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Abstract: The study was carried out at the steam cracker furnace, Short Residence Time (SRT) 
VII type to investigate the impact of selected input variables on the Propylene Product Yield. The 
statistical analysis was conducted as normal data after successful outliers and residuals clearance 
using data stability and normality verification tests. The Response Surface Methodology (RSM) 
analysis was performed to establish the reliable Propylene Product Yield model using statistical 
software, Minitab version 21. RSM is a robust statistical approach that may utilize the available 
statistical software that is cheaper and practical to be used by Operations personnel at the olefin plant. 
It is an excellent alternative to the Olefins Licensor’s simulation software that is currently used by 
the olefin plant worldwide. The analysis of variance (ANOVA) table was utilized to select only 
significant variables with a p-value of <0.05 for the model. The established final model indicated 
that Coil Outlet Temperature (COT) was the most important input variable for the Propylene Product 
Yield generation with a factor of 49.4, compared to -7.76 for Flow of Naphtha, -4.3 for Flow of 
Integral Burner, 0.292 for Flow of Dilution Steam, and 0.05947 for Flow of Hearth Burner. Besides, 
the Response Optimizer evaluated that the Propylene Product Yield at the studied SRT VII could be 
maximized at 13.24% by controlling the process operating parameters with; Flow of Hearth Burner 
at 9476 kg/hr, Flow of Integral Burner at 609 kg/hr, Flow of Dilution Steam at 40960 kg/hr, Flow of 
Naphtha at 63.50 t/hr, and COT at 810 °C. 
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1.  Introduction  
Pyrolysis cracking, also known as thermal cracking, is 

a high-temperature cracking reaction that leads to the 
formation of tiny unsaturated molecules1, 2) like olefins in 
a petrochemical plant. Olefins, also known as alkenes, are 
often produced by the petrochemical industry. They are 
aliphatic hydrocarbons established from a single C–C 
bond, and serve as the basis for a variety of crucial 
consumer applications, including solvents, detergents, 
polymers, pharmaceuticals, and skincare products3-5). 

Ethylene and propylene are examples of olefin products 
generated by pyrolysis cracking at elevated temperatures2, 

6, 7) from the olefin plant. With a global production of 155 
million tonnes per year3), ethylene appears to be the most 
in-demand olefin in the global market. However, the 

continuing rise in global demand for propylene products 
may also possibly overtake ethylene8) in the future market.  

The research on propylene manufacturing technologies 
is also gaining significant interest from researchers such 
as propane dehydrogenation9), olefin metathesis10), 
Fluidized Catalytic Cracking (FCC)4), and reaction 
optimization in the FCC process11) due to the increase in 
its worldwide demand. Currently, the most prevalent 
method for generating a viable Propylene Product Yield is 
through the pyrolysis cracking in the olefin plant through 
a steam cracker furnace. 

Steam cracker furnace is the most critical equipment12) 
to be monitored and analyzed by the Operations personnel 
in the olefin manufacturing plant. The yield of the 
olefins13) is highly influenced by its performance, leading 
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to sustainable profit generation for the olefin plant. The 
Short Residence Time (SRT) VII is an example of a 
reliable steam cracker furnace in the market14, 15) to 
produce a good olefins yield. 

Process optimization implies fine-tuning a process to 
maximize a specific set of parameters while adhering to a 
specific set of restrictions. It is often used to maximize 
throughput, efficiency, and production cost. Previous 
research had successfully demonstrated different process 
simulations to improve the production of olefins16-19). 
These studies were effectively conducted in a lab-scale 
experiment that manipulated various controllable factors 
in the olefin process, which resulted in the significant 
optimization of olefin production. 

Different operational variables are actively being 
experimented with to improve the olefin process. The 
majority of the research was completed in the lab, with 
some verification performed at the small pilot plant. The 
subject of analyses include the study on profit 
enhancement20, 21), operational expenditure (OPEX) 
saving17, 22-24), production rate improvement25), key 
product yield maximization19), power consumption 
optimization26, 27), utility saving25), exergy destruction 
minimization28, 29), ethylene leakage reduction27), 
hydrogen recovery improvement27), CO2 emissions 
minimization26), Coil Outlet Temperature (COT) 
enhancement18, 30, 31), and multiple optimization 
initiatives19, 25, 26, 28, 29, 32, 33). 

