# ASSET MANAGEMENT LIFE CYCLE COSTING MODEL FOR STEEL MANUFACTURING INDUSTRY IN SAUDI ARABIA

MOHAMED IBRAHIM ELNAEIM MOHAMED

UNIVERSITI TEKNOLOGI MALAYSIA

# ASSET MANAGEMENT LIFE CYCLE COSTING MODEL FOR STEEL MANUFACTURING INDUSTRY IN SAUDI ARABIA

## MOHAMED IBRAHIM ELNAEIM MOHAMED

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

Razak Faculty of Technology and Informatics Universiti Teknologi Malaysia

SEPTEMBER 2021

# DEDICATION

To all my family members, my wife Somia, my son Ahmed, daughter Maha and my new born son Anas

#### ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Mohammed Salman Leong for the continuous support throughout my study. His knowledge, intellect and drive has equipped me with all the needed foundations to build up the skills required as a researcher to carry out this work. I would like to thank him for his patience, motivation, and immense knowledge shared. His guidance helped me in all the time of research and writing of this thesis.

I would also like to extend my sincere appreciation to my Co-Supervisor, Prof. Awaluddin bin Mohamed Shaharoun, not only for his insightful comments, guidance and encouragement, but also for the critical questioning and reviews along my research journey which derived me to widen my research from various perspectives.

I am extremely privileged for the opportunity I had working under the guidance of both gentlemen, and scholars. Their supervision has not only provided me with the desired academic skills, but also with moral qualities such as integrity, honesty and sense of fair play and justice that have provided the guidance to me, both morally and academically, throughout my postgraduate journey.

To my parents from whom I learned the true meaning of love, loyalty and endless commitment. They have taught me to face life challenges with a great courage and optimism, never to lose faith and be always positive while keeping the sky as a limit to my ambitions regardless of the situation.

To my beloved wife and kids, from whom I have got unlimited support without which I could have never managed to complete this study. They were my day to day motivation and cause to sustain the efforts and continue the journey. My wife who has completed her PhD last year, real fighter and unique example of strength and dedication, has been the light that always guided and encouraged me to continue the fight without fail.

Last but not the least, to my siblings, who have always provided me with their care and support and the unmatched sample of loyalty to the family. Throughout my research, they have always been there to offer words of encouragement.

#### ABSTRACT

Despite numerous studies have been conducted in the field of Life Cycle Costing (LCC), there are limited holistic and practical models have been introduced to the industry. When commencing a design and implementation project, Engineering Asset Management (EAM) must consider the overall life cycle of physical assets, including commissioning, operational and end-of-life phases. Life Cycle Costing was recently suggested by researchers to be utilized to optimize the selection and operation of engineering assets to achieve optimum asset selection and utilization. This research developed an LCC Decision Making Model to enable executives and business owners to make informed decisions for their new asset selection, current asset expansion or replacement options. The study reviews the literature on generic LCC frameworks and models, and utilizes the results of the review together with the professional inputs from the steel fabrication and manufacturing industry through a survey and semi structured interviews in Saudi Arabia in order to identify the problem and develop the conceptual framework. The review indicates the lack of a holistic Model, that considers the strategic and operational life cycle asset cost activities, and addresses the variables impacting those costs such as uncertainty and discounting that can aid organizations to achieve the optimum selection of their plants, and assist in managing their performance. Present models in literature mainly focus on the maintenance, but still dearth to address major components of the life cycle, neglect detailed uncertainty and discounting factors consideration, or do not consider sensitivity analysis. These factors resulted on models that lack practicality, accuracy and applicability in industry. Hence, a conceptual framework and its respective Cost Breakdown Structure (CBS) were developed. This conceptual framework and CBS provided the cost variables that are used for a case-study cost data collection from a plant in the steel fabrication industry. The conceptual framework and its CBS were validated by four industry experts. The historical costs were modelled, and the forecasted costs were derived using a model that includes Artificial Neural Network (ANN) methods and stochastic modelling. The developed mathematical model considered uncertainty and discounting factors, and simulated different weightages from probabilities derived from the industry. The prediction model derived high accuracy performance measures of operational and tactical dimensions such as annual revenues and income forecasted values, that aid in decision making for performance management. The model also regarded for performance measures including Return on Investment (ROI) and Pay Back Period (PB) for strategic dimensions that aid for comparisons for asset selection. The model provided a more accurate representation of long-term plant costs since it enables the quantification of risks anticipated during the plant's operations, and thus forecasts are based on a sounder approach than what was previously used in the industry. The developed model was then validated using industry data in a case study. Industry professionals confirmed that no solid forecasting tool is currently being utilized at the industry, which makes the proposed novel model ideal for aiding in the decision of selection of assets from existing options, and in the performance management of the assets for guiding decision makers on expansion and replacement decisions.

#### ABSTRAK

Walaupun banyak kajian dijalankan dalam bidang Kos Kitar Hayat (LCC), namun didapati tidak banyak model holistik dan praktikal telah diperkenalkan kepada industri. Semasa memulakan projek yang melibatkan reka bentuk dan perlaksanaan, Pengurus Aset Kejuruteraan (EAM) perlu mempertimbangkan kitar hayat menyeluruh aset fizikal, termasuk fasa pentauliahan, operasi dan akhir hayat. Kos Kitar Hayat disarankan oleh penyelidik untuk digunakan untuk mengoptimumkan pemilihan dan operasi aset kejuruteraan untuk mencapai pemilihan dan pengunaan aset yang optimum. Kajian ini membangunkan model Pembuatan Keputusan berdasarkan LCC bagi membolehkan eksekutif dan pemilik perniagaan membuat keputusan yang tepat bagi pemilihan aset baru mereka, membangunkan aset sedia ada atau pilihan sebagai gantian. Kajian ini mengkaji literatur mengenai kerangka kerja dan model LCC generik dan menggunakan hasil tinjauan bersama-sama dengan input dari profesional industri fabrikasi keluli dan industri perkilangan melalui kaji selidik dan wawancara separa berstruktur di Arab Saudi bagi mengenal pasti masalah dan membangunkan kerangka konsep. Permasalahan menunjukkan wujudnya kekurangan model holistik, yang boleh mengambil kira aspek strategik serta operasi aktiviti kos kitar hayat dan menangani pemboleh ubah yang mempengaruhi kos tersebut seperti ketidak tentuan dan pengurangan harga yang boleh membantu organisasi mencapai pemilihan loji secara optimum serta membantu dalam menguruskan prestasi mereka. Model terkini dalam literatur hanya tertumpu kepada aspek penyelengeraan, tidak berjaya untuk menangani komponen utama dalam kitar hayat, mengabaikan elemen ketidakpastian secara terperinci dan mempertimbangkan faktor pengurangan, atau tidak mengambil kira analisis kepekaan. Faktor tersebut menghasilkan model yang tidak praktikal, kurang tepat atau kurang sesuai dalam industri. Oleh itu kerangka konseptual dan Struktur Pemecahan Kos (CBS) dibangunkan. Kerangka Konseptual dan CBS ini memberikan pemboleh ubah kos yang digunakan untuk pengumpulan data kos kajian dari kilang di industri fabrikasi keluli. Kerangka konseptual serta CBS nya disahkan oleh empat pakar industri. Kos sejarah dimodelkan dan ramalan kos diperoleh menggunakan model yang merangkumi kaedah Artificial Neural Network (ANN) dan pemodelan stokastik. Model matematik yang dibangunkan mengambil kira faktor ketidaktentuan serta pengurangan dan memberi simulasi hasil pemberat yang berbeza dari kebarangkalian yang dihasilkan dari industri. Model ramalan memperoleh ukuran prestasi yang lebih tepat berkenaan dengan dimensi operasi dan taktikal seperti pendapatan tahunan dan nilai ramalan pendapatan, yang membantu dalam membuat keputusan untuk pengurusan prestasi. Model itu juga mengambil kira ukuran prestasi termasuk Pulangan Pelaburan (ROI) dan Tempoh Bayaran Balik Modal (PB) untuk dimensi strategik yang membantu perbandingan bagi pemilihan aset. Model ini memberikan gambaran yang lebih tepat berkenaan kos jangka panjang kerana ia mengambil kira pertimbangan risiko yang dijangkakan semasa loji beroperasi dan dengan itu ramalan adalah berdasarkan pendekatan yang lebih mantap dari apa yang pernah digunakan sebelum ini dalam industri. Model yang dibangunkan kemudian disahkan mengunakan data industri dalam sebuah kajian kes. Para profesional dalam industri mengesahkan bahawa tidak ada model ramalan yang standing pada masa ini yang digunakan dalam industri ini, yang menjadikan cadangan model baru ini amat sesuai bagi membantu dalam membuat keputusan pemilihan aset dari senarai cadangan yang sedia ada dan dalam pengurusan prestasi aset untuk membimbing pembuat keputusan mengenai pembangunan dan penggantian aset.

## TABLE OF CONTENTS

# TITLE

|                        | DECLARATION  |                                  |       |  |
|------------------------|--------------|----------------------------------|-------|--|
|                        | DEDICATION   |                                  |       |  |
|                        | NOWLEDGEMENT | v                                |       |  |
|                        | RACT         | vi                               |       |  |
|                        | ABST         | RAK                              | vii   |  |
| TABLE OF CONTENTS      |              |                                  | viii  |  |
|                        | LIST         | OF TABLES                        | xiii  |  |
|                        | LIST         | OF FIGURES                       | XV    |  |
|                        | LIST         | <b>OF ABBREVIATIONS</b>          | xviii |  |
|                        | LIST         | OF APPENDICES                    | xix   |  |
| CHAPTER                | R 1          | INTRODUCTION                     | 1     |  |
|                        | 1.1          | Preamble                         | 1     |  |
|                        | 1.2          | Background of the Problem        | 4     |  |
|                        | 1.3          | Problem Statement                | 6     |  |
|                        | 1.4          | Aim of the Research              | 7     |  |
|                        | 1.5          | Research Questions               | 7     |  |
|                        | 1.6          | Research Objectives              | 8     |  |
|                        | 1.7          | Research Scope                   | 8     |  |
|                        | 1.8          | Research Significance            | 9     |  |
|                        | 1.9          | Outline of the Thesis            | 9     |  |
| CHAPTER                | R 2          | LITERATURE REVIEW                | 11    |  |
|                        | 2.1          | Introduction                     | 11    |  |
|                        | 2.2          | Introduction to Asset Management | 11    |  |
|                        | 2.3          | Life Cycle Management of Assets  | 14    |  |
| 2.4 Life Cycle Costing |              |                                  | 20    |  |

| 2.5  | Asset<br>Costin | Management Selection using Life Cycle                                                           | 24 |
|------|-----------------|-------------------------------------------------------------------------------------------------|----|
| 2.6  | Cost E          | Estimation Methods                                                                              | 25 |
|      | 2.6.1           | Traditional Method for Cost Estimating                                                          | 26 |
|      | 2.6.2           | The Bottom Up Method of Estimation                                                              | 26 |
|      | 2.6.3           | Activity Based Costing (ABC) Methodology                                                        | 27 |
|      | 2.6.4           | Methodology of Parametric Estimating (Top Down)                                                 | 27 |
|      | 2.6.5           | Methodology of Design to Cost (DTC)                                                             | 27 |
|      | 2.6.6           | Methodology of Analogy Estimation                                                               | 28 |
| 2.7  | Life C          | cycle Costing Frameworks and its Stages                                                         | 30 |
|      | 2.7.1           | Life Cycle Stages of the Product                                                                | 31 |
|      | 2.7.2           | Life Cycle Stages of the United Kingdom Ministry of Defense                                     | 33 |
|      | 2.7.3           | Life Cycle Stages of Asset Management – 'PAS 55 – 1: 2008'                                      | 34 |
|      | 2.7.4           | Life Cycle Stages of Model of System<br>Engineering and NATO/RTO                                | 34 |
|      | 2.7.5           | Life Cycle Stages for Petroleum & Natural Gas<br>Industries                                     | 35 |
| 2.8  | Life C          | cycle Costing Definitions and Models                                                            | 36 |
|      | 2.8.1           | Fabrycky and Blanchard Model                                                                    | 40 |
|      | 2.8.2           | Emblemsvag Activity-Based Life Cycle<br>Costing Model                                           | 42 |
|      | 2.8.3           | Woodward Life Cycle Costing Model                                                               | 43 |
|      | 2.8.4           | Life Cycle Costing Model of Petroleum and<br>Natural Gas Industries (EN ISO 15663-1&2:<br>2006) | 45 |
|      | 2.8.5           | Life Cycle Costing Model for Oil and Gas<br>Drilling Products (2016)                            | 47 |
| 2.9  | Risk a          | nd Uncertainty in Life Cycle Costing                                                            | 48 |
| 2.10 | Artific         | cial Neural Network Modeling                                                                    | 49 |
| 2.11 | Asset           | Management for Multi-Unit Systems                                                               | 52 |
|      | 2.11.1          | Multi-unit System in Asset Management                                                           | 53 |
|      | 2.11.2          | Multi-Asset System Features and Its Categories                                                  | 54 |

|        |      | 2.11.3 Fleet and Portfolio Categorization                         | 55 |
|--------|------|-------------------------------------------------------------------|----|
|        | 2.12 | The Discount Rate                                                 | 55 |
|        | 2.13 | LCC Approach for Asset Management Models and Performance          | 56 |
|        | 2.14 | Summary                                                           | 58 |
|        | 2.15 | Conclusion and Observation from Literature Review                 | 59 |
| СНАРТЕ | ER 3 | RESEARCH METHODOLOGY                                              | 63 |
|        | 3.1  | Introduction                                                      | 63 |
|        | 3.2  | Research Methodology Selection                                    | 63 |
|        | 3.3  | Conceptual Model and Life Cycle Cost Framework Development        | 68 |
|        | 3.4  | Data Collection Methods                                           | 70 |
|        |      | 3.4.1 Survey Questionnaire Procedure                              | 71 |
|        |      | 3.4.1.1 Initial Pilot Questionnaire (Pilot Study)                 | 72 |
|        |      | 3.4.1.2 Industry Questionnaire                                    | 73 |
|        |      | 3.4.2 Historical Plant Data                                       | 74 |
|        | 3.5  | Main Survey Sample Size                                           | 75 |
|        |      | 3.5.1 The Main Survey                                             | 76 |
|        |      | 3.5.2 The Response Rate of the Main Survey                        | 77 |
|        |      | 3.5.3 Questionnaire Data Reliability                              | 78 |
|        | 3.6  | Methods of Data Analysis                                          | 78 |
|        |      | 3.6.1 Descriptive statistics Analysis                             | 79 |
|        |      | 3.6.2 Theory of Wilcoxon Signed – Rank Test                       | 79 |
|        |      | 3.6.3 Artificial Neural Network Modelling                         | 80 |
|        |      | 3.6.4 Stochastic Modelling of Costs for Present Value Calculation | 82 |
|        | 3.7  | Setting a Hypothesis Testing                                      | 82 |
|        | 3.8  | Validation Methodology for the Framework and Research Model       | 85 |
|        | 3.9  | Uncertainty Boundaries                                            | 85 |
|        | 3.10 | Summary                                                           | 86 |

| CHAPTER 4 | CONCEPTUAL FRAMEWORK AND<br>MATHEMATICAL MODEL DEVELOPMENT                                |     |  |
|-----------|-------------------------------------------------------------------------------------------|-----|--|
| 4.1       | Introduction                                                                              | 87  |  |
| 4.2       | Conceptual Model, LCC Framework and CBS Development                                       | 88  |  |
|           | 4.2.1 The Research LCC Model                                                              | 90  |  |
|           | 4.2.2 LCC Conceptual Framework                                                            | 92  |  |
|           | 4.2.3 Validation of the LCC Conceptual Framework and CBS                                  | 94  |  |
| 4.3       | Mathematical Model Development for Present Value Calculation                              | 96  |  |
|           | 4.3.1 Estimation of LCC, ROI and PB                                                       | 103 |  |
|           | 4.3.2 Estimation of Maintenance, Operating and Depreciated Costs                          | 106 |  |
| 4.4       | Forecasting Artificial Neural Networks Model                                              | 111 |  |
| 4.5       | Integrating Present Value Developed Model in ANN Predicting Model                         | 116 |  |
|           | 4.5.1 Data Acquisition and Analysis                                                       | 121 |  |
|           | 4.5.2 Configuration of the Network                                                        | 121 |  |
|           | 4.5.3 Training of the Network                                                             | 123 |  |
|           | 4.5.4 Case Study for the Conceptual Model<br>Implementation and Validation                | 124 |  |
| 4.6       | Summary                                                                                   | 130 |  |
| CHAPTER 5 | <b>RESULTS, VALIDATION AND DISCUSSION</b>                                                 | 133 |  |
| 5.1       | Introduction                                                                              | 133 |  |
| 5.2       | Industry Survey                                                                           | 133 |  |
|           | 5.2.1 Purpose of the Questionnaire                                                        | 133 |  |
|           | 5.2.2 Survey Results and Discussion                                                       | 134 |  |
| 5.3       | LCC Hypothetical Statements                                                               | 142 |  |
| 5.4       | Hypothesis Testing                                                                        | 143 |  |
|           | 5.4.1 Wilcoxon Signed Rank Test theory                                                    | 143 |  |
|           | 5.4.2 Test of The Hypothesis of the LCC Model<br>Significance and Requirement in Industry | 144 |  |
|           | 5.4.3 Test of the Hypothesis of the Suitability of The Variables in The CBS               | 145 |  |

|               | 5.4.4 Testing The Hypothesis for Uncertainty<br>Importance in The Forecasting of LCC | 146 |
|---------------|--------------------------------------------------------------------------------------|-----|
|               | 5.4.5 Testing The Hypothesis of The Relevance of<br>Uncertainty Factors Proposed     | 147 |
| 5.5           | Error Autocorrelation Test                                                           | 148 |
| 5.6           | Performance Test                                                                     | 151 |
| 5.7           | Regression and Mean Squared Results                                                  | 154 |
| 5.8           | Model Results Validation and Sensitivity Analysis                                    | 161 |
| 5.9           | Case Study Model Decision Making Results (LCC, ROI and PB)                           | 166 |
| 5.10          | Proposed Model Comparison with Reviewed Models in Literature                         | 170 |
| 5.11          | Industry Expert Validation                                                           | 172 |
| 5.12          | Novel Features of LCC Model                                                          | 174 |
| 5.13          | A Review of Significance from Industry Survey and Literature                         | 175 |
| 5.14          | Specific Contribution to Knowledge                                                   | 176 |
| 5.15          | Summary                                                                              | 177 |
| CHAPTER 6     | CONCLUSIONS AND RECOMMENDATIONS                                                      | 179 |
| 6.1           | Introduction                                                                         | 179 |
| 6.2           | Research Outcome Reference to The Objectives                                         | 179 |
| 6.3           | Limitations of The Research                                                          | 180 |
| 6.4           | Recommendations                                                                      | 180 |
| 6.5           | Summary                                                                              | 181 |
| REFERENCES    |                                                                                      | 183 |
| LIST OF PUBLI | LIST OF PUBLICATIONS                                                                 |     |

## LIST OF TABLES

| TABLE NO. | TITLE                                                                                                                                                  | PAGE |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 2.1 | Comparisons between AM approaches (Weyenbergh and Pintelon, 2002)                                                                                      | 16   |
| Table 2.2 | Summary of the LCC use in AM decisions                                                                                                                 | 22   |
| Table 2.3 | Cost estimating techniques and product life cycle (Roy, 2003)                                                                                          | 29   |
| Table 2.4 | Definitions for life cycle costing and their references                                                                                                | 37   |
| Table 2.5 | Various type of ANN system's functionality, advantages, disadvantages                                                                                  | 51   |
| Table 2.6 | Summary of fundamental features of multi asset categories (Petchrompo and Parlikad, 2019)                                                              | 54   |
| Table 4.1 | Uncertainty factors derived from industry                                                                                                              | 99   |
| Table 4.2 | The discounted historical cost breakdown structure from<br>raw historical cost of the operating and maintenance costs                                  | 109  |
| Table 4.3 | The total LCC, revenue, other cost and income per annum for the main model – case study (discount rate 20% and uncertainty variables $1 - 2017$ input) | 125  |
| Table 4.4 | The total LCC, revenue, other cost and income per annum $-$ Scenario one (20% discounting rate and uncertainty variables $2 - 2019$ input)             | 126  |
| Table 4.5 | The total LCC, revenue, other cost and income per annum-scenario two                                                                                   | 127  |
| Table 4.6 | The total LCC, revenue, other cost and income per annum for scenario three – 20% discount rate and random uncertainty factors                          | 128  |
| Table 4.7 | The total LCC, revenue, other cost and income per annum for scenario four - 15% discount rate and base case study uncertainty factors                  | 129  |
| Table 5.1 | Uncertainty factors weightages defined by industry experts for a steel fabrication and manufacturing plant                                             | 140  |
| Table 5.2 | Survey responses for LCC model importance in decision making                                                                                           | 144  |
| Table 5.3 | Survey responses signed rank for model importance in decision making                                                                                   | 144  |

| Table 5.4  | Survey responses and signed rank for CSB variables validation         | 145 |
|------------|-----------------------------------------------------------------------|-----|
| Table 5.5  | Survey responses and signed rand for uncertainty consideration in LCC | 146 |
| Table 5.6  | Survey responses and signed rank for uncertainty factors validity     | 147 |
| Table 5.7  | Regression and mean squared results for the model main case study     | 155 |
| Table 5.8  | Regression and mean squared results for scenario one                  | 155 |
| Table 5.9  | Regression and mean squared results for scenario two                  | 155 |
| Table 5.10 | Regression and mean squared results for scenario three                | 155 |
| Table 5.11 | Regression and mean squared results for scenario four                 | 155 |
| Table 5.12 | The comparison of the actual vs forecasted costs                      | 162 |
|            |                                                                       |     |

