | x     | 0     | x      | 54     | =      | 0.        | .00 |
| Second Berm (RM)                      |      | rows       |      | Rate =         |               | x     | 0     | X      | 54     | =      | 0.        | .00 |
| First Berm (RM)                       | 4    | rows       |      | Rate =         | 1560.0        | x     | 4     | X      | 54     | =      | 334,880.  | .00 |
| Grand Total Point                     | 215  | х          | 1    | Berms          |               |       |       |        | =      | 215    | points    |     |
| Total points per<br>berm              | 54   | X          | 4    | Rows           |               |       |       |        | =      | 215    | points    |     |
| row (point)                           | 80   | =          | 1    | ÷              | 1.5           | +     | 1     |        | =      | 54     | points    |     |
| Total of point in one                 | Leng | th - Edged | both | side ÷ Nail Sp | acing + Start | ing p | oint  |        |        |        |           |     |
| Berm                                  | 1    | no./nos.   |      |                |               |       |       |        |        |        |           |     |
| Nail Spacing                          | 1.5  | m          |      |                |               |       |       |        |        |        |           |     |
| Wall Length                           | 80   | m          |      |                |               |       |       |        |        |        |           |     |
| Unit Price per<br>number of nail (RM) | 18 m | = 3060     | 15   | m = 2856.5     | $12 \ m = 25$ | 70    | 9 m = | : 2133 | 6 m :  | = 1560 | 3 m = 849 |     |

### Case 7

|                                       |                                               |            |      |                |               |       |       | Total | cost R | M      | 259,863.00 |
|---------------------------------------|-----------------------------------------------|------------|------|----------------|---------------|-------|-------|-------|--------|--------|------------|
| Third Berm (RM)                       |                                               | rows       |      | Rate =         |               | X     | 0     | X     | 47     | =      | 0.00       |
| Second Berm (RM)                      | 1                                             | rows       |      | Rate =         | 849.0         | X     | 1     | X     | 47     | =      | 39,903.00  |
| First Berm (RM)                       | 3                                             | rows       |      | Rate =         | 1560.0        | X     | 3     | X     | 47     | =      | 219,960.00 |
| Grand Total Point                     | 188                                           | x          | 1    | Berms          |               |       |       |       | =      | 188    | points     |
| Total points per<br>berm              | 47                                            | х          | 4    | Rows           |               |       |       |       | =      | 188    | points     |
| row (point)                           | 70                                            | -          | 1    | ÷              | 1.5           | +     | 1     |       | =      | 47     | points     |
| Total of point in one                 | Leng                                          | th - Edged | both | side ÷ Nail Sp | acing + Start | ing p | oint  |       |        |        |            |
| Berm                                  | 1                                             | no./nos.   |      |                |               |       |       |       |        |        |            |
| Nail Spacing                          | 1.5                                           | m          |      |                |               |       |       |       |        |        |            |
| Wall Length                           | 70                                            | m          |      |                |               |       |       |       |        |        |            |
| Unit Price per<br>number of nail (RM) | 18 m                                          | = 3060     | 1.   | 5 m = 2856.5   | 12 m = 25     | 70    | 9 m = | 2133  | 6 m :  | = 1560 | 3 m = 849  |
| Case /                                | · <u>· · · · · · · · · · · · · · · · · · </u> |            |      |                |               |       |       |       |        |        |            |

| (44,2)                             |       | 10115    |        | 11110         | 2100.0       |        | 2.E.     | 1,0000 71 127 | cost R | Section 10 of 10 | 1,923,194.67 |
|------------------------------------|-------|----------|--------|---------------|--------------|--------|----------|---------------|--------|------------------|--------------|
| Third Berm (RM)                    | 4     | rows     |        | Rate =        | 2133.0       | Х      | 4        | х             | 70     | =                | 600,084.00   |
| Second Berm (RM)                   | 4     | rows     |        | Rate =        | 2133.0       | x      | 4        | X             | 70     | =                | 600,084.00   |
| First Berm (RM)                    | 4     | rows     |        | Rate =        | 2570.0       | X      | 4        | X             | 70     | =                | 723,026.67   |
| Grand Total Point                  | 281   | X        | 3      | Berms         |              | 200    |          |               | =      | 844              | points       |
| Total points per berm              | 70    | x        | 4      | rows          |              |        |          |               | =      | 281              | points       |
| (point)                            | 105   |          | 1      | ÷             | 1.5          | +      | 1        |               | =      | 70               | points       |
| Total of point in one row          | Lengt | h - Edge | d both | n side ÷ Nail | Spacing +    | Starti | ng point |               |        |                  |              |
| Berm                               | 3     | no./nos  | S.     |               |              |        |          |               |        |                  |              |
| Nail Spacing                       | 1.5   | m        |        |               |              |        |          |               |        |                  |              |
| Wall Length                        | 105   | m        |        |               |              |        |          |               |        |                  |              |
| Unit Price per number of nail (RM) | 18 m  | = 3060   | 15 1   | n = 2856.5    | $12 \ m = 2$ | 570    | 9 m =    | 2133          | 6 m =  | = 1560           | 3 m = 849    |

(ix) Nail inclination, spacing, length and cost per number of nails **before** reanalysis to the Case 2, Case 4, Case 5, Case 8 and Case 10

|                           | Nail<br>Row | Nail inclination (degrees) | Nail<br>Spacing<br>(m) | Tensile<br>Capasity<br>(KN) | Bond<br>Diameter<br>(m) | Nail Length<br>(m) | Cost per<br>Number<br>(RM) |
|---------------------------|-------------|----------------------------|------------------------|-----------------------------|-------------------------|--------------------|----------------------------|
| 2,                        | 1           | 15                         | 1.5                    | 322                         | 0.125                   | 9                  | 2,133.00                   |
| Case                      | 2           | 15                         | 1.5                    | 322                         | 0.125                   | 9                  | 2,133.00                   |
| ysis (1.997)              | 3           | 15                         | 1.5                    | 322                         | 0.125                   | 9                  | 2,133.00                   |
| _                         | 4           | 15                         | 1.5                    | 322                         | 0.125                   | 9                  | 2,133.00                   |
| ana<br>S =                | 5           | 15                         | 1.5                    | 322                         | 0.125                   | 9                  | 2,133.00                   |
|                           | 6           | 15                         | 1.5                    | 322                         | 0.125                   | 9                  | 2,133.00                   |
| Before                    | 7           | 15                         | 1.5                    | 322                         | 0.125                   | 9                  | 2,133.00                   |
| Be                        | 8           | 15                         | 1.5                    | 322                         | 0.125                   | 6                  | 1,560.00                   |
|                           |             |                            |                        |                             |                         |                    | 9                          |
| e 4,                      | 1           | 25                         | 1.0                    | 322                         | 0.125                   | 12                 | 2856.50                    |
| Case                      | 2           | 25                         | 1.0                    | 322                         | 0.125                   | 12                 | 2856.50                    |
|                           | 3           | 25                         | 1.0                    | 322                         | 0.125                   | 12                 | 2856.50                    |
| alys<br> = 1.             | 4           | 25                         | 1.0                    | 322                         | 0.125                   | 12                 | 2856.50                    |
|                           | 5           | 25                         | 1.0                    | 322                         | 0.125                   | 12                 | 2856.50                    |
|                           | 6           | 25                         | 1.0                    | 322                         | 0.125                   | 12                 | 2856.50                    |
| Before                    | 7           | 25                         | 1.0                    | 322                         | 0.125                   | 12                 | 2856.50                    |
| Be                        | 8           | 25                         | 1.0                    | 322                         | 0.125                   | 12                 | 2856.50                    |
| 3 <b>-</b>                |             |                            |                        |                             |                         |                    |                            |
| .813                      | 1           | 15                         | 1.0                    | 196                         | 0.125                   | 12                 | 2570.00                    |
| <u> </u>                  | 2           | 15                         | 1.0                    | 196                         | 0.125                   | 12                 | 2570.00                    |
| S S                       | 3           | 15                         | 1.0                    | 196                         | 0.125                   | 12                 | 2570.00                    |
| FOS                       | 4           | 15                         | 1.0                    | 196                         | 0.125                   | 12                 | 2570.00                    |
| e 5,                      | 5           | 15                         | 1.0                    | 196                         | 0.125                   | 12                 | 2570.00                    |
| Case                      | 6           | 15                         | 1.0                    | 196                         | 0.125                   | 12                 | 2570.00                    |
| 7,730                     | 7           | 15                         | 1.0                    | 196                         | 0.125                   | 12                 | 2570.00                    |
| reanalysis                | 8           | 15                         | 1.0                    | 196                         | 0.125                   | 12                 | 2570.00                    |
| l eg                      | 9           | 15                         | 1.0                    | 196                         | 0.125                   | 12                 | 2570.00                    |
|                           | 10          | 15                         | 1.0                    | 196                         | 0.125                   | 12                 | 2570.00                    |
| Before                    | 11          | 15                         | 1.0                    | 196                         | 0.125                   | 12                 | 2570.00                    |
| Be                        | 12          | 15                         | 1.0                    | 196                         | 0.125                   | 12                 | 2570.00                    |
| ×,                        |             |                            |                        | ×                           | × .                     |                    | 8                          |
| Case 2                    | 1           | 10                         | 1.2                    | 322                         | 0.125                   | 15                 | 2856.50                    |
|                           | 2           | 10                         | 1.2                    | 322                         | 0.125                   | 15                 | 2856.50                    |
| eanalysis C<br>OS = 1.628 | 3           | 10                         | 1.2                    | 322                         | 0.125                   | 15                 | 2856.50                    |
| E                         | 4           | 10                         | 1.2                    | 322                         | 0.125                   | 15                 | 2856.50                    |
| FOS                       | 5           | 10                         | 1.2                    | 322                         | 0.125                   | 15                 | 2856.50                    |
| Fe F                      | 7           | 10                         | 1.2                    | 322                         | 0.125                   | 15                 | 2856.50                    |
| Before                    | /           | 10                         | 1.2                    | 322                         | 0.125                   | 15                 | 2856.50                    |
|                           | 8           | 10                         | 1.2                    | 322                         | 0.125                   | 15                 | 2856.50                    |
| 9                         | 1           | 10                         | 1.5                    | 322                         | 0.125                   | 12                 | 2570.00                    |
| Case                      | 2           | 10                         | 1.5                    | 322                         | 0.125                   | 12                 | 2570.00                    |
| ysis C<br>1.597           | 3           | 10                         | 1.5                    | 322                         | 0.125                   | 12                 | 2570.00                    |
| <u>चि</u> ॥               | 4           | 10                         | 1.5                    | 322                         | 0.125                   | 12                 | 2570.00                    |
| ean<br>OS                 | 5           | 10                         | 1.0                    | 322                         | 0.125                   | 9                  | 2133.00                    |
| _ =                       | 6           | 10                         | 1.0                    | 322                         | 0.125                   | 9                  | 2133.00                    |
| Before<br>10,             | 7           | 10                         | 1.0                    | 322                         | 0.125                   | 9                  | 2133.00                    |
|                           |             |                            |                        |                             |                         |                    |                            |

# (x) Calculation cost **before** reanalysis to the Case 2, Case 4, Case 5, Case 8 and Case 10

# Case 2

|                                    |       |          | _      |            |           |              |         | Total | cost R | M      | 1,214,837.00 |
|------------------------------------|-------|----------|--------|------------|-----------|--------------|---------|-------|--------|--------|--------------|
| Third Berm (RM)                    | 1     | rows     |        | Rate =     | 1560.0    | X            | 1       | X     | 74     | =      | 114,920.00   |
| Second Berm (RM)                   | 3     | rows     |        | Rate =     | 2133.0    | X            | 3       | X     | 74     | =      | 471,393.00   |
| First Berm (RM)                    | 4     | rows     |        | Rate =     | 2133.0    | X            | 4       | X     | 74     | =      | 628,524.00   |
| Grand Total Point                  | 295   | х        | 2      | Berms      |           | 110 <u>1</u> |         |       | =      | 589    | points       |
| Total points per berm              | 74    | X        | 4      | rows       |           |              |         |       | =      | 295    | points       |
| (point)                            | 110   | -        | 1      | ÷          | 1.5       | +            | 1       |       | =      | 74     | points       |
| Total of point in one row          | Lengt | h - Edge | d both | side ÷ Nai | Spacing + | Starti       | ng poin | t     |        |        |              |
| Berm                               | 2     | no./nos  | S.     |            |           |              |         |       |        |        |              |
| Nail Spacing                       | 1.5   | m        |        |            |           |              |         |       |        |        |              |
| Wall Length                        | 110   | m        |        |            |           |              |         |       |        |        |              |
| Unit Price per number of nail (RM) | 18 m  | = 3060   | 15 1   | n = 2856.5 | 12 m = 2  | 570          | 9 m =   | 2133  | 6 m =  | = 1560 | 3 m = 849    |

# Case 4

|                                    |       |          |        |               |              |        |          | Total | cost R | M      | 2,672,800.00 |
|------------------------------------|-------|----------|--------|---------------|--------------|--------|----------|-------|--------|--------|--------------|
| Third Berm (RM)                    |       | rows     |        | Rate =        |              | X      | 0        | X     | 130    | =      | 0.00         |
| Second Berm (RM)                   | 4     | rows     |        | Rate =        | 2570.0       | X      | 4        | X     | 130    | =      | 1,336,400.00 |
| First Berm (RM)                    | 4     | rows     |        | Rate =        | 2570.0       | x      | 4        | X     | 130    | =      | 1,336,400.00 |
| Grand Total Point                  | 520   | х        | 2      | Berms         |              |        |          |       | =      | 1040   | points       |
| Total points per berm              | 130   | X        | 4      | rows          |              |        |          |       | =      | 520    | points       |
| (point)                            | 130   | -        | 1      | ÷             | 1.0          | +      | 1        |       | =      | 130    | points       |
| Total of point in one row          | Lengt | h - Edge | d both | n side ÷ Nail | Spacing +    | Starti | ng point |       |        |        |              |
| Berm                               | 2     | no./nos  | S.     |               |              |        |          |       |        |        |              |
| Nail Spacing                       | 1.0   | m        |        |               |              |        |          |       |        |        |              |
| Wall Length                        | 130   | m        |        |               |              |        |          |       |        |        |              |
| Unit Price per number of nail (RM) | 18 m  | = 3060   | 15 ı   | n = 2856.5    | $12 \ m = 2$ | 570    | 9 m = 2  | 2133  | 6 m =  | = 1560 | 3 m = 849    |

| Unit Price per number of nail (RM) | 18 m  | = 3060    | 15 1   | m = 2856.5   | 12 m = 2    | 570    | 9 m =   | 2133  | 6 m =  | = 1560 | 3 m = 849    |
|------------------------------------|-------|-----------|--------|--------------|-------------|--------|---------|-------|--------|--------|--------------|
| Wall Length                        | 160   | m         |        |              |             |        |         |       |        |        |              |
| Nail Spacing                       | 1.0   | m         |        |              |             |        |         |       |        |        |              |
| Berm                               | 3     | no./nos   | s.     |              |             |        |         |       |        |        |              |
| Total of point in one row          | Lengt | th - Edge | d botl | n side ÷ Nai | l Spacing + | Starti | ng poin | t     |        |        |              |
| (point)                            | 160   | -         | 1      | ÷            | 1.0         | +      | 1       |       | =      | 160    | points       |
| Total points per berm              | 160   | X         | 4      | rows         |             |        |         |       | =      | 640    | points       |
| Grand Total Point                  | 640   | x         | 3      | Berms        |             |        |         |       | Ξ      | 1920   | points       |
| First Berm (RM)                    | 4     | rows      |        | Rate =       | 2570.0      | х      | 4       | х     | 160    | 1=1    | 1,644,800.00 |
| Second Berm (RM)                   | 4     | rows      |        | Rate =       | 2570.0      | х      | 4       | X     | 160    | =      | 1,644,800.00 |
| Third Berm (RM)                    | 4     | rows      |        | Rate =       | 2570.0      | х      | 4       | X     | 160    | =      | 1,644,800.00 |
|                                    |       | 78        |        |              | (a-         | 200    |         | Total | cost R | M      | 4,934,400.00 |