Statistical analysis may be used to analyze the data 
systematically, where its effectiveness was already proven 
in various studies34-38) for data evaluation, monitoring, and 
process optimization. Response Surface Methodology 
(RSM) is an example of the robust statistical analysis used 
for simulating and evaluating processes where multiple 
factors influence the response of interest for response 
optimization39). Statistical software was proven robust in 
conducting various analyses at the normal type of 
furnace40-42). However, it was not widely used for complex 
furnace types such as steam cracker furnaces.  

The RSM analysis in one of the special type furnaces 
was started with the vacuum furnace43). However, the 
study did not involve the olefin process. The later study44) 
initiated the usage of Design of Experiment (DoE) in the 
steam cracker furnace. It utilized statistical analysis to 
improve olefin yield, conversion, and selectivity (from 
steam amount). The study using RSM was then 
continued45) in the pilot-scale experiment, with a focus on 
the effect of conversion selectivity towards olefins yield. 

However, the study to use the RSM analysis in steam 
cracker furnaces did not actively continue due to most 
researchers focusing on robust simulation software. 
However, with the recent improvement to the statistical 
software, it has a high prospect to be widely used in the 
olefin plant due to its practicality, simplicity, lower price, 
and robust performance46). In the actual plant condition, 
the Operations personnel always prefers to evaluate the 
process using less complex, user-friendly, and cheaper 

software without the usage limitation.  
Currently, the reliance of the Olefins plant on the 

Olefins Licensor’s software is due to its robustness, the 
mature field of the olefin process, and trust in the 
licensor’s expertise. However, in the actual process at a 
large-scale steam cracker furnace, the statistical software 
has also a high potential to be further explored in terms of 
its practicality in usage and robustness in carrying out 
large data analysis directly by Operations personnel in an 
actual olefin plant. It will help Operations personnel to 
evaluate the frequent process fluctuation in the olefin 
plant8, 47-49) and decide on process improvement.  

The focus of this study is to assess the Propylene 
Product Yield from the steam cracker furnace at a newly 
commissioned olefin plant using naphtha liquid as a 
feedstock. It is essential as it offers guidelines for creating 
a credible model using commercially accessible statistical 
software, with a focus on the RSM. In comparison to the 
intricate and costly simulation software offered by the 
Olefin Licensors, it is less complicated, more useful, and 
simpler to be used by operations employees in the Olefins 
plant 

 
2.  Methods 
2.1  Plant Equipment and Analysis Tools  

The analysis was conducted in a large-scale Short 
Residence Time (SRT) VII type steam cracker furnace. 
The pyrolysis cracking at the studied SRT VII was 
designed to yield 645 KTA of propylene (polymer-grade) 
at the plant. The SRT VII furnace's layout is shown in Fig. 
1, along with the location of the studied variables. 
  

 
Fig. 1: The general arrangement of the SRT VII with the 

input variables for RSM analysis 
 

The input variables in Fig. 1 were represented by A for 
Flow of Hearth Burner (HB), B for Flow of Integral 
Burner (IB), C for Flow of Dilution Steam (DS), D for 
Flow of Naphtha, and E for Coil Outlet Temperature 
(COT). The representation of input variables in A – E was 
required to ease the analysis in Minitab and minimize the 
possibility of the mistake during one-by-one variable 
elimination from analysis of variance (ANOVA) using 
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RSM analyses. The SRT VII was designed to process the 
continuous 93 t/hr of Naphtha feed during the normal 
process. The Paraffins, Olefins, Naphthenes, and 
Aromatics (PONA) contents in the Naphtha feed during 
the study duration were recorded at 61 vol%, 1 vol%, 26 
vol%, and 12 vol%, respectively. 

The relevant statistical and mathematical analyses were 
conducted utilizing Minitab Software version 21. All 
analyses from the data verification until the evaluation of 
maximum Y1 (Propylene Product Yield) were carefully 
conducted using statistical software. It was to ensure the 
reliable equation model was successfully established from 
the final RSM analysis. 