# LIST OF FIGURES

| FIGURE NO   | D. TITLE                                                                                                                            | PAGE |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 1.1  | Life cycle processes and cost committed (Blanchard BS, Fabryky (2011)                                                               | 3    |
| Figure 1.2  | Outline of the thesis                                                                                                               | 10   |
| Figure 2.1  | Asset lifecycle phases                                                                                                              | 15   |
| Figure 2.2  | Asset life cycle activities for decisions                                                                                           | 18   |
| Figure 2.3  | Asset life cycle activities interrelations (El-Akruti, 2012)                                                                        | 20   |
| Figure 2.4  | Input in a DTC model (Rush and Roy, 2000)                                                                                           | 28   |
| Figure 2.5  | Life cycle costing applications development (Kawauchi and Rausand, 1999)                                                            | 30   |
| Figure 2.6  | Product life cycle (Fabrycky and Blanchard, 1991)                                                                                   | 32   |
| Figure 2.7  | UK MOD CADMID life cycle                                                                                                            | 33   |
| Figure 2.8  | Life cycle for asset management - 'PAS 55 – 1:2008'                                                                                 | 34   |
| Figure 2.9  | System engineering and NATO/RTO life cycle                                                                                          | 35   |
| Figure 2.10 | Life cycle of the Petroleum & Natural Gas Industries (EN ISO 15663-1&2: 2006)                                                       | 36   |
| Figure 2.11 | Representing the acquisition cost & ownership cost in the Life Cycle Costing (Kawauchi and Rausand 1999)                            | 40   |
| Figure 2.12 | Fabrycky and Blanchard model of life cycle costing (Fabrycky and Blanchard, 1991)                                                   | 41   |
| Figure 2.13 | Model of activity-based life cycle costing (Emblemsvag, 2003)                                                                       | 42   |
| Figure 2.14 | Woodward life cycle costing methodology (Woodward, 1997)                                                                            | 44   |
| Figure 2.15 | Four basic steps and their sub-units, Petroleum and Natural Gas LCC Model, 2006                                                     | 46   |
| Figure 2.16 | LCC Model for Fleet utilization at early conceptual design<br>phases in oil and gas industry (Florian Johannknecht et al.,<br>2016) | 48   |
| Figure 2.17 | Classification of multi unit systems, (Petchrompo and Parlikad, 2019)                                                               | 53   |

| Figure 3.1  | Research strategies roadmap (El-Akruti and Dwight, 2010)                                                                               | 65  |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| Figure 3.2  | Research methodology flow chart                                                                                                        |     |  |  |  |
| Figure 4.1  | Proposed life cycle cost conceptual model                                                                                              | 92  |  |  |  |
| Figure 4.2  | Life cycle cost conceptual framework                                                                                                   | 93  |  |  |  |
| Figure 4.3  | CBS of life cycle cost framework                                                                                                       | 94  |  |  |  |
| Figure 4.4  | Most significant cost variables in the plant LCC                                                                                       | 95  |  |  |  |
| Figure 4.5  | Operating and maintenance variables identification in the CBS                                                                          | 96  |  |  |  |
| Figure 4.6  | The flow chart of estimation of LCC and ROI through<br>developed Probability Density Function Model integrating<br>uncertainty and ANN | 104 |  |  |  |
| Figure 4.7  | Typical neural network structure                                                                                                       | 112 |  |  |  |
| Figure 4.8  | ANN prediction model in present value integrating uncertainty                                                                          | 120 |  |  |  |
| Figure 4.9  | The flow chart of LMBP ANN with NARX time delay                                                                                        | 121 |  |  |  |
| Figure 4.10 | Design the ANN BPNN LM network                                                                                                         | 122 |  |  |  |
| Figure 4.11 | The LM BPNN NARX network structure                                                                                                     | 122 |  |  |  |
| Figure 4.12 | Training data in NARX architecture                                                                                                     | 123 |  |  |  |
| Figure 5.1  | Industry response by division                                                                                                          | 135 |  |  |  |
| Figure 5.2  | Products and services delivered in the industry                                                                                        | 136 |  |  |  |
| Figure 5.3  | Respondents' roles in cost engineering in the plant / industry                                                                         | 137 |  |  |  |
| Figure 5.4  | Main challenges faced in the plant/industry                                                                                            | 137 |  |  |  |
| Figure 5.5  | Main risks in the plant that are reflected in the life cycle costing                                                                   | 138 |  |  |  |
| Figure 5.6  | Main challenges faced in operation and maintenance                                                                                     | 139 |  |  |  |
| Figure 5.7  | Data and information sources used in life cycle costing                                                                                | 139 |  |  |  |
| Figure 5.8  | Uncertainty factors input from industry experts' input                                                                                 | 140 |  |  |  |
| Figure 5.9  | Case study autocorrelation results                                                                                                     | 149 |  |  |  |
| Figure 5.10 | Scenario one autocorrelation results                                                                                                   | 149 |  |  |  |
| Figure 5.11 | Scenario two autocorrelation results                                                                                                   | 150 |  |  |  |

| Figure 5.12 | Scenario three autocorrelation results                                        | 150 |
|-------------|-------------------------------------------------------------------------------|-----|
| Figure 5.13 | Scenario four autocorrelation results                                         | 151 |
| Figure 5.14 | Case study performance test                                                   | 152 |
| Figure 5.15 | Scenario one performance test                                                 | 152 |
| Figure 5.16 | Scenario two performance test                                                 | 153 |
| Figure 5.17 | Scenario three performance test                                               | 153 |
| Figure 5.18 | Scenario four performance test                                                | 154 |
| Figure 5.19 | Case study regression results                                                 | 156 |
| Figure 5.20 | Scenario one regression results                                               | 157 |
| Figure 5.21 | Scenario two regression results                                               | 158 |
| Figure 5.22 | Scenario three regression results                                             | 159 |
| Figure 5.23 | Scenario four regression results                                              | 160 |
| Figure 5.24 | Validation of actual cost to predicted cost for main case study model results | 164 |
| Figure 5.25 | Validation of actual cost to predicted cost for scenario one                  | 165 |
| Figure 5.26 | Validation of actual cost to predicted cost for scenario two                  | 165 |
| Figure 5.27 | Validation of actual cost to predicted cost for scenario three                | 166 |
| Figure 5.28 | Validation of actual cost to predicted cost for scenario four                 | 166 |
| Figure 5.29 | Case study model total life cycle results for asset selection decision        | 167 |
| Figure 5.30 | Case study model year over year results for performance management            | 168 |
| Figure 5.31 | Case study model cumulative cost results for performance management           | 169 |

## LIST OF ABBREVIATIONS

| AM   | - | Asset Management                     |
|------|---|--------------------------------------|
| ANN  | - | Artificial Neural Network            |
| CBS  | - | Cost Breakdown Structure             |
| EAM  | - | Engineering Asset Management         |
| EPM  | - | Economic Performance Measures        |
| IRR  | - | Internal Rate of Return              |
| KPI  | - | Key Performance Indicators           |
| LCAM | - | Life Cycle Asset Management          |
| LCC  | - | Life Cycle Costs                     |
| PAM  | - | Physical Asset Management            |
| PB   | - | Payback Period                       |
| PV   | - | Present Value                        |
| RMC  | - | Ratio of Maintenance to Capital Cost |
| ROC  | - | Ratio of Operation to Capital Cost   |
| ROI  | - | Return on Investment                 |
|      |   |                                      |

### LIST OF APPENDICES

| APPENDIX   | TITLE                                               | PAGE |
|------------|-----------------------------------------------------|------|
| Appendix A | Questionnaire                                       | 199  |
| Appendix B | Present values and Future predicted values with LCC | 204  |
| Appendix C | Conceptual Framework Validation Comments            | 233  |
| Appendix D | Descriptive Results from Survey                     | 235  |
| Appendix E | Cronbach's Alpha Reliability Results                | 240  |

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Preamble

Businesses are facing-considerable challenges in terms of sustainable growth in Return on Investment (ROI). The optimization of performance in engineering assets is crucial to achieve that sustainability. This growth can be achieved by implementing a holistic life-cycle costing methodology to define the efficient investment, and therefore contributing to a sustainable development and ROI (Sardar et. al. 2006, Kovacic and Zoller, 2015).

Productivity improvement has been suggested in the past two decades to address the following trends (Mitchell et al., 2002):

- 1) Ineffectiveness of previous cost cutting techniques
- 2) Downside of rapid growth.
- 3) Significant transformation of industry structure

Current expectations and challenges in production and operating companies are achieving sustainable growth in revenues, customer satisfaction and operational excellence while minimizing capital support and operating costs. (Mitchell et al., 2002). High levels of asset and equipment availability, reliability and maintainability are also required to achieve a sustainable management of physical assets and therefore reflects in an ever more optimized business profitability and ROI. Asset Management (AM) is a complex and multidisciplinary field of study as it entails a number of factors including a controlled and well-established processes, trained personnel, integration between technical and managerial areas, effective information management and highly committed leadership. (Duran and Afonso, 2019). It was evident in the past decade that the literature had highlighted the significance of realizing asset management as part of a crucial part in the value chain and requiring a holistic approach to investigating challenges all over the traditional boundaries of the business, engineering and information technology disciplines (Amadi-Echendu, 2006; Kovacic and Zoller, 2015; Macchi et. al, 2018).

Asset management is typically considered as one of the last options to increase cost savings in the current competitive global economy and this is because of its complexity, particularly in many developing countries that normally lacks the resources and technology that enables the reduction of these complexities due to available data, software, research and infrastructure. It is believed that Asset Management (AM) need to consider the construction, utilization, operational as well as end-of-life stages of engineering physical assets whenever initiating a design and implementation project. Recent research suggested Life cycle costing in AM as a more effective methodology to view Assets from a holistic perspective rather than merely looking at narrower maintenance view. Due to its complexity, asset management has been represented through a model approach considering the Life Cycle Costing (LCC) of the assets. Nevertheless, existing AM models reflect inefficiencies in terms of comprehensively considering life cycle costs, in addition to aspects of sustainable development (Schuman and Brent, 2005; Macchi et al, 2018; Roda and Macchi, 2016).

Asset Lifecycle Costing includes the calculation of cost benefit analysis for the lifecycle of assets that includes the design of the asset, procurement and/or commissioning or installation, operation, maintenance and support, and lastly retirement and disposal costs of the asset. It also includes the evaluation of high-cost contributors, prospective areas of risk, cause and effect relationships; and realization of possible cost reduction areas. It requires a model-based approach to achieve asset performance excellence and optimization over asset lifecycle (Duran and Afonso, 2019).

It had been suggested that the role LCC plays in AM is mainly concerned on defining the life cycle management for a decision making standard for physical assets. This standard acts as a holistic and comprehensive approach in order to control the life cycle activities of assets with a main objective of realizing the organization's goals (El-Akruti et al., 2015).

Figure 1.1 shows the tasks involved in LCC analysis of the life cycle process and costs associated with these tasks for each stage of the life of the asset. During the initial design stage, for example, the AM activities needs in LCC analysis may comprise of system definition, analysis, and alternative assessment. The main challenge in managing the life of the asset effectively falls in the integration of the different fragmented activities through the numerous stages of the life cycle. This shall then guide business owners and decision makers to the need-identification, alternative analysis, and project selection. The life of the asset from cradle to grave is covered in a LCC analysis, with justifiable assumptions made to neglect the least critical elements in the process and to look at all costs and aid manage the asset till its disposal. (Schuman and Brent, 2005, El-Akruti et al., 2015).

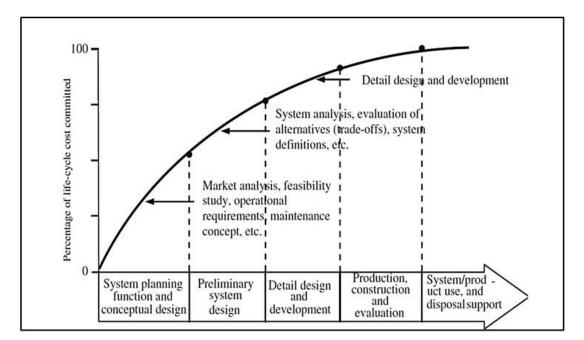



Figure 1.1 Life cycle processes and cost committed (Blanchard BS, Fabryky (2011)

It has also been noticed that the gaps realized on the level of integration of AM in organizations are not only contingent related reasons (industry, type of assets to manage etc.) but also to the gap in the necessary technologies / methodologies required

such as the availability of an LCC model to support the decision making process or the availability of performance indicators (Roda and Macchi, 2016). It is argued that an overall life-cycle costing model that is based on future options or alternative strategies is an appropriate way to identify efficient investment, thus contributing to sustainable development (Kovacic and Zoller., 2015).

#### **1.2 Background of the Problem**

Achieving the desired goals from physical assets depends fundamentally on the understanding of the nature of that asset. Manufacturing assets, as a focus of this research, are categorized as multi-unit asset system. Petchrompo and Parlikad, (2019), defines the term 'multi-unit system' as a system composed of multiple assets that share common characteristics or resources under the control of an organisation or a single-asset system composed of multiple components operating together (Petchrompo and Parlikad, 2019). Due to the complexity of this nature of assets, it is found very challenging to manage and requires a model approach in order to be able to achieve the desired productivity and financial objectives (Macchi et al, 2018; Roda and Macchi, 2016).

It was found from literature that research focused on Maintenance management models for physical or engineering AM in the industry, such as total productive maintenance (TPM) (Alsubaie and Yang, 2018; Modgil and Sharma, 2016; Campbell, 1995), reliability centered maintenance (RCM) (Piechnicki et al. 2017; Sifonte and Reyes-Picknell, 2017) and business centered maintenance (BCM) (Kelly, 1997). These models neglected the strategic view of asset management as they are applicable after the ownership of an asset thus does not look at potential costs for the investment at an early stage where most of the costs are committed. This makes the selection of physical asset system from a number of asset alternatives, particularly in multi assets such as production lines of a fleet of machines in manufacturing plants an industry challenge. It also covered a narrow view of the overall asset by focusing merely on maintenance not considering strategic and tactical factors related to asset life cycle including uncertainty, discounting, economic performance measures and cost elements at the various life stages from an early stage of asset design (Alaswad and Xiang, 2017, Wang and Chenl, 2016, Fraser et al., 2015, Amadi-Echendu, 2004; Hoskins et al., 1998).

In addition, in order to attain optimum utilization of the assets over their lifecycle and to identify the optimum time and requirements for replacement and/or enhancement is not well covered in research. Researchers identified a more holistic approach to address multi asset objectives through Life Cycle Costing (LCC). LCC in AM decisions has been introduced as a holistic approach to address asset management from an organizations performance perspective and not merely focusing on cost elements as the traditional maintenance models. LCC covers all asset life stages from acquisition to disposal looking at all factors affecting costs during the life cycle and utilize those cost elements as a way to assess the feasibility of investments and/or requirements of existing and new assets. This aids to provide a decision tool for estimating the asset requirements or investment, identify cost drivers and highlight need for replacement or for asset selection.

Despite the research conducted in the field of LCC in AM, unfortunately, most of the LCC models reported were found to be far from ideal. The models had flaws in regard to either or all of the following factors, such as the uncertainty and risk modeling, discounting and the present value for predicted future money, covering uncertainty from a high level, not considering sensitivity analysis of the assumed discount rates or uncertainty factors, considering the strategic dimension for asset selection but not the operational performance management aspect at an early design stage considering only performance during operation, not considering the Economic Performance measures for performance classification to view the tactical and operational cost implications (Eric Korpi Timo Ala-Risku, 2008; Roda and Macchi, 2016; Schmidt and Crawford, 2018).

In addition many of the case study applications compared to the methods suggested in the literature have encountered some deficiencies which included; covering fewer parts of the whole life cycle, estimating the costs on a lower level of detail, using methods of cost estimation depending on expert opinion rather than statistical methods, and were based upon deterministic estimates of life cycle costs instead of using sensitivity analyses.

Furthermore, it's argued that to achieve optimum value from engineering assets over the asset's lifetime, operational reliability and systems engineering should be the means for that. Thus, cost activities that should be completed during each stage of the project life cycle need to be identified. In order to influence the decision making, the application of performance measurements for the operation and support stages need to be proposed. The identification of Asset Management (AM) model relative to the development of performance excellence and optimization in the industry is crucial.

The nature of the inter relationships of the different elements of asset management as an enterprise AM has recently been studied within the last few years and is not yet adequately defined either in the literature or in practice. The main focus has been on the specific asset life or specific issues like reliability or maintenance, whilst the concept of an enterprise AM has only been discussed in literature over the past decade, and it has not yet been fully developed or understood (Frolov et. al, 2009; El-Akruti et al., 2015, Roda and Macchi, 2016).

#### **1.3 Problem Statement**

The primary challenge faced by the industry is to have a systematic AM model for manufacturing assets based on a holistic Life cycle costing approach that aids in the optimum selection as well as the performance management of multi assets of a fleet of machines from a number of asset alternatives. Literature shows that there is no existence for an LCC Model, overseeing the strategic and operational life cycle asset cost activities, addressing the variables impacting those costs such as uncertainty and discounting that can aid organizations to achieve the optimum selection of their plants and assist in managing their performance. This fact is also stressed by the industry as the existence of such model that aids industry to choose multi asset systems from several investment options as well as aid in the performance management of those assets is not present.

#### **1.4** Aim of the Research

This study aims to develop and propose a Model for Life Cycle Costing Asset Management (LCAM) that utilizes Life Cycle Costing (LCC) to aid in the decisionmaking process for the selection of optimum multi-assets system from a few alternatives of multi assets in the initial investment stage as well as assisting the continuous monitoring and assessment of performance of multi assets at their utilization and/or replacement stages.

The model allows management to decide from a series of available alternatives of multi assets consisting of a fleet of machines in a manufacturing facility and uses prediction method to derive results that aids in what would be the best choice from a series of similar multi asset options. It may not be the mathematically optimum solution but one that is the best alternative to the company based on a series of decisions and constraints.

#### **1.5** Research Questions

The research questions are :

- What are the main critical life cycle cost variables for multi asset selection from a number of multi asset alternatives?
- 2) How are feasibility for new multi asset investments and asset utilization, and/or requirements of existing and new multi assets performed?
- 3) What circumstances exists in real-life operations and what impact significant or otherwise would such a model have in influencing management decision making?

#### **1.6 Research Objectives**

The research objectives are:

- To derive Asset Life cycle cost variables that influence acquisition, operations and maintenance decisions.
- 2) To establish a decision-making model that aids in asset selection at the early Life cycle stages and asset performance management during the asset utilization and evaluate the model usability in a manufacturing capital intensive plant.

#### 1.7 Research Scope

This research is focus on asset management, specifically in the capitalintensive industry, steel fabrication and manufacturing industry in Saudi Arabia which is an important component of the new and emerging economy towards reaching Saudi Arabia vision 2030. Being an asset-intensive industry, this represented a research opportunity of applying the LCC model for asset management. Data collection will be through primary data sources from the industry including questionnaire survey, interviews and historical cost data. Acquisition cost variables, and utilization cost variables including operation and maintenance variables that are not foreseen during the initial asset investment evaluation are considered in the scope of this study. Additional uncertainty factors that are associated to that utilization phase of the asset were considered. In the research the disposal cost was assumed to be negligible for the type of industry since no major impact cost or otherwise is believed to impact the course of study or the results. In summary, the boundaries of the research are defined to be focused on life cycle costing in the steel fabrication industry in Saudi Arabia with neglecting the disposal costs and using primary source of field data from existing industry for the purpose of model development through a case study.

#### **1.8** Research Significance

The research outcome will aid asset managers and decision makers to deploy a LCC model that guides and aids in the selection of assets at the early stages of the decision making process and aids in the performance measurement and optimization of asset utilization throughout the asset life cycle. The model, unlike the maintenance models present covers a holistic view of the life cycle of the asset from acquisition to disposal covering the strategic, tactical and operational variables. It also considers factors that has not been covered thoroughly in present models such as uncertainty and discounting. The model provides a good level of accuracy in the results that makes it of considerable reliability through a novel mathematical model and utilizing an AI prediction model. In addition a sensitivity analysis has been considered that reflected the robustness of the model. The decision-making criteria will be based on LCC and will aid in the optimum selection from a few alternatives. This will be of great use to manufacturing plants in the capital-intensive industry to achieve higher ROI having considered the overall asset lifecycle.

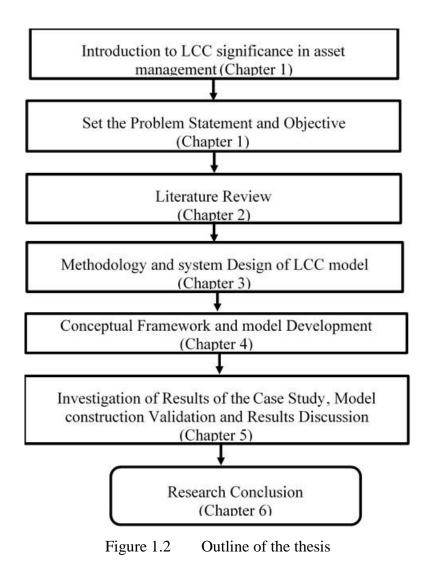

#### **1.9** Outline of the Thesis

Figure 1.2 shows an outline of the Thesis. In this Chapter 1, the first a background of the research was presented. The multi asset management concept and its complexity were reflected with the research and industry main challenges faced. This led to the articulation of the Problem Statement realized from the background and gaps in the field of multi asset management and the need for a LCC model was then reflected on the aim of the research. Researches Questions and Objectives were discussed, and the research significance was also outlined.

Chapter 2 covers the Literature Review, where two main types of review are discussed; first is the identification of assets life cycle stages and dimensions and cost estimating techniques, and the second is the identification of life cycle costing models and tools. Other AM concepts required for the purpose of the LCC model development was also reviewed such as risk and uncertainty, Multi asset concept, Discounting, and

performance management. The review resulted on a conclusion and the research gap is clearly described.

The overall research method and strategy is then presented. The system design and methodology of LCC model development and Analysis of Proposed LCC model will be discussed in Chapter 3. Chapter 4 presents the Conceptual Framework and Mathematical Model Development. This is followed by model construction and validation through a detailed case study in Chapter 5 and the results of the model is discussed in this chapter and the present research study is then concluded in Chapter 6.