# Case 8

| ·                                  |       |          |        |               |               |        |         | Total | l cost R | M      | 3,145,958.67 |
|------------------------------------|-------|----------|--------|---------------|---------------|--------|---------|-------|----------|--------|--------------|
| Third Berm (RM)                    |       | rows     |        | Rate =        |               | X      | 0       | X     | 138      | =      | 0.00         |
| Second Berm (RM)                   | 4     | rows     |        | Rate =        | 2856.5        | X      | 4       | X     | 138      | =      | 1,572,979.33 |
| First Berm (RM)                    | 4     | rows     |        | Rate =        | 2856.5        | X      | 4       | X     | 138      | =      | 1,572,979.33 |
| Grand Total Point                  | 551   | ×        | 2      | Berms         |               |        |         |       | =        | 1101   | points       |
| Total points per berm              | 138   | X        | 4      | rows          |               |        |         |       | =        | 551    | points       |
| (point)                            | 165   | -        | 1      | ÷             | 1.2           | +      | 1       |       | =        | 138    | points       |
| Total of point in one row          | Lengt | h - Edge | d botl | n side ÷ Nail | Spacing +     | Starti | ng poin | t     |          |        |              |
| Berm                               | 2     | no./nos  | s.     |               |               |        |         |       |          |        |              |
| Nail Spacing                       | 1.2   | m        |        |               |               |        |         |       |          |        |              |
| Wall Length                        | 165   | m        |        |               |               |        |         |       |          |        |              |
| Unit Price per number of nail (RM) | 18 m  | = 3060   | 15 1   | n = 2856.5    | $12 \ m = 2.$ | 570    | 9 m =   | 2133  | 6 m =    | = 1560 | 3 m = 849    |

| Unit Price per number of nail (RM) | 18 m | = 3060        | 15     | m = 2856.5    | $12 \ m = 2.$ | 570    | 9 m : | = 2133 | 6 m =   | = 1560 | 3 m = 849    |
|------------------------------------|------|---------------|--------|---------------|---------------|--------|-------|--------|---------|--------|--------------|
| Wall Length                        | 155  | m             |        |               |               |        |       |        |         |        |              |
| Nail Spacing                       | 1.5  | m and         | 1      | m             |               |        |       |        |         |        |              |
| Berm                               | 2    | no./nos.      | V.     |               |               |        |       |        |         |        |              |
| Total of point in one              | Leng | th - Edged bo | th sic | de ÷ Nail Spa | cing + Start  | ing po | oint  |        |         |        |              |
| row (point)                        | 155  | 3 <b>2</b>    | 1      | ÷             | 1.5           | +      | 1     |        | =       | 104    | points       |
| Total points per berm              | 104  | x             | 4      | Rows          |               |        |       |        | =       | 415    | points       |
| Total of point in                  | Leng | th - Edged bo | th sic | de ÷ Nail Spa | cing + Start  | ing po | oint  |        |         |        |              |
| second row (point)                 | 155  | 2=            | 1      | ÷             | 1             | +      | 1     |        | =       | 155    | points       |
| Total Point per berm               | 155  | x             | 4      | Rows          |               |        |       |        | =       | 620    | points       |
| Grand Total Point                  |      |               |        |               |               |        |       |        |         | 1035   | points       |
| First Berm (RM)                    | 4    | rows          |        | Rate =        | 2570          | х      | 4     | X      | 104     | =      | 1,065,693.33 |
| Second Berm (RM)                   | 4    | rows          |        | Rate =        | 2133          | х      | 4     | Х      | 155     | =      | 1,322,460.00 |
|                                    |      | 95            |        |               |               |        |       | Т      | otal co | st RM  | 2,388,153.33 |

(xi) Nail inclination, spacing, length and cost per number of nails **after** reanalysis to the Case 2, Case 4, Case 5, Case 8 and Case 10

|                          | Nail<br>Row | Nail inclination (degrees) | Nail<br>Spacing<br>(m) | Tensile<br>Capasity<br>(KN) | Bond<br>Diameter<br>(m) | Nail<br>Length (m) | Cost per<br>Number<br>(RM) |
|--------------------------|-------------|----------------------------|------------------------|-----------------------------|-------------------------|--------------------|----------------------------|
| 4                        | 1           | 20                         | 2.0                    | 322                         | 0.125                   | 9                  | 2,133.00                   |
| Case 2,                  | 2           | 20                         | 2.0                    | 322                         | 0.125                   | 9                  | 2,133.00                   |
|                          | 3           | 20                         | 2.0                    | 322                         | 0.125                   | 9                  | 2,133.00                   |
| reanalysis<br>FOS = 1.50 | 4           | 20                         | 2.0                    | 322                         | 0.125                   | 9                  | 2,133.00                   |
| ana<br>S =               | 5           | 20                         | 2.0                    | 322                         | 0.125                   | 6                  | 1,560.00                   |
| FOS                      | 6           | 20                         | 2.0                    | 322                         | 0.125                   | 6                  | 1,560.00                   |
| After                    | 7           | 20                         | 2.0                    | 322                         | 0.125                   | 6                  | 1,560.00                   |
| A                        | 8           | 20                         | 2.0                    | 322                         | 0.125                   | 6                  | 1560.00                    |
|                          |             |                            |                        |                             |                         |                    |                            |
| 4,                       | 1           | 20                         | 1.5                    | 322                         | 0.125                   | 12                 | 2856.50                    |
| Case                     | 2           | 20                         | 1.5                    | 322                         | 0.125                   | 12                 | 2856.50                    |
|                          | 3           | 20                         | 1.5                    | 322                         | 0.125                   | 12                 | 2856.50                    |
| alysi<br>= 1.            | 4           | 20                         | 1.5                    | 322                         | 0.125                   | 12                 | 2856.50                    |
| ~~                       | 5           | 20                         | 1.5                    | 322                         | 0.125                   | 12                 | 2856.50                    |
|                          | 6           | 20                         | 1.5                    | 322                         | 0.125                   | 9                  | 2133.00                    |
| After                    | 7           | 20                         | 1.5                    | 322                         | 0.125                   | 9                  | 2133.00                    |
| <b>▼</b>                 | 8           | 20                         | 1.5                    | 322                         | 0.125                   | 9                  | 2133.00                    |
|                          |             |                            |                        |                             |                         |                    |                            |
| 23                       | 1           | 20                         | 1.5                    | 196                         | 0.125                   | 9                  | 2133.00                    |
| 1.523                    | 2           | 20                         | 1.5                    | 196                         | 0.125                   | 9                  | 2133.00                    |
| 11                       | 3           | 20                         | 1.5                    | 196                         | 0.125                   | 9                  | 2133.00                    |
| FOS                      | 4           | 20                         | 1.5                    | 196                         | 0.125                   | 9                  | 2133.00                    |
| Ď,                       | 5           | 20                         | 1.5                    | 196                         | 0.125                   | 9                  | 2133.00                    |
| Case                     | 6           | 20                         | 1.5                    | 196                         | 0.125                   | 9                  | 2133.00                    |
| 1 133.0                  | 7           | 20                         | 1.5                    | 196                         | 0.125                   | 9                  | 2133.00                    |
| reanalysis               | 8           | 20                         | 1.5                    | 196                         | 0.125                   | 9                  | 2133.00                    |
| ana                      | 9           | 20                         | 1.5                    | 196                         | 0.125                   | 9                  | 2133.00                    |
|                          | 10          | 20                         | 1.5                    | 196                         | 0.125                   | 9                  | 2133.00                    |
| After                    | 11          | 20                         | 1.5                    | 196                         | 0.125                   | 9                  | 2133.00                    |
| •                        | 12          | 20                         | 1.5                    | 196                         | 0.125                   | 9                  | 2133.00                    |
|                          |             |                            |                        |                             |                         |                    |                            |
| <b>%</b>                 | 1           | 20                         | 1.5                    | 322                         | 0.125                   | 15                 | 2856.50                    |
| Case                     | 2           | 20                         | 1.5                    | 322                         | 0.125                   | 15                 | 2856.50                    |
| ysis C<br>1.549          | 3           | 20                         | 1.5                    | 322                         | 0.125                   | 15                 | 2856.50                    |
| reanalysis<br>FOS = 1.54 | 4           | 20                         | 1.5                    | 322                         | 0.125                   | 15                 | 2856.50                    |
| reana<br>FOS :           | 5           | 20                         | 1.5                    | 322                         | 0.125                   | 12                 | 2570.00                    |
|                          | 6           | 20                         | 1.5                    | 322                         | 0.125                   | 12                 | 2570.00                    |
| After                    | 7           | 20                         | 1.5                    | 322                         | 0.125                   | 12                 | 2570.00                    |
|                          | 8           | 20                         | 1.5                    | 322                         | 0.125                   | 12                 | 2570.00                    |
|                          |             |                            |                        |                             |                         |                    |                            |
| 10,                      | 1           | 15                         | 1.8                    | 322                         | 0.125                   | 12                 | 2,570.00                   |
| Case<br>91               | 2           | 15                         | 1.8                    | 322                         | 0.125                   | 12                 | 2,570.00                   |
| sis C<br>1.591           | 3           | 15                         | 1.8                    | 322                         | 0.125                   | 12                 | 2,570.00                   |
| <b>▶</b> 11              | 4           | 15                         | 1.8                    | 322                         | 0.125                   | 12                 | 2,570.00                   |
| reanal<br>FOS =          | 5           | 15                         | 1.8                    | 322                         | 0.125                   | 12                 | 2,570.00                   |
| Call Call                | 6           | 15                         | 1.8                    | 322                         | 0.125                   | 12                 | 2,570.00                   |
| After                    | 7           | 15                         | 1.8                    | 322                         | 0.125                   | 12                 | 2,570.00                   |
| <b>▼</b>                 | 8           | 15                         | 1.8                    | 322                         | 0.125                   | 12                 | 2,570.00                   |

# (xii) Calculation cost **after** reanalysis to the Case 2, Case 4, Case 5, Case 8 and Case 10

# Case 2

|                                    |       |          |        |             |           |        |         | Total | cost R | M      | 819,846.00 |
|------------------------------------|-------|----------|--------|-------------|-----------|--------|---------|-------|--------|--------|------------|
| Third Berm (RM)                    | 5     | rows     |        | Rate =      | ×         | x      | 0       | X     | 56     | =      | 0.00       |
| Second Berm (RM)                   | 4     | rows     |        | Rate =      | 1560.0    | x      | 4       | X     | 56     | =      | 346,320.00 |
| First Berm (RM)                    | 4     | rows     |        | Rate =      | 2133.0    | x      | 4       | X     | 56     | =      | 473,526.00 |
| Grand Total Point                  | 222   | х        | 2      | Berms       |           | S.     |         |       | =      | 444    | points     |
| Total points per berm              | 56    | x        | 4      | rows        |           |        |         |       | =      | 222    | points     |
| (point)                            | 110   | -        | 1      | ÷           | 2.0       | +      | 1       |       | =      | 56     | points     |
| Total of point in one row          | Lengt | h - Edge | d both | side ÷ Nail | Spacing + | Starti | ng poin | t     |        |        |            |
| Berm                               | 2     | no./nos  | S.     |             |           |        |         |       |        |        |            |
| Nail Spacing                       | 2.0   | m        |        |             |           |        |         |       |        |        |            |
| Wall Length                        | 110   | m        |        |             |           |        |         |       |        |        |            |
| Unit Price per number of nail (RM) | 18 m  | = 3060   | 15 r   | n = 2856.5  | 12 m = 2  | 570    | 9 m =   | 2133  | 6 m =  | = 1560 | 3 m = 849  |

# Case 4

| Third Berm (RM)                    |       | rows     |        | Rate =        |              | x      | 0        | X    | 87    | =      | 0.00         |
|------------------------------------|-------|----------|--------|---------------|--------------|--------|----------|------|-------|--------|--------------|
| Second Berm (RM)                   | 3     | rows     |        | Rate =        | 2133.0       | x      | 3        | X    | 87    | =      | 556,713.00   |
| First Berm (RM)                    | 5     | rows     |        | Rate =        | 2570.0       | x      | 5        | X    | 87    | =      | 1,117,950.00 |
| Grand Total Point                  | 348   | х        | 2      | Berms         | 900          | -50    |          |      | =     | 696    | points       |
| Total points per berm              | 87    | X        | 4      | Rows          |              |        |          |      | =     | 348    | points       |
| (point)                            | 130   | -        | 1      | ÷             | 1.5          | +      | 1        |      | =     | 87     | points       |
| Total of point in one row          | Lengt | h - Edge | d both | n side ÷ Nail | Spacing +    | Starti | ng point |      |       |        |              |
| Berm                               | 2     | no./no   | s.     |               |              |        |          |      |       |        |              |
| Nail Spacing                       | 1.5   | m        |        |               |              |        |          |      |       |        |              |
| Wall Length                        | 130   | m        |        |               |              |        |          |      |       |        |              |
| Unit Price per number of nail (RM) | 18 m  | = 3060   | 15 1   | n = 2856.5    | $12 \ m = 2$ | 570    | 9 m =    | 2133 | 6 m = | = 1560 | 3 m = 849    |

| Unit Price per number of nail (RM) | 18 m  | = 3060   | 15 r   | n = 2856.5    | $12 \ m = 2$ | 570    | 9 m =    | 2133  | 6 m =  | = 1560 | 3 m = 849    |
|------------------------------------|-------|----------|--------|---------------|--------------|--------|----------|-------|--------|--------|--------------|
| Wall Length                        | 160   | m        |        |               |              |        |          |       |        |        |              |
| Nail Spacing                       | 1.5   | m        |        |               |              |        |          |       |        |        |              |
| Berm                               | 3     | no./nos  | s.     |               |              |        |          |       |        |        |              |
| Total of point in one row          | Lengt | h - Edge | d both | n side ÷ Nail | Spacing +    | Starti | ng point | t     |        |        |              |
| (point)                            | 160   | -        | 1      | ÷             | 1.5          | +      | 1        |       | =      | 107    | points       |
| Total points per berm              | 107   | x        | 4      | Rows          |              |        |          |       | =      | 428    | points       |
| Grand Total Point                  | 428   | x        | 3      | Berms         |              |        |          |       | =      | 1284   | points       |
| First Berm (RM)                    | 4     | rows     |        | Rate =        | 2133.0       | x      | 4        | х     | 107    | =      | 912,924.00   |
| Second Berm (RM)                   | 4     | rows     |        | Rate =        | 2133.0       | X      | 4        | x     | 107    | =      | 912,924.00   |
| Third Berm (RM)                    | 4     | rows     |        | Rate =        | 2133.0       | X      | 4        | х     | 107    | =      | 912,924.00   |
| 8                                  |       |          |        |               |              |        | -        | Total | cost R | M      | 2,738,772.00 |

| Unit Price per number of nail (RM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 m                           | = 3060                     | 15 n         | n = 2856.5          | $12 \ m = 2.$ | 570         | 9 m =        | 2133   | 6 m =        | 1560            | 3 m = 849                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|--------------|---------------------|---------------|-------------|--------------|--------|--------------|-----------------|--------------------------|
| Wall Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 165                            | m                          |              |                     |               |             |              |        |              |                 |                          |
| Nail Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5                            | m                          |              |                     |               |             |              |        |              |                 |                          |
| Berm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                              | no./nos                    | ş.           |                     |               |             |              |        |              |                 |                          |
| Total of point in one row                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lengt                          | h - Edge                   | d both       | n side ÷ Nail       | Spacing +     | Starti      | ng poin      | t      |              |                 |                          |
| (point)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 165                            | -                          | 1            | ÷                   | 1.5           | +           | 1            |        | =            | 110             | points                   |
| Total points per berm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110                            | X                          | 4            | Rows                |               |             |              |        | =            | 441             | points                   |
| Grand Total Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 441                            | х                          | 2            | Berms               |               | 95          |              |        | =            | 883             | points                   |
| First Berm (RM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                              | rows                       |              | Rate =              | 2856.5        | х           | 4            | x      | 110          | =               | 1,260,668.67             |
| Second Berm (RM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                              | rows                       |              | Rate =              | 2570.0        | x           | 4            | x      | 110          | =               | 1,134,226.67             |
| Third Berm (RM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | rows                       |              | Rate =              |               | x           | 0            | x      | 110          | =               | 0.00                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |              |                     |               |             |              | Total  | cost R       | M               | 2,394,895.33             |
| Case 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                            |              |                     |               |             |              |        |              |                 |                          |
| Unit Price per number of nail (RM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 m                           | = 3060                     | 15 n         | n = 2856.5          | $12 \ m = 2.$ | 570         | 9 m =        | 2133   | 6 m =        | : 1560          | 3 m = 849                |
| Wall Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 155                            | m                          |              |                     |               |             |              |        |              |                 |                          |
| Nail Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.8                            | m                          |              |                     |               |             |              |        |              |                 |                          |
| Berm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7092011                        | 7                          |              |                     |               |             |              |        |              |                 |                          |
| A CONTRACTOR OF THE CONTRACTOR | 2                              | no./nos                    | S.           |                     |               |             |              |        |              |                 |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                            | 200 March 2004             | NO.000 T 500 | n side ÷ Nail       | Spacing +     | Starti      | ng poin      | t      |              |                 |                          |
| Total of point in one row (point)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                            | 200 March 2004             | NO.000 T 500 | n side ÷ Nail<br>÷  | Spacing +     | Starti<br>+ | ng poin<br>1 | t      | =            | 87              | points                   |
| Total of point in one row                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lengt                          | h - Edge                   | d both       |                     |               |             |              | t      | =            | 87<br>346       | points                   |
| Total of point in one row (point)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lengt<br>155                   | h - Edge                   | d both       | ÷                   |               |             |              | t      | 833.363      |                 |                          |
| Total of point in one row (point)  Total points per berm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lengt<br>155<br>87             | h - Edge<br>-<br>x         | d both 1 4   | ÷                   |               |             |              | t<br>x | =            | 346             | points                   |
| Total of point in one row (point)  Total points per berm  Grand Total Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lengt<br>155<br>87<br>346      | h - Edge<br>-<br>x         | d both 1 4   | ÷<br>Rows<br>Berms  | 1.8           | +           | 1            |        | = =          | 346<br>692      | points                   |
| Total of point in one row (point)  Total points per berm  Grand Total Point  First Berm (RM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lengt<br>155<br>87<br>346<br>4 | h - Edge<br>-<br>x<br>rows | d both 1 4   | ÷ Rows Berms Rate = | 2570.0        | +<br>X      | 4            | X      | =<br>=<br>87 | 346<br>692<br>= | points points 889,791.11 |

## Appendix D Sensitivity Check on Soil Nail Spacing, Inclination and Length

#### Case 1

Given the wall height (H = 19 m) and face batter ( $\alpha$  = 0), the following layout is selected for simulation in SLOPE/W.