 
2.2  Methodology    

The plant data were collected hourly (average, time-
weighted) from 24th January 2020, 7.00 pm to 2nd 
February 2020, 12.00 pm (207 hrs), totaling 1,242 data 
points. These data were represented by one input and five 
output variables utilizing the PI Process Book - Process 
Information Management System (PIMS) Software 
version 2015.  

The data stability was initially assessed to the collected 
data by employing three tools: Run Chart, Box Plot, and  
Individual-Moving Range (I-MR). Once completed, the 
Graphical Summary and Normality Test were then utilized 
to perform the data normality verification. The stability 
and normality of the collected data were evaluated using 
these five Minitab tools on all 1,242 data before 
performing the statistical analysis utilizing RSM analysis. 
These analyses were essential to guarantee the final RSM 
model was established from the collection of reliable data 
at the studied plant. 

After the data passed the normality and stability tests, 
RSM analysis was carried out on the identified variables 
using a normal historical design of experiment (HDoE) 
approach, without any data transformation. Through RSM 
analysis, the insignificant variables were eliminated one at 
a time, starting with the Two-way, Squares, and ending 
with the Linear relations. 

In the RSM analysis, variable removal started with the 
input variable with the highest p-value and continued until 
all variables had p-values <0.05. However, to maintain the 
hierarchical model in RSM, the variable with the p-value 
>0.05 in the linear relationship would be accepted if it was 
still seen in the square or two-way relation. This 
exemption would also be made if the model's R-squared 
was high at 75 percent or more50-53). 

Contour Plot and Interaction Plot were also adopted for 
the final RSM model to evaluate the correlation between 
each significant input and output variable. Finally, the 
Response Optimizer was used to forecast the maximum 
Y1 (Propylene Product Yield) with its best operating 
condition at the studied SRT VII.  

The Response Optimizer, in general, is a useful tool for 
visualizing a group of variable settings to optimize the set 
of responses for a statistical model. For each significant 

input variable, the targeted response was represented in 
the low and high operating ranges in order to obtain the 
highest Y1 (Propylene Product Yield) output variable 
throughout this graphical tool. 
 
3.  Results and Discussion 

The stability test showed that no outlier was found from 
the Box Plot analysis, seven residuals were identified in 
the I-MR Chart, and one plot in the Run Chart failed with 
the p-value <0.05 (Clustering: p-value <0.005). However, 
other plots in Run Chart were successful with p-values 
>0.05 (Mixtures: p-value 1.000, Trends: p-value 0.368, 
and Oscillation: p-value 0.614). The data was concluded 
as stable since at least one of the three stability tests was 
successful, which was Box Plot analysis.  

Both the Graphical Summary and the Normality Test 
initially failed the normality verification as they both 
recorded p-values of <0.005. In the subsequent analysis, 
27 bad Y1 (Propylene Product Yield) data, including 
residuals and outliers, were eliminated from the source 
data. After eliminating the bad data, the final p-values of 
>0.05 were successfully obtained in both the Graphical 
Summary and the Normality Test. This filtered data was 
concluded as the normal data.  

As both stability and normality evaluations were passed, 
the RSM analysis was performed using the normal 
methodology without Box-Cox data transformation. Table 
1 displays the findings of the 7th analysis (final 
RSM), where a total of 2 Square and 4 Two-way relations 
were removed during one-by-one variable elimination. 

 
Table 1. ANOVA for the final model. 

Source DF Adj SS Adj MS F-value p-value 
Model 14 3.11311 0.222365 43.21 0.000 
Linear 5 0.63088 0.126176 24.52 0.000 

A 1 0.42254 0.422535 82.11 0.000 
B 1 0.00699 0.006991 1.36 0.245 
C 1 0.04676 0.046756 9.09 0.003 
D 1 0.10138 0.101376 19.70 0.000 
E 1 0.15357 0.153575 29.84 0.000 

Square 3 0.35552 0.118505 23.03 0.000 
A*A 1 0.23952 0.239518 46.54 0.000 
B*B 1 0.14583 0.145830 28.34 0.000 
E*E 1 0.03102 0.031021 6.03 0.015 

2-Way  6 0.46143 0.076905 14.94 0.000 
A*B 1 0.34190 0.341898 66.44 0.000 
A*C 1 0.10122 0.101220 19.67 0.000 
B*D 1 0.05200 0.052002 10.10 0.002 
B*E 1 0.05932 0.059324 11.53 0.001 
C*D 1 0.04207 0.042071 8.18 0.005 
C*E 1 0.02615 0.026149 5.08 0.025 
Error 174 0.89545 0.005146   
Total 188 4.00856      
 
The final model's R-squared was found to be 77.66%. 