#### REFERENCES

- Abdi, A., & Taghipour, S. (2019). Sustainable asset management: A repairreplacement decision model considering environmental impacts, maintenance quality, and risk. *Computers & Industrial Engineering*, 136, 117-134.
- Alaswad, S., & Xiang, Y. (2017). A review on condition-based maintenance optimization models for stochastically deteriorating system. *Reliability Engineering & System Safety*, 157, 54-63.
- Alfatih, S., Leong, M. S., & Hee, L. M. (2015). Definition of engineering asset management: a review. In *Applied Mechanics and Materials* (Vol. 773, pp. 794-798). Trans Tech Publications Ltd.
- Almedallah, M. K., & Walsh, S. D. (2019). A numerical method to optimize use of existing assets in offshore natural gas and oil field developments. *Journal of Natural Gas Science and Engineering*, 67, 43-55.
- Alsubaie, B., & Yang, Q. (2018). Maintenance Process Improvement Model by Integrating LSS and TPM for Service Organisations. In *Engineering Asset Management* (pp. 13-24). Springer, Cham.
- Alyaseri, I., & Zhou, J. (2019). Handling uncertainties inherited in life cycle inventory and life cycle impact assessment method for improved life cycle assessment of wastewater sludge treatment. *Heliyon*, 5(11), e02793..
- Amadi-Echendu, J. E. (2004, October). Managing physical assets is a paradigm shift from maintenance. In 2004 IEEE International Engineering Management Conference (IEEE Cat. No. 04CH37574) (Vol. 3, pp. 1156-1160). IEEE..
- Amadi-Echendu J E. New Paradigms for Physical Asset Management. Plenary of the 18 EuroMaintenance and 3rd World Congress on Maintenance, Basel Switzerland, 20-22 June, 2006.
- Amadi-Echendu, J. E., Willett, R., Brown, K., Hope, T., Lee, J., Mathew, J., ... & Yang, B. S. (2010). What is engineering asset management? In *Definitions, concepts and scope of engineering asset management* (pp. 3-16). Springer, London.

- Amelsberg, J. (2002). Systemic performance and cost management: a management framework for organizational excellence. In ASQ World Conference on Quality and Improvement Proceedings (p. 487). American Society for Quality.
- Assaf, S.A., Al-Hammad, A., Jannadi, O.A. and Saad, S.A. (2002) Assessment of the problems of application of life cycle costing in variableion projects. Cost Engineering Vol, 44 No 2 pp.17-22
- Asset Management Council (2009) Asset management. Asset Management Council and MESA Newsletter, April–May, p 4
- Azadeh, A. G. H. A. D. E. R. I., Ghaderi, S. F., & Sohrabkhani, S. (2008). Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. *Energy Conversion and management*, 49(8), 2272-2278.
- Bacha, H., & Meyer, W. (1992, June). A neural network architecture for load forecasting. In [Proceedings 1992] IJCNN International Joint Conference on Neural Networks (Vol. 2, pp. 442-447). IEEE.
- Barringer, H. P., & Weber, D. P. (1997, January). Life cycle cost & reliability for process equipment. In 8th Annual Energy Week Conference and Exhibition. Houston, Texas (pp. 1-22).
- Barringer, H. P. (2003, May). A life cycle cost summary. In *International conference* of maintenance societies (pp. 20-23).
- Bianchi, F. M., Maiorino, E., Kampffmeyer, M. C., Rizzi, A., & Jenssen, R. (2017). An overview and comparative analysis of recurrent neural networks for short term load forecasting. *arXiv preprint arXiv:1705.04378*.
- Blanchard and Fabrycky 1998, Systems Engineering and Analysis, 3rd Edition
- Biswas, M. R., Robinson, M. D., & Fumo, N. (2016). Prediction of residential building energy consumption: A neural network approach. *Energy*, 117, 84-92.
- Blanchard BS, Fabryky (2011) Systems engineering and analysis. Prentice Hall, Englewood Cliffs, p 585
- Bocheng, Z. H. O. N. G., Kuo, L., Dinghao, L., Jing, L., & Xuan, F. A. N. G. (2015). Short-term prediction of building energy consumption based on GALM neural network. In International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII) (pp. 867-71).

- Bolarinwa, O. A. (2015). Principles and methods of validity and reliability testing of questionnaires used in social and health science researches. *Nigerian Postgraduate Medical Journal*, 22(4), 195.
- Bond, T. C. (1999). The role of performance measurement in continuous improvement. *International Journal of Operations & Production Management*.
- Buys, A., & Bendewald, M. (2011). Life cycle cost analysis: is it worth the effort?. ASHRAE Transactions, 117, 541.
- Campbell, J. D., Reyes-Picknell, J. V., & Kim, H. S. (2015). *Uptime: Strategies for excellence in maintenance management*. CRC Press.
- Castella PS, Blanc I, Ferrer MG, Ecabert B, Wakeman M, Manson J-A, Emery D, Han SH, Hong J, Jolliet O (2009) Integrating life cycle costs and environmental impacts of composite rail car-bodies for a Korean train. Int J Life Cycle Assess. Springer, New York, pp 429–442
- Chopey, N. P., & Fisher-Rosemount, J. M. (1999). Put a smart face on asset management. *Chemical Engineering*, *106*(2), 108.
- Choo, B. S. Y., & Goh, J. C. L. (2015). Pragmatic adaptation of the ISO 31000: 2009 enterprise risk management framework in a high-tech organization using Six Sigma. *International Journal of Accounting & Information Management*.
- Coetzee, J. L. (1999). A holistic approach to the maintenance "problem". *Journal of quality in maintenance engineering*.
- D'Ercole, M., Righetti, M., Raspati, G. S., Bertola, P., & Maria Ugarelli, R. (2018). Rehabilitation Planning of Water Distribution Network through a Reliability— Based Risk Assessment. *Water*, *10*(3), 277.
- Dashti, R., & Yousefi, S. (2013). Reliability based asset assessment in electrical distribution systems. *Reliability Engineering & System Safety*, 112, 129-136.
- Di Giuseppe, E., Massi, A., & D'Orazio, M. (2017). Impacts of uncertainties in life cycle cost analysis of buildings energy efficiency measures: application to a case study. *Energy Procedia*, 111, 442-451.
- Du Preez, N. D., & Louw, L. (2008, July). A framework for managing the innovation process. In PICMET'08-2008 Portland International Conference on Management of Engineering & Technology (pp. 546-558). IEEE.

- Dwight, R., & El-Akruti, K. (2009). The role of asset management in enterprise strategy success. In ICOMS 2009: Asset Management Conference Proceedings: Sydney, 1-5 June 2009 (p. 68). Asset Management Council.
- El-Akruti, K. O., & Dwight, R. (2010). Research methodologies for engineering asset management.
- El-Akruti, K. O. (2012). The strategic role of engineering asset management in capital intensive organisations.
- El-Akruti, K., Dwight, R., & Zhang, T. (2013). The strategic role of engineering asset management. *International Journal of Production Economics*, 146(1), 227-239.
- El-Akruti, K., Dwight, R., Zhang, T., & Al-Marsumi, M. (2015). The role of life cycle cost in engineering asset management. In *Engineering asset management*systems, professional practices and certification (pp. 173-188). Springer, Cham.
- Elnaeim, M. I., Leong, M. S., & Alfatih, M. S. (2017). Life cycle costing in engineering asset management: A study in the steel fabrication industry. *International Journal of Mechanical Engineering and Technology*, 8(6).
- Esveld, C., & Esveld, C. (2001). *Modern railway track* (Vol. 385). Zaltbommel, Netherlands: MRT-productions.
- Farran, M., & Zayed, T. (2009). Comparative analysis of life-cycle costing for rehabilitating infrastructure systems. *Journal of Performance of Variableed Facilities*, 23(5), 320-326.
- Farran, M., & Zayed, T. (2012). New life-cycle costing approach for infrastructure rehabilitation. *Engineering, Variableion and Architectural Management*.
- Fortune C and Cox O (2005) Current practices in building project contract price forecasting in the UK, Engineering Variableion and Architectural Management , Vol 12 Nr 5 p. 446 -457
- Frolov, V., Mengel, D., Bandara, W., Sun, Y., & Ma, L. (2010). Building an ontology and process architecture for engineering asset management. In *Engineering Asset Lifecycle Management* (pp. 86-97). Springer, London.
- Fraser, K., Hvolby, H. H., & Tseng, T. L. B. (2015). Maintenance management models: a study of the published literature to identify empirical evidence. *International Journal of Quality & Reliability Management*.

- Furch J. (2016) A modael for predicting motor vehicle life cycle cost and its verification. T Famena 2016; 40: 15–26.
- Girsch, G., Heyder, R., Kumpfmüller, N., & Belz, R. (2005). Comparing the life-cycle costs of standard and head-hardened rail. *Railway Gazette International*.
- Gransberg, D. (2010). Life cycle costing for engineers
- Haddadi, A., Johansen, A., & Andersen, B. (2016). A conceptual framework to enhance value creation in variableion projects. *Procedia Computer Science*, 100(2016), 565-573.
- Hanks, J. (2002). Promotion of environmental management in the private sector of the Republic of South Africa.
- Hao, Y., Li, H., & Wang, H. (2013). Analysis of energy consumption and energysaving of residential buildings based on LM-BP algorithm. International Journal of Applied Mathematics and Statistics, 51(24), 348–356.
- Harter, H., Singh, M. M., Schneider-Marin, P., Lang, W., & Geyer, P. (2020). Uncertainty Analysis of Life Cycle Energy Assessment in Early Stages of Design. *Energy and Buildings*, 208, 109635.
- Hartman, J. C. (2004). Multiple asset replacement analysis under variable utilization and stochastic demand. *European Journal of Operational Research*, *159*(1), 145-165.
- Heidari, M. R., Heravi, G., & Esmaeeli, A. N. (2020). Integrating life-cycle assessment and life-cycle cost analysis to select sustainable pavement: A probabilistic model using managerial flexibilities. *Journal of Cleaner Production*, 120046
- Herbert M, Gordon P (1979) Operations research techniques for management. Prentice-hall, Englewood Cliffs
- Higham, A., Fortune, C., & James, H. (2015). Life cycle costing: evaluating its use in UK practice. *Structural Survey*.
- Hoskins, R. P., Brint, A. T., & Strbac, G. (1999). A structured approach to asset management within the electricity industry. *Utilities Policy*, 7(4), 221-232.
- Hu, Q., Bai, Y., Zhao, J., & Cao, W. (2015). Modeling spare parts demands forecast under two-dimensional preventive maintenance policy. *Mathematical Problems in Engineering*, 2015.
- IEC, I. (2008). 15288-2008. System engineering and software engineering–System life cycle processes.

- Jain, S., Roelofs, F., & Oosterlee, C. W. (2014). Decision-support tool for assessing future nuclear reactor generation portfolios. *Energy economics*, *44*, 99-112.
- Janz D, Westkamper E (2008) Value-oriented decision support for design to life cycle. In: LCE 2008: 15th CIRP international conference on life cycle engineering: conference proceedings. Sydney, Australia, pp 512–516
- Jardaine AKS (1970) Operation research in maintenance. Manchester University Press, Bannes and Noble, Inc. New York
- Jeromin I, Balzer G, Backes J, Huber R (2009) Life cycle cost analysis of transmission and distribution systems. In: PowerTech, IEEE Bucharest, 28 June 28–2 July, pp 1–6
- Jia, W., Zhao, D., Shen, T., Ding, S., Zhao, Y., & Hu, C. (2015). An optimized classification algorithm by BP neural network based on PLS and HCA. Applied Intelligence, 43(1), 176–191. https://doi.org/10.1007/s10489-014-0618-x.
- Jun HK, Kim JH (2007) Life cycle cost modelling for railway vehicle. In: Proceeding of international conference on electrical machines and system, pp 1989–1994
- Keizer, M. C. O., Flapper, S. D. P., & Teunter, R. H. (2017). Condition-based maintenance policies for systems with multiple dependent components: A review. European Journal of Operational Research, 261(2), 405-420.
- Kelly, A. (1997), Maintenance: Organization and Systems, Reed Educational and Professional Publishing Ltd, Oxford, pp.1.
- Ketokivi, M., & Schroeder, R. (2004). Manufacturing practices, strategic fit and performance. *International Journal of Operations & Production Management*.
- Khan F (2001) Equipment reliability: a life-cycle approach. Eng Manag J 11(3):127–135.
- Kovacic, I., & Zoller, V. (2015). Building life cycle optimization tools for early design phases. *Energy*, 92, 409-419.
- Kulczycka, J., Góralczyk, M., & Koneczny, K. (2003). Merging LCC into LCA-the example of Polish mining industry. In *Proceedings of the CIRP seminar on life cycle engineering, Kopenhaga*.
- Kumar, R., Aggarwal, R. K., & Sharma, J. D. (2013). Energy analysis of a building using artificial neural network: A review. Energy and Buildings, 65, 352–358. https://doi.org/10.1016/j.enbuild.2013.06.007.
- Labuschagne, C., Brent, A. C., & Van Erck, R. P. (2005). Assessing the sustainability performances of industries. *Journal of cleaner production*, *13*(4), 373-385..

- Lek, S., & Guégan, J. F. (1999). Artificial neural networks as a tool in ecological modelling, an introduction. *Ecological modelling*, 120(2-3), 65-73.
- Li, J., Cheng, J. H., Shi, J. Y., & Huang, F. (2012). Brief introduction of back propagation (BP) neural network algorithm and its improvement. In *Advances in computer science and information engineering* (pp. 553-558). Springer, Berlin, Heidelberg.
- Lima, E. S., & Costa, A. P. C. S. (2019). Improving Asset Management under a regulatory view. *Reliability Engineering & System Safety*, 190, 106523.
- Liu, H. S., Liu, J., Wang, H. G., Qi, X., & Sang, X. Z. (2012). Analysis of LCC model of high-voltage transmission line. In 2012 Asia-Pacific Power and Energy Engineering Conference (pp. 1-4). IEEE.
- Liu, H. J., Love, P. E., Sing, M. C., Niu, B., & Zhao, J. (2019). Conceptual framework of life-cycle performance measurement: Ensuring the resilience of transport infrastructure assets. *Transportation Research Part D: Transport and Environment*, 77, 615-626
- Love, P. E., Liu, J., Matthews, J., Sing, C. P., & Smith, J. (2015). Future proofing PPPs: Life-cycle performance measurement and building information modelling. *Automation in Variableion*, 56, 26-35.
- Macchi, M., Roda, I., Negri, E., & Fumagalli, L. (2018). Exploring the role of digital twin for asset lifecycle management. *IFAC-PapersOnLine*, *51*(11), 790-795.
- Mackison, D., Wrieden, W. L., & Anderson, A. S. (2010). Validity and reliability testing of a short questionnaire developed to assess consumers' use, understanding and perception of food labels. *European journal of clinical nutrition*, 64(2), 210-217.
- Madu, C. N. (2000). Competing through maintenance strategies. *International Journal* of Quality & Reliability Management.
- Mahapatra, D. (2008, May). Life cycle costs and electricity market equilibrium: A policy assessment for India. In 2008 5th International Conference on the European Electricity Market (pp. 1-6). IEEE.
- Malano, H. M., Chien, N. V., & Turral, H. N. (1999). Asset management for irrigation and drainage infrastructure–principles and case study. *Irrigation and Drainage systems*, 13(2), 109-129.

- Maletič, D., Maletič, M., Al-Najjar, B., Gotzamani, K., Gianni, M., Kalinowski, T. B.,
  & Gomišček, B. (2017). Contingency factors influencing implementation of physical asset management practices. *Organizacija*, 50(1), 3-16.
- Mancuso, A., Compare, M., Salo, A., Zio, E., & Laakso, T. (2016). Risk-based optimization of pipe inspections in large underground networks with imprecise information. *Reliability Engineering & System Safety*, 152, 228-238..
- Manda, B. K., Bosch, H., Karanam, S., Beers, H., Bosman, H., Rietveld, E., ... & Patel, M. K. (2016). Value creation with life cycle assessment: an approach to contextualize the application of life cycle assessment in chemical companies to create sustainable value. *Journal of Cleaner Production*, *126*, 337-351.
- Martín-Gamboa, M., Iribarren, D., García-Gusano, D., & Dufour, J. (2017). A review of life-cycle approaches coupled with data envelopment analysis within multicriteria decision analysis for sustainability assessment of energy systems. *Journal of Cleaner Production*, *150*, 164-174.
- Márquez, F. P. G., Lewis, R. W., Tobias, A. M., & Roberts, C. (2008). Life cycle costs for railway condition monitoring. *Transportation Research Part E: Logistics* and Transportation Review, 44(6), 1175-1187.
- Miao, X., Deng, C., Li, X., Gao, Y., & He, D. (2010, October). A hybrid neural network and genetic algorithm model for predicting dissolved oxygen in an aquaculture pond. In 2010 International Conference on Web Information Systems and Mining (Vol. 1, pp. 415-419). IEEE.
- Modgil, S., & Sharma, S. (2016). Total productive maintenance, total quality management and operational performance. *Journal of Quality in Maintenance Engineering*.
- McElroy, R. S. (1999). Update on national asset management initiatives: facilitating investment decision-making. In *Innovations in Urban Infrastructure Seminar of the APWA International Public Works Congress* (pp. 1-10).
- Menezes Jr, J. M., & Barreto, G. A. (2006, October). A new look at nonlinear time series prediction with NARX recurrent neural network. In 2006 Ninth Brazilian Symposium on Neural Networks (SBRN'06) (pp. 160-165). IEEE.
- Milina, J., Kristiansen, P., Jacobsen, A. S., & Sundve, A. I. (2017). Molding the asset management system to PAS 55-1/ISO 55001 in one Scandinavian water and wastewater works. *Water Practice and Technology*, 12(1), 234-239.

- Mitchell, J. S., Bond, T. H., Nodianos, N., & Brotherton, T. (2002). *Physical asset management handbook*. Clarion technical publishers.
- Mitchell, J.S., Carlson, J. (2001), "Equipment asset management what are the real requirements?", Reliability Magazine, October, pp.4-14.
- Mitrea, C. A., Lee, C. K. M., & Wu, Z. (2009). A comparison between neural networks and traditional forecasting methods: A case study. *International journal of engineering business management*, *1*, 11.
- Monnin, M., Voisin, A., Leger, J. B., & Iung, B. (2011, September). Fleet-wide health management architecture. In *Annual Conference of the Prognostics and Health Management Society*.
- Morton K (1999) Asset management in the electricity supply industry. Power Engineering Journal, 13(5) Oct.: 233–240.
- Müller, A., Bornschlegl, M., & Mantwill, F. (2018). Life Cycle Rating–An approach to support the decision-making process of manufacturing systems. *Procedia Manufacturing*, 21, 305-312.
- Muth, E. J. (1977). An optimal decision rule for repair vs replacement. *IEEE Transactions on Reliability*, 26(3), 179-181
- Narayanamurthy, G., & Arora, S. (2008, May). An integrated maintenance and asset management system (IMAMS). In 2008 Integrated Communications, Navigation and Surveillance Conference (pp. 1-5). IEEE.
- Neves, A. A. S., Pinardi, N., Martins, F., Janeiro, J., Samaras, A., Zodiatis, G., & De Dominicis, M. (2015). Towards a common oil spill risk assessment framework–adapting ISO 31000 and addressing uncertainties. *Journal of environmental management*, 159, 158-168.
- Neijens, B. (2017). Improving asset utilization with an Asset Investment Planning and Management methodology. *Water Practice and Technology*, *12*(1), 43-47.
- Neto, A. H., & Fiorelli, F. A. S. (2008). Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. *Energy and buildings*, 40(12), 2169-2176.
- Nicolai, R. P., & Dekker, R. (2008). Optimal maintenance of multi-component systems: a review. In *Complex system maintenance handbook* (pp. 263-286). Springer, London.
- Norris, G. A. (2001). Integrating life cycle cost analysis and LCA. *The international journal of life cycle assessment*, 6(2), 118-120.

- Olubodun, F., Kangwa, J., Oladapo, A., and Thompson, J. (2010) An appraisal of the level of application of life cycle costing within the variableion industry in the UK. Structural Survey Vol, 28 No 4 2010 pp, 254-265
- Opoku, A. (2013) The application of whole life costing in the UK variableion industry: Benefits and Barriers. International Journal of Architecture, Engineering and Variableion Vol, 2 No 1 2013 pp, 35-42
- Pärn, E. A., Edwards, D. J., & Sing, M. C. (2017). The building information modelling trajectory in facilities management: A review. *Automation in Variableion*, 75, 45-55.
- Patra, A. P., Söderholm, P., & Kumar, U. (2009). Uncertainty estimation in railway track life-cycle cost: a case study from Swedish National Rail Administration. *Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223*(3), 285-293.
- Petchrompo, S., & Parlikad, A. K. (2019). A review of asset management literature on multi-asset systems. *Reliability Engineering & System Safety*, 181, 181-201.
- Petković, D. (2015). Adaptive neuro-fuzzy optimization of the net present value and internal rate of return of a wind farm project under wake effect. Journal of CENTRUM Cathedra: The Business and Economics Research Journal, 8(1), 11-28.
- Piechnicki, F., Loures, E., & Santos, E. (2017). A conceptual framework of knowledge conciliation to decision making support in RCM deployment. *Procedia Manufacturing*, 11, 1135-1144.
- Pinjala, S. K., Pintelon, L., & Vereecke, A. (2006). An empirical investigation on the relationship between business and maintenance strategies. *International journal of production economics*, 104(1), 214-229.
- Porter, M. E., & Advantage, C. (1985). Creating and sustaining superior performance. *Competitive advantage*, 167, 167-206.
- Rabetino, R., Kohtamäki, M., Lehtonen, H., & Kostama, H. (2015). Developing the concept of life-cycle service offering. *Industrial Marketing Management*, 49, 53-66.
- Rama, D., & Andrews, J. D. (2015). A holistic approach to railway infrastructure asset management. *International Journal of Performability Engineering*, 11(2), 107-120.

- Rawat, M., & Lad, B. K. Fleet level maintenance planning: An integrated approach. Int J Perform Eng 2015;11:229–42.
- Reimann, J., Kacprzynski, G., Cabral, D., & Marini, R. (2009). Using condition based maintenance to improve the profitability of performance based logistic contracts. In *Annual Conference of the Prognostics and Health Management Society* (Vol. 2009, pp. 1-9).
- Roda, I., & Garetti, M. (2014). TCO evaluation in physical asset management: benefits and limitations for industrial adoption. In *IFIP International Conference on Advances in Production Management Systems* (pp. 216-223). Springer, Berlin, Heidelberg.
- Roda, I, and M. Macchi. (2016). "Studying the Funding Principles for Integrating Asset Management in Operations: An Empirical Research in Production Companies." IFAC-PapersOnLine 49 (28). Elsevier B.V
- Roda, I., and Garetti M. (2015). "Application of a Performance-driven Total Cost of Ownership (TCO) Evaluation Model for Physical Asset Management." In 9th WCEAM Research Papers, pp. 11-23. Springer International Publishing, 2015
- Ruitenburg, R. R., Braaksma, A. J. J., & van Dongen, L. A. M. (2014). A multidisciplinary, expert-based approach for the identification of lifetime impacts in asset life cycle management. Procedia CIRP, 22, 204-212.
- Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch,
  M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. *Boston Consulting Group*, 9(1), 54-89.
- Sardar, G., Ramachandran, N., & Gopinath, R. (2006). Challenges in achieving optimal asset performance based on total cost of ownership. In *Engineering Asset Management* (pp. 54-63). Springer, London.
- Sarkis, J., & Semple, J. (1994). An optimal multi-machine replacement policy in a serially dependent production system. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 32(11), 2657-2667.
- Scarf, P., Dwight, R., McCusker, A., & Chan, A. (2007). Asset replacement for an urban railway using a modified two-cycle replacement model. *Journal of the Operational Research Society*, 58(9), 1123-1137.
- Schmidt, M., & Crawford, R. H. (2018). A framework for the integrated optimisation of the life cycle greenhouse gas emissions and cost of buildings. *Energy and Buildings*, 171, 155-167.

