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ABSTRACT 

The Internet of Things (IoT) is one of the latest technologies in the field of 

telecommunication. However, security of the network is a prominent challenge in IoT. 

Among the security risks, a Botnet has been identified to cause a significant threat to 

the network. A Botnet is a network of private computers infected with malicious 

software and being controlled as a group without the owners' knowledge. The Botnet 

is normally used to send spam, steal data, and carry out Distributed Denial of Service 

attack. It also allows the attacker to access the devices and their connections. The 

master (owner) organized the Botnet by using Command and Control (C&C) software. 

One of the method of detection is Ensemble Learning method, which is a technique of 

Machine Learning. Ensemble Learning models use several models of the same kind 

for classifying or regressing the output. The idea behind such a technique is to use 

several weak predictors together to create a strong predictor. There are several types 

of research on the detection of Botnet using Machine Learning methods. However, 

each method has its limitations such as real-time monitoring, timely detection, and 

adaptability to new threats. Among all studies that have been reviewed, none of them 

explained why they choose specific methods for detecting Botnet. Also, they focus on 

a specific type of Botnet or specific operating systems and devices. Hence, this study 

aims to improve the Network Traffic Botnet identification through features reduction 

and ensemble learning methods, and to identify the best machine learning method to 

detect the Botnet in IoT networks. This is achieved by first finding the best of 

supervised learning, unsupervised learning, and regression learning methods. Then 

used the two best of them in the Ensemble Learning method for achieving the best 

possible result. To validate the accuracy of the proposed model, 790745 normal 

domain names and 199772 malicious domain names have been collected from 3 

different sources. To ensure the method is not overfitting, the cross-validation 

technique was used. All machine learning algorithms that have been used in this study 

are developed in Python 3 on the same computer for equalization of speed. It is found 

that the proposed model is the best in the matter of accuracy achieved 100% and reduce 

the number of features from 204 to only 20 by combining the two best of the machine 

learning methods: Decision Tree and Artificial Neural Networks. This Ensemble 

Learning method is useful for identifying Botnet and Bots during communication in 

IoT networks.  
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ABSTRAK 

Internet of Things (IoT) adalah salah satu teknologi terkini dalam bidang 

telekomunikasi. Walau bagaimanapun, keselamatan rangkaian adalah cabaran utama 

dalam IoT. Di antara risiko keselamatan, Botnet telah dikenal pasti menyebabkan 

ancaman yang signifikan terhadap rangkaian. Botnet adalah rangkaian komputer 

peribadi yang dijangkiti perisian berbahaya dan dikawal dalam satu kelompok tanpa 

pengetahuan pemiliknya. Botnet biasanya digunakan untuk mengirim spam, mencuri 

data, dan melakukan Serangan Penafian Perkhidmatan. Ini juga membolehkan 

penyerang mengakses peranti dan rangkaiannya. Pemilik Botnet mengatur Botnet 

dengan menggunakan perisian Arahan dan Kawalan.  Salah satu kaedah pengesanan 

adalah kaedah Pembelajaran Essemble, iaitu teknik Pembelajaran Mesin. Model 

Pembelajaran Ensemble menggunakan beberapa model yang sama untuk 

mengklasifikan atau merosotkan dapatan. Idea di sebalik teknik tersebut adalah 

menggunakan beberapa peramal yang lemah bersama-sama untuk membina peramal 

yang kuat. Terdapat beberapa jenis penyelidikan mengenai pengesanan Botnet 

menggunakan kaedah Pembelajaran Mesin. Walau bagaimanapun, setiap kaedah 

mempunyai batasan seperti pemantauan masa nyata, pengesanan tepat pada masanya, 

dan kemampuan menyesuaikan diri dengan ancaman baru. Di antara semua kajian 

yang telah dikaji, tidak ada yang menjelaskan mengapa mereka memilih kaedah 

khusus untuk mengesan Botnet. Mereka juga memfokus pada jenis Botnet atau sistem 

operasi dan peranti tertentu. Oleh itu, kajian ini bertujuan untuk meningkatkan 

pengenalan Network Traffic Botnet melalui kaedah pengurangan ciri dan Pembelajaran 

Ensemble, dan untuk mengenal pasti kaedah Pembelajaran Mesin yang lebih baik 

untuk mengesan Botnet dalam rangkaian IoT. Hal ini dapat dicapai dengan mencari 

kaedah pembelajaran terarah, pembelajaran tidak diarah dan kaedah pembelajaran 

regresi. Kemudian gunakan dua yang terbaik dalam kaedah Pembelajaran Ensemble 

bagi mencapai hasil yang terbaik.  Untuk mengesahkan ketepatan model yang 

dicadangkan, 790745 nama domain normal dan 199772 nama domain berbahaya telah 

dikumpulkan dari 3 sumber yang berbeza. Untuk mengelakkan sesuatu kaedah 

berlebihan, teknik pengesahan silang digunakan. Semua algoritma Pembelajaran 

Mesin yang telah digunakan dalam kajian ini dibangunkan di Python 3 pada komputer 

yang sama untuk memastikan kelajuan yang sama. Hasil kajian menunjukkan bahawa 

model yang dicadangkan adalah yang terbaik dalam mencapai hal 100% ketepatan, 

dan mengurangkan bilangan ciri daripada 204 ke hanya 20 dengan menggabungkan 

dua kaedah Pembelajaran Mesin terbaik: Pohon Keputusan dan Rangkaian Neural 

Buatan. Kaedah Pembelajaran Ensemble ini berguna untuk mengenal pasti Botnet dan 

Bot semasa komunikasi dalam rangkaian IoT. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