## Vertical (Sv) and Horizontal (SH) Spacing of Soil Nails

- Adopt  $S_H = S_V = 1.5$  m Check:  $S_H \times S_V = 2.25$  m<sup>2</sup>  $\leq 3.24$  to 3.78 m<sup>2</sup>
- This vertical spacing results in 12 rows of soil nails.

#### Vertical Spacing at the Top and Bottom of the Wall

The spacing between the first row and the top of the wall  $(S_{V0})$  is selected as:

•  $S_{V0} = 1.0 \text{ m} \le 1.050 \text{ m ok}$ 

The spacing between the deepest row and the bottom of the wall  $(S_{VN})$  is:

•  $S_{VN} = 0.75 \text{ m} \le 0.5 \text{ to } 0.9 \text{ m} \text{ ok}$ 

### **Soil Nail Inclination**

Because no utilities or obstructions exist behind the wall, the soil nail inclination is selected as:

• i = 20 degrees for all nails (between 15 and 25 degrees) ok

## Soil Nail Length

The maximum soil nail length is selected for a simulation at:

• L = 0.6316 H = 12 m (L between 0.4 H and 1.2H) ok

#### Case 6

Given the wall height (H = 13 m) and face batter ( $\alpha$  = 0), the following layout is selected for simulation in SLOPE/W.

#### Vertical (Sv) and Horizontal (S<sub>H</sub>) Spacing of Soil Nails

- Adopt  $S_H = S_V = 1.5$  m Check:  $S_H \times S_V = 2.25$  m<sup>2</sup>  $\leq 3.24$  to 3.78 m<sup>2</sup>
- This vertical spacing results in 8 rows of soil nails.

## Vertical Spacing at the Top and Bottom of the Wall

The spacing between the first row and the top of the wall  $(S_{V0})$  is selected as:

•  $S_{V0} = 1.0 \text{ m} \le 1.050 \text{ m ok}$ 

The spacing between the deepest row and the bottom of the wall  $(S_{VN})$  is:

•  $S_{VN} = 0.75 \text{ m} \le 0.5 \text{ to } 0.9 \text{ m} \text{ ok}$ 

#### **Soil Nail Inclination**

Because no utilities or obstructions exist behind the wall, the soil nail inclination is selected as:

• i = 20 degrees for all nails (between 15 and 25 degrees) ok

#### Soil Nail Length

The maximum soil nail length is selected for a simulation at:

• L = 0.4615 H = 6 m (L between 0.4 H and 1.2H) ok

# Case 3

Given the wall height (H = 7 m) and face batter ( $\alpha$  = 0), the following layout is selected for simulation in SLOPE/W.

# Vertical (Sv) and Horizontal (SH) Spacing of Soil Nails

- Adopt  $S_H = S_V = 1.5$  m Check:  $S_H \times S_V = 2.25$  m<sup>2</sup>  $\leq 3.24$  to 3.78 m<sup>2</sup>
- This vertical spacing results in 4 rows of soil nails.

## Vertical Spacing at the Top and Bottom of the Wall

The spacing between the first row and the top of the wall  $(S_{V0})$  is selected as:

•  $S_{V0} = 1.0 \text{ m} \le 1.050 \text{ m ok}$ 

The spacing between the deepest row and the bottom of the wall  $(S_{VN})$  is:

•  $S_{VN} = 0.75 \text{ m} \le 0.5 \text{ to } 0.9 \text{ m} \text{ ok}$ 

#### **Soil Nail Inclination**

Because no utilities or obstructions exist behind the wall, the soil nail inclination is selected as:

• i = 15 degrees for all nails (between 15 and 25 degrees) ok

## Soil Nail Length

The maximum soil nail length is selected for a simulation at:

• L = 0.4615 H = 6 m (L between 0.4 H and 1.2H) ok

### Case 7

Given the wall height (H = 7 m) and face batter ( $\alpha$  = 0), the following layout is selected for simulation in SLOPE/W.

## Vertical (Sv) and Horizontal (SH) Spacing of Soil Nails

- Adopt  $S_H = S_V = 1.5$  m Check:  $S_H \times S_V = 2.25$  m<sup>2</sup>  $\leq 3.24$  to 3.78 m<sup>2</sup>
- This vertical spacing results in 4 rows of soil nails.

#### Vertical Spacing at the Top and Bottom of the Wall

The spacing between the first row and the top of the wall  $(S_{V0})$  is selected as:

•  $S_{V0} = 1.0 \text{ m} \le 1.050 \text{ m ok}$ 

The spacing between the deepest row and the bottom of the wall  $(S_{VN})$  is:

•  $S_{VN} = 0.75 \text{ m} \le 0.5 \text{ to } 0.9 \text{ m} \text{ ok}$ 

#### **Soil Nail Inclination**

Because no utilities or obstructions exist behind the wall, the soil nail inclination is selected as:

• i = 20 degrees for all nails (between 15 and 25 degrees) ok

#### Soil Nail Length

The maximum soil nail length is selected for a simulation at:

• L = 0.4615 H = 6 m (L between 0.4 H and 1.2H) ok

#### Case 9

Given the wall height (H = 19 m) and face batter ( $\alpha$  = 0), the following layout is selected for simulation in SLOPE/W.

#### Vertical (Sv) and Horizontal (S<sub>H</sub>) Spacing of Soil Nails

- Adopt  $S_H = S_V = 1.5$  m Check:  $S_H \times S_V = 2.25$  m<sup>2</sup>  $\leq 3.24$  to 3.78 m<sup>2</sup>
- This vertical spacing results in 4 rows of soil nails.

## Vertical Spacing at the Top and Bottom of the Wall

The spacing between the first row and the top of the wall  $(S_{V0})$  is selected as:

•  $S_{V0} = 1.0 \text{ m} \le 1.050 \text{ m ok}$ 

The spacing between the deepest row and the bottom of the wall (S<sub>VN</sub>) is:

•  $S_{VN} = 0.75 \text{ m} \le 0.5 \text{ to } 0.9 \text{ m ok}$ 

## **Soil Nail Inclination**

Because no utilities or obstructions exist behind the wall, the soil nail inclination is selected as:

• i = 20 degrees for all nails (between 15 and 25 degrees) ok

#### Soil Nail Length

The maximum soil nail length is selected for a simulation at:

• L = 0.6315 H = 12 m (L between 0.4 H and 1.2H) ok

#### Case 2

Given the wall height (H = 13 m) and face batter ( $\alpha$  = 0), the following layout is selected for simulation in SLOPE/W.

# Vertical (Sv) and Horizontal (SH) Spacing of Soil Nails

- Adopt  $S_H = 1.5 \text{ m}$ ;  $S_V = 2.0 \text{ m}$  Check:  $S_H \times S_V = 3.0 \text{ m}^2 \le 3.24 \text{ to } 3.78 \text{ m}^2$
- This vertical spacing results in 8 rows of soil nails.

### Vertical Spacing at the Top and Bottom of the Wall

The spacing between the first row and the top of the wall  $(S_{V0})$  is selected as:

•  $S_{V0} = 1.0 \text{ m} \le 1.050 \text{ m ok}$ 

The spacing between the deepest row and the bottom of the wall  $(S_{VN})$  is:

•  $S_{VN} = 0.75 \text{ m} \le 0.5 \text{ to } 0.9 \text{ m ok}$ 

## **Soil Nail Inclination**

Because no utilities or obstructions exist behind the wall, the soil nail inclination is selected as:

• i = 20 degrees for all nails (between 15 and 25 degrees) ok

#### Soil Nail Length

The maximum soil nail length is selected for a simulation at:

• L = 0.6923 H = 9 m (L between 0.4 H and 1.2H) ok

#### Case 4

Given the wall height (H = 13 m) and face batter ( $\alpha$  = 0), the following layout is selected for simulation in SLOPE/W.

#### Vertical (Sv) and Horizontal (S<sub>H</sub>) Spacing of Soil Nails

- Adopt  $S_H = S_V = 1.5$  m Check:  $S_H \times S_V = 2.25$  m<sup>2</sup>  $\leq 3.24$  to 3.78 m<sup>2</sup>
- This vertical spacing results in 8 rows of soil nails.

## Vertical Spacing at the Top and Bottom of the Wall

The spacing between the first row and the top of the wall  $(S_{V0})$  is selected as:

•  $S_{V0} = 1.0 \text{ m} \le 1.050 \text{ m ok}$ 

The spacing between the deepest row and the bottom of the wall  $(S_{VN})$  is:

•  $S_{VN} = 0.75 \text{ m} \le 0.5 \text{ to } 0.9 \text{ m ok}$ 

## **Soil Nail Inclination**

Because no utilities or obstructions exist behind the wall, the soil nail inclination is selected as:

• i = 20 degrees for all nails (between 15 and 25 degrees) ok

## Soil Nail Length

The maximum soil nail length is selected for a simulation at:

• L = 0.9231H = 12 m (L between 0.4 H and 1.2H) ok

## Case 5

Given the wall height (H = 19 m) and face batter ( $\alpha$  = 0), the following layout is selected for simulation in SLOPE/W.

## Vertical (Sv) and Horizontal (SH) Spacing of Soil Nails

- Adopt  $S_H = S_V = 1.5$  m Check:  $S_H \times S_V = 2.25$  m<sup>2</sup>  $\leq 3.24$  to 3.78 m<sup>2</sup>
- This vertical spacing results in 12 rows of soil nails.

#### Vertical Spacing at the Top and Bottom of the Wall

The spacing between the first row and the top of the wall  $(S_{V0})$  is selected as:

•  $S_{V0} = 1.0 \text{ m} \le 1.050 \text{ m ok}$ 

The spacing between the deepest row and the bottom of the wall (S<sub>VN</sub>) is:

•  $S_{VN} = 0.75 \text{ m} \le 0.5 \text{ to } 0.9 \text{ m ok}$ 

#### **Soil Nail Inclination**

Because no utilities or obstructions exist behind the wall, the soil nail inclination is selected as:

• i = 20 degrees for all nails (between 15 and 25 degrees) ok

## Soil Nail Length

The maximum soil nail length is selected for a simulation at:

• L = 0.4737 H = 9 m (L between 0.4 H and 1.2H) ok

### Case 8

Given the wall height (H = 13 m) and face batter ( $\alpha$  = 0), the following layout is selected for simulation in SLOPE/W.

#### Vertical (Sv) and Horizontal (S<sub>H</sub>) Spacing of Soil Nails

- Adopt  $S_H = S_V = 1.5$  m Check:  $S_H \times S_V = 2.25$  m<sup>2</sup>  $\leq 3.24$  to 3.78 m<sup>2</sup>
- This vertical spacing results in 8 rows of soil nails.

# Vertical Spacing at the Top and Bottom of the Wall

The spacing between the first row and the top of the wall  $(S_{V0})$  is selected as:

•  $S_{V0} = 1.0 \text{ m} \le 1.050 \text{ m ok}$ 

The spacing between the deepest row and the bottom of the wall  $(S_{VN})$  is:

•  $S_{VN} = 0.75 \text{ m} \le 0.5 \text{ to } 0.9 \text{ m ok}$ 

### **Soil Nail Inclination**

Because no utilities or obstructions exist behind the wall, the soil nail inclination is selected as:

• i = 20 degrees for all nails (between 15 and 25 degrees) ok

# Soil Nail Length

The maximum soil nail length is selected for a simulation at:

• L = 1.1538 H = 15 m (L between 0.4 H and 1.2H) ok

#### Case 10

Given the wall height (H = 13 m) and face batter ( $\alpha$  = 0), the following layout is selected for simulation in SLOPE/W.

# Vertical (Sv) and Horizontal (SH) Spacing of Soil Nails

- Adopt  $S_H = 1.5 \text{ m } S_V = 1.8 \text{ m Check: } S_H \times S_V = 2.70 \text{ m}^2 \le 3.24 \text{ to } 3.78 \text{ m}^2$
- This vertical spacing results in 8 rows of soil nails.

# Vertical Spacing at the Top and Bottom of the Wall

The spacing between the first row and the top of the wall  $(S_{V0})$  is selected as:

•  $S_{V0} = 1.0 \text{ m} \le 1.050 \text{ m ok}$ 

The spacing between the deepest row and the bottom of the wall  $(S_{VN})$  is:

•  $S_{VN} = 0.75 \text{ m} \le 0.5 \text{ to } 0.9 \text{ m ok}$ 

## **Soil Nail Inclination**

Because no utilities or obstructions exist behind the wall, the soil nail inclination is selected as:

• i = 15 degrees for all nails (between 15 and 25 degrees) ok

## Soil Nail Length

The maximum soil nail length is selected for a simulation at:

• L = 0.9231 H = 12 m (L between 0.4 H and 1.2H) ok

# Appendix E Construction Cost of Soil Nailing and Crib Wall and Crib Wall/Soil Nailing System

i) Soil Nailing Construction Cost

| 7,501111 | annig Consi    | e Zali i Sankeli | 750 |  |  |
|----------|----------------|------------------|-----|--|--|
|          | Soil Nail Ca   | alculation       |     |  |  |
|          | 62 <sup></sup> |                  |     |  |  |
|          |                |                  |     |  |  |
|          | Length         | 100m             |     |  |  |
|          |                |                  |     |  |  |
|          | Height         | 9.7m             |     |  |  |
|          | c/c            | 1.5m             |     |  |  |
|          |                |                  |     |  |  |
|          | Nos. of Soil   | Nails            |     |  |  |
|          | Vartical       | -                |     |  |  |
|          | Vertical       | 6                |     |  |  |
|          | Horizontal     | 68               |     |  |  |
|          |                |                  |     |  |  |
|          | Total Nos.     | 408              |     |  |  |

| No. | Description                                    | <u>Unit</u> | Qty | Rate     | Amount (RM)  |
|-----|------------------------------------------------|-------------|-----|----------|--------------|
| 1.  | Plant & Equipment Prorate based on Vision Team | LS          |     |          | 14,500.00    |
| 2.  | Soil Nailing Minimum required length 9m        | No.         | 408 | 2,133.00 | 870,264.00   |
| 3.  | Soil Nail Head<br>450mm x 450mm x 100mm thick  | No.         | 408 | 80.00    | 32,640.00    |
| 4.  | Pull Out Test Prorate based on Vision Team     | LS          |     |          | 5,600.00     |
| 5.  | Shortcrete<br>150mm thick                      | M2          | 970 | 165.00   | 160,050.00   |
| 6.  | Horizontal Drains<br>9.01m - 9m long           | No.         | 136 | 660.00   | 89,760.00    |
| 7.  | Stormwater Drainage 75mm thick berm/toe drain  | M           | 300 | 95.00    | 28,500.00    |
|     |                                                |             |     |          | 1,201,314.00 |

# ii) Crib Wall Construction Cost

# **Cribwall Calculation**

Length100mHeight9.7mWidth5.65m

| No. | Description                             | <u>Unit</u> | Qty  | Rate   | Amount (RM)  |
|-----|-----------------------------------------|-------------|------|--------|--------------|
| 1.  | Mobilisation                            | LS          |      |        | 22,250.00    |
| 2.  | Mackintosh Probe                        | LS          |      |        | 1,085.00     |
| 3.  | RC Levelling Pad<br>to receive cribwall | M           | 100  | 400    | 40,000.00    |
| 4.  | Cribwall Supply and install of cribwall | M2          | 1940 | 716.00 | 1,389,040.00 |
| 5.  | Granular backfilling                    | M3          | 3654 | 25.00  | 91,350.00    |
| 6.  | Perimetre U-drain 300mm x 300mm         | M           | 100  | 230.00 | 23,000.00    |
|     |                                         |             |      |        | 1,566,725.00 |
|     |                                         |             |      |        |              |

iii) Combination Hybrid System Crib Wall/Soil Nail

# Soil Nail & Cribwall Calculation

100m

Height 9.7m
c/c 2.0m

Nos. of Soil Nails
Vertical 5
Horizontal 50
Total Nos. 250

Length

| No.     | Description                                    | Unit | Qty      | Rate     | Amount (RM)  |
|---------|------------------------------------------------|------|----------|----------|--------------|
| 1.      | Soil Nail Plant & Equipment                    |      |          |          |              |
| (0.5-0) | Prorate based on contractor                    | LS   |          |          | 15,000.00    |
| 2.      | Soil Nailing Minimum required length 12m       | No.  | 250      | 2,570.00 | 642,500.00   |
| 3.      | Soil Nail Head<br>450mm x 450mm x 100mm thick  | No.  | 250      | 80.00    | 20,000.00    |
| 4.      | Pull Out Test Prorate based on Vision Team     | LS   |          |          | 4,200.00     |
| 5.      | Shortcrete<br>150mm thick                      | M2   | 970      | 165.00   | 160,050.00   |
| 6.      | <u>Horizontal Drains</u><br>9.01m - 12m long   | No.  | 100      | 660.00   | 66,000.00    |
| 7.      | Stormwater Drainage 75mm thick berm/toe drain  | M    | 300      | 95.00    | 28,500.00    |
| 8.      | Cribwall  RC Levelling Pad to receive cribwall | M    | 100      | 249      | 24,900.00    |
| 9.      | Cribwall Supply and install of cribwall        | M2   | 1,940.00 | 423.00   | 820,620.00   |
| 10.     | Granular backfilling                           | M3   | 2,160.00 | 25.00    | 54,000.00    |
| 11.     | Perimetre U-drain 300mm x 300mn                | M    | 100      | 230.00   | 23,000.00    |
|         |                                                |      |          |          | 1,858,770.00 |

iv) Costs of building 100 m length of soil nailing system and maintenance in 2 years

| Name of Cost                                                      | Monetary Value                              | RM           |
|-------------------------------------------------------------------|---------------------------------------------|--------------|
| Soil Nailing Design (Consultant Fees)                             | 6% x RM 1,201,314 =                         | 72,078.84    |
| Land Purchase                                                     | based on RM 1940.41/m2 x 100m x 6.1m        | 1,183,650.10 |
| Construction (materials & machineries)                            | based on the calculation in Appendix D (i). | 1,201,314.00 |
| Maintenance after construction finish/rectification defects (DLP) | based on RM 400 x 12 months x 2 years       | 9,600.00     |