- Schuman, C. A., & Brent, A. C. (2005). Asset life cycle management: towards improving physical asset performance in the process industry. *International Journal of Operations & Production Management*.
- Seo, K. K., Park, J. H., Jang, D. S., & Wallace, D. (2002). Prediction of the life cycle cost using statistical and artificial neural network methods in conceptual product design. *International Journal of Computer Integrated Manufacturing*, 15(6), 541-554..
- Shahata K, Zayed T (2008) Simulation as a tool for life cycle cost analysis. In: Simulation conference, WSC 2008, pp 2497–2503
- Sharif, S. A., & Hammad, A. (2019). Developing surrogate ANN for selecting nearoptimal building energy renovation methods considering energy consumption, LCC and LCA. *Journal of Building Engineering*, 25, 100790.
- Sidhu, A. S., Pollitt, M. G., & Anaya, K. L. (2018). A social cost benefit analysis of grid-scale electrical energy storage projects: A case study. *Applied* energy, 212, 881-894.
- Sifonte, J. R., & Reyes-Picknell, J. V. (2017). *Reliability Centered Maintenance– Reengineered: Practical Optimization of the RCM Process with RCM-R*®. CRC Press.
- Skinner, W. (1996). Manufacturing strategy on the "S" curve. *Production and operations management*, 5(1), 3-14.
- Sterner, E. (2000) Life-cycle costing and its use in the Swedish building sector. Building Research and Information Vol, 28 No 5/6 pp. 387-393
- Stinson, J. P., & Khumawala, B. M. (1987). The replacement of machines in a serially dependent multi-machine production system. *International Journal of Production Research*, 25(5), 677-688.
- Sullivan JL, Young SB (1995) Life cycle analysis assessment. Adv Mater Process 147(2):37
- Tähkämö, L., Ylinen, A., Puolakka, M., & Halonen, L. (2012). Life cycle cost analysis of three renewed street lighting installations in Finland. *The International Journal of Life Cycle Assessment*, 17(2), 154-164.
- Taylor, J. (2012). Asset Life Cycle Management: Case Studies on Asset Life Cycle Cost Modelling. Asset Management Council, < http://www. amcouncil. com. au/asset-management-body-ofknowledge/asset-management-councilpresentations. html.

- The Institute of Asset Management. Asset management an anatomy. 3rd ed. 2015. Bristol, United Kingdom. Renata Heralova, Life Cycle Costing as an Important Contribution to Feasibility Study in Variableion Projects 2017
- Thoft-Christensen, P. (2012). Infrastructures and life-cycle cost-benefit analysis. *Structure and Infrastructure Engineering*, 8(5), 507-516.
- Trippi, R. R., & Khumawala, B. M. (1975). Solution of the multi-asset finite horizon investment renewal problem. *Management Science*, 21(10), 1156-1163.
- Xie, T., Yu, H., & Wilamowski, B. (2011, June). Comparison between traditional neural networks and radial basis function networks. In 2011 IEEE International Symposium on Industrial Electronics (pp. 1194-1199). IEEE.
- Uppal, K. B. (2009). Cost Estimating, Project Performance. AACE International Transactions, 1-10.
- Vanier, D. D. (2001). Why industry needs asset management tools. Journal of computing in civil engineering, 15(1), 35-43.
- Vorarat, S., & Al-Hajj, A. (2004, January). Developing a model to suit life cycle costing analysis for assets in the oil and gas industry. In SPE Asia Pacific conference on integrated modelling for asset management. Society of Petroleum Engineers.
- Waeyenbergh, G., & Pintelon, L. (2002). A framework for maintenance concept development. *International journal of production economics*, 77(3), 299-313.
- Wang, H., (2002). A survey of maintenance policies of deteriorating systems. European journal of operational research, 139(3), 469-489.
- Wang, R., & Chen, N. (2016). A survey of condition-based maintenance modeling of multi-component systems. In 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 1664-1668). IEEE.
- W White, D. J. (1985). Operational research. John Wiley & Sons.
- Wijnia, Y. C., Korn, M. S., de Jager, S. Y., & Herder, P. M. (2006, October). Long term optimization of asset replacement in energy infrastructures. In 2006 IEEE International Conference on Systems, Man and Cybernetics (Vol. 3, pp. 2615-2621). IEEE.
- Wong, N. H., Tay, S. F., Wong, R., Ong, C. L., & Sia, A. (2003). Life cycle cost analysis of rooftop gardens in Singapore. *Building and environment*, 38(3), 499-509.Orlando Duran, Paulo Sérgio Lima Pereira Afonso, " An activity

based costing decision model for life cycle economic assessment in spare parts logistic management " Int. J.Production Economics, https://doi.org/10.1016/j.ijpe.2019.09.020

- Wong, S. L., Wan, K. K., & Lam, T. N. (2010). Artificial neural networks for energy analysis of office buildings with daylighting. *Applied Energy*, 87(2), 551-557.
- Woodhouse, J. (2019). What is the value of asset management?. *Infrastructure Asset Management*, 6(2), 102-108.
- Woodward, D. G. (1997). Life cycle costing—theory, information acquisition and application. *International journal of project management*, *15*(6), 335-344.
- Ye, Z., & Kim, M. K. (2018). Predicting electricity consumption in a building using an optimized back-propagation and Levenberg–Marquardt back-propagation neural network: Case study of a shopping mall in China. *Sustainable Cities and Society*, 42, 176-183.
- Yeo, H., Yoon, Y., & Madanat, S. (2010). Maintenance optimization for heterogeneous infrastructure systems: Evolutionary algorithms for bottom-up methods. In *Sustainable and Resilient Critical Infrastructure Systems* (pp. 185-199). Springer, Berlin, Heidelberg.
- Youndt, M. A., Snell, S. A., Dean Jr, J. W., & Lepak, D. P. (1996). Human resource management, manufacturing strategy, and firm performance. Academy of management Journal, 39(4), 836-866.
- Yu-rong, G., Yuan, C., & Yi-qun, L. (2009, October). Integrated life-cycle costs analysis and life-cycle assessment model for decision making of variableion project. In 2009 16th International Conference on Industrial Engineering and Engineering Management (pp. 448-453). IEEE.
- Yu, S., Zhu, K., & Diao, F. (2008). A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction. Applied Mathematics and Computation, 195(1), 66–75. https://doi.org/10.1016/j.amc.2007.04.088
- Zhang, G., & Wang, W. (2012). The research of comprehensive evaluation model for thermal power equipment based on life cycle cost. Systems Engineering Procedia, 4, 68-78.
- Zhang, S., Yan, Y., Wang, P., Xu, Z., & Yan, X. (2019). Sustainable maintainability management practices for offshore assets: A data-driven decision strategy. *Journal of Cleaner Production*, 237, 117730.

- Zheng, C. L., & Jiang, H. Y. (2010). K/S value prediction of reactive dyes with improved LM-BP algorithm. *Journal of Textile Research*, *31*(8), 82-85.
- Zhou, R., Wu, D., Fang, L., Xu, A., & Lou, X. (2018). A Levenberg–Marquardt backpropagation neural network for predicting forest growing stock based on the least-squares equation fitting parameters. *Forests*, *9*(12), 757.

#### Appendix A Questionnaire

- What sector of the Steel Fabrication and manufacturing industry does your company operate? Design and project Management/ Industrial Plants Cost Engineering/ Production/ Planning/ Other
- 2) What Kind of products and services do you deliver?
- 3) What is the number of employees in your business/plant?
- 4) What is the average life expectancy of your plant
- 5) What is the capacity of your industry? Please indicate in unit per day/month/year
- 6) What is the level of complexity of your plant?
- 7) What is your role in cost engineering in your plant/industry? Equipment/ Spare procurement/ Maintenance/ performance data reporting Cost engineering consultancy services Contract reviews and in-house estimates preparation Preparation of risk-based investments plans and models
- 8) What do you consider the current challenges in your industry/plant?
  - a. Low capacity utilization and rising cost of ownership
  - b. Plant complexity and turnaround maintenance
  - c. Non-availability of trained and experienced personnel to replace the aging work force
  - d. Competition and dwindling profits
  - e. Scope definition
- 9) What do you understand to be life cycle costing?
- 10) What methods do you use in life cycle costing?
- 11) What data and information (sources) are used in life cycle costing?
  - a. Cost break down structure
  - b. Historical plant data
  - c. Corporate asset maintenance register (Do not mention this)

- 12) What are the challenges in life cycle costing?
  - a. Historical data
  - b. Performance data
  - c. Plant upgrading/revamping
  - d. Operating costs
- 13) Could you please describe the life cycle costing process in your plant?
- 14) Please indicate the cost drivers you consider relevant for the life cycle costing in your industry?
  - a. Plant investment/reliability/ maintainability/ plant complexity/ energy/ downtime/ plant flexibility/ plant capacity
- 15) What do you think is it the relationships of the more critical ones?
  - a. Reliability reduces maintenance cost
- 16) What are the life cycle stages of your plant/Industry?
  - a. R&D, Design
  - b. Manufacture
  - c. Acquisition
  - d. Installation, operation
  - e. Maintenance, retirement
  - f. Disposal
- 17) How many codes and standards of which the title includes "life cycle costing" do you know of?
- 18) How many of the codes and standards are specifically meant for the Steel Fabrication industry?
- 19) What are the challenges in operation and maintenance?
  - a. Expertise, maintenance cost, routine maintenance and downtime
  - b. Technical and managerial problems
- 20) What are the issues in maintenance and operation related to LCC?
  - a. Maintenance cost, spare parts availability, budget restrictions, risk management, and downtimes
- 21) What bottlenecks are there is operations and maintenance?
  - a. Resources, staff skills, and plant performance
- 22) What operations and maintenance models do you use? For example, mathematical models, decision making models, scheduling models e.t.c.?

- 23) What are the related environmental impact challenges of CO2 emission and its cost related issues?
  - a. International legislation, CO2 taxation
- 24) What are the technologies to curb environmental impact for now and in the future?
  - a. Carbon sequestration, flue gas desulfurisation
- 25) What are the environmental impacts cost drivers and cost models?
  - a. Environmental remediation cost
  - b. CO2 tax and health damages
- 26) What are the significant risks associated to the plant and is reflected in the life cycle costing?
  - a. Plant upgrading
  - b. Data availability
  - c. Plant reliability
  - d. And high investment cost
  - e. Plant operation/ maintenance, and environmental remediation
- 27) What are the uncertainties in life cycle costing in the industry?
  - a. Plant life span
  - b. Discount rates and
  - c. Energy cost
  - d. Data accuracy
  - e. Cost estimation errors
- 28) What are the methods used to model risk and uncertainty
  - a. Monte carlo simulation, risk analysis, and risk register
  - b. No systematic and standerdised procedure
- 29) LCC model can be used to forecast the costs of all the life cycle phases for an asset and allows researchers to choose the most viable decision on the basis of total performance
  - a. Strongly agree
  - b. agree
  - c. neutral
  - d. disagree
  - e. strongly disagree

- 30) Having an LCC Model is essential for guiding decision making in asset selection and/or enhancement
  - a. Strongly agree
  - b. agree
  - c. neutral
  - d. disagree
  - e. strongly disagree

#### 31) LCC acts as a maintenance guide

- a. Strongly agree
- b. agree
- c. neutral
- d. disagree
- e. strongly disagree
- 32) The presented Uncertainty Factors are covering the risks associated to operations and maintenance for the plant under study
  - a. Strongly agree
  - b. agree
  - c. neutral
  - d. disagree
  - e. strongly disagree
- 33) Operating and maintenance factors presented in the CBS cover all the major LCC related to the plants under study
  - a. Strongly agree
  - b. agree
  - c. neutral
  - d. disagree
  - e. strongly disagree
- 34) Uncertainty and Risk is critical to consider in the Forecasting process of LCC
  - a. Strongly agree
  - b. agree
  - c. neutral
  - d. disagree
  - e. strongly disagree

- 35) The presented Uncertainty Factors are covering the risks associated to operations and maintenance for the plant under study
  - a. Strongly agree
  - b. agree
  - c. neutral
  - d. disagree
  - e. strongly disagree

#### Appendix B Present values and Future predicted values with LCC

Table B.1 shows the future predicted values for twelve years extracted from NARX input simulations for case study.

| COST/YEAR                                              | 2018       | 2019       | 2020       | 2021       | 2022       | 2023       | 2024       |
|--------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|
| <b>Operations/Plant Manager</b>                        | 404699.992 | 406700     | 408700     | 404698.693 | 395058.858 | 395298.806 | 395338.03  |
| Engineers                                              | 503600     | 502600     | 504170.956 | 1140700    | 1071273.47 | 1068219.58 | 1033632.21 |
| Supervisors/Operators                                  | 417400     | 419400     | 275555.278 | 256800     | 384959.823 | 391027.292 | 380699.772 |
| Lab Personnel                                          | 100241.143 | 130700     | 130600     | 130700     | 72084.0619 | 89133.6863 | 79853.8662 |
| Technicians                                            | 353775.282 | 353899.976 | 317618.82  | 317600     | 303030.218 | 302720.076 | 302622.797 |
| Clerical Personnel                                     | 43600      | 43600.0008 | 111600     | 111600     | 93952.3272 | 93601.6848 | 69888.3835 |
| Power                                                  | 44432.1696 | 48996.8317 | 48996.1799 | 40035.8347 | 38184.2973 | 38186.8649 | 38173.1309 |
| Fuel/Gas                                               | 278615.685 | 372100     | 372100     | 374100     | 285743.743 | 277529.573 | 275751.405 |
| Insurance                                              | 63500.0041 | 63500      | 81959.0775 | 136099.998 | 124197.564 | 106546.984 | 78230.1896 |
| Local Taxes                                            | 3600       | 3600       | 13599.9992 | 13600      | 5936.5657  | 5113.2679  | 5209.2747  |
| Spare parts for overhauls and<br>unplanned maintenance | 40800      | 40800      | 16304.4057 | 16300      | 37028.8981 | 32194.4007 | 22453.5335 |
| Downtime cost                                          | 96199.9989 | 96200      | 96200      | 95581.9007 | 82753.9697 | 90136.7757 | 74631.7669 |
| Maintenance Engineer                                   | 90700      | 90700      | 89335.813  | 43600      | 44480.7946 | 46626.8141 | 48190.3664 |
| Engineers                                              | 10000.0009 | 10000      | 13362.4254 | 73500      | 37061.2329 | 63140.0073 | 66079.2755 |
| Technicians                                            | 66610.967  | 49139.8879 | 51674.2776 | 95267.9363 | 62964.1868 | 85702.8546 | 85071.3338 |
| QHSE Manager                                           | 178404.215 | 119214.994 | 73185.1643 | 252095.558 | 226180.874 | 220448.668 | 210345.168 |
| Required maintenance equipment/<br>software            | 135196.016 | 127628.096 | 81700.024  | 81700      | 77874.8888 | 77926.6634 | 77813.4567 |
| Inspection Cost                                        | 112500     | 113500     | 49900      | 48900      | 89623.7581 | 74594.7175 | 94933.1732 |
| Scheduled maintenance cost                             | 45400      | 45800      | 22800.0109 | 22700      | 38529.6208 | 40716.5705 | 34583.8756 |
| Planned Downtime cost                                  | 59899.9999 | 59900      | 10444.3808 | 9100       | 55939.9198 | 55749.331  | 36415.2698 |
| Spare Parts                                            | 88442.429  | 88899.8056 | 88850.1147 | 88881.4502 | 84572.6767 | 84653.4704 | 84358.3411 |
| Consumable Materials                                   | 11800      | 11700.089  | 99799.947  | 99800      | 16403.3149 | 11760.9048 | 11396.6361 |

**Table B.1** The future predicted values for twelve years extracted from NARX input simulations for case study.

| COST/YEAR                                           | 2025       | 2026       | 2027       | 2028       | 2029       | 2030       |
|-----------------------------------------------------|------------|------------|------------|------------|------------|------------|
| Operations/Plant Manager                            | 395455.041 | 395489.691 | 3588755.42 | 3588706.1  | 3588724.76 | 3588799.3  |
| Engineers                                           | 824058.433 | 810678.711 | 9580626.27 | 9663625.43 | 7973063.2  | 7898916.46 |
| Supervisors/Operators                               | 389819.049 | 324032.781 | 3430359.99 | 3318470.57 | 3526044.54 | 3012100.08 |
| Lab Personnel                                       | 94760.0382 | 105157.306 | 788549.887 | 756579.035 | 769664.732 | 752809.286 |
| Technicians                                         | 305424.219 | 306177.133 | 2746109.71 | 2746112.24 | 2746132.8  | 2764408.23 |
| Clerical Personnel                                  | 65979.2417 | 66043.0463 | 662659.946 | 659542.483 | 606775.244 | 845514.978 |
| Power                                               | 38296.2006 | 38396.839  | 346708.233 | 346798.688 | 347039.616 | 346405.47  |
| Fuel/Gas                                            | 317932.676 | 328851.498 | 2572802.19 | 2551593.43 | 2732007.86 | 2931014.37 |
| Insurance                                           | 89156.5357 | 77474.7931 | 742235.421 | 792569.133 | 744747.302 | 834854.574 |
| Local Taxes                                         | 5151.5434  | 5422.1897  | 48537.6696 | 48770.6569 | 47552.5904 | 46509.3246 |
| Spare parts for overhauls and unplanned maintenance | 35051.034  | 29158.6189 | 223757.238 | 233723.708 | 273676.809 | 260007.507 |
| Downtime cost                                       | 86078.1002 | 89580.218  | 722352.46  | 702458.574 | 718813.533 | 816250.086 |
| Maintenance Engineer                                | 44413.4351 | 57428.2854 | 466462.724 | 476075.081 | 412253.739 | 415026.922 |
| Engineers                                           | 55690.6381 | 67575.7186 | 577808.226 | 551320.027 | 541428.724 | 602310.521 |
| Technicians                                         | 76354.9115 | 83071.3614 | 772764.222 | 768480.453 | 762704.234 | 771075.225 |
| QHSE Manager                                        | 197915.229 | 191324.331 | 1864751.27 | 1881916.9  | 1806552.06 | 1739363.07 |
| Required maintenance equipment/<br>software         | 77815.7579 | 77891.5101 | 706156.988 | 706196.094 | 706149.973 | 706102.524 |
| Inspection Cost                                     | 105858.452 | 103186.117 | 858629.41  | 873841.543 | 945603.827 | 891289.798 |
| Scheduled maintenance cost                          | 39568.8452 | 36860.2197 | 336142.807 | 330393.098 | 348588.86  | 369452.986 |
| Planned Downtime cost                               | 51562.1755 | 47827.0714 | 363023.602 | 357695.24  | 356321.635 | 505674.114 |
| Spare Parts                                         | 84413.0364 | 83365.7875 | 768074.073 | 768049.824 | 767905.252 | 767946.793 |
| Consumable Materials                                | 11380.1285 | 11215.4459 | 101818.017 | 101864.221 | 101824.223 | 101804.39  |

# Table B.2 shows the present values for twenty years the total LCC per year and LCC added with AC extracted from NARX input simulations for case study.

| COST/YEAR                                   | 2010     | 2011     | 2012     | 2013     | 2014     | 2015     | 2016     | 2017     | 2018     | 2019     | 2020     |
|---------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                    | 340300   | 254100   | 272200   | 344800   | 404700   | 262300   | 320300   | 363000   | 385500   | 385500   | 395500   |
| Engineers                                   | 480900   | 435600   | 136100   | 130700   | 503600   | 882900   | 1140700  | 898400   | 479700   | 479700   | 480300   |
| Supervisors/Operators                       | 245000   | 225000   | 272200   | 381100   | 256800   | 354800   | 417400   | 344800   | 397600   | 397600   | 262500   |
| Lab Personnel                               | 49900    | 34500    | 36300    | 20900    | 20000    | 21800    | 130700   | 63500    | 95500    | 124500   | 114500   |
| Technicians                                 | 208700   | 167900   | 181500   | 272200   | 344800   | 317600   | 353900   | 335800   | 337000   | 337100   | 302600   |
| Clerical Personnel                          | 11800    | 13600    | 8200     | 10000    | 43600    | 75300    | 111600   | 99800    | 41500    | 41500    | 106300   |
| Power                                       | 11800    | 10900    | 23600    | 62600    | 39000    | 40800    | 49000    | 43600    | 42300    | 46700    | 46700    |
| Fuel/Gas                                    | 340300   | 353900   | 407400   | 606200   | 278600   | 352100   | 344800   | 372100   | 265400   | 354500   | 354500   |
| Insurance                                   | 72600    | 90700    | 82100    | 816700   | 63500    | 136100   | 75300    | 108900   | 60500    | 60500    | 78100    |
| Local Taxes                                 | 0        | 1400     | 1800     | 7300     | 3600     | 6400     | 13600    | 9100     | 3400     | 3400     | 13000    |
| Spare parts for overhauls and               | 0        | 0        | 4500     | 27200    | 16300    | 22700    | 40800    | 18100    | 38900    | 38900    | 15500    |
| unplanned maintenance                       | 0        | 0        | 4500     | 27200    | 10500    | 22700    | 40800    | 18100    | 38900    | 38900    | 15500    |
| Downtime cost                               | 45400    | 77100    | 54400    | 48100    | 45400    | 88000    | 96200    | 68100    | 91600    | 91600    | 91600    |
| Maintenance Engineer                        | 54400    | 63500    | 34500    | 54400    | 68100    | 43600    | 90700    | 77100    | 86400    | 86400    | 85100    |
| Engineers                                   | 0        | 0        | 18100    | 10900    | 10000    | 10900    | 73500    | 45400    | 9500     | 9500     | 12700    |
| Technicians                                 | 40800    | 63500    | 40800    | 51700    | 49000    | 73500    | 95300    | 81700    | 63500    | 46800    | 49200    |
| QHSE Manager                                | 149700   | 49900    | 179700   | 41700    | 66200    | 181500   | 257700   | 199600   | 169900   | 113600   | 69700    |
| Required maintenance<br>equipment/ software | 77100    | 122500   | 90700    | 108900   | 81700    | 98900    | 135200   | 99800    | 128800   | 121600   | 77800    |
| -Inspection Cost                            | 72600    | 99800    | 81700    | 72600    | 90700    | 112500   | 55400    | 49900    | 107200   | 107200   | 47500    |
| - Scheduled maintenance cost                | 18100    | 31800    | 36300    | 27200    | 22700    | 30900    | 45400    | 22700    | 43200    | 43200    | 21600    |
| Planned Downtime cost                       | 17200    | 22700    | 16300    | 18100    | 9100     | 16300    | 59900    | 36300    | 57100    | 57100    | 9900     |
| Spare Parts                                 | 68100    | 22700    | 107100   | 16300    | 67200    | 88900    | 33600    | 49900    | 84300    | 84700    | 84600    |
| Consumable Materials                        | 45400    | 54400    | 72600    | 51700    | 11800    | 90700    | 99800    | 68100    | 11200    | 11200    | 95100    |
| Total LCC per year                          | 2350100  | 2195500  | 2158100  | 3181300  | 2496400  | 3308500  | 4040800  | 3455700  | 3000000  | 3042800  | 2814300  |
| LCC+AC per year                             | 12350100 | 12195500 | 12158100 | 13181300 | 12496400 | 13308500 | 14040800 | 13455700 | 13000000 | 13042800 | 12814300 |