One of the new technologies in the field of telecommunication is the Internet 

of Things (IoT). IoT is the physical objectives of network, vehicles, devices, buildings 

and other items which are embedded with things such as electronics, sensors, software 

as well as connectivity of network, the IoT allows those objects to collect and exchange 

data (Roy et al., 2015). In this era of new technology, IoT is the next major step, which 

carries great changes in the functionality of business. It is expected of that number of 

devices and their functions that are connected to the IoT, will be increased in the future. 

(Stergiou et al., 2016). 

The IoT has a high impact on users’ daily lives and potentially on users’ 

behaviour. The most recognizable factors of the IoT are being visible both in indoor 

and in the working fields as detecting a private could user. Apart from that, the IoT 

can also play a leading role in other areas such as, smart homes, e-health, assisted 

living, and enhanced learning. Secondly, users of business could also see the impact 

of the IoT particularly in logistics, automation and industrial manufacturing, intelligent 

transportation, and business management (Alsmirat et al., 2016).  

The IoT includes three main parts; the things or objects, communication 

networks that connect things, and the systems of computers using data steaming 

from/to things. Generally, IoT is a kind of network of physical things that are set up 

with electronics, software, sensors, and the connectivity which activates them. The 

exchange of data by operators, manufacturers, and some other connected devices allow 

for greater value services (Batalla and Krawiec, 2014).  
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Figure 1.1 The Connectivity of the Internet of Things (Batalla and Krawiec, 2014) 

The performance of cloud service can be found in a wide variety of applications 

such as in health care sector, electronic governance, production facilities, network 

services and also in the monitoring of numerous parameters to maintain optimality and 

so on (Georgia et al., 2016). 

On the other hand, cloud computing is another new technology which is 

growing fast and becoming the part that connects to IoT for storage and on demand. 
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The current tendency for handling big data and rapid delivery of services based on 

customers demands have affected a quick migration of nearly all computing facilities 

to cloud networks. The accuracy of any computing system depends on the incremental 

number of input samples and the choices given to the computing core unit (Bruno and 

Nurchis, 2013).  

Due to cloud computing can handle big data and rapid delivery of services 

based on customers' demands. On the other hand, the challenges on IoT's devices in a 

matter of energy source and memory can be solved by using cloud computing. 

Therefore, cloud computing is related to IoT network and it has to be concerned about 

cloud computing to understanding better on IoT challenges. 

Furthermore, with the rising conversion of new appliances and tools with the 

latest technology, there is a presented demand for gradation and measurement 

standards for collating new research discoveries in the market. The measurements used 

need be accurate and quick enough to keep up with the computing section and the core 

used in the services of cloud. The arrival of IoT has enhanced the value in terms of the 

accuracy and correctness of measurements of data, due to the inputs from multiple 

sources as they are also unified in the cloud (Hongming et al., 2017).  

IoT and Cloud computing are two dissimilar technologies which have already 

become a part of our lives. A higher usage and adoption rate for both technologies are 

expected to be an important part of the future of internet (Botta et al., 2016).  

According to Botta et al. (2016), it was found that IoT and cloud computing 

have achieved their popularities in recent years. The number of research papers 

discussing IoT and cloud computing (both individually) has increased since 2008 

Additionally, previous studies looking into both technologies have also increased. 

Figure 1.3 shows research and interest trends on IoT and cloud. 
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Figure 1.2 Research and Interest Trends on IoT and Cloud.(Botta et al., 2016)(a). 

 

Figure 1-2 Research and Interest Trends on IoT and Cloud.(Botta et al., 2016)(b). 

 

Figure 1-2 Research and Interest Trends on IoT and Cloud.(Botta et al., 2016)(c). 

 

The IoT has been an interesting topic to study as it is concerned with an actual 

being in the physical world connected to the virtual unit in the cyber world. Physical 

and also digital units are improved by processing, sensing, and self-adapting abilities 
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to achieve interface during special addressing system. The IoT comes with added 

security challenges, similar other Internet technologies, such as the Radio Frequency 

Identification (RFID), Near Field Communication (NFC), and Wireless Sensor and 

Actuator Networks (WSAN). Numerous problems can particularly in areas such as the 

system architecture, standard, and other human concerns (Mohd et al., 2017). 

There are security issues that should be taken into consideration. When dealing 

with security issues, questions such as ‘How do we verify malicious IoT devices?’, 

‘How do we create a suitable security framework for intelligent applications of 

things?’, ‘How do we maintain an equilibrium among high security requests of things 

and also supporting hardware limitations of foundations?’ may arise. An ultimate 

question that should be asked is ‘How can the society safely participate in both 

physical and cyber worlds via inter communication?’. 