Total PVC 2,466,642.94

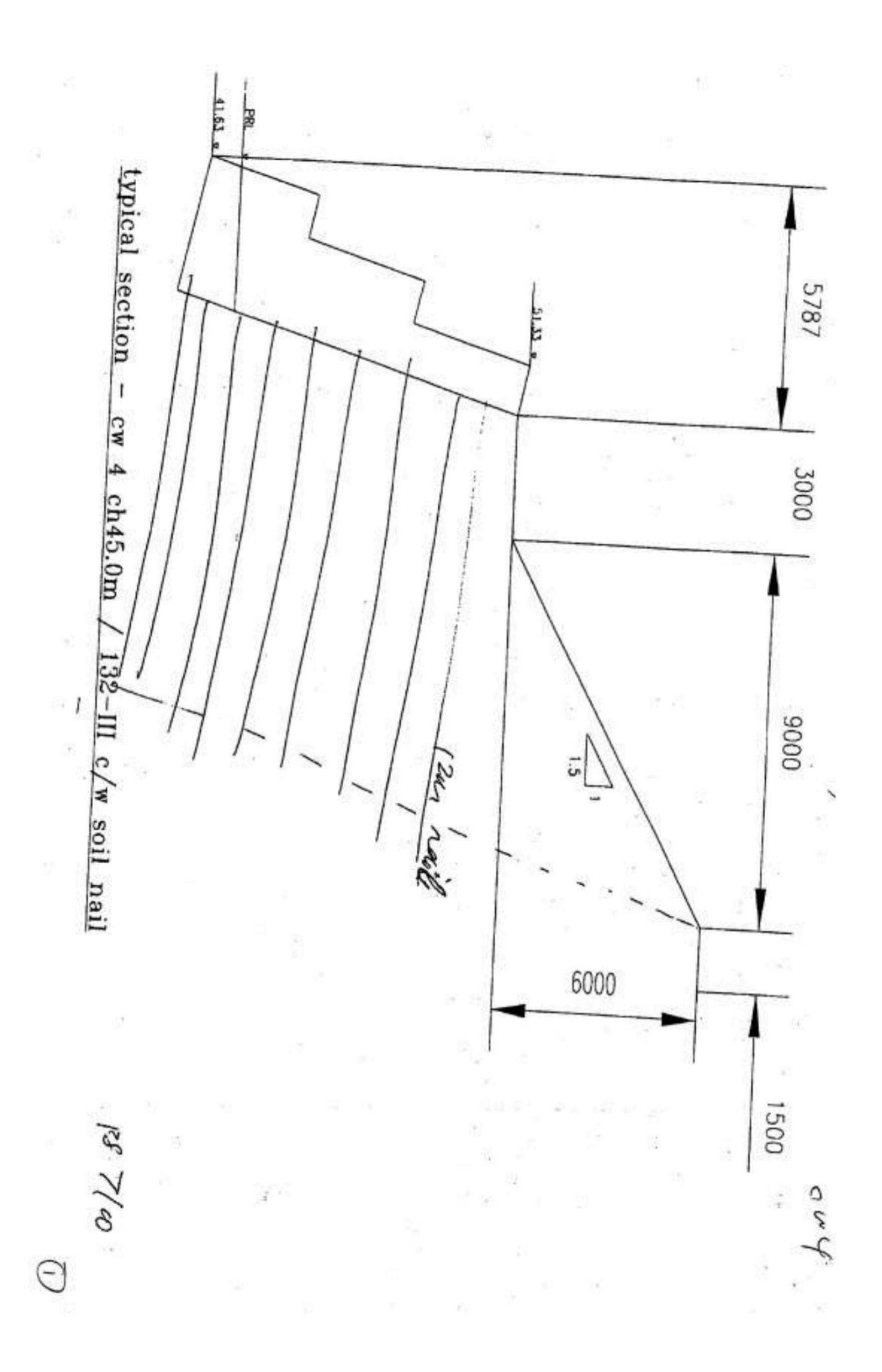
v) Benefits of building 100 m length of soil nailing system in 2 years

| Name of Benefits                      | Monetary Value                                                     | RM           |
|---------------------------------------|--------------------------------------------------------------------|--------------|
| Time Saving based on work programme   | If, 1 day = RM 1,201,314 x (15% ÷ 365 days) = RM 559.36            |              |
| (14 days)                             | Therefore, in 14 days =                                            | 6,911.67     |
| Reduce Injury/Life saving             | 5 workers x RM 75 x 110 days                                       | 41,250.00    |
|                                       | 2 general workers x RM 65 x 365 days x 2 years                     | 94,900.00    |
| Pollution Reduction                   | RM 2,000 x 110 days                                                | 220,000.00   |
|                                       | RM 2,000 x 365 days x 2 years                                      | 1,460,000.00 |
| Create Job in 110 days plus 12 months | 1 gang x 5 workers x RM 75 x 110 days (project start until finish) | 41,250.00    |
| DLP                                   | 2 general workers x RM 65 x 12 months x 2 years                    | 3,120.00     |

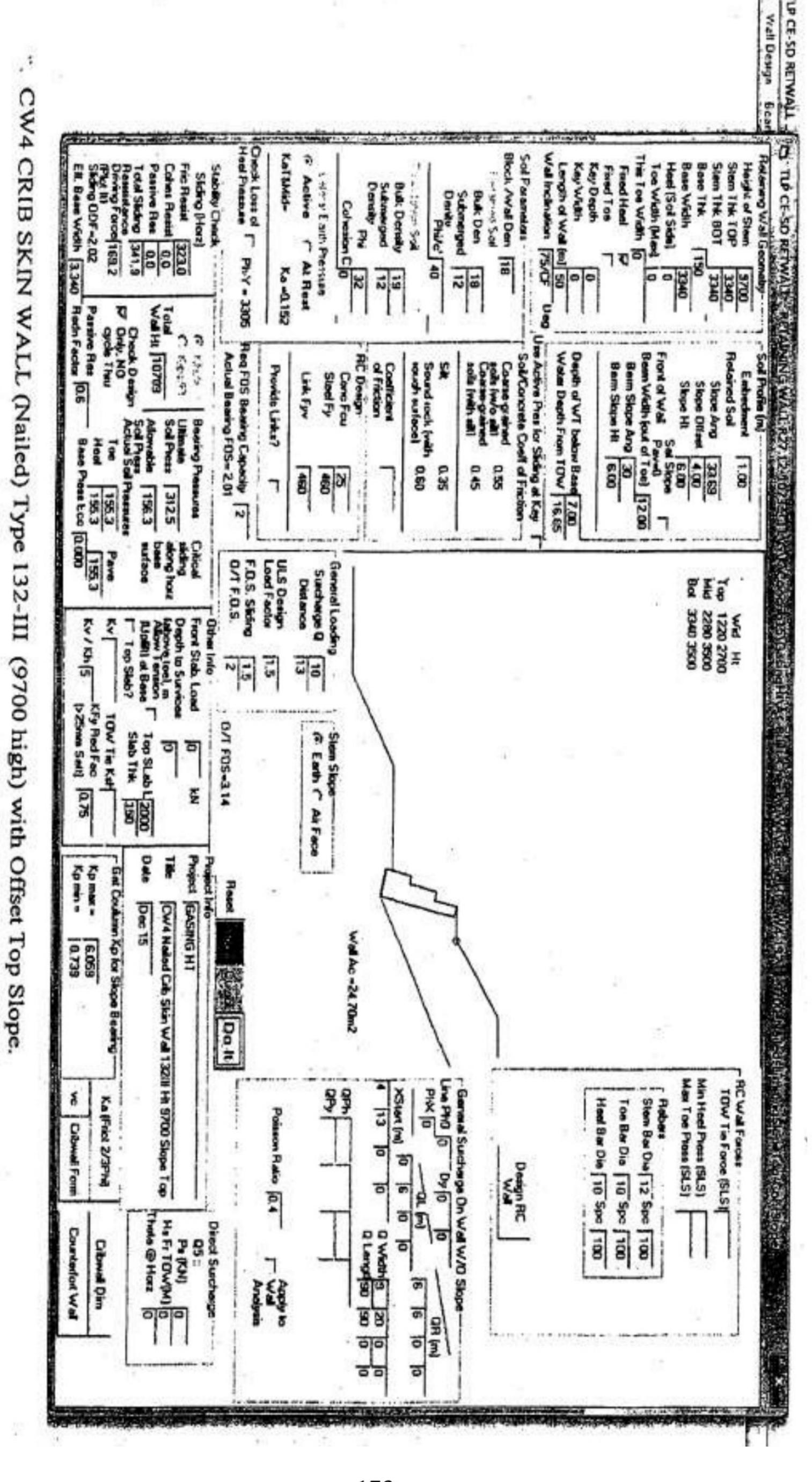
Total PVB **1,867,431.67** 

# vi) **Costs** of building 100 m length of the **crib wall** system and maintenance in 2 years

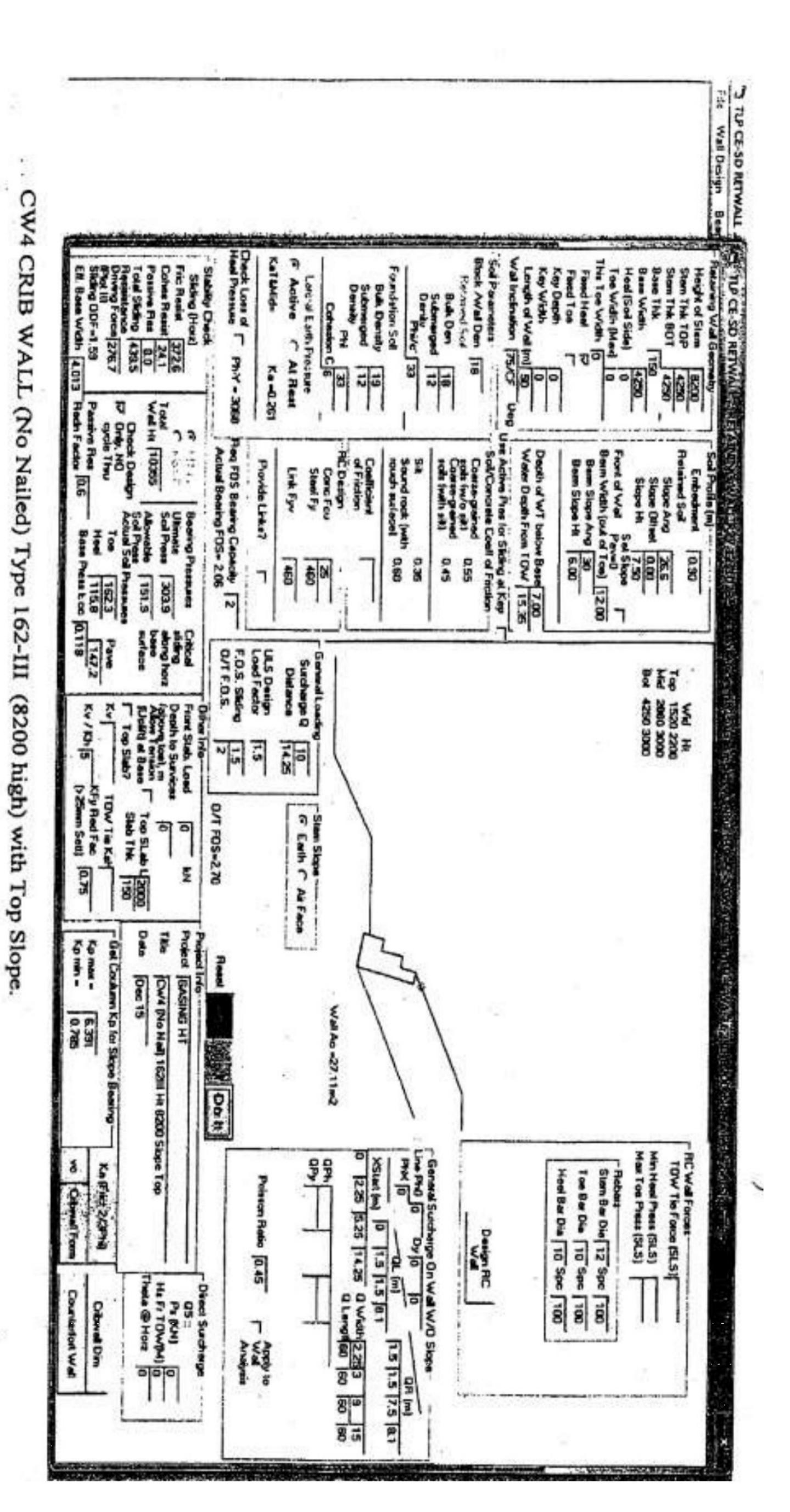
| Name of Costs                                                     | Monetary Value                              | RM        |
|-------------------------------------------------------------------|---------------------------------------------|-----------|
| Crib Wall Design (Consultant fees)                                | 6% x RM 1,566,725 =                         | 94,003.50 |
| Construction (materials and machineries)                          | Based on the calculation in Appendix D (ii) | 1,566,725 |
| Maintenance after construction finish/rectification defects (DLP) | based on RM 400 x 12 months x 2 years       | 9,600     |


Total PVC 1,670,328.50

# vii) **Benefits** of building 100 m length of the **crib wall** system and maintenance in 2 years


| Name of Benefits                                 | Monetary Value                                               | RM           |
|--------------------------------------------------|--------------------------------------------------------------|--------------|
| Time Saving (7 days                              | If, 1 day = RM 1,566,725 x (15% ÷ 365 days) = RM 643.86      |              |
| from work programme)                             | Therefore, in 7 days =                                       | 4,507.02     |
| Reduce Injury/Lifesaving                         | 1 gang x 4 workers x RM 75 x 120 days                        | 72,000.00    |
|                                                  | 2 general workers x RM 65 x 12 months x 2 years              | 3,120.00     |
| Pollution Reduction                              | RM 2,000 x 365 days x 2 years                                | 1,460,000.00 |
|                                                  | RM 2,000 x 120 days                                          | 240,000.00   |
| Create Job in 120 days<br>and plus 12 months DLP | 1 gang x 4 workers x RM 75 x 120 days (project start-finish) | 36,000.00    |
|                                                  | 2 general workers x RM 65 x 365 x 2 years                    | 3,120.00     |

Total PVB 1,818,747.02


Appendix F Sample of Crib Wall/Soil Nails Design Analysis



98 CRIBWALL DESIGN AT GASING HEIGHT PROJECT



Page di / 10



GEOCO SDN BHD Sheet No. Program: SLOPE Version 12R.03 Revision Al5.Bl2.R41 Licensed from GEOSOLVE Job No. Run ID. GASING-CW4B | Made by : GASING Date: 7-09-2015 CW 4 B Checked: Units: kN, m INPUT DATA PROFILE DATA Grid line X-Coord -25.00 Stratum Y-Coordinates 1(GL) -0.00 -0.00 -0.00 3.70 3.38 6.68 6.60 6.43 -0.00 -0.00 -0.00 -0.23 -0.55 -0.75 2.04 Grid line 10 13 X-Coord 5.95 17.95 19.45 Y-Coordinates Stratum 1(GL) 9.99 9.66 9.66 15.67 15.67 21.67 27.67 5.55 9.66 9.66 15.67 15.67 21.67 21.67 27.67 Grid line 17 18 19 X-Coord 40.45 49.45 50.95 59.95 Stratum Y-Coordinates 1(GL) 27.67 33.67 33.67 39.67 2 27.67 33.67 33.67 39.67 SOIL PROPERTIES Bulk unit wt. -----Strength parameters---------- Stratum ----- below above C Phi dC/dY Datum No. Description GWL GWL (deg) kN/m3 kN/m3 kN/m2 kN/m2/m for C 1 Crib Wall 20.00 20.00 0.00 35.00 2 Very Stiff Clayey Silt 18.00 18.00 8.00 37.00 GROUND WATER CONDITIONS Unit wt. of water = 10.00 kN/m3 Grid line 1 2 X-Coord -25.00 -3.30 0.00 Ground water level -6.00 -2.02 -1.42 -1.25 -1.01 -0.86 -0.81 -0.70 Grid line 9 10 11 12 13 14 X-Coord 4.93 5.95 8.96 17.95 19.45 28.45 29.95 38.95 Ground water level -0.56 -0.40 0.07 1.47 1.70 3.10 3.33 4.73 Grid line 17 18 19 20 X-Coord 40.45 49.45 50.95 59.95 Ground water level