### Table B.2 The present values for twenty years and the total LCC per year for case study

| COST/YEAR                                           | 2021     | 2022     | 2023     | 2024     | 2025     | 2026     | 2027     | 2028     | 2029     | 2030     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| <b>Operations/Plant Manager</b>                     | 375500   | 358490   | 358710   | 358750   | 358850   | 358880   | 325660   | 325660   | 325660   | 325660   |
| Engineers                                           | 1086600  | 872120   | 869350   | 837960   | 747790   | 735650   | 869390   | 876920   | 723510   | 716780   |
| Supervisors/Operators                               | 244600   | 249330   | 254840   | 245460   | 253740   | 264040   | 211290   | 201130   | 219970   | 203330   |
| Lab Personnel                                       | 124500   | 654100   | 808800   | 724600   | 859900   | 954200   | 715600   | 686600   | 698400   | 683100   |
| Technicians                                         | 302500   | 274980   | 274700   | 274610   | 277160   | 277840   | 249190   | 249190   | 249200   | 250850   |
| Clerical Personnel                                  | 106300   | 852600   | 849400   | 634200   | 598700   | 599300   | 601300   | 598500   | 550600   | 767300   |
| Power                                               | 38100    | 34650    | 34650    | 33640    | 34750    | 34840    | 31460    | 31470    | 31490    | 31430    |
| Fuel/Gas                                            | 364500   | 249300   | 251840   | 200230   | 288510   | 278410   | 233470   | 231540   | 247910   | 265970   |
| Insurance                                           | 129600   | 102700   | 96690    | 70990    | 80900    | 70300    | 67350    | 71920    | 67580    | 75760    |
| Local Taxes                                         | 13000    | 53900    | 46400    | 47300    | 46700    | 49200    | 44000    | 44300    | 43200    | 42200    |
| Spare parts for overhauls and unplanned maintenance | 15500    | 23600    | 25210    | 20380    | 21810    | 20460    | 20300    | 21210    | 24830    | 23590    |
| Downtime cost                                       | 91100    | 75090    | 81790    | 67720    | 78110    | 81290    | 65550    | 63740    | 65230    | 74070    |
| Maintenance Engineer                                | 41500    | 40360    | 42310    | 43730    | 40300    | 52110    | 42330    | 43200    | 37410    | 37660    |
| Engineers                                           | 70000    | 76300    | 73000    | 79600    | 75400    | 73200    | 74300    | 70300    | 71300    | 76600    |
| Technicians                                         | 90800    | 57140    | 77770    | 77200    | 69290    | 75380    | 70120    | 69740    | 69210    | 69970    |
| QHSE Manager                                        | 70100    | 75250    | 70040    | 70880    | 79600    | 73620    | 79220    | 70770    | 73930    | 77840    |
| Required maintenance<br>equipment/ software         | 77800    | 70670    | 70710    | 70610    | 70610    | 70680    | 64080    | 64080    | 64080    | 64070    |
| -Inspection Cost                                    | 47500    | 61330    | 47690    | 66150    | 66060    | 63640    | 77920    | 79300    | 85810    | 80880    |
| - Scheduled maintenance cost                        | 21600    | 24960    | 26950    | 21380    | 25910    | 23450    | 20500    | 29980    | 21630    | 23530    |
| Planned Downtime cost                               | 8700     | 50760    | 50590    | 33040    | 46790    | 43400    | 32940    | 32460    | 32330    | 45890    |
| Spare Parts                                         | 84700    | 76740    | 76820    | 76550    | 76600    | 75650    | 69700    | 69700    | 69680    | 69690    |
| <b>Consumable Materials</b>                         | 95100    | 88900    | 86700    | 83400    | 83300    | 81800    | 82400    | 82400    | 82400    | 82400    |
| Total LCC per year                                  | 3499600  | 4423270  | 4574960  | 4138380  | 4280780  | 4357340  | 4048070  | 4014110  | 3855360  | 4088570  |
| LCC+AC per year                                     | 13499600 | 14423270 | 14574960 | 14138380 | 14280780 | 14357340 | 14048070 | 14014110 | 13855360 | 14088570 |

Table B.3 shows the total LCC per costing attribute for twenty year extracted from NARX input simulations for case study

| LCC Parameter                                       | LCC Values |
|-----------------------------------------------------|------------|
| <b>Operations/Plant Manager</b>                     | 7200020    |
| Engineers                                           | 14384670   |
| Supervisors/Operators                               | 5902530    |
| Lab Personnel                                       | 7621900    |
| Technicians                                         | 5839320    |
| Clerical Personnel                                  | 6721400    |
| Power                                               | 753480     |
| Fuel/Gas                                            | 6641480    |
| Insurance                                           | 2478790    |
| Local Taxes                                         | 493200     |
| Spare parts for overhauls and unplanned maintenance | 439790     |
| Downtime cost                                       | 1541190    |
| Maintenance Engineer                                | 1165110    |
| Engineers                                           | 940500     |
| Technicians                                         | 1382420    |
| QHSE Manager                                        | 2220450    |
| <b>Required maintenance equipment/ software</b>     | 1830390    |
| Inspection Cost                                     | 1573380    |
| Scheduled maintenance cost                          | 582990     |
| Planned Downtime cost                               | 696900     |
| Spare Parts                                         | 1453230    |
| Consumable Materials                                | 1460800    |

 Table B.3
 The total LCC per costing attribute for twenty years for case study

Table B.4 shows the future predicted values for twelve years extracted from NARX input simulations for Scenario one.

| COST/YEAR                                           | 2018     | 2019     | 2020     | 2021     | 2022     | 2023     | 2024     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| <b>Operations/Plant Manager</b>                     | 403700   | 405700   | 407700   | 403698.7 | 394058.9 | 394298.8 | 394338   |
| Engineers                                           | 502600   | 501600   | 503171   | 1139700  | 1070273  | 1067220  | 1032632  |
| Supervisors/Operators                               | 416400   | 418400   | 274555.3 | 255800   | 383959.8 | 390027.3 | 379699.8 |
| Lab Personnel                                       | 99241.14 | 129700   | 129600   | 129700   | 71084.06 | 88133.69 | 78853.87 |
| Technicians                                         | 352775.3 | 352900   | 316618.8 | 316600   | 302030.2 | 301720.1 | 301622.8 |
| Clerical Personnel                                  | 42600    | 42600    | 110600   | 110600   | 92952.33 | 92601.68 | 68888.38 |
| Power                                               | 43432.17 | 47996.83 | 47996.18 | 39035.83 | 37184.3  | 37186.86 | 37173.13 |
| Fuel/Gas                                            | 277615.7 | 371100   | 371100   | 373100   | 284743.7 | 276529.6 | 274751.4 |
| Insurance                                           | 62500    | 62500    | 80959.08 | 135100   | 123197.6 | 105547   | 77230.19 |
| Local Taxes                                         | 2600     | 2600     | 12600    | 12600    | 4936.566 | 4113.268 | 4209.275 |
| Spare parts for overhauls and unplanned maintenance | 39800    | 39800    | 15304.41 | 15300    | 36028.9  | 31194.4  | 21453.53 |
| Downtime cost                                       | 95200    | 95200    | 95200    | 94581.9  | 81753.97 | 89136.78 | 73631.77 |
| Maintenance Engineer                                | 89700    | 89700    | 88335.81 | 42600    | 43480.79 | 45626.81 | 47190.37 |
| Engineers                                           | 9000.001 | 9000     | 12362.43 | 72500    | 36061.23 | 62140.01 | 65079.28 |
| Technicians                                         | 65610.97 | 48139.89 | 50674.28 | 94267.94 | 61964.19 | 84702.85 | 84071.33 |
| QHSE Manager                                        | 177404.2 | 118215   | 72185.16 | 251095.6 | 225180.9 | 219448.7 | 209345.2 |
| Required maintenance equipment/ software            | 134196   | 126628.1 | 80700.02 | 80700    | 76874.89 | 76926.66 | 76813.46 |
| Inspection Cost                                     | 111500   | 112500   | 48900    | 47900    | 88623.76 | 73594.72 | 93933.17 |
| Scheduled maintenance cost                          | 44400    | 44800    | 21800.01 | 21700    | 37529.62 | 39716.57 | 33583.88 |
| Planned Downtime cost                               | 58900    | 58900    | 9444.381 | 8100     | 54939.92 | 54749.33 | 35415.27 |
| Spare Parts                                         | 87442.43 | 87899.81 | 87850.11 | 87881.45 | 83572.68 | 83653.47 | 83358.34 |
| Consumable Materials                                | 10800    | 10700.09 | 98799.95 | 98800    | 15403.31 | 10760.9  | 10396.64 |

Table B.4The future predicted values for twelve years extracted from NARX input simulations for Scenario one

| COST/YEAR                                           | 2025     | 2026     | 2027     | 2028     | 2029     | 2030     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                            | 394455   | 394489.7 | 3587755  | 3587706  | 3587725  | 3587799  |
| Engineers                                           | 823058.4 | 809678.7 | 9579626  | 9662625  | 7972063  | 7897916  |
| Supervisors/Operators                               | 388819   | 323032.8 | 3429360  | 3317471  | 3525045  | 3011100  |
| Lab Personnel                                       | 93760.04 | 104157.3 | 787549.9 | 755579   | 768664.7 | 751809.3 |
| Technicians                                         | 304424.2 | 305177.1 | 2745110  | 2745112  | 2745133  | 2763408  |
| Clerical Personnel                                  | 64979.24 | 65043.05 | 661659.9 | 658542.5 | 605775.2 | 844515   |
| Power                                               | 37296.2  | 37396.84 | 345708.2 | 345798.7 | 346039.6 | 345405.5 |
| Fuel/Gas                                            | 316932.7 | 327851.5 | 2571802  | 2550593  | 2731008  | 2930014  |
| Insurance                                           | 88156.54 | 76474.79 | 741235.4 | 791569.1 | 743747.3 | 833854.6 |
| Local Taxes                                         | 4151.543 | 4422.19  | 47537.67 | 47770.66 | 46552.59 | 45509.32 |
| Spare parts for overhauls and unplanned maintenance | 34051.03 | 28158.62 | 222757.2 | 232723.7 | 272676.8 | 259007.5 |
| Downtime cost                                       | 85078.1  | 88580.22 | 721352.5 | 701458.6 | 717813.5 | 815250.1 |
| Maintenance Engineer                                | 43413.44 | 56428.29 | 465462.7 | 475075.1 | 411253.7 | 414026.9 |
| Engineers                                           | 54690.64 | 66575.72 | 576808.2 | 550320   | 540428.7 | 601310.5 |
| Technicians                                         | 75354.91 | 82071.36 | 771764.2 | 767480.5 | 761704.2 | 770075.2 |
| QHSE Manager                                        | 196915.2 | 190324.3 | 1863751  | 1880917  | 1805552  | 1738363  |
| Required maintenance equipment/ software            | 76815.76 | 76891.51 | 705157   | 705196.1 | 705150   | 705102.5 |
| Inspection Cost                                     | 104858.5 | 102186.1 | 857629.4 | 872841.5 | 944603.8 | 890289.8 |
| Scheduled maintenance cost                          | 38568.85 | 35860.22 | 335142.8 | 329393.1 | 347588.9 | 368453   |
| Planned Downtime cost                               | 50562.18 | 46827.07 | 362023.6 | 356695.2 | 355321.6 | 504674.1 |
| Spare Parts                                         | 83413.04 | 82365.79 | 767074.1 | 767049.8 | 766905.3 | 766946.8 |
| Consumable Materials                                | 10380.13 | 10215.45 | 100818   | 100864.2 | 100824.2 | 100804.4 |

# Table B.5 shows the present values for twenty years the total LCC per year and LCC added with AC extracted from NARX input simulations for Scenario one.

### Table B.5 The present values for twenty years and the total LCC per year for Scenario one

| COST/YEAR                                           | 2010     | 2011     | 2012     | 2013     | 2014     | 2015     | 2016     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                            | 266700   | 199140   | 213360   | 270260   | 317200   | 205540   | 251050   |
| Engineers                                           | 376940   | 341380   | 106680   | 102410   | 394720   | 692000   | 893980   |
| Supervisors/Operators                               | 192020   | 176380   | 213360   | 298710   | 201270   | 278080   | 327150   |
| Lab Personnel                                       | 39120    | 27030    | 28450    | 16360    | 15650    | 17070    | 102410   |
| Technicians                                         | 163580   | 131570   | 142240   | 213360   | 270260   | 248920   | 277370   |
| Clerical Personnel                                  | 9250     | 10670    | 6400     | 7820     | 34140    | 59030    | 87480    |
| Power                                               | 9250     | 8530     | 18490    | 49070    | 30580    | 32000    | 38400    |
| Fuel/Gas                                            | 266700   | 277370   | 319330   | 475080   | 218340   | 275950   | 270260   |
| Insurance                                           | 56900    | 71120    | 64360    | 640080   | 49780    | 106680   | 59030    |
| Local Taxes                                         | 0        | 1070     | 1420     | 5690     | 2840     | 4980     | 10670    |
| Spare parts for overhauls and unplanned maintenance | 0        | 0        | 3560     | 21340    | 12800    | 17780    | 32000    |
| Downtime cost                                       | 35560    | 60450    | 42670    | 37690    | 35560    | 68990    | 75390    |
| Maintenance Engineer                                | 42670    | 49780    | 27030    | 42670    | 53340    | 34140    | 71120    |
| Engineers                                           | 0        | 0        | 14220    | 8530     | 7820     | 8530     | 57610    |
| Technicians                                         | 32000    | 49780    | 32000    | 40540    | 38400    | 57610    | 74680    |
| QHSE Manager                                        | 117350   | 39120    | 140820   | 32720    | 51920    | 142240   | 201980   |
| Required maintenance equipment/ software            | 60450    | 96010    | 71120    | 85340    | 64010    | 77520    | 105970   |
| -Inspection Cost                                    | 56900    | 78230    | 64010    | 56900    | 71120    | 88190    | 43380    |
| - Scheduled maintenance cost                        | 14220    | 24890    | 28450    | 21340    | 17780    | 24180    | 35560    |
| Planned Downtime cost                               | 13510    | 17780    | 12800    | 14220    | 7110     | 12800    | 46940    |
| Spare Parts                                         | 53340    | 17780    | 83920    | 12800    | 52630    | 69700    | 26310    |
| Consumable Materials                                | 35560    | 42670    | 56900    | 40540    | 9250     | 71120    | 78230    |
| Total LCC per year                                  | 1842020  | 1720750  | 1691590  | 2493470  | 1956520  | 2593050  | 3166970  |
| LCC+AC per year                                     | 11842020 | 11720750 | 11691590 | 12493470 | 11956520 | 12593050 | 13166970 |

| COST/YEAR                                           | 2017     | 2018     | 2019     | 2020     | 2021     | 2022     | 2023     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                            | 284480   | 385500   | 384500   | 394500   | 374500   | 358390   | 358610   |
| Engineers                                           | 704090   | 479700   | 478700   | 479300   | 985600   | 972020   | 969250   |
| Supervisors/Operators                               | 270260   | 397600   | 396600   | 261500   | 243600   | 349230   | 354740   |
| Lab Personnel                                       | 49780    | 95500    | 123500   | 113500   | 123500   | 653100   | 807800   |
| Technicians                                         | 263150   | 337000   | 336100   | 301600   | 301500   | 274880   | 274600   |
| Clerical Personnel                                  | 78230    | 41500    | 40500    | 105300   | 105300   | 851600   | 848400   |
| Power                                               | 34140    | 42300    | 45700    | 45700    | 37100    | 34550    | 34550    |
| Fuel/Gas                                            | 291590   | 265400   | 353500   | 353500   | 363500   | 259200   | 251740   |
| Insurance                                           | 85340    | 80500    | 59500    | 77100    | 88600    | 72600    | 86590    |
| Local Taxes                                         | 7110     | 5400     | 2400     | 12000    | 12000    | 52900    | 45400    |
| Spare parts for overhauls and unplanned maintenance | 14220    | 38900    | 37900    | 14500    | 14500    | 135000   | 191100   |
| Downtime cost                                       | 53340    | 91600    | 90600    | 90600    | 90100    | 74990    | 81690    |
| Maintenance Engineer                                | 60450    | 86400    | 85400    | 84100    | 40500    | 40260    | 42210    |
| Engineers                                           | 35560    | 8500     | 8500     | 11700    | 69000    | 85300    | 82000    |
| Technicians                                         | 64010    | 63500    | 45800    | 48200    | 89800    | 80400    | 86700    |
| QHSE Manager                                        | 156460   | 169900   | 112600   | 68700    | 89100    | 75150    | 79940    |
| Required maintenance equipment/ software            | 78230    | 128800   | 120600   | 76800    | 76800    | 70570    | 70610    |
| -Inspection Cost                                    | 39120    | 107200   | 106200   | 46500    | 46500    | 62300    | 65900    |
| - Scheduled maintenance cost                        | 17780    | 43200    | 42200    | 20600    | 20600    | 24860    | 26850    |
| Planned Downtime cost                               | 28450    | 57100    | 56100    | 8900     | 7700     | 50660    | 50490    |
| Spare Parts                                         | 39120    | 84300    | 83700    | 83600    | 83700    | 76640    | 76720    |
| Consumable Materials                                | 53340    | 11200    | 10200    | 94100    | 94100    | 87900    | 85700    |
| Total LCC per year                                  | 2708250  | 3021000  | 3020800  | 2792300  | 3357600  | 4742500  | 4971590  |
| LCC+AC per year                                     | 12708250 | 13021000 | 13020800 | 12792300 | 13357600 | 14742500 | 14971590 |

| COST/YEAR                                           | 2024     | 2025     | 2026     | 2027     | 2028     | 2029     | 2030     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                            | 358650   | 358700   | 358780   | 325560   | 325560   | 325560   | 325560   |
| Engineers                                           | 937860   | 747690   | 735550   | 869290   | 876820   | 723410   | 716680   |
| Supervisors/Operators                               | 345360   | 353640   | 293940   | 311190   | 301030   | 319870   | 273230   |
| Lab Personnel                                       | 723600   | 858900   | 953200   | 714600   | 685600   | 697400   | 682100   |
| Technicians                                         | 274510   | 277060   | 277700   | 249090   | 249090   | 249100   | 250750   |
| Clerical Personnel                                  | 633200   | 597700   | 598300   | 600300   | 597500   | 549600   | 766300   |
| Power                                               | 34540    | 34650    | 34740    | 31360    | 31370    | 31390    | 31300    |
| Fuel/Gas                                            | 250130   | 288410   | 298310   | 233370   | 231440   | 247810   | 265800   |
| Insurance                                           | 70890    | 80800    | 70200    | 67250    | 71820    | 67480    | 75660    |
| Local Taxes                                         | 46300    | 45700    | 48200    | 43000    | 43300    | 42200    | 41200    |
| Spare parts for overhauls and unplanned maintenance | 102800   | 117100   | 163600   | 102000   | 111100   | 147300   | 134900   |
| Downtime cost                                       | 67620    | 78010    | 81190    | 65450    | 63640    | 65130    | 73970    |
| Maintenance Engineer                                | 43630    | 40200    | 52010    | 42230    | 43100    | 37310    | 37560    |
| Engineers                                           | 88600    | 84400    | 82200    | 83300    | 89300    | 80300    | 85600    |
| Technicians                                         | 81000    | 81900    | 82800    | 80200    | 86400    | 81100    | 88700    |
| QHSE Manager                                        | 80780    | 89500    | 73520    | 79120    | 80670    | 63830    | 57740    |
| Required maintenance equipment/ software            | 70510    | 70510    | 70580    | 63980    | 63980    | 63980    | 63970    |
| -Inspection Cost                                    | 60500    | 59600    | 65400    | 68200    | 62000    | 67100    | 67800    |
| - Scheduled maintenance cost                        | 21280    | 25810    | 23350    | 20400    | 20880    | 21530    | 23430    |
| Planned Downtime cost                               | 32940    | 46690    | 43300    | 32840    | 32360    | 32230    | 45790    |
| Spare Parts                                         | 76450    | 76500    | 75550    | 69600    | 69600    | 69580    | 69590    |
| Consumable Materials                                | 82400    | 82300    | 80800    | 61400    | 61400    | 61400    | 61400    |
| Total LCC per year                                  | 4483550  | 4495770  | 4563220  | 4213730  | 4197960  | 4044610  | 4239030  |
| LCC+AC per year                                     | 14483550 | 14495770 | 14563220 | 14213730 | 14197960 | 14044610 | 14239030 |