These kinds of important barriers are able to manipulate the improvement of 

the future IoT. Beside the disclosure of huge information is also susceptible to potential 

vulnerabilities from robust attackers. Moreover, limited sources involving 

heterogeneous networks and sensor nodes, channels of connection and interfaces, 

bandwidth, storage, and energy, may persuade single model design too. In the direction 

of the general IoT researches on its architecture form, standard, communication 

protocol, as well as management of network have been explored in previous studies 

(Mohd et al., 2017).  

On the subject of the special security of the IoT, a number of open problems 

such as a Botnet, distributed denial of service attacks (DDoS) attacks, cryptographic 

algorithms, access control, authentication protocols, and governance frameworks may 

occur. Much of the research have focused on particular communication methods such 

as the WLAN or RFID, comprehensive cryptographic mechanisms such as key 

management, and useful applications such as supply chain management and 

multimedia traffic (Mohd et al., 2017).  

The security frameworks in usual networks could present merits for security 

protection of the IoT. Nevertheless, the security problem to the future of the IoT is a 
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difficult technical problem involving multidimensional subject that merges the data 

security, security in the network, infrastructure security, and management security. 

Generally, the present methods only offer solutions for a particular communication 

technique or software and might be lacking in universality for a complex system 

(Mohd et al., 2017).  

The research and development of the IoT over the last decade has been 

observed. As demonstrated in Figure 1.4, Gartner approximated that by 2016 there will 

be 6.4 billion connected devices using it. The world residents are assumed to reach 7.6 

billion by 2020 which means that there would be nearly 3 devices linked to IoT for 

every person in the world (Sicari et al., 2015). Connected things, such as implantable 

medical devices and transportations, play vital roles in our routine lives. Therefore, 

powerful security requests for the IoT have turned into a necessity. To cope with the 

massive use of the IoT, confidentiality, integrity, and authentication are among the 

major security issues that need to be addressed (Chi et al., 2017). 

Figure 1.3 The Number of Connected Devices in IoT (Chi et al., 2017). 

It could be challenging to create applications for the IoT due to several reasons; 

high difficulty of distributed computing, the lack of overall guidelines and frameworks 

involving communication at the low level for simpler implementation at the high level, 

the use of different programming languages used, and the numerous protocols of 
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communication. All these aspects require developers who are capable of managing the 

foundation and handling both the hardware and software layers via protecting all 

functional and non-functional requirements of the software (Ammar et al., 2018). 

1.2 Background of the Problem 

This section will review challenges in IoT security, Botnet, Botnet detection 

techniques, and Machine Learning techniques researches that have been done recently. 

1.2.1 Internet of Things Security 

The advantages of being everywhere and the growing reputation of IoT have 

made devices of IoT a strong boosting platform for cyber-attacks. This increases the 

intensity and numerous repetitions of security events involving IoT devices. They have 

obviously become a new fragile link in the chain of security of recent computer 

networks. IoT devices could be the weak point of desktop systems. However, what 

they lack in computing of abilities they make up for in statistics. Furthermore, due to 

being regularly connected to the internet and also apparently infiltrated by faults in 

several situations of simple outcome configurations of security, they become an easy 

target for attackers.  

The Internet of Things (IoT) is becoming more popular. Computing services 

now require a vast volume of data storage as well as processing. The resource 

constraints due to the unique characteristics of IoT including short range 

communication, and self-organization have resulted in the outsourcing use of the cloud 

as a storage. This brings up a chain of new challenges in the security and privacy 

threats of the IoT (Zhou et al., 2017). 

The IoT comprise of electronics software and sensors embedded within 

physical objects that allow things to be controlled remotely. The present network 

infrastructure facilitates direct integration among computer communication networks 

as well as the physical world, which will significantly help improve, efficiency and 
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accuracy to benefit the economy (Li et al., 2011). For that reason, the IoT has been 

extensively applied in a range of applications for instance in building automation, 

energy management medical healthcare systems, environment monitoring, and 

transportation.  

Nevertheless, because of the limitations of resources in the IoT devices, they 

continuously represent active and extremely complex computation closely related to 

the IoT users’ privacy. The IoT users must not be exposed to compromised and 

malicious IoT users within malicious cloud servers. Hence, the major concern now lies 

on how to effectively protect the privacy protective of the IoT in the cloud (Sheng et 

al., 2013). 

The IoT has been creating a new situation that malware could be using to create 

strong Botnet. One of the newly discovered pieces of Linux malware is Mirai that has 

been used for roping devices of IoT into Botnet. Mirai could gain shell access using 

the default password of telnet or accounts of SSH. After it takes access to the account, 

it could generate delayed processes, install other malware on the system and even 

delete files. The infected devices that are secretly under control of Mirai also await 

commands for striking in the form of DDoS attack. The massive internet outage in 

October 2016 was affected by the DDoS attack using compromised IoT devices 

running the Mirai malware (Yuchen et al., 2017). 

This section explained an overview of security in the Internet of Things 

problems that in detail will be described in chapter 2 section 2.2. 

1.2.2 Botnet 

Botnet are groups of connected, malware-tainted hosts (bots) that can be 

managed by a remote attacker. They are prominent threats in cybersecurity, regularly 

utilized for purposes ranging from distributed denial-of-service attacks and click-fraud 

to email spam and cryptocurrency mining (Smominru, 2018). According to ongoing 

estimates, Botnet control billions of infected hosts worldwide and are responsible for 

70 percent of all spam (Jaiswal and Shivraj, 2013). 
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A group of infected devices (bots) is called Botnet which is remotely controlled 

via a bot master over and done with C&C (Command and Control) channel. They are 

used to accomplish different kinds of attacks for example DDoS, credential theft, 

spam, phishing, and so on.  Each member communicates to each other, which are 

between the bot and bot master. 

