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ABSTRACT 

Technology advances in complimentary-metal-oxide-silicon (CMOS) process 

offer some interesting possibilities for radio frequency (RF) circuit designers. Some 

circuits that would have to be done with GaAs monolithic microwave integrated 

circuits (MMICs), for instance, are now possible in CMOS. While the transistor 

speed has been improving significantly, fuller integration of RF integrated circuits 

(RFICs) is often retarded by the absence of high quality, high rangebility and 

efficient on-chip passive components. This thesis presents the possibilities of 

improving the characteristics of an RF capacitor having interdigital configuration. 

Modifications in the form of combline structure were introduced into the 

conventional configuration to improve the capacitor characteristics. Performance in 

the form of capacitance and Quality, Q, factor were investigated through simulations 

using electromagnetic simulation software, Ansoft HFSS. The analysis and 

comparison between conventional and the proposed interdigital capacitor (IDC) with 

combline structure were discussed in detail. It can be concluded that the proposed 

IDC with combline structure improves the capacitance of an IDC. The optimum 

combline configuration which achieved useful capacitance with sufficiently high Q 

factor is the design with 110 mils effective finger length. It produces 5.48 pF 

capacitance at first resonance of 2 GHz, with sufficiently high Q factor of 13.88. This 

is a factor of 1.72 higher than the corresponding conventional IDC having 3.18 pF at 

first resonance of 3 GHz albeit 10 % slightly higher Q factor of 15.41. 
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ABSTRAK 

 Kecanggihan teknologi pemprosesan silikon-oksida-logam-pelengkap 

(CMOS) menawarkan peluang menarik kepada perekabentuk litar frekuensi radio. 

Sesetengah litar yang perlu direkabentuk seperti menggunakan litar bersepadu 

gelombang mikro monolitik (MMICs), kini boleh dilakukan dengan teknologi 

CMOS. Sementara kelajuan transistor meningkat dengan pesat, penyepaduan 

sepenuhnya litar bersepadu RF (RFIC) terbantut oleh ketiadaan komponen pasif atas-

cip yang berkualiti tinggi, berkebolehharapan tinggi dan tinggi kecekapan. Tesis ini 

membentangkan kemungkinan untuk membuat penambahbaikan terhadap ciri 

kapasitor RF menggunakan konfigurasi interdigital. Modifikasi berbentuk struktur 

talian komb diperkenalkan pada kapasitor interdigital konvensional untuk 

memperbaiki ciri prestasinya.  Prestasi dalam bentuk kapasitan and faktor kualiti (Q) 

dikaji menerusi simulasi perisian elektromagnet, Ansoft HFSS. Analisis dan 

perbandingan antara kapasitor interdigital konvensional dan kapasitor interdigital 

dengan struktur talian komb dibincang dengan terperinci. Dapat disimpulkan bahawa 

kapasitor interdigital dengan struktur talian komb meningkatkan kapasitan bagi 

kapasitor interdigital. Konfigurasi talian komb optimum yang memperoleh kapasitan 

berguna dan faktor Q yang cukup tinggi adalah rekabentuk dengan panjang jari 

berkesan bernilai 110 mil. Ia menghasilkan kapasitan 5.48 pF pada resonans pertama 

2 GHz dengan faktor Q mencukupi sebesar 13.88. Nilai ini adalah 1.72 lebih tinggi 

berbanding struktur IDC konvensional dengan 31.8 pF pada resonans pertama 3 

GHz, namun dengan faktor Q = 15.41 yang 10 % sahaja lebih tinggi.  
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CHAPTER I 

INTRODUCTION 

1.1 Background of Study 

 The growth of smaller, more power-sensitive wireless-communication 

products has fueled the explosive development of radio frequency integrated circuits 

(RFICs) [1].  Highly integrated RF components now populate ICs, replacing the 

hybrid circuits that used discrete semiconductor devices. As a result, RFICs can be 

found in applications that blanket the wireless space, ranging from cellular to 

wireless LANs and everything in between. There are many challenges involved in 

creating RFICs.   At the transistor level, various competing technologies (GaAs, Si, 

SiGe, and CMOS) each provide different benefits and drawbacks.   Aside from the 

transistors, the creation of passive components such as inductors, capacitors, and 

resistors also pose unique challenges to the IC designer. 