Table B.6 shows the total LCC per costing attribute for twenty year extracted from NARX input simulations for c Scenario one

| LCC Parameter                                       | LCC Values |
|-----------------------------------------------------|------------|
| Operations/Plant Manager                            | 6642100    |
| Engineers                                           | 13584070   |
| Supervisors/Operators                               | 6158760    |
| Lab Personnel                                       | 7528170    |
| Technicians                                         | 5363430    |
| Clerical Personnel                                  | 6628520    |
| Power                                               | 689710     |
| Fuel/Gas                                            | 6056730    |
| Insurance                                           | 2102280    |
| Local Taxes                                         | 473780     |
| Spare parts for overhauls and unplanned maintenance | 1412400    |
| Downtime cost                                       | 1424240    |
| Maintenance Engineer                                | 1056110    |
| Engineers                                           | 990970     |
| Technicians                                         | 1385520    |
| QHSE Manager                                        | 2003160    |
| Required maintenance equipment/ software            | 1650340    |
| Inspection Cost                                     | 1383050    |
| Scheduled maintenance cost                          | 519190     |
| Planned Downtime cost                               | 650710     |
| Spare Parts                                         | 1351130    |
| Consumable Materials                                | 1261910    |

Table B.6 The total LCC per costing attribute for twenty years for Scenario one

Table B.7 shows the future predicted values for twelve years extracted from NARX input simulations for Scenario two.

| COST/YEAR                                           | 2018     | 2019     | 2020     | 2021     | 2022     | 2023     | 2024     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| <b>Operations/Plant Manager</b>                     | 402700   | 404700   | 406700   | 402698.7 | 393058.9 | 393298.8 | 393338   |
| Engineers                                           | 501600   | 500600   | 502171   | 1138700  | 1069274  | 1066220  | 1031632  |
| Supervisors/Operators                               | 415400   | 417400   | 273555.3 | 254800   | 382959.8 | 389027.3 | 378699.8 |
| Lab Personnel                                       | 98241.14 | 128700   | 128600   | 128700   | 70084.06 | 87133.69 | 77853.87 |
| Technicians                                         | 351775.3 | 351900   | 315618.8 | 315600   | 301030.2 | 300720.1 | 300622.8 |
| Clerical Personnel                                  | 41600    | 41600    | 109600   | 109600   | 91952.33 | 91601.69 | 67888.38 |
| Power                                               | 42432.17 | 46996.83 | 46996.18 | 38035.84 | 36184.3  | 36186.87 | 36173.13 |
| Fuel/Gas                                            | 276615.7 | 370100   | 370100   | 372100   | 283743.7 | 275529.6 | 273751.4 |
| Insurance                                           | 61500    | 61500    | 79959.08 | 134100   | 122197.6 | 104547   | 76230.19 |
| Local Taxes                                         | 1600     | 1600     | 11600    | 11600    | 3936.566 | 3113.268 | 3209.275 |
| Spare parts for overhauls and unplanned maintenance | 38800    | 38800    | 14304.41 | 14300    | 35028.9  | 30194.4  | 20453.53 |
| Downtime cost                                       | 94200    | 94200    | 94200    | 93581.9  | 80753.97 | 88136.78 | 72631.77 |
| Maintenance Engineer                                | 88700    | 88700    | 87335.81 | 41600    | 42480.8  | 44626.81 | 46190.37 |
| Engineers                                           | 8000.001 | 8000     | 11362.43 | 71500    | 35061.23 | 61140.01 | 64079.28 |
| Technicians                                         | 64610.97 | 47139.89 | 49674.28 | 93267.94 | 60964.19 | 83702.86 | 83071.33 |
| QHSE Manager                                        | 176404.2 | 117215   | 71185.16 | 250095.6 | 224180.9 | 218448.7 | 208345.2 |
| Required maintenance equipment/ software            | 133196   | 125628.1 | 79700.02 | 79700    | 75874.89 | 75926.66 | 75813.46 |
| Inspection Cost                                     | 110500   | 111500   | 47900    | 46900    | 87623.76 | 72594.72 | 92933.17 |
| Scheduled maintenance cost                          | 43400    | 43800    | 20800.01 | 20700    | 36529.62 | 38716.57 | 32583.88 |
| Planned Downtime cost                               | 57900    | 57900    | 8444.381 | 7100     | 53939.92 | 53749.33 | 34415.27 |
| Spare Parts                                         | 86442.43 | 86899.81 | 86850.12 | 86881.45 | 82572.68 | 82653.47 | 82358.34 |
| Consumable Materials                                | 9800     | 9700.089 | 97799.95 | 97800    | 14403.32 | 9760.905 | 9396.636 |

 Table B.7
 The future predicted values for twelve years extracted from NARX input simulations for Scenario two

| COST/YEAR                                           | 2025     | 2026     | 2027     | 2028     | 2029     | 2030     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                            | 393455   | 393489.7 | 3586755  | 3586706  | 3586725  | 3586799  |
| Engineers                                           | 822058.4 | 808678.7 | 9578626  | 9661625  | 7971063  | 7896917  |
| Supervisors/Operators                               | 387819.1 | 322032.8 | 3428360  | 3316471  | 3524045  | 3010100  |
| Lab Personnel                                       | 92760.04 | 103157.3 | 786549.9 | 754579   | 767664.7 | 750809.3 |
| Technicians                                         | 303424.2 | 304177.1 | 2744110  | 2744112  | 2744133  | 2762408  |
| Clerical Personnel                                  | 63979.24 | 64043.05 | 660660   | 657542.5 | 604775.2 | 843515   |
| Power                                               | 36296.2  | 36396.84 | 344708.2 | 344798.7 | 345039.6 | 344405.5 |
| Fuel/Gas                                            | 315932.7 | 326851.5 | 2570802  | 2549593  | 2730008  | 2929014  |
| Insurance                                           | 87156.54 | 75474.79 | 740235.4 | 790569.1 | 742747.3 | 832854.6 |
| Local Taxes                                         | 3151.543 | 3422.19  | 46537.67 | 46770.66 | 45552.59 | 44509.33 |
| Spare parts for overhauls and unplanned maintenance | 33051.03 | 27158.62 | 221757.2 | 231723.7 | 271676.8 | 258007.5 |
| Downtime cost                                       | 84078.1  | 87580.22 | 720352.5 | 700458.6 | 716813.5 | 814250.1 |
| Maintenance Engineer                                | 42413.44 | 55428.29 | 464462.7 | 474075.1 | 410253.7 | 413026.9 |
| Engineers                                           | 53690.64 | 65575.72 | 575808.2 | 549320   | 539428.7 | 600310.5 |
| Technicians                                         | 74354.91 | 81071.36 | 770764.2 | 766480.5 | 760704.2 | 769075.2 |
| QHSE Manager                                        | 195915.2 | 189324.3 | 1862751  | 1879917  | 1804552  | 1737363  |
| Required maintenance equipment/ software            | 75815.76 | 75891.51 | 704157   | 704196.1 | 704150   | 704102.5 |
| Inspection Cost                                     | 103858.5 | 101186.1 | 856629.4 | 871841.5 | 943603.8 | 889289.8 |
| Scheduled maintenance cost                          | 37568.85 | 34860.22 | 334142.8 | 328393.1 | 346588.9 | 367453   |
| Planned Downtime cost                               | 49562.18 | 45827.07 | 361023.6 | 355695.2 | 354321.6 | 503674.1 |
| Spare Parts                                         | 82413.04 | 81365.79 | 766074.1 | 766049.8 | 765905.3 | 765946.8 |
| Consumable Materials                                | 9380.129 | 9215.446 | 99818.02 | 99864.22 | 99824.22 | 99804.39 |

## Table B.8 shows the present values for twenty years the total LCC per year and LCC added with AC extracted from NARX input simulations for Scenario two.

### Table B.8 The present values for twenty years and the total LCC per year for Scenario two

| COSTAVEAD                                           | 2010     | 2011     | 2012     | 2012     | 2014     | 2015     | 2016     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| COST/YEAR                                           | 2010     | 2011     | 2012     | 2013     | 2014     | 2015     | 2016     |
| Operations/Plant Manager                            | 225760   | 168560   | 180610   | 228770   | 268500   | 173980   | 212510   |
| Engineers                                           | 319070   | 288970   | 90300    | 86690    | 334120   | 585760   | 756740   |
| Supervisors/Operators                               | 162540   | 149300   | 180610   | 252850   | 170370   | 235390   | 276930   |
| Lab Personnel                                       | 33110    | 22880    | 24080    | 13850    | 13240    | 14450    | 86690    |
| Technicians                                         | 138460   | 111370   | 120400   | 180610   | 228770   | 210710   | 234790   |
| Clerical Personnel                                  | 7830     | 9030     | 5420     | 6620     | 28900    | 49970    | 74050    |
| Power                                               | 7830     | 7220     | 15650    | 41540    | 25890    | 27090    | 32510    |
| Fuel/Gas                                            | 225760   | 234790   | 270310   | 402150   | 184820   | 233580   | 228770   |
| Insurance                                           | 48160    | 60200    | 54480    | 541820   | 42140    | 90300    | 49970    |
| Local Taxes                                         | 0        | 900      | 1200     | 4820     | 2410     | 4210     | 9030     |
| Spare parts for overhauls and unplanned maintenance | 0        | 0        | 3010     | 18060    | 10840    | 15050    | 27090    |
| Downtime cost                                       | 30100    | 51170    | 36120    | 31910    | 30100    | 58400    | 63810    |
| Maintenance Engineer                                | 36120    | 42140    | 22880    | 36120    | 45150    | 28900    | 60200    |
| Engineers                                           | 0        | 0        | 12040    | 7220     | 6620     | 7220     | 48760    |
| Technicians                                         | 27090    | 42140    | 27090    | 34310    | 32510    | 48760    | 63210    |
| QHSE Manager                                        | 99330    | 33110    | 119200   | 27690    | 43950    | 120400   | 170970   |
| Required maintenance equipment/ software            | 51170    | 81270    | 60200    | 72240    | 54180    | 65620    | 89700    |
| -Inspection Cost                                    | 48160    | 66220    | 54180    | 48160    | 60200    | 74650    | 36720    |
| - Scheduled maintenance cost                        | 12040    | 21070    | 24080    | 18060    | 15050    | 20470    | 30100    |
| Planned Downtime cost                               | 11440    | 15050    | 10840    | 12040    | 6020     | 10840    | 39730    |
| Spare Parts                                         | 45150    | 15050    | 71040    | 10840    | 44550    | 59000    | 22270    |
| Consumable Materials                                | 30100    | 36120    | 48160    | 34310    | 7830     | 60200    | 66220    |
| Total LCC per year                                  | 1559220  | 1456560  | 1431900  | 2110680  | 1656160  | 2194950  | 2680770  |
| LCC+AC per year                                     | 11559220 | 11456560 | 11431900 | 12110680 | 11656160 | 12194950 | 12680770 |

| COST/YEAR                                           | 2017     | 2018     | 2019     | 2020     | 2021     | 2022     | 2023     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                            | 240810   | 375500   | 374500   | 384500   | 364500   | 357390   | 357610   |
| Engineers                                           | 596000   | 469700   | 468700   | 469300   | 1075600  | 971020   | 968250   |
| Supervisors/Operators                               | 228770   | 387600   | 386600   | 251500   | 233600   | 348230   | 353740   |
| Lab Personnel                                       | 42140    | 85500    | 113500   | 103500   | 113500   | 643100   | 797800   |
| Technicians                                         | 222750   | 327000   | 326100   | 291600   | 291500   | 273880   | 273600   |
| Clerical Personnel                                  | 66220    | 31500    | 30500    | 95300    | 95300    | 841600   | 838400   |
| Power                                               | 28900    | 32300    | 35700    | 35700    | 27100    | 335500   | 335500   |
| Fuel/Gas                                            | 246830   | 255400   | 343500   | 343500   | 353500   | 258200   | 250740   |
| Insurance                                           | 72240    | 70500    | 49500    | 67100    | 88600    | 81600    | 85590    |
| Local Taxes                                         | 6020     | 4600     | 7600     | 2000     | 2000     | 42900    | 35400    |
| Spare parts for overhauls and unplanned maintenance | 12040    | 28900    | 27900    | 4500     | 4500     | 32500    | 28110    |
| Downtime cost                                       | 45150    | 81600    | 80600    | 80600    | 80100    | 73990    | 80690    |
| Maintenance Engineer                                | 51170    | 76400    | 75400    | 74100    | 30500    | 39260    | 41210    |
| Engineers                                           | 30100    | 1500     | 1500     | 1700     | 5900     | 3253     | 5620     |
| Technicians                                         | 54180    | 53500    | 35800    | 38200    | 79800    | 56040    | 76670    |
| QHSE Manager                                        | 132440   | 159900   | 102600   | 58700    | 69100    | 64150    | 58940    |
| Required maintenance equipment/ software            | 66220    | 118800   | 110600   | 66800    | 66800    | 69570    | 69610    |
| -Inspection Cost                                    | 33110    | 97200    | 96200    | 36500    | 36500    | 80230    | 66590    |
| - Scheduled maintenance cost                        | 15050    | 33200    | 32200    | 10600    | 10600    | 13860    | 15850    |
| Planned Downtime cost                               | 24080    | 47100    | 46100    | 1100     | 2300     | 2966     | 2949     |
| Spare Parts                                         | 33110    | 74300    | 73700    | 73600    | 73700    | 75640    | 75720    |
| Consumable Materials                                | 45150    | 1200     | 200      | 84100    | 84100    | 67900    | 65700    |
| Total LCC per year                                  | 2292480  | 2813200  | 2819000  | 2574500  | 3189100  | 4732779  | 4884289  |
| LCC+AC per year                                     | 12292480 | 12813200 | 12819000 | 12574500 | 13189100 | 14732779 | 14884289 |

| COST/YEAR                                           | 2024     | 2025     | 2026     | 2027     | 2028     | 2029     | 2030     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                            | 357650   | 357750   | 357780   | 324560   | 324560   | 324560   | 324560   |
| Engineers                                           | 936860   | 746690   | 734550   | 868290   | 875800   | 722410   | 715680   |
| Supervisors/Operators                               | 344360   | 352640   | 292940   | 310190   | 300030   | 318870   | 272230   |
| Lab Personnel                                       | 713600   | 848900   | 943200   | 704600   | 675600   | 687400   | 672100   |
| Technicians                                         | 273510   | 276060   | 276740   | 248090   | 248090   | 248100   | 249750   |
| Clerical Personnel                                  | 623200   | 587700   | 588300   | 590300   | 587500   | 539600   | 756300   |
| Power                                               | 335400   | 336500   | 337400   | 303600   | 303700   | 303900   | 303300   |
| Fuel/Gas                                            | 249130   | 287410   | 297310   | 232370   | 230440   | 246810   | 264870   |
| Insurance                                           | 69890    | 79800    | 69200    | 66250    | 70820    | 66480    | 74660    |
| Local Taxes                                         | 36300    | 35700    | 38200    | 33000    | 33300    | 32200    | 31200    |
| Spare parts for overhauls and unplanned maintenance | 19280    | 30710    | 25360    | 19200    | 20110    | 23730    | 22490    |
| Downtime cost                                       | 66620    | 77010    | 80190    | 64450    | 62640    | 64130    | 72970    |
| Maintenance Engineer                                | 42630    | 39200    | 51010    | 41230    | 42100    | 36310    | 36560    |
| Engineers                                           | 5886     | 4944     | 6022     | 5133     | 4893     | 4803     | 5356     |
| Technicians                                         | 76100    | 68190    | 74280    | 69020    | 68640    | 68110    | 68870    |
| QHSE Manager                                        | 59780    | 58500    | 52520    | 58120    | 59670    | 52830    | 56740    |
| Required maintenance equipment/ software            | 69510    | 69510    | 69580    | 62980    | 62980    | 62980    | 62970    |
| -Inspection Cost                                    | 85050    | 94960    | 92540    | 76820    | 78200    | 84710    | 79780    |
| - Scheduled maintenance cost                        | 10280    | 14810    | 12350    | 10400    | 10880    | 10530    | 12430    |
| Planned Downtime cost                               | 2194     | 2569     | 2230     | 2184     | 2136     | 2123     | 2479     |
| Spare Parts                                         | 75450    | 75500    | 74550    | 68600    | 68600    | 68580    | 68590    |
| Consumable Materials                                | 62400    | 62300    | 60800    | 61400    | 61400    | 61400    | 61400    |
| Total LCC per year                                  | 4515080  | 4507353  | 4537052  | 4220787  | 4192089  | 4030566  | 4215285  |
| LCC+AC per year                                     | 14515080 | 14507353 | 14537052 | 14220787 | 14192089 | 14030566 | 14215285 |

Table B.9 shows the total LCC per costing attribute for twenty year extracted from NARX input simulations for Scenario two

| LCC Parameter                                       | LCC Values |
|-----------------------------------------------------|------------|
| Operations/Plant Manager                            | 6284920    |
| Engineers                                           | 13080500   |
| Supervisors/Operators                               | 5809290    |
| Lab Personnel                                       | 7352740    |
| Technicians                                         | 5051880    |
| Clerical Personnel                                  | 6453540    |
| Power                                               | 3212230    |
| Fuel/Gas                                            | 5640190    |
| Insurance                                           | 1899300    |
| Local Taxes                                         | 362990     |
| Spare parts for overhauls and unplanned maintenance | 373380     |
| Downtime cost                                       | 1312350    |
| Maintenance Engineer                                | 948590     |
| Engineers                                           | 168470     |
| Technicians                                         | 1162510    |
| QHSE Manager                                        | 1658640    |
| Required maintenance equipment/ software            | 1503290    |
| Inspection Cost                                     | 1426680    |
| Scheduled maintenance cost                          | 353910     |
| Planned Downtime cost                               | 248470     |
| Spare Parts                                         | 1247540    |
| Consumable Materials                                | 1062390    |

 Table B.9
 The total LCC per costing attribute for twenty years for Scenario two

Table B.10 shows the future predicted values for twelve years extracted from NARX input simulations for Scenario three.

| COST/YEAR                                | 2018     | 2019     | 2020     | 2021     | 2022     | 2023     | 2024     |
|------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| <b>Operations/Plant Manager</b>          | 161080   | 161880   | 162680   | 161079.5 | 157223.5 | 157319.5 | 157335.2 |
| Engineers                                | 200640   | 200240   | 200868.4 | 455480   | 427709.4 | 426487.8 | 412652.9 |
| Supervisors/Operators                    | 166160   | 166960   | 109422.1 | 101920   | 153183.9 | 155610.9 | 151479.9 |
| Lab Personnel                            | 39296.46 | 51480    | 51440    | 51480    | 28033.62 | 34853.47 | 31141.55 |
| Technicians                              | 140710.1 | 140760   | 126247.5 | 126240   | 120412.1 | 120288   | 120249.1 |
| Clerical Personnel                       | 16640    | 16640    | 43840    | 43840    | 36780.93 | 36640.67 | 27155.35 |
| Power                                    | 16972.87 | 18798.73 | 18798.47 | 15214.33 | 14473.72 | 14474.75 | 14469.25 |
| Fuel/Gas                                 | 110646.3 | 148040   | 148040   | 148840   | 113497.5 | 110211.8 | 109500.6 |
| Insurance                                | 24600    | 24600    | 31983.63 | 53640    | 48879.03 | 41818.79 | 30492.08 |
| Local Taxes                              | 640      | 640      | 4640     | 4640     | 1574.626 | 1245.307 | 1283.71  |
| Spare parts for overhauls and unplanned  | 15520    | 15520    | 5721.762 | 5720     | 14011.56 | 12077.76 | 8181.413 |
| maintenance                              | 15520    | 15520    | 5721.702 | 5720     | 14011.50 | 12077.70 | 0101.413 |
| Downtime cost                            | 37680    | 37680    | 37680    | 37432.76 | 32301.59 | 35254.71 | 29052.71 |
| Maintenance Engineer                     | 35480    | 35480    | 34934.33 | 16640    | 16992.32 | 17850.73 | 18476.15 |
| Engineers                                | 3200     | 3200     | 4544.97  | 28600    | 14024.49 | 24456    | 25631.71 |
| Technicians                              | 25844.39 | 18855.96 | 19869.71 | 37307.17 | 24385.67 | 33481.14 | 33228.53 |
| QHSE Manager                             | 70561.69 | 46886    | 28474.07 | 100038.2 | 89672.35 | 87379.47 | 83338.07 |
| Required maintenance equipment/ software | 53278.41 | 50251.24 | 31880.01 | 31880    | 30349.96 | 30370.67 | 30325.38 |
| Inspection Cost                          | 44200    | 44600    | 19160    | 18760    | 35049.5  | 29037.89 | 37173.27 |
| Scheduled maintenance cost               | 17360    | 17520    | 8320.004 | 8280     | 14611.85 | 15486.63 | 13033.55 |
| Planned Downtime cost                    | 23160    | 23160    | 3377.752 | 2840     | 21575.97 | 21499.73 | 13766.11 |
| Spare Parts                              | 34576.97 | 34759.92 | 34740.05 | 34752.58 | 33029.07 | 33061.39 | 32943.34 |
| Consumable Materials                     | 3920     | 3880.036 | 39119.98 | 39120    | 5761.326 | 3904.362 | 3758.654 |

Table B.10The future predicted values for twelve years extracted from NARX input simulations for Scenario three

| COST/YEAR                                           | 2025     | 2026     | 2027     | 2028     | 2029     | 2030     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                            | 157382   | 157395.9 | 1434702  | 1434682  | 1434690  | 1434720  |
| Engineers                                           | 328823.4 | 323471.5 | 3831451  | 3864650  | 3188425  | 3158767  |
| Supervisors/Operators                               | 155127.6 | 128813.1 | 1371344  | 1326588  | 1409618  | 1204040  |
| Lab Personnel                                       | 37104.02 | 41262.92 | 314620   | 301831.6 | 307065.9 | 300323.7 |
| Technicians                                         | 121369.7 | 121670.9 | 1097644  | 1097645  | 1097653  | 1104963  |
| Clerical Personnel                                  | 25591.7  | 25617.22 | 264264   | 263017   | 241910.1 | 337406   |
| Power                                               | 14518.48 | 14558.74 | 137883.3 | 137919.5 | 138015.8 | 137762.2 |
| Fuel/Gas                                            | 126373.1 | 130740.6 | 1028321  | 1019837  | 1092003  | 1171606  |
| Insurance                                           | 34862.61 | 30189.92 | 296094.2 | 316227.7 | 297098.9 | 333141.8 |
| Local Taxes                                         | 1260.617 | 1368.876 | 18615.07 | 18708.26 | 18221.04 | 17803.73 |
| Spare parts for overhauls and unplanned maintenance | 13220.41 | 10863.45 | 88702.9  | 92689.48 | 108670.7 | 103203   |
| Downtime cost                                       | 33631.24 | 35032.09 | 288141   | 280183.4 | 286725.4 | 325700   |
| Maintenance Engineer                                | 16965.37 | 22171.31 | 185785.1 | 189630   | 164101.5 | 165210.8 |
| Engineers                                           | 21476.26 | 26230.29 | 230323.3 | 219728   | 215771.5 | 240124.2 |
| Technicians                                         | 29741.96 | 32428.54 | 308305.7 | 306592.2 | 304281.7 | 307630.1 |
| QHSE Manager                                        | 78366.09 | 75729.73 | 745100.5 | 751966.8 | 721820.8 | 694945.2 |
| Required maintenance equipment/ software            | 30326.3  | 30356.6  | 281662.8 | 281678.4 | 281660   | 281641   |
| Inspection Cost                                     | 41543.38 | 40474.45 | 342651.8 | 348736.6 | 377441.5 | 355715.9 |
| Scheduled maintenance cost                          | 15027.54 | 13944.09 | 133657.1 | 131357.2 | 138635.5 | 146981.2 |
| Planned Downtime cost                               | 19824.87 | 18330.83 | 144409.4 | 142278.1 | 141728.7 | 201469.6 |
| Spare Parts                                         | 32965.21 | 32546.32 | 306429.6 | 306419.9 | 306362.1 | 306378.7 |
| Consumable Materials                                | 3752.051 | 3686.178 | 39927.21 | 39945.69 | 39929.69 | 39921.76 |