3

#### SOIL REINFORCEMENT

| Reinforcement | geometry |
|---------------|----------|
|---------------|----------|

| Layer |       | Inclin. | Elev.   |      | Extent |     | Anchorage | condition | Reinf |
|-------|-------|---------|---------|------|--------|-----|-----------|-----------|-------|
| No.   | Elev. | (degs)  | defined | from | 1      | to  | at X1     | at X2     | type  |
|       |       |         | )       | (1   | X2     |     |           |           |       |
| 1     | 9.050 | -15.00  | X1      | 5.73 | 17     | .73 | Anchored  | None      | 5     |
| 2     | 7.300 | -15.00  | X1      | 5.31 | 17     | .31 | Anchored  | None      | 5     |
| 3     | 5.550 | -15.00  | X1      | 4.88 | 16     | .88 | Anchored  | None      | 5     |
| 4     | 3.800 | -15.00  | X1      | 4.46 | 16     | .45 | Anchored  | None      | 5     |
| 5     | 2.050 | -15.00  | X1      | 4.04 | 16     | .04 | Anchored  | None      | 5     |
| 6     | 0.300 | -15.00  | X1      | 3.61 | 15     | .61 | Anchored  | None      | 5     |

Reinforcement type 5 Total reinforcement length = 41.14 m per m run

#### Reinforcement properties

| Reinfo<br>-cemen<br>type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | strength     | Width<br>or diam.<br>(Lateral) | Friction coeff. Pull-out ( Direct ) | Adhesion (kN/m2) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|--------------------------------|-------------------------------------|------------------|
| DESCRIPTION OF THE PROPERTY OF | iption ) | ( strength ) | (spacing)                      | ( sliding)                          | (A factor)       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sheet    | 52.00kN/m    | 1.000                          | 0.560                               | 0.00             |
| (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )        | ( 52.00 )    | (1.000)                        | ( 0.560 )                           |                  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sheet    | 39.00kN/m    | 1.000                          | 0.560                               | 0.00             |
| (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )        | ( 39.00 )    | (1.000)                        | ( 0.560 )                           |                  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sheet    | 26.00kN/m    | 1.000                          | 0.560                               | 0.00             |
| (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )        | ( 26.00 )    | (1.000)                        | ( 0.560 )                           |                  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sheet    | 13.00kN/m    | 1.000                          | 0.560                               | 0.00             |
| (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )        | ( 13.00 )    | (1.000)                        | ( 0.560 )                           |                  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nail     | 90.00kN      | 0.100 In                       | teraction coeff.                    | - 0.900          |
| (Y25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )        | ( 90.00 )    | (1.750)                        |                                     |                  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nail     | 150.00kN     | 0.100 In                       | teraction coeff.                    | - 0.900          |
| (Soil )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nail 2   | ( 150.00 )   | ( 1.500 )                      |                                     |                  |

#### CIRCULAR SLIP SURFACE DATA

Grid of centres: X Y
Corner of grid -10.00 11.00
Grid increment 2.00 2.00
No. of grid lines 15 15

The grid of centres will be extended automatically until a minimum factor of safety has been found.

Common point(s): X Y
Coordinates of (first) point 3.34 -0.83
Number of points = 1

#### ANALYSIS OPTIONS

Method of analysis: JANBU - for reinforced soil Factors of safety calculated on Soil + Reinforcement Strength - 0.000 Interslice friction/adhesion factor Partial factor of safety on tan(phi) = 1.000 Partial factor of safety on drained cohesion = 1.000 Partial factor of safety on undrained cohesion = 1.000 Partial factor of safety on soil weight - 1.000 Partial factor of safety on surcharge loads = 1.000 Partial factor of safety on reinforcement strength = 1.000 Partial factor of safety on pull-out resistance = 1.000 Partial factor of safety on direct sliding = 1.000Minimum number of slices = 10

Program SLOPE - Copyright (C) 2011 by DL Borin, distributed by GEOSOLVE 69 Rodenhurst Road, London SW4, UK. www.geosolve.co.uk

```
GEOCO SDN BHD
Program: SLOPE Version 12R.03 Revision A15.B12.R41
Licensed from GEOSOLVE | Job No.
Run ID. GASING-CW4B | Made by :
GASING | Date: 7-09-2015
CW 4 B | Checked :
```