A Botnet can be categorized as centralized and decentralized Botnet. Bots from 

time to time contact the server the C&C for receiving commands in centralized Botnet. 

HTTP and IRC are examples of communication protocols that can be used. However, 

in a decentralized Botnet which is also called peer to peer (P2P), receiving the 

command directly from C&C server to the only one of the bots. Afterward, the bot is 

in charge of handing the message to other bots which will then be passed to other bots. 

Overnet, HTTP2P, and Kademlia are some of the communication protocols that were 

used in Botnet (Alejandre et al., 2017).   

According to the EU Cybersecurity (2015), studied on the historical data on 

cyber-attacks, a Botnet were the sources of these kind of attacks in most of the cases. 

These Botnets are essentially zombies or bots (infected devices) with malware 

(malicious software), designed with some level of control over the zombies (Kamluk, 

2017).  The number of zombies contained within the framework of a Botnet normally 

varies from numerous to a few thousand bots. The biggest observed networks include 

millions of zombies. These armies of zombies permit a lot of attacks without the users’ 

knowledge. Maintenance a Botnet has low cost and also it requires more knowledge 

of bot to grow the popularity of a Botnet for attackers (Kasprzyk et al., 2017).  

On the other hand, one of the sources of income for large groups of 

cybercriminals is a Botnet which allow them to make huge profits from illegal actions. 

For instance, the DNS Changer which contains more than four millions zombies, was 

used to insert advertisements which generated a USD 14 million income within five 

years of operations, while Storm which has approximately five millions zombies, was 

used for sending SPAM, made a USD 3.5 million income per year. Furthermore, the 

risk of Botnet will be increased extremely by considering an opportunity of the present 

network of Botnet to create this type of cyber-attacks (Kijewski , 2013).  



 

10 

Currently, Botnet has become the technical backbone for supporting cyber-

attacks like setting up DDoS attacks, stolen personal data, and sending spam emails 

(Antonakakis et al., 2012). Recently, most zombies are based on DGAs (Domain 

Generation Algorithms) to generate a meeting point with their C&C server (Schiavoni 

et al., 2014). A usual DGA includes several seeds that operate integer, current time 

and date to create a list of nominee domains. That list has changed during the time of 

attack, making it challenging for law agencies to verify and shut down a Botnet. Old-

styled solutions consist of blacklisting and also reverse engineering (Zhou et al., 2013). 

Nevertheless, blacklisting is not enough to provide protection against the fluxing of 

domains. On the other hand, reverse engineering takes a lot of time, requires a sample 

of the malware and is not possible in most hands-on applications (Yadav et al., 2012). 

While Botnet have existed for a long time, they proceed to develop and get 

complex. More up to date Botnet frequently encrypt their packets, differ their control 

protocols, and use peer to peer topologies rather than centralized ones to improve their 

robustness (Jaiswal and Shivraj, 2013). Along these lines, generally utilized signature-

based (Roberto et al., 2010), heuristic-based (Kazuya et al., 2010), and content-based 

(Timothy et al., 2008) techniques for identifying Botnet are rendered ineffective and 

are less generalizable, making recognition of previously unseen or newer Botnet 

difficult. 

What makes the problem even more complex is the recent trend towards 

stealthy and more resilient Botnet architectures, which depart from traditional 

centralized architectures and allow Botnets to avoid detection and remain in the system 

for extended periods of time. Botnets can achieve resilience by either anti-signature or 

architectural stealth. Anti-signature stealth involves the ability to manipulate the 

characteristics of bot-generated traffic to mask features that could be observed by 

signature-based detectors. On the other hand, architectural stealth means the ability to 

establish an overlay network that minimizes the exposure of malicious traffic to 

detectors. For these reasons, Botnets have recently received considerable attention 

from both the industry and the research community (Sweeney, 2014). 
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This section explained an overview of security in Botnet and bots problems 

that in detail will be described in chapter 2 section 2.3. 

1.2.3 Botnet Identification Techniques 

Botnet detection has got a substantial focus from industry and academia. 

Figure. 1.5 shows the classification of botnet detection techniques which are classified 

into Signature-based and Anomaly-based (Manmeet et al., 2019). 

Figure 1.4 Botnet Detection Techniques. 

Scalability is one of the most important challenges that Botnet detection 

methods face and is, therefore, the main focus of many of the most recent studies in 

the big data sphere [Singh et al., 2014: Soltanaghaei and Kharrazi, 2015: Kwon et al., 

2016].  

On the other hand, anomaly-based detection techniques, as are common in 

intrusion detection frameworks, show potential for identifying previously unseen or 

fresher Botnet. There are two broad anomaly-based methodologies found in 

researches. One methodology trains on nominal or non-malicious network traffic, and 

classify any traffic outside of the nominal range as Botnet activity (Sudipta et al., 

2017). The other methodology trains on various kinds of Botnet traffic and identifies 

similarly malicious Botnet traffic (Sebastian et al., 2014). 