# Table B.11 shows the present values for twenty years the total LCC per year and LCC added with AC extracted from NARX input simulations for Scenario three.

|                                                     |          |          |          |          |          | Г — Т    | 1        |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| COST/YEAR                                           | 2010     | 2011     | 2012     | 2013     | 2014     | 2015     | 2016     |
| Operations/Plant Manager                            | 168580   | 125870   | 134860   | 170820   | 200490   | 129920   | 158690   |
| Engineers                                           | 238250   | 215780   | 67430    | 64730    | 249490   | 437400   | 565070   |
| Supervisors/Operators                               | 121370   | 111480   | 134860   | 188810   | 127220   | 175770   | 206790   |
| Lab Personnel                                       | 24720    | 17080    | 17980    | 10340    | 9890     | 10790    | 64730    |
| Technicians                                         | 103390   | 83160    | 89910    | 134860   | 170820   | 157340   | 175320   |
| Clerical Personnel                                  | 5840     | 6740     | 4050     | 4940     | 21580    | 37310    | 55290    |
| Power                                               | 5840     | 5390     | 11690    | 31020    | 19330    | 20230    | 24270    |
| Fuel/Gas                                            | 168580   | 175320   | 201840   | 300290   | 138010   | 174420   | 170820   |
| Insurance                                           | 35960    | 44950    | 40680    | 404580   | 31470    | 67430    | 37310    |
| Local Taxes                                         | 0        | 670      | 900      | 3600     | 1800     | 3150     | 6740     |
| Spare parts for overhauls and unplanned maintenance | 0        | 0        | 2250     | 13490    | 8090     | 11240    | 20230    |
| Downtime cost                                       | 22480    | 38210    | 26970    | 23830    | 22480    | 43610    | 47650    |
| Maintenance Engineer                                | 26970    | 31470    | 17080    | 26970    | 33720    | 21580    | 44950    |
| Engineers                                           | 0        | 0        | 8990     | 5390     | 4940     | 5390     | 36410    |
| Technicians                                         | 20230    | 31470    | 20230    | 25620    | 24270    | 36410    | 47200    |
| QHSE Manager                                        | 74170    | 24720    | 89010    | 20680    | 32820    | 89910    | 127670   |
| Required maintenance equipment/ software            | 38210    | 60690    | 44950    | 53940    | 40460    | 49000    | 66980    |
| Inspection Cost                                     | 35960    | 49450    | 40460    | 35960    | 44950    | 55740    | 27420    |
| Scheduled maintenance cost                          | 8990     | 15730    | 17980    | 13490    | 11240    | 15280    | 22480    |
| Planned Downtime cost                               | 8540     | 11240    | 8090     | 8990     | 4500     | 8090     | 29670    |
| Spare Parts                                         | 33720    | 11240    | 53050    | 8090     | 33270    | 44050    | 16630    |
| Consumable Materials                                | 22480    | 26970    | 35960    | 25620    | 5840     | 44950    | 49450    |
| Total LCC per year                                  | 1164280  | 1087630  | 1069220  | 1576060  | 1236680  | 1639010  | 2001770  |
| LCC+AC per year                                     | 11164280 | 11087630 | 11069220 | 11576060 | 11236680 | 11639010 | 12001770 |

### Table B.11 The present values for twenty years and the total LCC per year for Scenario three

| COST/YEAR                                           | 2017     | 2018     | 2019     | 2020     | 2021     | 2022     | 2023     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                            | 179810   | 150200   | 149800   | 153800   | 145800   | 142956   | 143044   |
| Engineers                                           | 445040   | 187880   | 187480   | 187720   | 430240   | 388408   | 387300   |
| Supervisors/Operators                               | 170820   | 155040   | 154640   | 100600   | 93440    | 92920    | 94960    |
| Lab Personnel                                       | 31470    | 34200    | 45400    | 41400    | 45400    | 257240   | 319120   |
| Technicians                                         | 166330   | 130800   | 130440   | 116640   | 116600   | 1095520  | 1094400  |
| Clerical Personnel                                  | 49450    | 12600    | 12200    | 38120    | 38120    | 33640    | 33360    |
| Power                                               | 21580    | 12920    | 14280    | 14280    | 10840    | 134200   | 134200   |
| Fuel/Gas                                            | 184310   | 102160   | 137400   | 137400   | 141400   | 1032800  | 1002960  |
| Insurance                                           | 53940    | 28200    | 19800    | 26840    | 47440    | 446400   | 382360   |
| Local Taxes                                         | 4500     | 1840     | 3040     | 800      | 800      | 17160    | 14160    |
| Spare parts for overhauls and unplanned maintenance | 8990     | 11560    | 11160    | 1800     | 1800     | 130000   | 112440   |
| Downtime cost                                       | 33720    | 32640    | 32240    | 32240    | 32040    | 295960   | 322760   |
| Maintenance Engineer                                | 38210    | 30560    | 30160    | 29640    | 12200    | 15700    | 16440    |
| Engineers                                           | 22480    | 600      | 600      | 680      | 23600    | 130120   | 224800   |
| Technicians                                         | 40460    | 21400    | 14320    | 15280    | 31920    | 22410    | 30680    |
| QHSE Manager                                        | 98900    | 63960    | 41040    | 23480    | 91640    | 81660    | 79570    |
| Required maintenance equipment/ software            | 49450    | 47520    | 44240    | 26720    | 26720    | 27820    | 27440    |
| Inspection Cost                                     | 24720    | 38880    | 38480    | 14600    | 14600    | 32020    | 26360    |
| Scheduled maintenance cost                          | 11240    | 13280    | 12880    | 4240     | 4240     | 5440     | 3400     |
| Planned Downtime cost                               | 17980    | 18840    | 18440    | 440      | 920      | 98640    | 97960    |
| Spare Parts                                         | 24720    | 29720    | 29480    | 29440    | 29480    | 30250    | 30280    |
| Consumable Materials                                | 33720    | 480      | 80       | 33640    | 33640    | 55160    | 38280    |
| Total LCC per year                                  | 1711840  | 1125280  | 1127600  | 1029800  | 1372880  | 4566424  | 4616274  |
| LCC+AC per year                                     | 11711840 | 11125280 | 11127600 | 11029800 | 11372880 | 14566424 | 14616274 |

| COST/YEAR                                           | 2024     | 2025     | 2026     | 2027     | 2028     | 2029     | 2030     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                            | 143060   | 143100   | 143112   | 129820   | 129824   | 129820   | 129840   |
| Engineers                                           | 374740   | 298660   | 293200   | 347360   | 350280   | 288640   | 286720   |
| Supervisors/Operators                               | 77440    | 80560    | 71760    | 40760    | 80120    | 75480    | 88920    |
| Lab Personnel                                       | 285440   | 339560   | 377280   | 281840   | 270240   | 274960   | 268840   |
| Technicians                                         | 1094040  | 1104240  | 1106960  | 992360   | 992360   | 992400   | 999000   |
| Clerical Personnel                                  | 24280    | 23080    | 23320    | 23120    | 25000    | 21840    | 30520    |
| Power                                               | 134160   | 134600   | 134960   | 121440   | 121480   | 121560   | 121320   |
| Fuel/Gas                                            | 996520   | 1149640  | 1189240  | 929480   | 921760   | 987240   | 1059480  |
| Insurance                                           | 279560   | 319200   | 276800   | 265000   | 283280   | 265920   | 298640   |
| Local Taxes                                         | 14520    | 14280    | 15280    | 13200    | 13320    | 12880    | 12480    |
| Spare parts for overhauls and unplanned maintenance | 77120    | 122840   | 101440   | 76800    | 80440    | 94920    | 89960    |
| Downtime cost                                       | 266480   | 308040   | 320760   | 257800   | 250560   | 256520   | 291880   |
| Maintenance Engineer                                | 17020    | 15800    | 20040    | 16920    | 18400    | 14240    | 14240    |
| Engineers                                           | 235440   | 197760   | 240880   | 205320   | 195720   | 192120   | 214240   |
| Technicians                                         | 30400    | 27760    | 27120    | 27080    | 27560    | 27440    | 27480    |
| QHSE Manager                                        | 75120    | 71000    | 60080    | 62480    | 68680    | 61320    | 66960    |
| Required maintenance equipment/ software            | 27040    | 27040    | 27320    | 25100    | 25140    | 25120    | 25180    |
| Inspection Cost                                     | 30200    | 37840    | 30160    | 30280    | 31200    | 33840    | 31120    |
| Scheduled maintenance cost                          | 2120     | 3240     | 4400     | 5600     | 5520     | 2120     | 5720     |
| Planned Downtime cost                               | 7760     | 82760    | 69200    | 27360    | 25440    | 24920    | 79160    |
| Spare Parts                                         | 30100    | 30000    | 29200    | 24400    | 24400    | 24320    | 27360    |
| Consumable Materials                                | 36960    | 36920    | 36320    | 32560    | 32560    | 32560    | 32560    |
| Total LCC per year                                  | 4259520  | 4567920  | 4598832  | 3936080  | 3973284  | 3960180  | 4201620  |
| LCC+AC per year                                     | 14259520 | 14567920 | 14598832 | 13936080 | 13973284 | 13960180 | 14201620 |

Table B.12shows the total LCC per costing attribute for twenty year extracted fromNARX input simulations for Scenario three

| LCC Parameter                                       | LCC Values |
|-----------------------------------------------------|------------|
| <b>Operations/Plant Manager</b>                     | 3103216    |
| Engineers                                           | 6291818    |
| Supervisors/Operators                               | 2443760    |
| Lab Personnel                                       | 3027920    |
| Technicians                                         | 11046890   |
| Clerical Personnel                                  | 524400     |
| Power                                               | 1349590    |
| Fuel/Gas                                            | 11301070   |
| Insurance                                           | 3655760    |
| Local Taxes                                         | 155120     |
| Spare parts for overhauls and unplanned maintenance | 976570     |
| Downtime cost                                       | 2958870    |
| Maintenance Engineer                                | 492310     |
| Engineers                                           | 1945480    |
| Technicians                                         | 576740     |
| QHSE Manager                                        | 1404870    |
| Required maintenance equipment/ software            | 786080     |
| Inspection Cost                                     | 704240     |
| Scheduled maintenance cost                          | 188630     |
| Planned Downtime cost                               | 648940     |
| Spare Parts                                         | 593200     |
| Consumable Materials                                | 646710     |

 Table B.12
 The total LCC per costing attribute for twenty years for Scenario three

Table B.13 shows the future predicted values for twelve years extracted from NARX input simulations for Scenario four.

| COSTATAD                                            | 2010     | 2010     | 2020     | 2021     | 2022     | 2022     | 2024     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| COST/YEAR                                           | 2018     | 2019     | 2020     | 2021     | 2022     | 2023     | 2024     |
| Operations/Plant Manager                            | 272429   | 243420   | 244620   | 242219.2 | 236435.3 | 236579.3 | 236602.8 |
| Engineers                                           | 301560   | 300960   | 301902.6 | 683820   | 642164.1 | 640331.7 | 619579.3 |
| Supervisors/Operators                               | 249840   | 251040   | 164733.2 | 153480   | 230375.9 | 234016.4 | 227819.9 |
| Lab Personnel                                       | 59544.69 | 77820    | 77760    | 77820    | 42650.44 | 52880.21 | 47312.32 |
| Technicians                                         | 211665.2 | 211740   | 189971.3 | 189960   | 181218.1 | 181032   | 180973.7 |
| Clerical Personnel                                  | 25560    | 25560    | 66360    | 66360    | 55771.4  | 55561.01 | 41333.03 |
| Power                                               | 26059.3  | 28798.1  | 28797.71 | 23421.5  | 22310.58 | 22312.12 | 22303.88 |
| Fuel/Gas                                            | 166569.4 | 222660   | 222660   | 223860   | 170846.2 | 165917.7 | 164850.8 |
| Insurance                                           | 37500    | 37500    | 48575.45 | 81060    | 73918.54 | 63328.19 | 46338.11 |
| Local Taxes                                         | 1560     | 1560     | 7560     | 7560     | 2961.939 | 2467.961 | 2525.565 |
| Spare parts for overhauls and unplanned maintenance | 23880    | 23880    | 9182.643 | 9180     | 21617.34 | 18716.64 | 12872.12 |
| Downtime cost                                       | 57120    | 57120    | 57120    | 56749.14 | 49052.38 | 53482.07 | 44179.06 |
| Maintenance Engineer                                | 53820    | 53820    | 53001.49 | 25560    | 26088.48 | 27376.09 | 28314.22 |
| Engineers                                           | 5400.001 | 5400     | 7417.455 | 43500    | 21636.74 | 37284    | 39047.57 |
| Technicians                                         | 39366.58 | 28883.93 | 30404.57 | 56560.76 | 37178.51 | 50821.71 | 50442.8  |
| QHSE Manager                                        | 106442.5 | 70929    | 43311.1  | 150657.3 | 135108.5 | 131669.2 | 125607.1 |
| Required maintenance equipment/ software            | 80517.61 | 75976.86 | 48420.01 | 48420    | 46124.93 | 46156    | 46088.07 |
| Inspection Cost                                     | 66900    | 67500    | 29340    | 28740    | 53174.25 | 44156.83 | 56359.9  |
| Scheduled maintenance cost                          | 26640    | 26880    | 13080.01 | 13020    | 22517.77 | 23829.94 | 20150.33 |
| Planned Downtime cost                               | 35340    | 35340    | 5666.628 | 4860     | 32963.95 | 32849.6  | 21249.16 |
| Spare Parts                                         | 52465.46 | 52739.88 | 52710.07 | 52728.87 | 50143.61 | 50192.08 | 50015    |
| Consumable Materials                                | 6480     | 6420.053 | 59279.97 | 59280    | 9241.989 | 6456.543 | 6237.982 |

Table B.13 The future predicted values for twelve years extracted from NARX input simulations for Scenario four

| COST/YEAR                                           | 2025     | 2026     | 2027     | 2028     | 2029     | 2030     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                            | 236673   | 236693.8 | 2152653  | 2152624  | 2152635  | 2152680  |
| Engineers                                           | 493835.1 | 485807.2 | 5747776  | 5797575  | 4783238  | 4738750  |
| Supervisors/Operators                               | 233291.4 | 193819.7 | 2057616  | 1990482  | 2115027  | 1806660  |
| Lab Personnel                                       | 56256.02 | 62494.38 | 472529.9 | 453347.4 | 461198.8 | 451085.6 |
| Technicians                                         | 182654.5 | 183106.3 | 1647066  | 1647067  | 1647080  | 1658045  |
| Clerical Personnel                                  | 38987.55 | 39025.83 | 396996   | 395125.5 | 363465.1 | 506709   |
| Power                                               | 22377.72 | 22438.1  | 207424.9 | 207479.2 | 207623.8 | 207243.3 |
| Fuel/Gas                                            | 190159.6 | 196710.9 | 1543081  | 1530356  | 1638605  | 1758009  |
| Insurance                                           | 52893.92 | 45884.88 | 444741.3 | 474941.5 | 446248.4 | 500312.7 |
| Local Taxes                                         | 2490.926 | 2653.314 | 28522.6  | 28662.39 | 27931.55 | 27305.59 |
| Spare parts for overhauls and unplanned maintenance | 20430.62 | 16895.17 | 133654.3 | 139634.2 | 163606.1 | 155404.5 |
| Downtime cost                                       | 51046.86 | 53148.13 | 432811.5 | 420875.1 | 430688.1 | 489150.1 |
| Maintenance Engineer                                | 26048.06 | 33856.97 | 279277.6 | 285045   | 246752.2 | 248416.2 |
| Engineers                                           | 32814.38 | 39945.43 | 346084.9 | 330192   | 324257.2 | 360786.3 |
| Technicians                                         | 45212.95 | 49242.82 | 463058.5 | 460488.3 | 457022.5 | 462045.1 |
| QHSE Manager                                        | 118149.1 | 114194.6 | 1118251  | 1128550  | 1083331  | 1043018  |
| Required maintenance equipment/ software            | 46089.45 | 46134.91 | 423094.2 | 423117.7 | 423090   | 423061.5 |
| Inspection Cost                                     | 62915.07 | 61311.67 | 514577.6 | 523704.9 | 566762.3 | 534173.9 |
| Scheduled maintenance cost                          | 23141.31 | 21516.13 | 201085.7 | 197635.9 | 208553.3 | 221071.8 |
| Planned Downtime cost                               | 30337.31 | 28096.24 | 217214.2 | 214017.1 | 213193   | 302804.5 |
| Spare Parts                                         | 50047.82 | 49419.47 | 460244.4 | 460229.9 | 460143.2 | 460168.1 |
| Consumable Materials                                | 6228.077 | 6129.268 | 60490.81 | 60518.53 | 60494.53 | 60482.63 |

# Table B.14 shows the present values for twenty years the total LCC per year and LCC added with AC extracted from NARX input simulations for Scenario four.

| COST/YEAR                                           | 2010     | 2011     | 2012     | 2013     | 2014     | 2015     | 2016     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                            | 160020   | 119484   | 128016   | 162156   | 190320   | 123324   | 150630   |
| Engineers                                           | 226164   | 204828   | 64008    | 61446    | 236832   | 415200   | 536388   |
| Supervisors/Operators                               | 115212   | 105828   | 128016   | 179226   | 120762   | 166848   | 196290   |
| Lab Personnel                                       | 23472    | 16218    | 17070    | 9816     | 9390     | 10242    | 61446    |
| Technicians                                         | 98148    | 78942    | 85344    | 128016   | 162156   | 149352   | 166422   |
| Clerical Personnel                                  | 5550     | 6402     | 3840     | 4692     | 20484    | 35418    | 52488    |
| Power                                               | 5550     | 5118     | 11094    | 29442    | 18348    | 19200    | 23040    |
| Fuel/Gas                                            | 160020   | 166422   | 191598   | 285048   | 131004   | 165570   | 162156   |
| Insurance                                           | 34140    | 42672    | 38616    | 384048   | 29868    | 64008    | 35418    |
| Local Taxes                                         | 0        | 642      | 852      | 3414     | 1704     | 2988     | 6402     |
| Spare parts for overhauls and unplanned maintenance | 0        | 0        | 2136     | 12804    | 7680     | 10668    | 19200    |
| Downtime cost                                       | 21336    | 36270    | 25602    | 22614    | 21336    | 41394    | 45234    |
| Maintenance Engineer                                | 25602    | 29868    | 16218    | 25602    | 32004    | 20484    | 42672    |
| Engineers                                           | 0        | 0        | 8532     | 5118     | 4692     | 5118     | 34566    |
| Technicians                                         | 19200    | 29868    | 19200    | 24324    | 23040    | 34566    | 44808    |
| QHSE Manager                                        | 70410    | 23472    | 84492    | 19632    | 31152    | 85344    | 121188   |
| Required maintenance equipment/ software            | 36270    | 57606    | 42672    | 51204    | 38406    | 46512    | 63582    |
| -Inspection Cost                                    | 34140    | 46938    | 38406    | 34140    | 42672    | 52914    | 26028    |
| - Scheduled maintenance cost                        | 8532     | 14934    | 17070    | 12804    | 10668    | 14508    | 21336    |
| Planned Downtime cost                               | 8106     | 10668    | 7680     | 8532     | 4266     | 7680     | 28164    |
| Spare Parts                                         | 32004    | 10668    | 50352    | 7680     | 31578    | 41820    | 15786    |
| Consumable Materials                                | 21336    | 25602    | 34140    | 24324    | 5550     | 42672    | 46938    |
| Total LCC per year                                  | 1105212  | 1032450  | 1014954  | 1496082  | 1173912  | 1555830  | 1900182  |
| LCC+AC per year                                     | 11105212 | 11032450 | 11014954 | 11496082 | 11173912 | 11555830 | 11900182 |