It indicated that the model accounted for 77.66% of the 
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variability in the data. Considering that the data was 
collected from the actual large-scale plant with dynamic 
process conditions in the upstream process8, 47, 54, 55), this 
number was good. Furthermore, the established R-
squared value was also sufficient for the research, which 
was recommended at 75% or above50-53). 

One variable with a p-value of higher than 0.05 was 
accepted into the final model, which was B (Flow of IB), 
with a recorded p-value of 0.245. Besides, its F-value also 
approached the value 1, which also indicated a less 
significant variable for the final model. However, this 
variable was accepted into the model as its relation existed 
in Square relation; B (Flow of IB) * B (Flow of IB), and 
also Two-way relation; A (Flow of HB) * B (Flow of IB), 
B (Flow of IB) * D (Flow of Naphtha), and B (Flow of IB) 
* E (COT).  

Its inclusion was required to maintain the hierarchical 
model in RSM for the establishment of a reliable final 
model. Besides, it was also supported by the high R-
squared value of 77.66 %. Equation 1 depicts the equation 
model derived from the final RSM analysis.  

 

 
The model showed that all five variables were 

considered in the final model, including B (Flow of IB). 
Understanding the operational behavior of the SRT VII at 

the studied plant in terms of Y1 (Propylene Product Yield) 
generation would be made easier with the help of the 
coefficient factors in Equation 1. 

The model also showed that E (COT) was the most 
impactful variable towards the Y1 (Propylene Product 
Yield) with a significant factor of 49.4 compared to other 
variables, which were 0.05947, -4.30, 0.292, and -7.76 for 
A (Flow of HB), B (Flow of IB), C (Flow of DS), and D 
(Flow of Naphtha) respectively.  

COT was the preferred variable used in olefin plants for 
monitoring the steam cracker furnace worldwide and was 
also suggested by various studies and reviews3, 18, 30, 31, 56, 

57). Besides, increasing COT in achieving the higher 
olefins yield was proven successful from the experimental 
scale furnace and process simulations in other research18, 

19, 58).  
Equation 1 from this study was significant in showing 

the factorial impact of the COT mathematically based on 
the actual olefin plant condition where process fluctuation 
was usually observed8, 47, 54, 55). 

Fig. 2 shows the Interaction Plot for the significant 
variables in the RSM model with their fitted means plot. 
This plot summarizes the estimated average response for 
the significant variable at different levels of one factor 
while averaging over the levels of the other variable. This 
Interaction Plot also confirmed Square and Two-way 
relations in the final RSM model for all variables. A (Flow 
of HB) * B (Flow of IB), B (Flow of IB) * D (Flow of 
Naphtha), B (Flow of IB) * E (COT), and C (Flow of DS) 
* E (COT) showed the most significant Two-way relations 
in achieving the highest Y1 (Propylene Product Yield). 

  

 
Fig. 2: Interaction Plot of identified significant variables; A (Flow of HB), B (Flow of IB), C (Flow of DS), D (Flow of Naphtha), 

and E (COT) towards Y1 (Propylene Product Yield). 

 

Y1 = -24755 + 0.05947 A - 4.30 B + 0.292 C - 
7.76 D + 49.4 E + 0.000001 A2 - 0.001471 B2 - 

0.02440 E2 - 0.000063 AB - 0.000001 AC + 
0.00603 BD + 0.00782 BE + 0.000105 CD - 

0.000358 CE 

(1) 
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These relations were also seen in the final RSM model 

where their coefficient factors showed the highest 
contribution in the Two-way relation by the factor of 
0.000063 A (Flow of HB) * B (Flow of IB), 0.00603 B 
(Flow of IB) * D (Flow of Naphtha), 0.00782 B (Flow of 
IB) * E (COT), and 0.000358 C (Flow of DS) * E (COT). 
The combinations of these variables were also necessary 
to be observed frequently in the studied plant as their 
changes would contribute to the bigger Y1 (Propylene 
Product Yield) variations compared to the other variables. 