Standard packet level or flow level statistics, such as payload length, the mean 

number of bytes per packet, and flow duration, are analyzed using machine-learning 

techniques such as supervised classification or clustering (Matija and Jens, 2014). 
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However, the flow characteristics are often characteristic of specific protocol-based 

Botnets and are not generalizable to newer Botnet varieties. 

Graph-based methods are relatively new to Botnet detection (Shishir et al., 

2010; Jing and Ioannis, 2015). These methods ignore the sequential nature of the data 

and focus on the graphical structure of the communication using centralized graph 

measurements. However, they often do not lend themselves well to a really useful tool, 

as they require access to all data at once to build graph models. 

One promising approach to Botnet detection and mitigation is the Moving 

Target Defense (MTD), a novel and game-changing approach to cyber defense that is 

part of the broader trend towards Adaptive Cyber Defense (ACD). MTD has the 

potential to create asymmetrical uncertainty, providing the defender with a tactical 

advantage over the attacker (Jajodia et al., 2011). 

Using antivirus software and a firewall to protect the host is not enough to 

prevent it from becoming infected with Botnet malware. In addition, even if it can be 

stopped by the C&C server, the infected host (bot) can be re-launched for a future 

attack. In this case, is needed host-based detection to remove the bot program from the 

host. Various studies have been conducted in the field of host-based detection 

techniques (Etemad and Vahdani, 2012: Huang, 2013).  

Flow-based attributes extracted from the network traces were similar to 

NetFlow features such as bytes-per-packet, bytes-per-flow, and bytes per second. 

Botnet detection techniques using flow analysis have emerged in the last few years. 

There are several network traffic flow detection techniques that have been proposed in 

recent years. Anomaly detection can be done through mining-based detection 

techniques that are used to extract unexpected patterns of network traffic. It can, 

therefore, detect abnormal traffic even if the packets are encrypted. Many of the 

techniques used were flow analysis (W.H.Liao and C.C.Chang, 2010: Zhao et al., 

2013: Hung and Sun, 2018: Alauthaman et al., 2018).   
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There are several techniques provided for detecting Botnet however, either 

their accuracy is not high enough, or they are for some specific types of devices and 

attacks. Chapter 2 section 2.4 will explain the summary of Botnet detection techniques 

that have been reviewed in this study. 

1.2.4 Machine Learning Techniques 

The Intrusion Detection system classification (IDS) is divided into three. One 

of them is Anomaly based, which it has two separate classes: Host based and Network 

based. Network based is split into two different types of monitoring: 1- active 

monitoring and 2- passive monitoring. Passive monitoring works in two layers which 

are protocol and application. One of the techniques used for detecting Botnet is 

Machine Learning which is classified under the application layer or generally under 

the IDS class. 

One of the subsections of Artificial Intelligence in the field of computer science 

is Machine learning. Machine learning is the repeated use of statistical methods to give 

the ability of learning to computers via data without being clearly programmed for 

example a gradual improvement of performance on one specific task (Samuel, 2000). 

Generally, Machine learning has three kinds of algorithms which are (Sunil, 

2017): 

a) Supervised Learning:

Supervised Learning which is also called the Classification method is a 

type of algorithm that includes the target, dependent variable or 

outcome variable that is to be forecasted from a given set of analysts or 

independent variables. Therefore, it can generate the function that maps 

inputs to wanted outputs using those set of variables. Until the model 

reaches the desired level of accuracy on training data, the training 

process will be continued. Some examples of Supervised Learning are: 

Regression, Random Forest, Decision Tree, KNN, and Logistic 

Regression.   
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b) Unsupervised Learning: 

Unsupervised Learning which is also called the Clustering method does 

not have any dependent variable or outcome variable for forecasting. 

This is used to cluster population into several groups that are widely 

used for consumers in separate groups for particular intervention. Some 

examples of Unsupervised Learning are K means and Apriori 

algorithm.    

 

c) Reinforcement Learning: 

In this algorithm, the machine will be trained to make specific 

decisions. This works in the way that the machine is exposed to the 

environment where it trains itself repeatedly using trial and error. This 

machine learns from experiences in the past and then tries to capture 

the best possible knowledge to make accurate decisions in business. 

One example of Reinforcement Learning is the Markov Decision 

Process.    

 

There are several different types of machine learning algorithms which will be 

highlighted in the chapter 2 section 2.5.1 particularly those which are commonly used 

and those which can be applied to almost any data problem. 

One of the recent technologies that attracted significant attention in the 

community of security is machine learning. Furthermore, it delivers a meaning to battle 

DGA and to find the related structure of malware. The machine learning can be divided 

into two techniques; unsupervised and supervised learning.  

An unsupervised learning technique domain into clusters to take advantage of 

the statistical powers of every group (Woodbridge et al., 2016).  They found that this 

kind of approach takes a lot of time and needs several hours to generate domain clusters 

in order to create good simplification abilities. In some exciting cases, the statistical 

powers cannot be extracted because of the limited availability of zombies particularly 
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those that are connected to the same DGA in the initiative networks (Zhang et al., 

2016).  