### Table B.14 The present values for twenty years and the total LCC per year for Scenario four

| COST/YEAR                                           | 2017     | 2018     | 2019     | 2020     | 2021     | 2022     | 2023     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                            | 170688   | 231300   | 230700   | 236700   | 224700   | 215040   | 215660   |
| Engineers                                           | 422454   | 287820   | 287220   | 287580   | 51360    | 83212    | 51550    |
| Supervisors/Operators                               | 162156   | 238560   | 237960   | 156900   | 146160   | 95380    | 128440   |
| Lab Personnel                                       | 29868    | 57300    | 74100    | 68100    | 74100    | 391860   | 484680   |
| Technicians                                         | 157890   | 202200   | 201660   | 180960   | 180900   | 164280   | 167600   |
| Clerical Personnel                                  | 46938    | 24900    | 24300    | 63180    | 63180    | 510960   | 509040   |
| Power                                               | 20484    | 25380    | 27420    | 27420    | 22260    | 207300   | 207300   |
| Fuel/Gas                                            | 174954   | 159240   | 212100   | 212100   | 218100   | 55200    | 30440    |
| Insurance                                           | 51204    | 48300    | 35700    | 46260    | 77160    | 675600   | 579540   |
| Local Taxes                                         | 4266     | 3240     | 1440     | 7200     | 7200     | 31740    | 27240    |
| Spare parts for overhauls and unplanned maintenance | 8532     | 23340    | 22740    | 8700     | 8700     | 201000   | 174660   |
| Downtime cost                                       | 32004    | 54960    | 54360    | 54360    | 54060    | 449940   | 490140   |
| Maintenance Engineer                                | 36270    | 51840    | 51240    | 50460    | 24300    | 241560   | 253260   |
| Engineers                                           | 21336    | 5100     | 5100     | 7020     | 41400    | 201180   | 343200   |
| Technicians                                         | 38406    | 38100    | 27480    | 28920    | 53880    | 34240    | 46020    |
| QHSE Manager                                        | 93876    | 101940   | 67560    | 41220    | 143460   | 123000   | 119640   |
| <b>Required maintenance equipment/ software</b>     | 46938    | 77280    | 72360    | 46080    | 46080    | 42320    | 42660    |
| -Inspection Cost                                    | 23472    | 64320    | 63720    | 27900    | 27900    | 48780    | 40540    |
| - Scheduled maintenance cost                        | 10668    | 25920    | 25320    | 12360    | 12360    | 20910    | 22100    |
| Planned Downtime cost                               | 17070    | 34260    | 33660    | 5340     | 4620     | 30360    | 30940    |
| Spare Parts                                         | 23472    | 50580    | 50220    | 50160    | 50220    | 45940    | 40320    |
| Consumable Materials                                | 32004    | 6720     | 6120     | 56460    | 56460    | 88740    | 63420    |
| Total LCC per year                                  | 1624950  | 1812600  | 1812480  | 1675380  | 1588560  | 3958542  | 4068390  |
| LCC+AC per year                                     | 11624950 | 11812600 | 11812480 | 11675380 | 11588560 | 13958542 | 14068390 |

| COST/YEAR                                           | 2024     | 2025     | 2026     | 2027     | 2028     | 2029     | 2030     |
|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Operations/Plant Manager                            | 211900   | 212500   | 212680   | 193360   | 195360   | 195360   | 195336   |
| Engineers                                           | 62160    | 48140    | 41330    | 51540    | 56920    | 34060    | 40080    |
| Supervisors/Operators                               | 72160    | 121840   | 763640   | 867140   | 806180   | 919220   | 639380   |
| Lab Personnel                                       | 434160   | 515340   | 571920   | 428760   | 411360   | 418440   | 409260   |
| Technicians                                         | 164060   | 162360   | 166440   | 194540   | 144540   | 144600   | 154500   |
| Clerical Personnel                                  | 379920   | 358620   | 358980   | 360180   | 358500   | 329760   | 459780   |
| Power                                               | 207240   | 207900   | 208440   | 188160   | 188220   | 188340   | 187980   |
| Fuel/Gas                                            | 30780    | 30460    | 59860    | 40220    | 68640    | 56860    | 55220    |
| Insurance                                           | 425340   | 484800   | 421200   | 403500   | 430920   | 404880   | 453960   |
| Local Taxes                                         | 27780    | 27420    | 28920    | 25800    | 25980    | 25320    | 24720    |
| Spare parts for overhauls and unplanned maintenance | 121680   | 190260   | 158160   | 121200   | 126660   | 148380   | 140940   |
| Downtime cost                                       | 405720   | 468060   | 487140   | 392700   | 381840   | 390780   | 443820   |
| Maintenance Engineer                                | 261780   | 241200   | 312060   | 253380   | 258600   | 223860   | 225360   |
| Engineers                                           | 359160   | 302640   | 367320   | 313980   | 299580   | 294180   | 327360   |
| Technicians                                         | 46600    | 45140    | 41680    | 42120    | 41740    | 41460    | 41220    |
| QHSE Manager                                        | 114680   | 107000   | 101120   | 101720   | 102020   | 92980    | 96440    |
| <b>Required maintenance equipment/ software</b>     | 42060    | 42360    | 42380    | 38380    | 38380    | 38380    | 38320    |
| -Inspection Cost                                    | 51600    | 55760    | 61240    | 46920    | 45200    | 51260    | 44680    |
| - Scheduled maintenance cost                        | 18680    | 21860    | 20100    | 18400    | 17980    | 18180    | 20080    |
| Planned Downtime cost                               | 19640    | 20140    | 25800    | 19040    | 14160    | 13380    | 27740    |
| Spare Parts                                         | 45700    | 45000    | 43300    | 41600    | 41600    | 41480    | 41540    |
| Consumable Materials                                | 61440    | 61380    | 60480    | 54840    | 54840    | 54840    | 54840    |
| Total LCC per year                                  | 3564240  | 3770180  | 4554190  | 4197480  | 4109220  | 4126000  | 4122556  |
| LCC+AC per year                                     | 13564240 | 13770180 | 14554190 | 14197480 | 14109220 | 14126000 | 14122556 |

Table B.15shows the total LCC per costing attribute for twenty year extracted fromNARX input simulations for Scenario four.

| LCC Parameter                                       | LCC Values |
|-----------------------------------------------------|------------|
| <b>Operations/Plant Manager</b>                     | 3975234    |
| Engineers                                           | 3550292    |
| Supervisors/Operators                               | 6367298    |
| Lab Personnel                                       | 4516902    |
| Technicians                                         | 3254910    |
| Clerical Personnel                                  | 3977112    |
| Power                                               | 2025636    |
| Fuel/Gas                                            | 2665992    |
| Insurance                                           | 5167134    |
| Local Taxes                                         | 284268     |
| Spare parts for overhauls and unplanned maintenance | 1507440    |
| Downtime cost                                       | 4373670    |
| Maintenance Engineer                                | 2677620    |
| Engineers                                           | 2946582    |
| Technicians                                         | 762012     |
| QHSE Manager                                        | 1842346    |
| Required maintenance equipment/ software            | 990230     |
| Inspection Cost                                     | 928530     |
| Scheduled maintenance cost                          | 364770     |
| Planned Downtime cost                               | 371246     |
| Spare Parts                                         | 801020     |
| Consumable Materials                                | 913146     |

Table B.15 The total LCC per costing attribute for twenty years for Scenario four

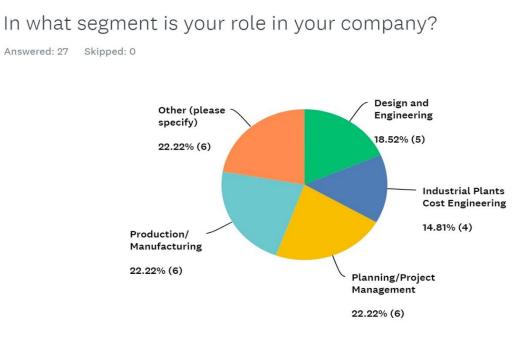
## Appendix C Conceptual Framework Validation Comments

#### Dr. Ahmed Elamin Haroun

Associate professor at Sudan University of Sc. and Tech

|   | Comments                                                                         |
|---|----------------------------------------------------------------------------------|
| 1 | There is no difference between Retirement and Disposal, it is better to just use |
|   | Disposal.                                                                        |
| 2 | In the Equipment Research section: one of the elements of design based could     |
|   | be market research. By applied research do you mean market research?             |
| 3 | In the Equipment data bases section: Please add Input Raw Material               |
|   | Specification.                                                                   |
| 4 | Before Quality control please add Process Performance (Effectiveness/Output      |
|   | quantity; efficiency "resources utilization").                                   |
| 5 | Use just either the operational or tactical so as to make the framework simpler, |
|   | and not many definitions.                                                        |

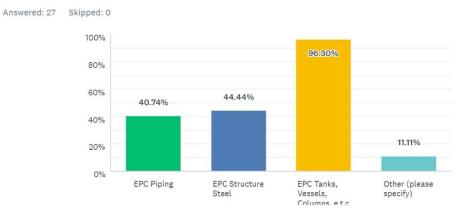
#### Mr Khaja Jeelani


#### Procurement Manager

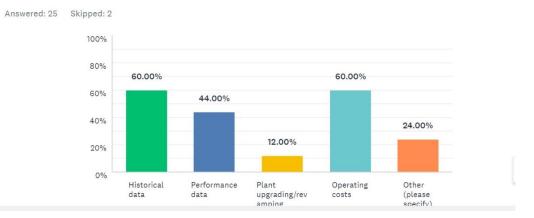
|   | Comments                                                                 |
|---|--------------------------------------------------------------------------|
| 1 | Recommend the LCC conceptual Framework to be covering the                |
|   | Fabrication industry, and since fabrication includes several activities  |
|   | (Pressure vessels, Tanks, Structure steel and pipes), for case study the |
|   | CBS should consider only one line of activities, as suggested the Pipe   |
|   | spool machine costs.                                                     |
| 2 | Reliability centred maintenance is not prominent in our industry. It is  |
|   | more relevant in 24/7 high critical operations such as Oil refinery,     |
|   | petrochemical industry and the likes                                     |
| 3 | Depreciation costing need to be included in the framework                |
| 4 | Warranty costing is a hidden cost that can be reflected in the framework |
| 5 | Environmental remediation is not a considerable factor for cost in our   |
|   | industry                                                                 |
| 6 | Special costs to be defined as setup costs and remanufacture is better   |
|   | reflected by refurbishment cost                                          |

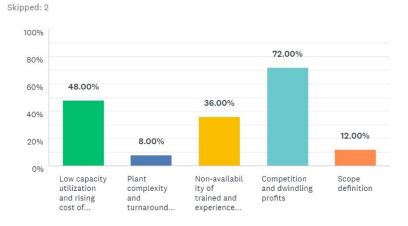
#### Prof Awaluddin Mohamed Shaharoun

## Islamic University of Madinah


|      | Comments                                                                             |  |  |  |  |  |  |  |
|------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|      | A conceptual framework diagram should be very simple and self-explanatory            |  |  |  |  |  |  |  |
| 1)   | and normally any other expert looking at it will see what he wants to check as       |  |  |  |  |  |  |  |
|      | existing and as well as quickly understand the logical flow and interconnections.    |  |  |  |  |  |  |  |
| 2)   | I find some questions that remain unanswered after looking at your framework.        |  |  |  |  |  |  |  |
| -    | 2a) Why do you split your major phases into just two ie Acquisition and              |  |  |  |  |  |  |  |
|      | Utilisation? Normally we have Acquisition, Utilisation and                           |  |  |  |  |  |  |  |
|      | Retirement/Disposal? The normal manner is into three phases because                  |  |  |  |  |  |  |  |
|      | Utilisation is as distinct from Retirement as it is from Acquisition? You may        |  |  |  |  |  |  |  |
|      | need to argue why you decide to depart from normal practice here                     |  |  |  |  |  |  |  |
|      | You put something called Asset Support in which you put Technical Support,           |  |  |  |  |  |  |  |
|      | Procurement Human Resource, etc etc and you spread it over the two phases as         |  |  |  |  |  |  |  |
|      | if techical support and procurement costs only happen during acquisition phase       |  |  |  |  |  |  |  |
| 2b)  | but not during the Utilisation and Retirement phase. Is this what you mean?          |  |  |  |  |  |  |  |
|      | you implying the rest of the support functions will only occur during the            |  |  |  |  |  |  |  |
|      | implementation stage and not before? I would be very cautious to state that if i     |  |  |  |  |  |  |  |
|      | was you.                                                                             |  |  |  |  |  |  |  |
|      | Are these Asset Support actually costs or just functions or just your way of         |  |  |  |  |  |  |  |
| 2c)  | explaining the components of the asset support? I cannot decipher them from          |  |  |  |  |  |  |  |
|      | the way you design the framework                                                     |  |  |  |  |  |  |  |
|      | You have divided the costs into 3 levels Strategic, Tactical and Operational.        |  |  |  |  |  |  |  |
|      | I agree with the categories. What I find issue is the costs itself which you put     |  |  |  |  |  |  |  |
|      | into the categories. At strategic level we look at broader issues- cost benefit, IRR |  |  |  |  |  |  |  |
| 3)   | and ROI, process efficiency improvements and even non costs such as                  |  |  |  |  |  |  |  |
|      | competitive advantage, technology acquisition and replacement costs                  |  |  |  |  |  |  |  |
|      | etc. Sometimes the decision to choose which site/city or country to install can      |  |  |  |  |  |  |  |
|      | be a major cost consideration from the strategic viewpoint.                          |  |  |  |  |  |  |  |
|      | At Tactical levels, where would you consider health and safety requirements          |  |  |  |  |  |  |  |
| 4)   | costs, license to operate from safety regulators, compulsory upgrades due to         |  |  |  |  |  |  |  |
| , '' | technological and business considerations and annual safety inspections from         |  |  |  |  |  |  |  |
|      | licensing authorities?                                                               |  |  |  |  |  |  |  |

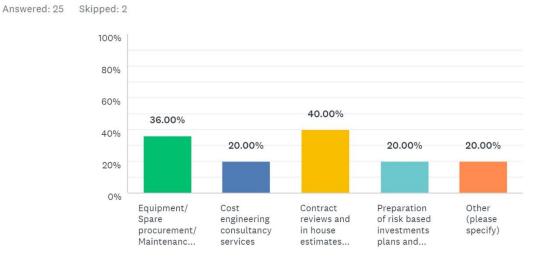



**Descriptive Results from Survey** 

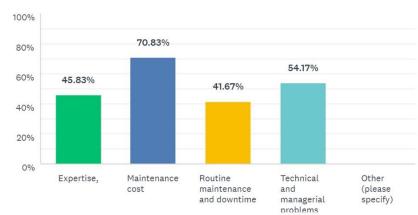

**Appendix D** 

What kind of products and services does your plant/business deliver




What data and information (sources) are used in life cycle costing?



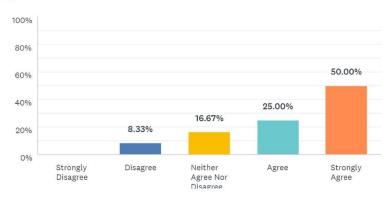



## What do you consider the current challenges in your industry/plant?

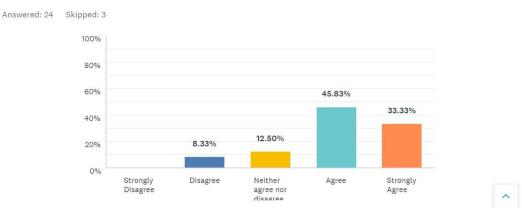
## What is your role in cost engineering in your plant/industry?



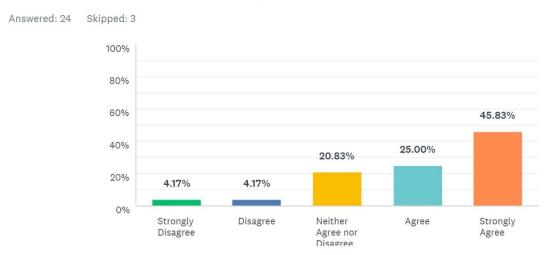
## What are the challenges faced in operation and maintenance?



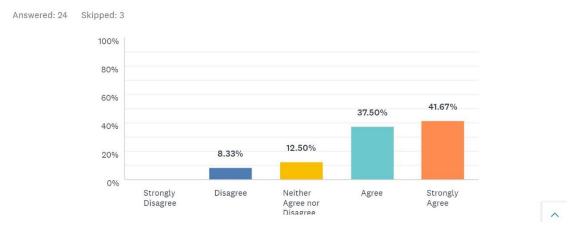

Answered: 24 Skipped: 3


Answered: 25

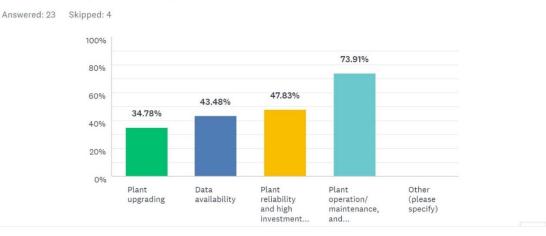
A LCC Conceptual Framework is essential for guiding the decision making in Asset Selection and/or enhancement

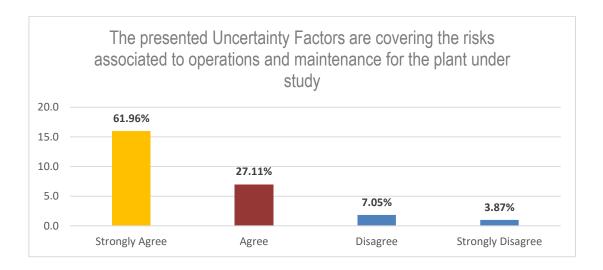

Answered: 24 Skipped: 3

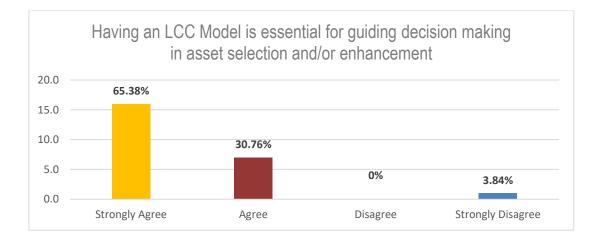


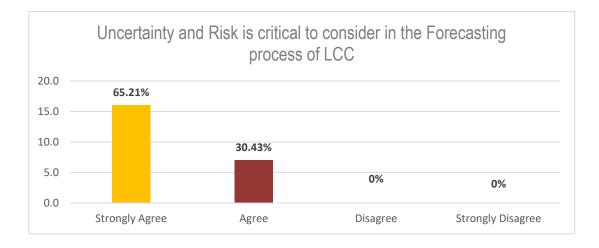

LCC model can be used to forecast the costs of all the life cycle phases for an asset and allows researchers to choose the most viable decision on the basis of total performance

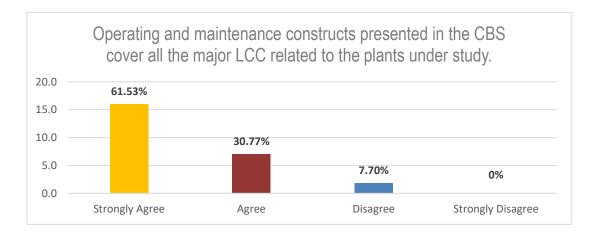



## LCC acts as a maintenance guide





LCC indicates cost category and presents a possibility for investigation into the inter-relationship between the performance of an engineering asset and its running costs





What are the significant risks associated to the plant and is reflected in the life cycle costing?











## Appendix E Cronbach's Alpha Reliability Results

| Cronbach's Alpha                               | 0.750440643 |            | Reliability | Calculator |            |            |            |
|------------------------------------------------|-------------|------------|-------------|------------|------------|------------|------------|
| Split-Half (odd-even) Correlation              | 0.699703384 |            |             |            |            |            |            |
| Split-Half with Spearman-Brown Adjustment      | 0.823324105 |            |             |            |            |            |            |
| Mean for Test                                  | 11.76923077 |            |             |            |            |            |            |
| Standard Deviation for Test                    | 4.361613078 |            |             |            |            |            |            |
| KR21 (use only 0 and 1 to enter data for this) | 1.658424054 |            | Questions   | Subjects   |            |            |            |
| KR20 (use only 0 and 1 to enter data for this) | 1.66091239  |            | 7           | . 26       |            |            |            |
|                                                |             |            |             |            |            |            |            |
|                                                | Question 1  | Question 2 | Question 3  | Question 4 | Question 5 | Question 6 | Question 7 |
| Subject1                                       | 1           | 1          | 1           | 1          | 1          | 2          | 1          |
| Subject2                                       | 1           | 1          | 2           | 1          | 5          | 1          | 3          |
| Subject3                                       | 1           |            | 1           | 1          | 1          | 1          | 1          |
| Subject4                                       | 2           | 1          | 1           | 2          | 1          | 2          | 1          |
| Subject5                                       | 1           | 4          | 5           | 1          | 2          | 1          | 1          |
| Subject6                                       | 1           | 1          | 1           | 2          | 3          |            | 3          |
| Subject7                                       | 1           | 1          | 2           | 1          | 2          |            | 2          |
| Subject8                                       | 4           |            |             |            | 1          | 2          |            |
| Subject9                                       | 3           |            | 3           |            | 3          |            |            |
| Subject10                                      | 4           |            |             |            | 4          | 3          |            |
| Subject11                                      | 2           | 1          | 2           | 3          | 1          | 4          | 3          |
| Subject12                                      | 1           | 1          | 1           | 1          | 1          | 1          | 1          |
| Subject13                                      | 1           |            | 1           | 1          | 1          | 1          | 1          |
| Subject14                                      | 2           | 2          | 1           | 2          | 2          | 2          | 1          |
| Subject15                                      | 1           | 1          | 1           | 1          | 1          | 1          | 1          |
| Subject16                                      | 1           | 2          | 2           | 2          | 2          | 2          | 1          |
| Subject17                                      | 1           | 1          | 1           | 1          | 1          | 1          | 1          |
| Subject18                                      | 1           |            |             | 2          | 2          | 2          | 2          |
| Subject19                                      | 2           |            | 2           | 1          | 2          | 1          | 1          |
| Subject20                                      | 1           |            | 1           | 1          | 1          | 1          | 1          |
| Subject21                                      | 1           |            | 1           | 1          | 1          | 1          | 1          |
| Subject22                                      | 1           |            |             |            | 1          | 2          |            |
| Subject23                                      | 3           | 2          | 3           | 3          | 3          | 3          | 3          |
| Subject24                                      | 1           | 1          | 1           | 1          | 1          | 1          | 1          |
| Subject25                                      | 5           | 4          |             | 1          | 1          | 1          | 1          |
| Subject26                                      | 1           | 1          | 2           | 2          | 2          | 1          | 1          |

| Cronbach's alpha | Internal consistency |
|------------------|----------------------|
| α ≥ 0.9          | Excellent            |
| 0.9 > α ≥ 0.8    | Good                 |
| 0.8 > α ≥ 0.7    | Acceptable           |
| 0.7 > α ≥ 0.6    | Questionable         |
| 0.6 > α ≥ 0.5    | Poor                 |
| 0.5 > α          | Unacceptable         |

#### LIST OF PUBLICATIONS

 Mohd I. Elnaeim, Mohd Salman Leong & M S Somia Alfatih, Life Cycle Costing In Engineering Asset Management: A Study In The Steel Fabrication Industry, International Journal of Mechanical Engineering and Technology (IJMET), Volume 8, Issue 6, June 2017, pp. 348–359 Article ID: IJMET\_08\_06\_036. Available online at http://iaeme.com/Home/issue/IJMET?Volume=8&Issue=6