Units: kN, m

# Brief results for selected circles through common point no.1

| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cer             | ntre                     | Radius                   | Factor                                  | Slipped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Restoring                                                   | Out of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|--------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Safety ( Reinf.) (Disturbing)   moment   ( force ) ( moment ) ( Iter )   kN/m   kN.m/m   c294400   (6 ) k)   c308011   (6 ) k)   c308010   c308010 | X               | Y                        | R                        | of I                                    | nass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | moment h                                                    | palance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| \( \begin{array}{c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                          | S                        | afety (                                 | Reinf.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Disturbing)                                                | moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.00         59.00         59.85         1.566         12590         568909         -29860           0.00         61.00         61.92         1.568         11924         561821         -27479           4.00         57.00         57.84         1.571         13337         579779         -32834           2.00         57.00         57.85         1.571         11988         525263         -27724           0.00         59.00         59.93         1.573         11988         525263         -27724           0.00         59.00         59.93         1.573         11333         520584         -25585           2.00         55.00         55.85         1.575         11422         485825         -25779           0.00         57.00         57.93         1.575         10831         480684         -23760           4.00         55.00         55.84         1.576         12714         534746         -30433           -2.00         61.00         62.06         1.576         12714         534746         -30433           0.00         55.00         55.93         1.577         10290         42249         -22252           (154)         (236320)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                          |                          | 200                                     | orce ) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | moment ) (                                                  | Iter )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                          |                          |                                         | cN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kN.m/m 3                                                    | cN.m/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ( 110) ( 333463) ( 6 )  0.00 61.00 61.92 1.568 11924 561821 -27479  4.00 57.00 57.84 1.571 13337 579779 -32834  ( 103) ( 336270) ( 6 )  2.00 57.00 57.85 1.571 11988 525263 -27724  ( 115) ( 306640) ( 6 )  0.00 59.00 59.93 1.573 11373 520584 -25585  ( 140) ( 305274) ( 6 )  2.00 55.00 55.85 1.575 11442 485825 -25779  ( 120) ( 282594) ( 6 )  0.00 57.00 57.93 1.575 10831 480684 -23760  4.00 55.00 55.84 1.576 12714 534746 -30433  ( 103) ( 308961) ( 6 )  -2.00 61.00 62.06 1.576 10816 516136 -23705  ( 154) ( 303813) ( 6 )  0.00 55.00 55.93 1.577 10290 442449 -22252  ( 150) ( 258320) ( 6 )  -2.00 59.00 60.07 1.577 10290 442449 -22252  ( 150) ( 258320) ( 6 )  -2.00 57.00 58.08 1.577 10882 446916 -24046  ( 125) ( 259299) ( 6 )  -2.00 57.00 58.08 1.577 9774 438884 -20746  ( 154) ( 257500) ( 6 )  2.00 53.00 53.84 1.579 10323 409687 -22652  ( 130) ( 236855) ( 6 )  4.00 53.00 53.84 1.579 10323 409687 -22652  ( 130) ( 236855) ( 6 )  6.00 55.00 55.90 1.581 14174 593752 -36386  ( 103) ( 339189) ( 6 )  4.00 51.00 51.84 1.583 11556 453613 -26283  ( 103) ( 339189) ( 6 )  4.00 49.00 49.84 1.583 11556 453613 -26283  ( 103) ( 237590) ( 6 )  -2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00            | 59.00                    | 59.85                    | N 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | CONTRACTOR NAMED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 568909                                                      | -29860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.00       61.00       61.92       1.568       11924       561821       -27479         4.00       57.00       57.84       1.571       13337       579779       -32834         2.00       57.00       57.85       1.571       11988       525263       -27724         0.00       59.00       59.93       1.573       11373       520584       -25585         140)       (305274)       (6)       )       2.00       55.00       55.85       1.575       11442       485825       -25779         0.00       57.00       57.93       1.575       10831       480684       -23760       -23705       -2114       534746       -30433       -30433       -30433       -2114       534746       -30433       -30433       -2114       534746       -30433       -23705       -200       -200       61.00       62.06       1.576       10816       516136       -23705       -23705       -23705       -23705       -23705       -23705       -244449       -22252       -2252       -25779       -2200       -2200       55.00       55.93       1.577       10290       442449       -22252       -2209       -2209       -2209       -2209       -2209       -2209<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                          |                          | 1                                       | 110) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 333463) (                                                   | 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.00         57.00         57.84         1.571         13337         579779         -32834           2.00         57.00         57.85         1.571         13337         579779         -32834           2.00         57.00         57.85         1.571         11988         525263         -27724           0.00         59.00         59.93         1.573         11373         520584         -25585           1.40)         (305274)         (6)         6         6         70         6         70           2.00         55.00         55.85         1.575         11442         485825         -25779         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71         71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00            | 61.00                    | 61.92                    | 1.568                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | -27479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.00       57.00       57.84       1.571       13337       579779       -32834         2.00       57.00       57.85       1.571       11988       525263       -27724         0.00       59.00       59.93       1.573       11373       520584       -25585         2.00       55.00       55.85       1.575       11442       485825       -25779         0.00       57.00       57.93       1.575       10831       480684       -23760         4.00       55.00       55.84       1.576       12714       534746       -30433         -2.00       61.00       62.06       1.576       10816       516136       -23705         0.00       55.00'       55.93       1.577       10290       442449       -22252         (154)       (303813)       (6)       (6)       154)       (303813)       (6)         2.00       53.00       53.85       1.577       10290       442449       -22252         (154)       (303813)       (6)       (6)       (6)         2.00       53.00       53.85       1.577       10292       476619       -22079         (154)       (280147)       (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                          |                          | (                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ( 103) ( 336270) ( 6 ) 2.00 57.00 57.85 1.571 11988 525263 -27724 ( 115) ( 306640) ( 6 ) 0.00 59.00 59.93 1.573 11373 520584 -25585 ( 140) ( 305274) ( 6 ) 2.00 55.00 55.85 1.575 11442 485825 -25779 ( 120) ( 282594) ( 6 ) 0.00 57.00 57.93 1.575 10831 480684 -23760 ( 145) ( 281347) ( 6 ) 4.00 55.00 55.84 1.576 12714 534746 -30433 ( 103) ( 308961) ( 6 ) -2.00 61.00 62.06 1.576 10816 516136 -23705 ( 154) ( 303813) ( 6 ) 0.00 55.00 55.93 1.577 10290 442449 -22252 ( 150) ( 258320) ( 6 ) -2.00 59.00 60.07 1.577 10292 476619 -22079 ( 154) ( 280147) ( 6 ) 2.00 53.00 53.85 1.577 10882 446916 -24046 ( 125) ( 259299) ( 6 ) -2.00 57.00 58.08 1.577 9774 438884 -20746 ( 125) ( 259299) ( 6 ) 2.00 53.00 53.84 1.579 10323 409687 -22652 ( 130) ( 236855) ( 6 ) 4.00 53.00 53.84 1.579 12157 494402 -28204 ( 103) ( 284933) ( 6 ) 0.00 55.00 55.90 1.581 14174 593752 -36386 ( 103) ( 339189) ( 6 ) 4.00 51.00 51.84 1.583 11556 453613 -26283 ( 103) ( 260355) ( 6 ) 4.00 49.00 49.84 1.583 11556 453613 -26283 ( 103) ( 260355) ( 6 ) -2.00 55.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.00            | 57.00                    | 57.84                    | 1.571                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | -32834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.00       57.00       57.85       1.571       11988       525263       -27724         0.00       59.00       59.93       1.573       11373       520584       -25585         2.00       55.00       55.85       1.575       11442       485825       -25779         0.00       57.00       57.93       1.575       10831       480684       -23760         4.00       55.00       55.84       1.576       12714       534746       -30433         -2.00       61.00       62.06       1.576       10816       516136       -23705         -2.00       55.00       55.93       1.577       10290       442449       -22252         ( 154)       ( 303813)       ( 6 )         -2.00       59.00       60.07       1.577       10290       442449       -22252         ( 154)       ( 280147)       ( 6 )         -2.00       53.00       53.85       1.577       10882       446916       -24046         -2.00       57.00       58.08       1.577       10882       446916       -24046         2.00       51.00       51.85       1.579       10323       409687       -22652 <td< td=""><td></td><td></td><td>100</td><td></td><td></td><td>336270) (</td><td>6)</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                          | 100                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 336270) (                                                   | 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ( 115) ( 306640) ( 6 )  0.00 59.00 59.93 1.573 11373 520584 -25585 ( 140) ( 305274) ( 6 )  2.00 55.00 55.85 1.575 11442 485825 -25779 ( 120) ( 282594) ( 6 )  0.00 57.00 57.93 1.575 10831 480684 -23760 ( 145) ( 281347) ( 6 )  4.00 55.00 55.84 1.576 12714 534746 -30433 ( 103) ( 308961) ( 6 )  -2.00 61.00 62.06 1.576 10816 516136 -23705 ( 154) ( 303813) ( 6 )  0.00 55.00 55.93 1.577 10290 442449 -22252 ( 150) ( 258320) ( 6 )  -2.00 59.00 60.07 1.577 10292 476619 -22079 ( 154) ( 280147) ( 6 )  2.00 53.00 53.85 1.577 10882 446916 -24046 ( 125) ( 259299) ( 6 )  -2.00 57.00 58.08 1.577 9774 438884 -20746 ( 154) ( 257500) ( 6 )  2.00 51.00 51.85 1.579 10323 409687 -22652 ( 130) ( 236855) ( 6 )  4.00 53.00 53.84 1.579 10323 409687 -22652 ( 130) ( 236855) ( 6 )  6.00 55.00 55.90 1.581 14174 593752 -36386 ( 103) ( 339189) ( 6 )  6.00 55.00 55.90 1.581 14174 593752 -36386 ( 103) ( 339189) ( 6 )  4.00 49.00 49.84 1.583 11556 453613 -26283 ( 103) ( 23655) ( 6 )  4.00 49.00 49.84 1.583 10977 415244 -24659 ( 103) ( 237590) ( 6 )  -2.00 55.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.00            | 57.00                    | 57.85                    | 1.571                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | -27724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.00       59.00       59.93       1.573       11373       520584       -25585         2.00       55.00       55.85       1.575       11442       485825       -25779         0.00       57.00       57.93       1.575       10831       480684       -23760         4.00       55.00       55.84       1.576       12714       534746       -30433         -2.00       61.00       62.06       1.576       12714       534746       -30433         -2.00       61.00       62.06       1.576       10816       516136       -23705         0.00       55.00       55.93       1.577       10290       442449       -22252         (150)       (258320)       (6)       (6)         -2.00       59.00       60.07       1.577       10292       476619       -22079         (154)       (280147)       (6)       (6)       (6)         -2.00       53.00       53.85       1.577       10292       476619       -22079         (154)       (280147)       (6)       (7)       (7)       (7)       438884       -20746         -2.00       53.00       53.85       1.577       10323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                          |                          | (                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 306640) (                                                   | 6 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ( 140) ( 305274) ( 6 )  2.00 55.00 55.85 1.575 11442 485825 -25779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | 59.00                    | 59.93                    | 1.573                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | -25585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ( 120) ( 282594) ( 6 )  0.00 57.00 57.93 1.575 10831 480684 -23760  ( 145) ( 281347) ( 6 )  4.00 55.00 55.84 1.576 12714 534746 -30433  ( 103) ( 308961) ( 6 )  -2.00 61.00 62.06 1.576 10816 516136 -23705  ( 154) ( 303813) ( 6 )  0.00 55.00 55.93 1.577 10290 442449 -22252  ( 150) ( 258320) ( 6 )  -2.00 59.00 60.07 1.577 10292 476619 -22079  ( 154) ( 280147) ( 6 )  2.00 53.00 53.85 1.577 10882 446916 -24046  ( 125) ( 259299) ( 6 )  -2.00 57.00 58.08 1.577 9774 438884 -20746  ( 154) ( 257500) ( 6 )  2.00 51.00 51.85 1.579 10323 409687 -22652  ( 130) ( 236855) ( 6 )  4.00 53.00 53.84 1.579 12157 494402 -28204  ( 103) ( 284933) ( 6 )  0.00 55.00 55.90 1.581 14174 593752 -36386  ( 103) ( 339189) ( 6 )  4.00 51.00 51.84 1.583 11556 453613 -26283  ( 103) ( 260355) ( 6 )  4.00 49.00 49.84 1.583 10977 415244 -24659  ( 103) ( 237590) ( 6 )  -2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                          |                          | (                                       | 140) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 305274) (                                                   | 6 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.00       57.00       57.93       1.575       10831       480684       -23760         4.00       55.00       55.84       1.576       12714       534746       -30433         -2.00       61.00       62.06       1.576       12816       516136       -23705         0.00       55.00       55.93       1.577       10290       442449       -22252         -2.00       59.00       60.07       1.577       10292       476619       -22079         2.00       53.00       53.85       1.577       10882       446916       -24046         -2.00       57.00       58.08       1.577       10882       446916       -24046         -2.00       57.00       58.08       1.577       10323       409687       -22652         (154)       (257500)       (6)       (6)       (7)       154)       (7)       154)       (8)         2.00       57.00       58.08       1.577       10822       446916       -24046       446916       -24046       446916       -24046       446916       -24046       446916       -24046       446916       -24046       446916       -24046       446916       -24046       446916 <t< td=""><td>2.00</td><td>55.00</td><td>55.85</td><td>1.575</td><td>11442</td><td>485825</td><td>-25779</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.00            | 55.00                    | 55.85                    | 1.575                                   | 11442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 485825                                                      | -25779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ( 145) ( 281347) ( 6 ) 4.00 55.00 55.84 1.576 12714 534746 -30433 ( 103) ( 308961) ( 6 ) -2.00 61.00 62.06 1.576 10816 516136 -23705 ( 154) ( 303813) ( 6 ) 0.00 55.00 55.93 1.577 10290 442449 -22252 ( 150) ( 258320) ( 6 ) -2.00 59.00 60.07 1.577 10292 476619 -22079 ( 154) ( 280147) ( 6 ) 2.00 53.00 53.85 1.577 10882 446916 -24046 ( 125) ( 259299) ( 6 ) -2.00 57.00 58.08 1.577 9774 438884 -20746 ( 154) ( 257500) ( 6 ) 2.00 51.00 51.85 1.579 10323 409687 -22652 ( 130) ( 236855) ( 6 ) 4.00 53.00 53.84 1.579 12157 494402 -28204 ( 103) ( 284933) ( 6 ) 0.00 53.00 53.94 1.579 9754 406140 -20889 ( 154) ( 236249) ( 6 ) 6.00 55.00 55.90 1.581 14174 593752 -36386 ( 103) ( 339189) ( 6 ) 4.00 51.00 51.84 1.583 11556 453613 -26283 ( 103) ( 260355) ( 6 ) 4.00 49.00 49.84 1.583 10977 415244 -24659 ( 103) ( 237590) ( 6 ) -2.00 55.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 1553                     |                          | (                                       | 120) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 282594) (                                                   | 6 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.00       55.00       55.84       1.576       12714       534746       -30433         -2.00       61.00       62.06       1.576       10816       516136       -23705         0.00       55.00       55.93       1.577       10290       442449       -22252         -2.00       59.00       60.07       1.577       10292       476619       -22079         2.00       53.00       53.85       1.577       10882       446916       -24046         -2.00       57.00       58.08       1.577       9774       438884       -20746         -2.00       51.00       51.85       1.579       10323       409687       -22652         4.00       53.00       53.84       1.579       12157       494402       -28204         0.00       53.00       53.94       1.579       12157       494402       -28204         0.00       53.00       53.94       1.579       9754       406140       -20889         0.00       53.00       55.90       1.581       14174       593752       -36386         0.00       55.00       55.90       1.581       14174       593752       -36386         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00            | 57.00                    | 57.93                    | 1.575                                   | 10831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 480684                                                      | -23760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -2.00 61.00 62.06 1.576 10816 516136 -23705 ( 154) ( 303813) ( 6 ) 0.00 55.00 55.93 1.577 10290 442449 -22252 ( 150) ( 258320) ( 6 ) -2.00 59.00 60.07 1.577 10292 476619 -22079 ( 154) ( 280147) ( 6 ) 2.00 53.00 53.85 1.577 10882 446916 -24046 ( 125) ( 259299) ( 6 ) -2.00 57.00 58.08 1.577 9774 438884 -20746 ( 154) ( 257500) ( 6 ) 2.00 51.00 51.85 1.579 10323 409687 -22652 ( 130) ( 236855) ( 6 ) 4.00 53.00 53.84 1.579 12157 494402 -28204 ( 103) ( 280147) ( 6 ) 6.00 55.00 55.90 1.581 14174 593752 -36386 ( 103) ( 339189) ( 6 ) 4.00 51.00 51.84 1.583 11556 453613 -26283 ( 103) ( 260355) ( 6 ) 4.00 49.00 49.84 1.583 10977 415244 -24659 ( 103) ( 237590) ( 6 ) -2.00 55.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                          |                          | (                                       | 145) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 281347) (                                                   | 6 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -2.00 61.00 62.06 1.576 10816 516136 -23705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.00            | 55.00                    | 55.84                    | 1.576                                   | 12714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 534746                                                      | -30433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ( 154) ( 303813) ( 6 )  0.00 55.00 55.93 1.577 10290 442449 -22252 ( 150) ( 258320) ( 6 )  -2.00 59.00 60.07 1.577 10292 476619 -22079 ( 154) ( 280147) ( 6 )  2.00 53.00 53.85 1.577 10882 446916 -24046 ( 125) ( 259299) ( 6 )  -2.00 57.00 58.08 1.577 9774 438884 -20746 ( 154) ( 257500) ( 6 )  2.00 51.00 51.85 1.579 10323 409687 -22652 ( 130) ( 236855) ( 6 )  4.00 53.00 53.84 1.579 12157 494402 -28204 ( 103) ( 284933) ( 6 )  0.00 53.00 53.94 1.579 9754 406140 -20889 ( 154) ( 236249) ( 6 )  6.00 55.00 55.90 1.581 14174 593752 -36386 ( 103) ( 339189) ( 6 )  4.00 49.00 49.84 1.583 11556 453613 -26283 ( 103) ( 260355) ( 6 )  4.00 49.00 49.84 1.583 10977 415244 -24659 ( 103) ( 237590) ( 6 )  -2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 236             |                          |                          | (                                       | 103) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 308961) (                                                   | 6 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.00       55.00'       55.93       1.577       10290       442449       -22252         -2.00       59.00       60.07       1.577       10292       476619       -22079         ( 154)       ( 280147)       ( 6 )       )         2.00       53.00       53.85       1.577       10882       446916       -24046         ( 125)       ( 259299)       ( 6 )       )         -2.00       57.00       58.08       1.577       9774       43884       -20746         ( 154)       ( 257500)       ( 6 )       )         2.00       51.00       51.85       1.579       10323       409687       -22652         ( 130)       ( 236855)       ( 6 )       )         4.00       53.00       53.84       1.579       12157       494402       -28204         ( 103)       ( 284933)       ( 6 )       )         0.00       53.00       53.94       1.579       9754       406140       -20889         ( 154)       ( 236249)       ( 6 )       )         4.00       55.00       55.90       1.581       14174       593752       -36386         ( 103)       ( 260355)       ( 6 ) <td>-2.00</td> <td>61.00</td> <td>62.06</td> <td>1.576</td> <td>10816</td> <td>516136</td> <td>-23705</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.00           | 61.00                    | 62.06                    | 1.576                                   | 10816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 516136                                                      | -23705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ( 150) ( 258320) ( 6 )  -2.00 59.00 60.07 1.577 10292 476619 -22079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                          |                          | (                                       | 154) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 303813) (                                                   | 6 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -2.00 59.00 60.07 1.577 10292 476619 -22079 ( 154) ( 280147) ( 6 ) 2.00 53.00 53.85 1.577 10882 446916 -24046 ( 125) ( 259299) ( 6 ) -2.00 57.00 58.08 1.577 9774 438884 -20746 ( 154) ( 257500) ( 6 ) 2.00 51.00 51.85 1.579 10323 409687 -22652 ( 130) ( 236855) ( 6 ) 4.00 53.00 53.84 1.579 12157 494402 -28204 ( 103) ( 284933) ( 6 ) 0.00 53.00 53.94 1.579 9754 406140 -20889 ( 154) ( 236249) ( 6 ) 6.00 55.00 55.90 1.581 14174 593752 -36386 ( 103) ( 339189) ( 6 ) 4.00 51.00 51.84 1.583 11556 453613 -26283 ( 103) ( 260355) ( 6 ) 4.00 49.00 49.84 1.583 10977 415244 -24659 ( 103) ( 237590) ( 6 ) -2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00            | 55.00                    | 55.93                    | 1.577                                   | 10290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 442449                                                      | -22252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ( 154) ( 280147) ( 6 )  2.00 53.00 53.85 1.577 10882 446916 -24046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                          |                          | (                                       | 150) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 258320) (                                                   | 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.00 53.00 53.85 1.577 10882 446916 -24046 ( 125) ( 259299) ( 6 )  -2.00 57.00 58.08 1.577 9774 438884 -20746 ( 154) ( 257500) ( 6 )  2.00 51.00 51.85 1.579 10323 409687 -22652 ( 130) ( 236855) ( 6 )  4.00 53.00 53.84 1.579 12157 494402 -28204 ( 103) ( 284933) ( 6 )  0.00 53.00 53.94 1.579 9754 406140 -20889 ( 154) ( 236249) ( 6 )  6.00 55.00 55.90 1.581 14174 593752 -36386 ( 103) ( 339189) ( 6 )  4.00 51.00 51.84 1.583 11556 453613 -26283 ( 103) ( 260355) ( 6 )  4.00 49.00 49.84 1.583 10977 415244 -24659 ( 103) ( 237590) ( 6 )  -2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2.00           | 59.00                    | 60.07                    | 1.577                                   | 10292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             | -22079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ( 125) ( 259299) ( 6 )  -2.00 57.00 58.08 1.577 9774 438884 -20746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                          |                          | (                                       | 154) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 280147) (                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -2.00 57.00 58.08 1.577 9774 438884 -20746 ( 154) ( 257500) ( 6 ) 2.00 51.00 51.85 1.579 10323 409687 -22652 ( 130) ( 236855) ( 6 ) 4.00 53.00 53.84 1.579 12157 494402 -28204 ( 103) ( 284933) ( 6 ) 0.00 53.00 53.94 1.579 9754 406140 -20889 ( 154) ( 236249) ( 6 ) 6.00 55.00 55.90 1.581 14174 593752 -36386 ( 103) ( 339189) ( 6 ) 4.00 51.00 51.84 1.583 11556 453613 -26283 ( 103) ( 260355) ( 6 ) 4.00 49.00 49.84 1.583 10977 415244 -24659 ( 103) ( 237590) ( 6 ) -2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.00            | 53.00                    | 53.85                    | 1.577                                   | 10882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             | -24046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ( 154) ( 257500) ( 6 ) 2.00 51.00 51.85 1.579 10323 409687 -22652 ( 130) ( 236855) ( 6 ) 4.00 53.00 53.84 1.579 12157 494402 -28204 ( 103) ( 284933) ( 6 ) 0.00 53.00 53.94 1.579 9754 406140 -20889 ( 154) ( 236249) ( 6 ) 6.00 55.00 55.90 1.581 14174 593752 -36386 ( 103) ( 339189) ( 6 ) 4.00 51.00 51.84 1.583 11556 453613 -26283 ( 103) ( 260355) ( 6 ) 4.00 49.00 49.84 1.583 10977 415244 -24659 ( 103) ( 237590) ( 6 ) -2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                          |                          | (                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.00 51.00 51.85 1.579 10323 409687 -22652<br>( 130) ( 236855) ( 6 )<br>4.00 53.00 53.84 1.579 12157 494402 -28204<br>( 103) ( 284933) ( 6 )<br>0.00 53.00 53.94 1.579 9754 406140 -20889<br>( 154) ( 236249) ( 6 )<br>6.00 55.00 55.90 1.581 14174 593752 -36386<br>( 103) ( 339189) ( 6 )<br>4.00 51.00 51.84 1.583 11556 453613 -26283<br>( 103) ( 260355) ( 6 )<br>4.00 49.00 49.84 1.583 10977 415244 -24659<br>( 103) ( 237590) ( 6 )<br>-2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.00           | 57.00                    | 58.08                    | 1.577                                   | Control of the Contro |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ( 130) ( 236855) ( 6 ) 4.00 53.00 53.84 1.579 12157 494402 -28204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                          |                          | (                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.00       53.00       53.84       1.579       12157       494402       -28204         ( 103)       ( 284933)       ( 6 )         0.00       53.00       53.94       1.579       9754       406140       -20889         ( 154)       ( 236249)       ( 6 )         6.00       55.00       55.90       1.581       14174       593752       -36386         ( 103)       ( 339189)       ( 6 )         4.00       51.00       51.84       1.583       11556       453613       -26283         ( 103)       ( 260355)       ( 6 )       ( 6 )         4.00       49.00       49.84       1.583       10977       415244       -24659         ( 103)       ( 237590)       ( 6 )         -2.00       55.00       56.09       1.585       9277       404142       -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.00            | 51.00                    | 51.85                    | 1.579                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ( 103) ( 284933) ( 6 )  0.00 53.00 53.94 1.579 9754 406140 -20889 ( 154) ( 236249) ( 6 )  6.00 55.00 55.90 1.581 14174 593752 -36386 ( 103) ( 339189) ( 6 )  4.00 51.00 51.84 1.583 11556 453613 -26283 ( 103) ( 260355) ( 6 )  4.00 49.00 49.84 1.583 10977 415244 -24659 ( 103) ( 237590) ( 6 )  -2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 7-100779-21 <b>3</b> 711 | naseventure              | (                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.00 53.00 53.94 1.579 9754 406140 -20889<br>( 154) ( 236249) ( 6 )<br>6.00 55.00 55.90 1.581 14174 593752 -36386<br>( 103) ( 339189) ( 6 )<br>4.00 51.00 51.84 1.583 11556 453613 -26283<br>( 103) ( 260355) ( 6 )<br>4.00 49.00 49.84 1.583 10977 415244 -24659<br>( 103) ( 237590) ( 6 )<br>-2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.00            | 53.00                    | 53.84                    | 1.579                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ( 154) ( 236249) ( 6 )<br>6.00 55.00 55.90 1.581 14174 593752 -36386<br>( 103) ( 339189) ( 6 )<br>4.00 51.00 51.84 1.583 11556 453613 -26283<br>( 103) ( 260355) ( 6 )<br>4.00 49.00 49.84 1.583 10977 415244 -24659<br>( 103) ( 237590) ( 6 )<br>-2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 0.00000000000            | PROSECULIANS             | (                                       | The second secon | [12] 이 이 기업을 되었습니다. [12] [12] [12] [12] [12] [12] [12] [12] | 10.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.00 55.00 55.90 1.581 14174 593752 -36386<br>( 103) ( 339189) ( 6 )<br>4.00 51.00 51.84 1.583 11556 453613 -26283<br>( 103) ( 260355) ( 6 )<br>4.00 49.00 49.84 1.583 10977 415244 -24659<br>( 103) ( 237590) ( 6 )<br>-2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00            | 53.00                    | 53.94                    | 1.579                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ( 103) ( 339189) ( 6 )<br>4.00 51.00 51.84 1.583 11556 453613 -26283<br>( 103) ( 260355) ( 6 )<br>4.00 49.00 49.84 1.583 10977 415244 -24659<br>( 103) ( 237590) ( 6 )<br>-2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 0.6560.1452456           | 5000 00 60 60 60 00 1    | (                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1. 1200일은 전통점이 중심하셨다.)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.00 51.00 51.84 1.583 11556 453613 -26283<br>( 103) ( 260355) ( 6 )<br>4.00 49.00 49.84 1.583 10977 415244 -24659<br>( 103) ( 237590) ( 6 )<br>-2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.00            | 55.00                    | 55.90                    | 1.581                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 그 보다고 있는 것이 맛있는 것이 하나 없었다.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ( 103) ( 260355) ( 6 )<br>4.00 49.00 49.84 1.583 10977 415244 -24659<br>( 103) ( 237590) ( 6 )<br>-2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                          | raina bane               | (                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTROL SANGERS OF THE PARTY.                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.00 49.00 49.84 1.583 10977 415244 -24659<br>( 103) ( 237590) ( 6 )<br>-2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.00            | 51.00                    | 51.84                    | 1.583                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | The second secon |
| -2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13. 45.50       |                          | 250-200-200              | (                                       | - Carlot and Sept. 1981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -2.00 55.00 56.09 1.585 9277 404142 -19389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.00            | 49.00                    | 49.84                    | 1.583                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | 20 TO STATE OF STATE  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (5)5 (5)555 (5) |                          | (1200) (100) (100) (100) | (                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | 1-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ( 154) ( 235620) ( 6 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.00           | 55.00                    | 56.09                    | 1.585                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | A STATE OF THE STA |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                          |                          | (                                       | 154) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 235620) (                                                   | 6 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

```
GEOCO SDN BHD | Sheet No.

Program: SLOPE Version 12R.03 Revision Al5.Bl2.R41 |

Licensed from GEOSOLVE | Job No.

Run ID. GASING-CW4B | Made by :

GASING | Date: 7-09-2015

CW 4 B | Checked :
```

Units: kN,m

# Analysis options

Method of analysis: JANBU - for reinforced soil
Interslice friction/adhesion factor = 0.000
Factors of safety calculated on Soil + Reinforcement Strength

Partial factor of safety on tan(phi) = 1.000

Partial factor of safety on drained cohesion = 1.000

Partial factor of safety on undrained cohesion = 1.000

Partial factor of safety on reinforcement strength = 1.000

Partial factor of safety on pull-out resistance = 1.000

Partial factor of safety on direct sliding = 1.000

Partial factor of safety on soil weight = 1.000

Partial factor of safety on surcharge loads = 1.000

# Exclusion options

The summary results and selected results for each exit point exclude: All slip surfaces where the interlock value in any slice is less than 0.1000 All slip surfaces where the slipped mass is less than 1.0 kN/m run

# Critical Factor of Safety for each Common Point

| C     | ommon po | int   |      | CI    | itical ci | rcle     | Total    |
|-------|----------|-------|------|-------|-----------|----------|----------|
| Point | X        | Y     | Cer  | itre  | Radius    | Factor o | f Reinf. |
| no.   |          | coord | 22   | Y     |           | safety   |          |
| 1     | 3.34     | -0.83 | 2.00 | 59.00 |           |          | 110 <    |

| Sheet No.