A supervised learning technique does not depend on statistical powers to 

expose DGAs. It functions straight on the raw domains and also their semantic 

characteristics. In another research, it was noted that others have established a system 

that utilizes large-scale, passive DNS analysis techniques to detect domains engaging 

in a malicious activity called "EXPOSURE", whereby the decision tree C4.5 will be 

created using elements that are pulled out from the traffic of DNS (Bilge et al., 2011). 

Other studies made use of ELM (Extreme Learning Machine) to categorize benign 

from malicious domains (Shi et al., 2017) while others accomplished one separate 

HMM (Hidden Markov Model) for every DGA. An HMM will be given input to the 

domain also categorizes whether the input will be mechanically created (Antonakakis 

et al., 2012). A Long Short-Term Memory (LSTM) network creates a ninety percent 

detection rate with 1.10000 FP (false positive) rate (Woodbridge et al., 2016).  ELM, 

C4.5, LSTM, and HMM seemed to be acceptable mechanisms for the detection of 

DGA in existing frameworks. Nonetheless, there has been little attempt to evaluate 

them on a realistically huge methods such as SVM (Support Vector Machine), 

Recurrent SVM, Bidirectional LSTM, and CNN+LSTM, all of which have not been 

validated in this application domain (Tang, 2013;Zhang et al., 2013; Kim et al., 

2016;Graves and J. Schmidhuber, 2005).         

In all studies that have been done (refer to chapter 2 section 2.5.2), there is no 

explanation of why they selected those specific method(s) also none of them could 

achieve 100% accuracy of detection furthermore, most the studies focus on a specific 

type of Botnet attack or specific target which includes the type of devices and the type 

of OSs. Moreover, to decide in this field which of higher FP (False Alarm) or higher 

FN (Missed Alarm) is more vulnerable, it is depends on in which industries this 

method going to be used. For example, if using in the hospital which related to a 

patient's life then higher FN is more vulnerable while if using in the military service 

then higher FP is more vulnerable. In conclusion, there is not a method that can cover 

all kinds of Botnet attacks as well as different devices with different OS with the 

achievement of 100% detection which in detail will be discussed in chapter 2. 
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1.3 Statement of the Problem 

As discussed in Section 1.2, a Botnet attack is one of the major threats to IoT 

that has been used for DDoS attacks, stealing data, sending spam, and also giving 

hackers access to the devices and device’s connection. Research on the detection of 

Botnet using supervised and/or unsupervised machine learning methods has been done 

the details will discuss in chapter 2 however, each method has its limitation such as 

real-time monitoring, timely detection, and adaptability to new threats which this study 

will be addressing them as for real-time monitoring, the proposed method can be run 

in real-time for detecting and disconnecting Botnet from the network. For timely 

detection, by reducing the number of features and testing which ML method is faster. 

For adaptability of new threats, the dataset used in this research is collected from 

several different types of Botnet to ensure it is not trained base on some specific 

characteristic of some Botnet or devices. 

On supervised learning methods, the statistical foundation is hypothesis 

representation; it concerns with the relationship between the features “x” and target 

“y” that should be defined by the selection of features as well as by accepting some 

detailed knowledge about what that behavior looks like in order to accurately represent 

the behavior of bots. Detecting bots based on some known and specific characteristics 

has been used in supervised learning methods. The accuracy of supervised learning 

methods can be effective against bot traffic which seeks to cover up itself among 

legitimate traffic by giving some specific characteristics of the malicious traffic. 

However, in most supervised learning methods, they have a common trend and are 

separate from specific perceptions about bot traffic revealed in the featured space. 

Therefore, supervised learning methods perform very poorly. Supervised learning 

techniques might overcome the secret nature of bots. Supervised learning techniques 

worked for cases whereby some specific characteristics are known. More details 

regarding the different methods and techniques that have been used to detect the Botnet 

are presented in Chapter 2. 

On the other hand, unsupervised learning techniques are generally used for 

targeting behavioral patterns that are not specific to any kind of bots. The aim of 
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previous studies that utilized unsupervised learning techniques is to capture the 

group’s activity via a bot in a Botnet. The relationship between samples is the main 

concern of unsupervised learning methods because it is able to recognize samples that 

appear. However, being too concerned with the similarities of samples may result in a 

high rate of false positives due to bots trying to cover up their activities. Selecting the 

correct number of features will lead to; firstly, achieve high accuracy of detection 

secondly, reducing the time duration of running the machine learning method, and 

lastly reduce overfitting possibility. Therefore, the number of features for training the 

machine learning algorithm is critical. 

1.4 Research Questions 

The main aim of this study is to improve Network Traffic Botnet identification 

through features reduction and ensemble learning methods by first reducing the 

number of features using several techniques for analyzing them such as scatter plot, 

histogram, Spectral Clustering, and dendrogram. After finalizing the features, this 

study will examine several different Machine Learning methods to find out which one 

is the best. In the end, evaluating the most suitable Machine Learning algorithm for 

detecting Botnet in IoT.networks.  

This led this research to the research questions listed below: 

RQ 1:   What is the most efficient machine learning algorithm for Botnet 

detection in IoT networks? 

RQ 2:    How to minimize the feature sets that can effectively represent Botnet 

attacks in IoT networks? 

RQ 3:  How to evaluate the most suitable machine learning algorithm for 

detecting Botnet in IoT networks? 
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1.5 Research Objectives 

The main objectives of this research are: 

RO 1:   To identify the most efficient machine learning algorithms for Botnet 

detection in IoT networks. 