Fig. 3 shows the Contour Plot of significant variables, 
derived from the final RSM model in achieving Y1 
(Propylene Product Yield). The values for non-tested 
variables were held at mean value, x̅; Flow of Hearth 
Burner at10235 kg/hr, Flow of Integral Burner at 593 
kg/hr, Flow of Dilution Steam at 40599 kg/hr, Flow of 
Naphtha at 61.43 t/hr, and COT at 807 °C. This figure was 
helpful to the Panel Operators as a guide in operating the 
studied plant with the targeted Y1 (Propylene Product 
Yield) boundaries represented by the contour colors. 

From the Contour Plot, Y1 (Propylene Product Yield) 
could be best optimized by manipulating the lower A 
(Flow of HB) with a combination of higher B (Flow of IB), 
C (Flow of DS), D (Flow of Naphtha), or E (COT). 
However, it was also shown that operating the SRT VII at 
the higher B (Flow of IB) might also result in the lower 
Y1 (Propylene Product Yield) due to the Square and Two-
way relations that existed in the model. 

Besides, manipulating the higher B (Flow of IB) 
combined with higher C (Flow of DS), D (Flow of 
Naphtha), or E (COT) would also result in a higher Y1 
(Propylene Product Yield). However, the contour plot 

showed that there was a bigger challenge in operating B 
(Flow of IB) with the combination of C (Flow of DS) or E 
(COT) compared to D (Flow of Naphtha) in ensuring the 
Y1 (Propylene Product Yield) maximization was at >12%.  

Controlling C (Flow of DS) or D (Flow of Naphtha) 
towards E (COT) was also showing the same relation 
where the Y1 (Propylene Product Yield) could be 
maximized with both combinations at the higher range. It 
could be achieved by following the operating envelope 
shown in the Contour Plot.  

Table 2 displays the Multiple Response Prediction, 
derived from the final Y1 (Propylene Product Yield) model 
with a 95% confidence level, while Fig. 4 illustrates the 
setting to achieve the maximum Y1 (Propylene Product 
Yield) using Response Optimizer in Minitab.  

 
Table 2. Multiple response prediction. 

Response Fit 
SE 
Fit 

Confidence 

95% CI 95% PI 
Y1 (Propylene 
Product Yield) 

13.24 0.261 
(12.725, 
13.754) 

(12.706, 
13.773) 

 
It indicated that the maximum Y1 (Propylene Product 

Yield) in the studied plant was evaluated at 13.24% with 
the controlled operating parameters at 9476 kg/h of A 
(Flow of HB), 609 kg/h of B (Flow of IB), 40960 kg/h of 
C (Flow of DS), 63.50 t/hr of D (Flow of Naphtha), and 
810 °C of E (COT). The high and low range settings in 
Fig. 4, represented 95% of the data confidence level to be 
referred by Operations personnel to maximize the Y1 
(Propylene Product Yield). 

 

 
Fig. 3: Contour Plot of identified significant variables of A (Flow of HB), B (Flow of IB), C (Flow of DS), D (Flow of Naphtha), 

and E (COT) towards Y1 (Propylene Product Yield). 
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Fig. 4: Operating variables to establish the maximum Y1 (Propylene Product Yield)

4.  Conclusion 
The model for Propylene Product Yield in the studied 

plant had been successfully developed using Minitab 
Software version 21. The COT had been identified as the 
most impactful variable in controlling the Propylene 
Product Yield by a factor of 49.4, compared to -7.76 for 
Flow of Naphtha, -4.3 for Flow of Integral Burner, 0.292 
for Flow of Dilution Steam, and 0.05947 for Flow of 
Hearth Burner. The maximum Propylene Product Yield 
that could be achieved at the studied SRT VII was 
determined at 13.24% by following the process setting in 
the Response Optimizer.   
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Nomenclature 
A Flow of Hearth Burner to SRT VII (kg/hr) 
B Flow of Integral Burner to SRT VII (kg/hr) 
C Flow of Dilution Steam mix with naphtha 

(kg/hr) 
D Flow of Naphtha to SRT VII (t/hr) 
E Coil outlet temperature from radiant (ºC) 
Y1 Propylene Product Yield from SRT VII (%) 
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