GASING

CW 4 B

|                |       | 40    |       | coordi                | nates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |             |         | 00       |       |        | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |       | 00    |      |
|----------------|-------|-------|-------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|---------|----------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|------|
| 10.00          |       | -10.0 | 1.00  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -6.00    |             | -2      | .00      |       |        | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 0     | .00   |      |
| Y-coord        |       | **    |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 61.00          |       | 20    | •     | 1.663                 | 1.614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.58     | 9 1.57      | 6       |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 1.568 .        |       | •     | Z     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         | - 1      |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72       |       |       |      |
|                |       |       | 3     |                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22       |             |         |          | 9     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 59.00          |       | 2.5   | ্ৰ    | .679                  | 1.626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.59     | 0 1.57      | 7 1.57  | 3        |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 1 566          |       |       |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          | 0.0   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 1.000          |       |       | •     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5      |             |         |          | Š.    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 57.00          |       |       | 1     | .696                  | 1.636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.59     | 9 1.57      | 7 1.57  | 5 1.5    | 71    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 1.571 .        |       |       | *     | 1600                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F 4755   | 1930 02.000 |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| OF STREET      |       |       |       | Charles No. 17 No. 17 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 55,00          |       |       | 1     | .704                  | 1.649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.60     | 8 1.58      | 5 1.57  | 7 1.5    | 75 1. | 576    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 1.581          |       |       | +     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 259225         |       |       | 72    |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |             |         | 5 705    |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 53.00          |       |       | 1     | .712                  | 1.654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.61     | 7 1.59      | 2 1.57  | 9 1.5    | 77 1. | .579   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 1.587          |       |       |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             | 114     |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| E4.00          |       |       |       | 722                   | 4 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 2 4 50      | 0 4 60  |          | 70 1  | E02    | 4 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       |       |      |
| 51.00<br>1.591 |       |       | 23    | .723                  | 1,658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.62     | 2 1.59      | 1.58    | 8 1.5    | /8 1. | 583    | 1.592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       | 1     |      |
| 1.501          |       |       |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 49.00          |       | (1.1) | 1     | .747                  | 1.666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.62     | 6 1.600     | 3 1.59  | 1 1.5    | 88 1  | 583    | 1.598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.598    |       |       |      |
| 1.610 .        |       |       |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 0.767          |       |       | •     |                       | 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 47.00          |       |       | 1     | .768                  | 1.682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.63     | 0 1.600     | 1.590   | 1.5      | 93 1. | 586    | 1.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.604    |       |       |      |
| 1.619 .        |       |       |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
|                |       |       |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10002000 |       |       |      |
| 45.00          |       |       | 1     | .793                  | 1.699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.64     | 3 1.609     | 1.596   | 1.50     | 99 1. | 597    | 1.601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.608    | 1.627 |       |      |
| .643 .         |       |       |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 32/85/57       |       |       | 2.2   | 1000                  | 2201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 43.00          |       |       | 1     | .812                  | 1.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.65     | 7 1.616     | 1.599   | 1.60     | 1.0   | 605    | 1.610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.611    | 1.635 | 1.655 |      |
| .656           |       |       |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 44.00          |       |       |       | Carlot V              | The state of the s |          | 0 4 836     |         |          |       |        | The state of the s | 1.621    | 1.640 |       |      |
| 41.00          |       |       | - 1   | .834                  | 1.739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.66     | 9 1.630     | 1.602   | 1.60     | 1.0   | 612    | 1.622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.021    | 1.040 | 1.668 | 1.6  |
| .689           |       |       |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
|                |       | 12    |       | .857                  | 1,752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.68     | 4 1.641     | 1.816   | 1.60     | 10 11 | 619    | 1.630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.634    | 1.648 | 1.664 | 1.68 |
| 39.00          |       |       | - 4.  | .001                  | 1,102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,00     | 1.04)       | 1.00    | 1.00     | 1.0   | 010    | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.001    | 1,010 | 1.001 | 1.00 |
| .,,            |       |       |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 37.00          |       | 82    | 1.    | 897                   | 1.767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.69     | 3 1.651     | 1.627   | 1.61     | 8 1.6 | 522    | 1.637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,648    | 1,668 | 1.671 | 1.70 |
| .732           |       |       | 100   | 534                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000     |             |         |          |       | 1111   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 27.625         |       |       |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 35.00          |       | 3.4   | 1.    | 936                   | 1.802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.70     | 1.660       | 1.637   | 1.63     | 1.6   | 832    | 1.643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.659    | 1.685 | 1.690 |      |
| .726           |       | 7.5   |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
|                |       |       |       | 0000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             | n meet  | 1 100.20 |       | Line 1 | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2222     |       |       |      |
| 33.00          |       |       | 1.    | 976                   | 1.833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.719    | 1.665       | 1.644   | 1.64     | 1.6   | 548    | 1.650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.686    | 1.705 |       |      |
| .713 .         |       |       |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
|                |       |       |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        | . 072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 005    | 1 720 |       |      |
| 31.00          |       | 9     | 2.    | 017                   | 1.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.75     | 1.675       | 1.649   | 1.65     | 0 1.0 | 67     | 1.672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.695    | 1.720 |       |      |
| .738           |       |       |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 20.00          |       |       | 2     | 084                   | 1 907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 70     |             | 1.656   |          |       | 378    | 1.693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.723    |       |       |      |
| 29.00          |       |       |       | 061                   | 1.897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.70     | 1,700       | 1.000   | 1.00     | 1.0   | 110    | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.720    |       |       |      |
| .731 .         |       |       |       |                       | \$3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 27.00          | 2     | .329  | 2.093 | 1.9                   | 28 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 807      | 1.729       | 1.681   | 662      | 1.686 | 1.7    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |       |       |      |
| .752 .         |       |       | 2.000 | *                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
|                |       |       |       |                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.       |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 25.00          | 2     | 410   | 2.131 | 1.9                   | 47 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .830     | 1.756       | 1.703   | .690     | 1.695 | 1.7    | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |       |       |      |
| .783           | OCH R | 1000  |       | 10.25                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O. C. C. | 475076      | 1957652 | 355.25   | 100   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| SEC. SEC.      |       | *     |       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             | 0.00000 |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 23.00          | 2.    | .513  | 2.205 | 1.9                   | 73 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 844      | 1.774       | .736 1  | .720     | 1.727 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| .757           |       | 14    | 31    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 12,780         |       |       |       |                       | 18 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 20.3273     |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 21.00          | 2.    | 618   | 2.279 | 2.0                   | 31 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 860      | 1.783       | .758 1  | .748     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| .765 .         |       | 1.5   | 16    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *        |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 40.00          |       | 700   | 2 227 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 007      | 700         | 707     | 705      |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 19.00          | 2.    | 722   | 2.357 | 2.0                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 307      | 1,792 1     | ror 1   | .160     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| .812           |       |       | 8     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             | 1       |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 17.00          | 2     | 830   | 2 440 | 211                   | 54 · 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 951      | 1.828 1     | 787     |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 17.00<br>813 . | -     | 030   | 2.448 | 2.15                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |         |          |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |
| 010            |       |       |       |                       | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |             | 52      |          |       | 3.5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |       |      |

```
GEOCO SDN BHD | Sheet No.

Program: SLOPE Version 12R.03 Revision A15.B12.R41 | Job No.

Run ID. GASING-CW4B | Made by:

GASING | Date: 7-09-2015 | Checked:
```

Units: kN,m

#### Analysis options

Method of analysis: JANBU - for reinforced soil Interslice friction/adhesion factor = 0.000

Factors of safety calculated on Soil + Reinforcement Strength

Partial factor of safety on tan(phi) = 1.000

Partial factor of safety on drained cohesion = 1.000

Partial factor of safety on undrained cohesion = 1.000

Partial factor of safety on reinforcement strength = 1.000

Partial factor of safety on pull-out resistance = 1.000

Partial factor of safety on direct sliding = 1.000

Partial factor of safety on soil weight = 1.000

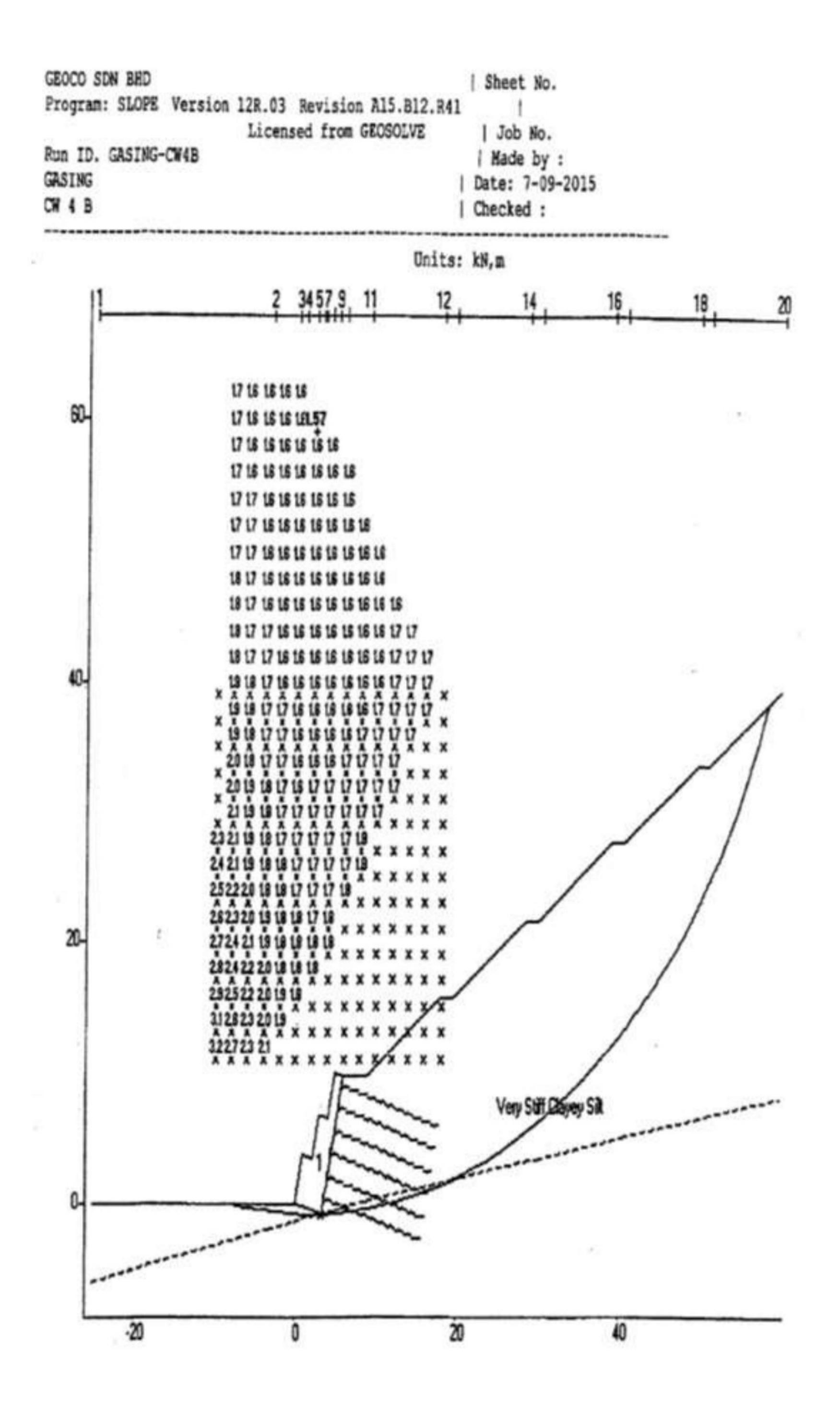
Partial factor of safety on surcharge loads = 1.000

#### DETAILED RESULTS FOR CRITICAL CIRCLE

#### Factor of safety = 1.566

Slipped mass = 12590 kN/m Out of balance vertical force = 0 kN/m
Out of balance horizontal force = -2 kN/m
Out of balance moment = -29860 kN.m/m
Total reinforcement force = 110 kN/m

Centre of circle: X = 2.00 Y = 59.00 Radius = 59.85 Overturning moment = 333463 kN.m/m Restoring moment = 568909 kN.m/m


|     |       |       | - elevat |          | nor recircus  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vertical |
|-----|-------|-------|----------|----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| No. | X     | Y     | Y(w)     | E(total) | E' (effective | The second secon |          |
|     | 0.00  | 0.00  |          | kN/m     | kN/m          | kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 1   | -8.02 | -0.00 | -2.89    | .0       | 0             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 2   | -3.30 | -0.61 | -2.02    | 43       | 43            | Ü                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 3   | 0.00  | -0.81 | -1.42    | 84       | 84            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 4   | 0.92  | -0.84 | -1.25    | 114      | 114           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 5   | 2.20  | -0.85 | -1.01    | 175      | 175           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 6   | 3.03  | -0.84 | -0.86    | 224      | 224           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 7   | 3.34  | -0.83 | -0.81    | 247      | 247           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 8   | 4.05  | -0.81 | -0.70    | 372      | 372           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 9   | 4.93  | -0.78 | -0.56    | 445      | 445           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 10  | 5.95  | -0.72 | -0.40    | 531      | 531           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 11  | 8.96  | -0.44 | 0.07     | 747      | 746           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 12  | 17.95 | 1.32  | 1.47     | 1294     | 1294          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 13  | 19.45 | 1.76  | 1.70     | 1365     | 1365          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 14  | 28.45 | 5.32  | 3.10     | 1586     | 1586          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.40     |
| 15  | 29.95 | 6.08  | 3.33     | 1584     | 1584          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00     |
| 16  | 38.95 | 11.92 | 4.73     | 1309     | 1309          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 17  | 40.45 | 13.14 | 4.97     | 1222     | 1222          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 18  | 49.45 | 22.53 | 6.37     | 508      | 508           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 19  | 50.95 | 24.57 | 6.60     | 376      | 376           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 20  | 55.05 | 31.31 | 7.24     | 79       | 79            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 21  | 58.24 | 38.53 | 7.73     | 2        | 2             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |

| Slice | Cohesion | Tan (phi | .) Pore  | Weight   | Ford | es on bas | se of slice |
|-------|----------|----------|----------|----------|------|-----------|-------------|
| No.   |          |          | pressure | of slice | no   | rmal      | shear       |
|       | (avge)   | (avge)   | (avge)   | W        | P    | P'        | S           |
|       | kN/m2    |          | kN/m2    | kN/m     | kN/m | kN/m      | kN/m        |
| 1     | 8.00     | 0.7536   | 0.00     | 26       | 31   | 31        | 39          |
| 2     | 8.00     | 0.7536   | 0.00     | 42       | 45   | 45        | 38          |
| 3     | 8.00     | 0.7536   | 0.00     | 48       | 49   | 49        | 28          |
| 4     | 8.00     | 0.7536   | 0.00     | 111      | 111  | 111       | 60          |
| 5     | 8.00     | 0.7536   | 0.00     | 96       | 96   | 96        | 50          |
| 6     | 8.00     | 0.7536   | 0.06     | 47       | 45   | 46        | 24          |
| 7     | 8.00     | 0.7536   | 0.70     | 103      | 128  | 127       | 65          |
| 8     | 8.00     | 0.7536   | 1.65     | 150      | 148  | 147       | 75          |
| 9     | 8.00     | 0.7536   | 2.65     | 200      | 194  | 192       | 97          |
| 10    | 8.00     | 0.7536   | 4.12     | 553      | 531  | 519       | 265         |
| 11    | 8.00     | 0.7536   | 3.28     | 1981     | 1839 | 1809      | 917         |
| 12    | 8.00     | 0.7536   | 0.54     | 382      | 347  | 346       | 174         |
| 13    | 8.00     | 0.7536   | 0.00     | 2452     | 2198 | 2198      | 1107        |
| 14    | 8.00     | 0.7536   | 0.00     | 431      | 385  | 385       | 194         |
| 15    | 8.00     | 0.7536   | 0.00     | 2537     | 2277 | 2277      | 1151        |
| 16    | 8.00     | 0.7536   | 0.00     | 409      | 373  | 373       | 189         |
| 17    | 8.00     | 0.7536   | 0.00     | 2079     | 1954 | 1954      | 1007        |
| 18    | 8.00     | 0.7536   | 0.00     | 273      | 268  | 268       | 142         |
| 19    | 8.00     | 0.7536   | 0.00     | 525      | 526  | 526       | 294         |
| 20    | 8.00     | 0.7536   | 0.00     | 146      | 129  | 129       | 103         |

# Reinforcement forces

| Layer<br>No. | Elev. | Inside      | slip surface         | Outside | slip surface         | Available<br>Reinforcement |
|--------------|-------|-------------|----------------------|---------|----------------------|----------------------------|
|              |       | Length<br>m | Pull-out<br>kN/m run | Length  | Pull-out<br>kN/m run | force<br>kN/m run          |
| 1            | 9.05  | No int      | ersection            |         |                      |                            |
| 2            | 7.30  | No int      | ersection            |         |                      |                            |
| 3            | 5.55  | No int      | ersection            |         |                      |                            |
| 4            | 3.80  | 11.75       | 51.43a               | 0.24    | 7.56                 | 7.56                       |
| 5            | 2.05  | 7.81        | 51.43a               | 4.20    | 51.43                | 51.43                      |
| 6            | 0.30  | 3.42        | 51.43a               | 8.57    | 51.43                | 51.43                      |

Note: 'a' indicates end of reinforcement is anchored 'w' indicates end of reinforcement is wrapped around



# Appendix G Sample of Soil Nails Design

# **Step 1: Project Requirements**

A 9.7 m high soil nail wall, 100 m in length, surcharge load is 10 kN/m³ is planned for construction of a retaining slope project.