RO 2:   To increase the efficiency of detection of Botnet attacks in IoT networks 

by feature reduction sets. 

RO 3:   To increase the accuracy of detecting Botnet in IoT networks by 

evaluating the most suitable machine learning algorithm. 

1.6 Research Scope 

As mentioned in Section 1.3, different machine learning methods include 

regression, supervised, and unsupervised learning methods have their advantages and 

disadvantages in detecting Botnet in the IoT networks. This research focused on firstly, 

discovering the most efficient existing machine learning algorithms. Secondly, 

minimizing the feature sets that can effectively represent. And lastly, evaluating the 

most suitable machine learning algorithm for detecting Botnet in IoT networks. 

This research covers all type of attacks which can be used on different types of 

Botnet attacks such as the distributed denial of service attack (DDoS attack), steal data, 

send spam, and allow an attacker to access the device and its connection during 

communications between IoT and cloud computing.   

1.7 Significance of the Study 

Since the IoT keeps growing on a daily basis, the security of IoT becomes more 

challenging and important. One of the recent challenges in this area is a Botnet and 

bots. On the other hand, machine learning is one of the techniques that has been used 
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for detecting a Botnet and bots on the networks and has few advantages compared to 

other methods such as the speed of detection and the accuracy of detection. This 

research will study Botnet during the communication between IoT devices for 

detecting infected devices and Botnet by using machine learning techniques that can 

detect and disable Botnet from IoT networks whit a minimum number of features 

needed for detection as well as to increase the percentage of accuracy without 

overfitting the method. 

1.8 Structure of the Thesis 

This study started with reviewing previous studies that have been done for 

identifying Botnet and bots in the Internet of Things network and researching several 

different techniques that have been used in this matter. After finding the gaps, this 

study determines the aim of this research. The next step is to be collecting and 

gathering the datasets that need to be used in this study. After setting up the datasets, 

the process of selecting the features and minimizing them will start by using several 

different analyzing techniques.  

The next step is to examine the datasets with selected features in different 

Machine Learning methods and rank them based on the accuracy and the duration of 

detection. After that, this study will create different experiments based on combining 

each two of those Machine Learning methods that have a result higher than the 

threshold to create all different possibilities of Ensemble Learning methods. 

After getting the results of all experiments, this study will divide the data into 

training and testing which this research has done it 3 times then it will use the Cross-

Validation technique to ensure this method is not overfitting. In the end, this study will 

rank all the experiments to find out the most suitable machine learning algorithm for 

detecting Botnet in IoT networks. 

In summary, chapter 1 discussed an overview of identifying the Botnet and bot 

in the IoT networks by explaining the background of the problem in IoT security, 

Botnet, Botnet Identification techniques, and Machine Learning techniques. After that, 
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explain the problem statement and research questions as well as research objectives. 

Then it presented the research scope and significance of this study. In the end, it 

provided the structure of this study by explaining each step.  

Chapter 2 will review previous studies that have been done in IoT, the security 

of IoT, Botnet in IoT, Botnet Identification, Botnet IDS classification, and Machine 

Learning detection techniques.  

Chapter 3 will discuss research design and procedure, operational framework, 

data sources, experimental setup, instrumentation and data analysis, assumptions and 

limitations, research planning and schedule, and proposed plan.  

Chapter 4 will talk about several Machine learning algorithms based on chapter 

2 selected the most well-known methods for detecting Botnet included; supervised 

learning, unsupervised learning, and regression learning methods for identifying 

Botnet in IoT.  

Chapter 5 will examine the way to use both of the best methods of selected 

Machine Learning methods by combining each two of them to optimize the detection 

of Botnet in the Internet of Things (IoT) for increasing the security of the IoT network 

against the infected Botnet and bots.  

Chapter 6 will explain the selected Ensemble Learning methods in detail and 

concluding remarks then talk about the contributions of this study after that will talk 

about the limitation of this study. In the end, will talk about the future direction of this 

research. 

1.9 Summary 

There are several techniques provided for detecting Botnet however, either 

their accuracy is not high enough, or they are for some specific types of devices and 

attacks. 
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On the other hand, The Software Engineering Body of Knowledge (SWEBOK) 

is an international standard. SWEBOK specifying a guide to the generally accepted 

software engineering body of knowledge. The SWEBOK Guide has been created 

through cooperation among several professional bodies and members of the industry 

and is published by the IEEE Computer Society (IEEE). The standard can be accessed 

freely from the IEEE Computer Society. In late 2013, SWEBOK V3 was approved for 

publication and released. In 2016, the IEEE Computer Society kicked off the 

SWEBOK Evolution effort to develop future iterations of the body of knowledge. 

In addition, previous studies do not categorize detecting Botnet in IoT network 

proposals under study according to their nature or Knowledge Area (KA) within the 

field of software engineering. 

After reviewing recent studies on the detecting of Botnet in the Internet of 

Things which in detail will explain in chapter 2 several gaps have been detected. Such 

as, there is not a method that can apply to different types of Botnet as well as various 

devices with different OSs (i.e. only detecting for Android devices). In all studies that 

have been done, the accuracy of detection of Botnet is not high enough that can be 

reliable on them. Therefore, there is standardization and minimization of the number 

of features requirements for detecting Botnet. 

This chapter discussed an overview of identifying the Botnet and bot in the IoT 

networks by explaining the background of the problem in IoT security, Botnet, Botnet 

Identification techniques, and Machine Learning techniques. After that, explain the 

problem statement and research questions as well as research objectives. Then it 

presented the research scope and significance of this study. In the end, it provided the 

structure of this study by explaining each step. 
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Appendix B List of features 

 

src, src port, dst, dst port, original dataset, original label, event generator, event 

signature, event priority, ndpi risk, ndpi detected protocol, payload bytes first, packet 

pay size 3, C packets rst avg, packet pay size 2, dst 2 src packets rate, C packets rst 

min, C packets urg avg, src 2 dst packets rate, C packets fin avg, C idle time max, http 

response status code, packet header size 4, dst 2 src inter time std, packet header size 

0, C packets rst std, pay load bytes max, src 2 dst header bytes min, C dst 2 src packets 

rate max, packet pay size 8, dst 2 src header bytes min, http request version, src 2 dst 

header bytes max, dns query type, pay load bytes avg, dst 2 src header bytes std, C dst 

2 src packets rate min, C packets syn std, C src2dst packets rate max, packet header 

size 7, C packets syn max, C tcp retrans missions max, packets fin, src 2 dst pay bytes, 

packet header size 6, dst 2 src packets, inter time 10, C packets ack avg, src 2 dst 

header bytes, inter time 9, C idle time std, C dst 2 src pay bytes rate max, packet 

direction 5, C src 2 dst pay bytes max, packet direction 0, packet direction 1, inter time 

7, packets rst, C packets psh min, C src 2 dst pay bytes rate avg, src 2 dst inter time 

std, C src 2 dst pay bytes avg, dns num answers, packet pay size 7, C number of 

contacts, detection completed, inter time 6, src 2 dst header bytes std, packets ack, C 

packets rst max, inter time 3, dst 2 src header bytes avg, C duration avg, C packets ack 

min, dns query class, C dst 2 src pay bytes std, C packets syn avg, C packets psh max, 

C src 2 dst packets rate avg, dst 2 src pay bytes min, C dst 2 src header bytes min, src 

2 dst inter time max, src 2 dst pay bytes min, http method, C packets psh avg, C dst 2 

src header bytes std, C packets ack std, flow use time, inter time 2, dst 2 src inter time 

min, C dst 2 src packets rate std, packet pay size 4, C packets ack max, C dst 2 src 

packets max, C src 2 dst pay bytes min, dns num queries, inter time 8, packet header 

size 8, src 2 dst pay bytes max, protocol, dst 2 src pay bytes max, http content type, C 

src 2 dst packets avg, C src 2 dst pay bytes rate std, response rel time, packet pay size 

10, inter time min, packet header size 1, dns reply code, inter time avg, C packets psh 

std, src 2 dst header bytes avg, packet direction 9, C dst 2 src packets std, packet header 

size 9, src 2 dst packets, pay load bytes, packet pay size 5, http num request headers, 

packet header size 2, packet direction 4, packet direction 7, C tcp retransmissions min, 

C duration min, C dst 2 src pay bytes avg, dst 2 src pay bytes avg, C dst 2 src header 

bytes max, C packets syn min, packet direction 3, http num response headers, C 
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packets fin std, C duration std, C src 2 dst header bytes max, packets syn, C dst 2 src 

header bytes avg, C src 2 dst pay bytes rate min, packets psh, src 2 dst pay bytes rate, 

C tcp retransmissions std, C idle time avg, C src 2 dst packets rate min, C src 2 dst 

packets max, C duration max, packet direction 6, C packets fin max, C packets urg std, 

C src 2 dst packets rate std, dst 2 src header bytes, pay load bytes std, C dst 2 src pay 

bytes rate avg, src 2 dst inter time min, flow duration, C src 2 dst pay bytes std, C src 

2 dst packets min, C packets urg min, inter time 5, dst 2 src header bytes max, packet 

direction 10, dst 2 src inter time max, packet pay size 0, packets, inter time max, inter 

time std, C src 2 dst packets std, packets urg, packet direction 8, dst 2 src pay bytes 

rate, src 2 dst inter time avg, dns rsp type, flow idle time, packet header size 3, inter 

time 0, C dst 2 src pay bytes min, dst 2 src pay bytes std, C src 2 dst header bytes avg, 

C dst 2 src packets avg, bytes, packets without pay load, C tcp retransmissions avg, 

inter time 1, C src 2 dst pay bytes rate max, inter time 4, C dst 2 src pay bytes max, 

packet pay size 6, dst 2 src pay bytes, pay load bytes min, tcp retransmissions, C 

packets fin min, C dst 2 src packets rate avg, dst 2 src inter time avg, packet header 

size 5, packet pay size 1, packet header size 10, C dst 2 src pay bytes rate std, src 2 dst 

pay bytes std, C idle time min, C src 2 dst header bytes std, src 2 dst pay bytes avg, 

packet pay size 9, packet direction 2, C src 2 dst header bytes min, C dst 2 src packets 

min, C packets urg max, and C dst 2 src pay bytes rat e min. 
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