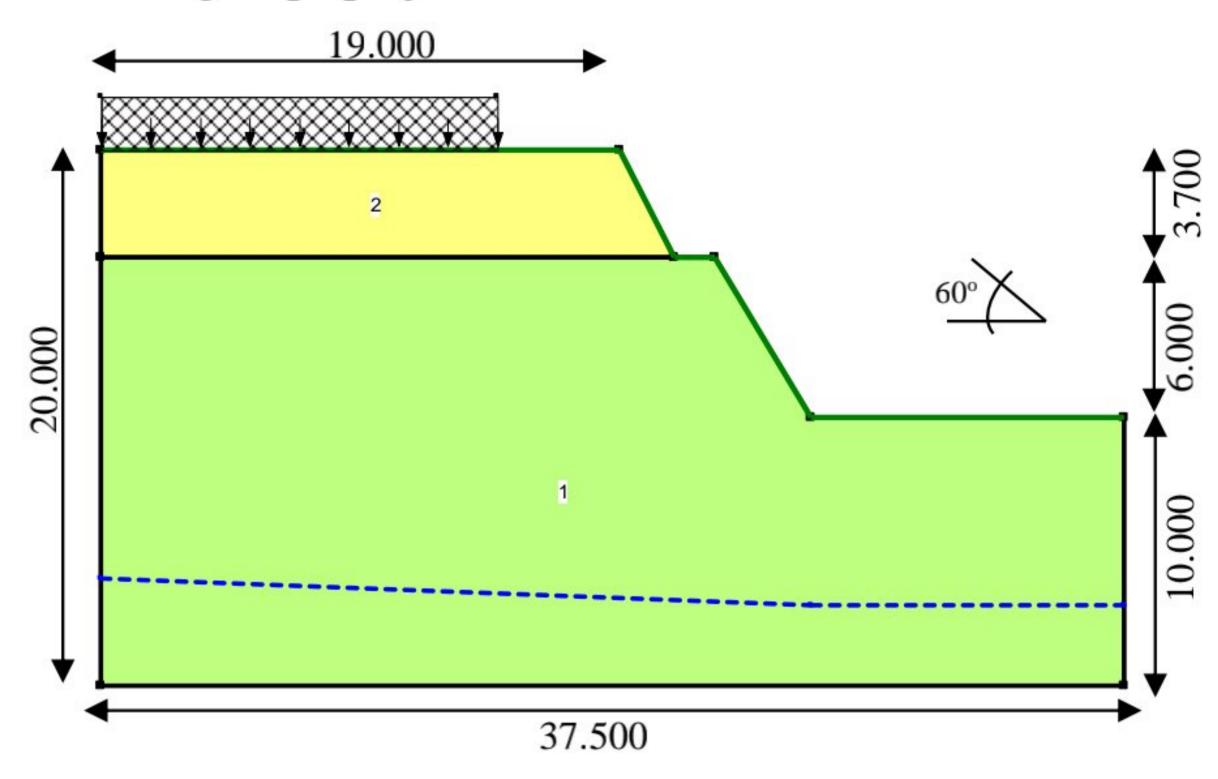



Figure 1.1 Illustration geometry model

# Step 2: Subsurface Exploration and Development of Parameters for Design

It is assumed that a geotechnical exploration and a geotechnical laboratory testing program have been completed. Based on results from the geotechnical exploration and laboratory testing, the following geotechnical parameters have been selected for design:

# Upper layer

- Materials SPT 10-30
- Mohr Column model
- soil unit weight,  $\gamma s = 18 \text{ kN/m}^3$
- effective friction angle,  $\varphi s' = 40^{\circ}$
- cohesion, c = 0 kPa

## Lower layer

- Materials SPT 30-50
- Mohr Column model
- soil unit weight,  $\gamma s = 19 \text{ kN/m}^3$
- effective friction angle,  $\varphi s' = 32^{\circ}$
- cohesion, c = 0 kPa

There is no need to develop seismic parameters for design because it is assumed that the wall is in a zone with very low seismic hazard.

## **Step 3: Load Definition**

## 3(a) Define Unfactored, Service Loads

It is assumed that the live load consists of a uniform load, QLS equal to 13.94 m<sup>2</sup>, extending from the wall to 7.5 m behind the wall.

## 3(b) Select Load Combinations and Load Factors

The load combinations for this example only include Strength I and Service limit states. Load factors for overall stability are 1.0 for use with SLOPE/W.

# Step 4: Soil-Nail Configuration and Material Selection

# 4(a) Develop Wall Layout, Cross-Sections, Nail Pattern, and Splaying

Given the wall height (H = 9.7 m) and face batter ( $\alpha$  = 0), the following layout is selected for simulation in SLOPE/W.

#### Vertical and Horizontal Spacing of Soil Nails

• Adopt;(1)  $S_{H1} = 1.5$  m;  $S_{V1} = 2.0$  m (upper soil level) and (2)  $S_{H2} = S_{V2} = 1.5$  m (lower soil level)

Check (1):  $S_{H1} \times S_{V1} = 3.00 \text{ m}^2 \le 3.24 \text{ to } 3.61 \text{m}^2 \text{ ok}$ 

Check (2):  $S_{H2} \times S_{V2} = 2.25 \text{ m}^2 \le 3.24 \text{ to } 3.61 \text{m} 2 \text{ ok}$ 

• This vertical spacing results in 2 rows (upper soil level) and 4 rows (lower soil level) of soil nails.

# Vertical Spacing at the Top and Bottom of the Wall

The spacing between the first row and the top of the wall is selected as:

 $S_{V0} = 0.85 \text{ m} \le 1.050 \text{ m ok}$ 

The spacing between the deepest row and the bottom of the wall  $(SV_N)$  is:

•  $S_{VN} = 0.75 \text{ m} \le 0.6 \text{ to } 0.9 \text{ m} \text{ ok}$ 

# **Soil Nail Inclination**

Because no utilities or obstructions exist behind the wall, the soil nail inclination is selected as:

• i = 20 degrees for all nails **ok** (between 15 and 25 degrees)

## Soil Nail Length

The maximum soil nail length is selected for a simulation at:

• L = (L between 0.6 H and 1.2H) = 9 m ok

## Distribution of Soil Nail Length in Elevation

A uniform pattern of soil nail lengths is first selected for simplification. Therefore, all six soil nails have L = 9 m. No sensitive structures exist immediately behind the wall; hence no special considerations for controlling wall deflections are needed

# Soil Nail Pattern on Wall Face

Both "square" and "staggered" soil nail patterns are considered feasible. A staggered pattern would tend to result in smaller effective nail spacings, and therefore fewer nails than the square pattern. This design using square soil nail patterns.

## **Detail Corrosion Protection**

It was assumed that the Owner specified a Class B level of corrosion protection for soil nails to accommodate their tolerance for risk and because the cost differential for providing a higher corrosion protection was estimated to be low.

#### **Step 5: Selection of Resistance Factors**

Safety factors selected for this example are presented in Table 1.0 for ASD calculations with SLOPE/W.

Table 1.1 Summary of Factors of Safety for Use with the ASD Method

| Limit State            | Condition                  | Symbol per this manual | Minimum<br>Recommended FOS |
|------------------------|----------------------------|------------------------|----------------------------|
| Overall Stability      | Internal                   | FOSos                  | 1.5                        |
| Strength- Geotechnical | Pull-out<br>Resistance     | FOSpr                  | 2                          |
| Strength - Structural  | Tendon Tensile<br>Strength | FOSt                   | 1.8                        |
| Strength - Facing      | Flexural                   | FOSf                   | 1.5                        |
| Strength - Facing      | Punching Shear             | FOSps                  | 1.5                        |
| Strength - Facing      | A307 steel bolt (assumed)  | FOSfh                  | 1.5                        |

# **Step 6: Overall Stability**

## 6(a) Verify Internal Stability

# Data Entry - Material Properties

The properties for soil layers, as well as dimensions and material properties of the soil nails, facing components, shotcrete/concrete, welded-wire mesh, rebar, bearing plate, and headed studs. Mean values of the soil resistance should be considered. The wall-soil interface friction is estimated to be  $2/3 \text{ }\varphi\text{s'}$  in SLOPE/W. This parameter, among others, is considered in SLOPE/W to perform checks for eccentricity (overturning), lateral sliding and bearing capacity.

Table 1.2 Summary of Properties of Soil Nail Components

| Parameter                        | Main Features                              | Additional Descriptions                    |
|----------------------------------|--------------------------------------------|--------------------------------------------|
| Nail Features                    | 6 solid bars # Grade 75                    | bore hole diameter, DDH = 0.125 m          |
| Facing thickness/type            | initial: hi = 0.1 m Final: hf = 0.2 m      | initial: shotcrete f'c = 4,000 psi         |
|                                  |                                            | final: CIP concrete f'c = 4,000 psi        |
| Primary reinforcement grade/type | initial: Grade 60                          | final: Grade 60 rebar;                     |
|                                  | WWM 6×6 - W2.9×W2.9                        | No. 4 @ 300 mm. (ea. way)                  |
| Added reinforcement in facing    | initial: rebar 2 × #5 (ea. way)            | final: none                                |
| Bearing plate                    | Square dimension: LP = 225 mm.             | Grade 50, $fy = 50 \text{ ksi}$            |
|                                  | thickness: $tP = 25 \text{ mm}$ .          |                                            |
| Headed stud type                 | $4 \times (1/2 \times 4 \text{ and } 1/8)$ | Grade A307 steel                           |
| Headed stud dimensions           | stud length: $LS = 4.125$ in.              | shaft diameter: $D_{SC} = 12 \text{ mm}$ . |
|                                  | head diameter: $DH = 1$ in.                | stud spacing: $S_{SH} = 150 \text{ mm}$ .  |
|                                  | head thickness: $tSH = 0.31$ in.           |                                            |

#### 6(b) Verify Global Stability

The calculated factors of safety for global stability were larger than the minimum recommended values because SLOPE/W allows extending the slip surfaces to extend below the toe of the wall.

# 6(c) Results

After a few simulations, the length of the nails was modified to L = 9 m, spacing 1.5 m upper layer and lower layer and inclination  $20^{\circ}$ . The calculated factor of safety for

overall stability was at or slightly above the minimum value (1.570). The output was also inspected until all the internal checks conducted by SLOPE/W indicated that the minimum requirements were exceeded.

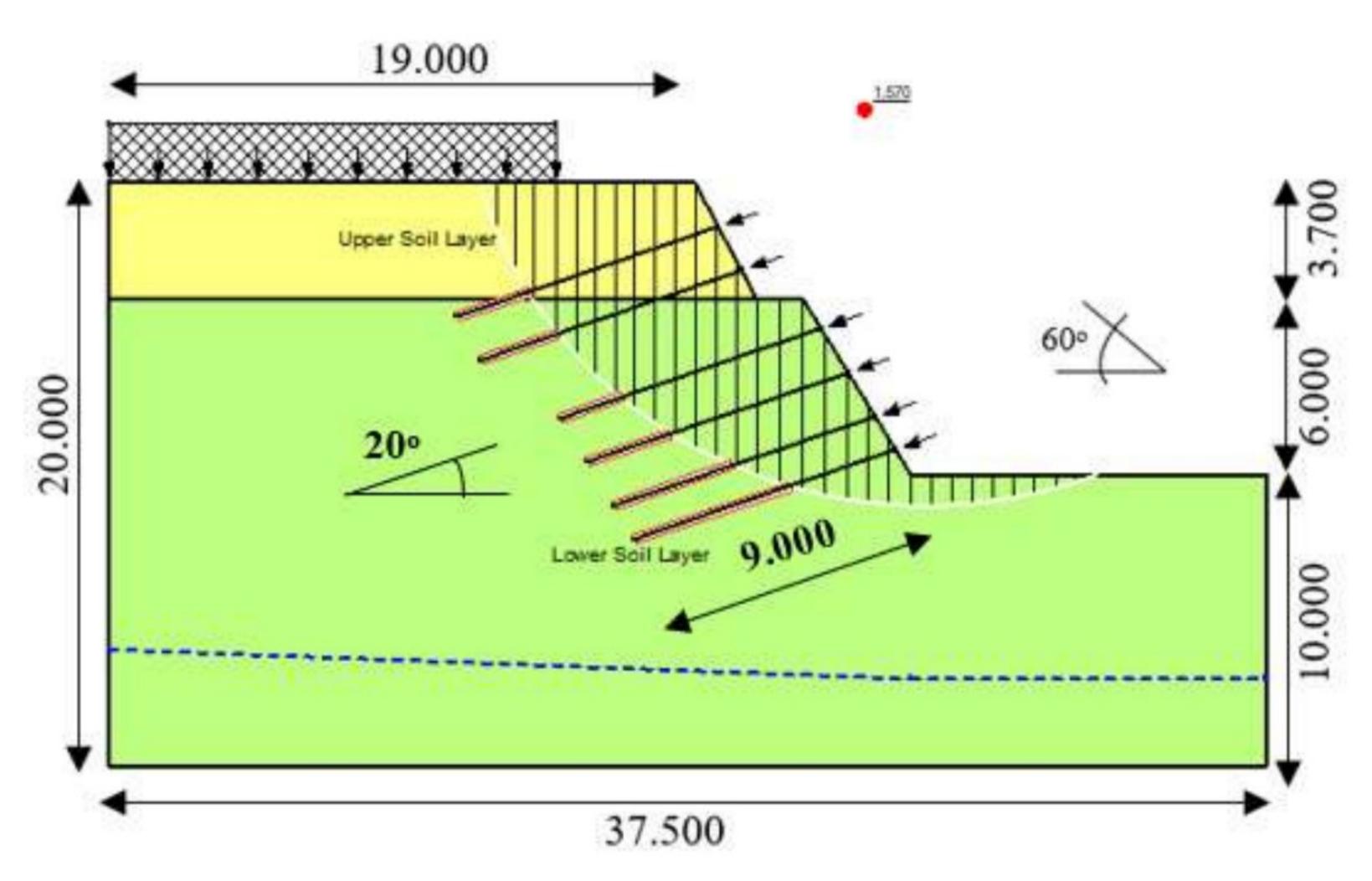



Figure 1.2 Soil nails results model

#### LIST OF PUBLICATIONS

- Mohd Sukry Mohamed, and Samira Albati Kamaruddin (2017). Soil Nailing Design and Technique for Cut Slope Stabilization: A Review. In 2017 International Conference on Sustainable Infrastructure and Engineering (SustaIN).
- 2. Mohd Sukry Mohamed, and Samira Albati Kamaruddin (2018). Optimization of Soil Nailing Designs for Cost-Effectiveness Analysis. *Journal of Advanced Research (ICEBM)*.
- 3. Mohd Sukry Mohamed, Fathiyah Hakim Sagitaningrum, and Samira Albati Kamaruddin (2019). Optimization of Soil-Nailed Wall Design using SLOPE/W Software. *International Professional Doctorate Symposium* (IPDOCS 2019). Open International Journal of Informatics (OIJI). Vol 7 No 1 (2019): OIJI Special Session on Informatics in Industry. Published: 26-12-2019.
- 4. Mohd Sukry Mohamed, and Samira Albati Kamaruddin (2019). Cost-Benefit Analysis of Combined Retaining Walls Construction. Proceedings of the International Conference on Sustainable Design, Engineering, Management and Sciences (ICSDEMS 2019). Lecture Note in Civil Engineering (Springer). Published: 19-08-2020.