Passive components are referred to as “glue components” because they 

“glue” integrated circuits together to make a system.  For the accurate design and 

fabrication of these compact high performance systems, accurate modeling of on 

chip passive components is becoming very important.  However, designing circuits 

with these passive components is non-trivial due to electromagnetic interactions that 

lead to parasitic, and ultimately non-ideal frequency behavior.  Passive devices 
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generally have complex geometries, non-uniform current flow, and correspondingly 

complex field patterns; therefore, suffer from parasitic effects that influence the 

electrical behavior of the device at different frequencies.  For this reason, accurate 

models of passive components are crucial for designing and characterizing high 

performance systems. 

 Building high-quality on-chip capacitors has attracted tremendous interest 

from the RFIC design community and semiconductor manufacturers.  High-quality 

on-chip capacitors have been widely demonstrated as a key factor for successfully 

integrating RF building blocks, such as resonant circuits and filters, voltage-

controlled oscillators, coupling between stages and bypassing [1].  Other 

characteristics by which such capacitors are judged include capacitance density; 

parasitic capacitance to ground; voltage, temperature and frequency coefficients; and 

the maximum allowable peak repetitive voltage.  As shown in Figure 1.1,

commercial CMOS or BiCMOS processes the following capacitors are generally 

available: 

 (a) Capacitors that use the MOSFET gate oxide [2]

The highest capacitance densities are obtained with these capacitors. 

Capacitance density of 6 fF/µ2 has been reported [2].  However, there is a trade-off 

between the gate oxide thickness and the breakdown voltage.  A 50-Angstrom gate 

oxide capacitor in a 0.25µ processes can typically withstand a maximum peak 

repetitive voltage of 2.75V.  Depending on the topology and circuit design this may 

be a limitation.  The CV characteristic varies with the particular process technology 

and is non-linear.  This non-linearity may cause distortion in the circuit.  

(b) Metal-insulator-metal (MIM) capacitors [3, 4]

MIM capacitors are typically built near the top of the metal stack to minimize 

parasitic capacitance to ground; for example, a bottom-plate using METAL4 and a 

top-plate using METAL5 separated by a thin insulator layer a few hundred 

Angstroms thick.  The large separation between the bottom plate and substrate (  6µ) 
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helps in reducing the parasitic capacitance to ground to approximately 2% of the 

useful inter-metal capacitance (trans-capacitance).  MIM capacitors have very good 

voltage and temperature-coefficient characteristics and a capacitance density of 

approximately 0.8fF/µ2. MIM capacitors are available in many RF CMOS and 

BiCMOS processes, however, they require extra masking steps to implement and 

increase the cost of the IC.  Furthermore, these devices do not scale with process 

technology 

(c) Poly-insulator-gate poly (Double Poly) capacitors [2]

Double-poly and MOS capacitors also have parasitic capacitance associated 

with them.  Double-poly capacitors have about 18% parasitic capacitance to ground 

while MOS capacitors can have 2~20% parasitic capacitance to ground depending 

upon their design.  Both MOS and double-poly capacitors have the problem of very 

high series resistance to one of the two nodes.  

(d) Planar Interdigital capacitor (Planar IDC) [5]

Planar Interdigital capacitors hold much promise in providing capacitors that 

continue to improve with succeeding process technologies.  Capacitance density 

increases significantly as the number of metal layers increase and the feature size 

decreases.  Such capacitors can be optimized to minimize parasitic capacitance and 

to make the parasitic capacitance symmetric, thus reducing noise pickup from the 

substrate or nearby structures.  



4

                                   (a)                                                           (b) 

(c)      (d) 

Figure 1.1: Different types of CMOS or BiCMOS capacitor. (a) MOSFET 

gate oxide capacitor, (b) MIM Capacitor, (c) Double-poly capacitor, (d) IDC

1.2 Goals and Limitations of On-chip Capacitor Design

 High-performance on-chip capacitors are required to implement RF 

integrated circuits [6].  The main requirements for high-performance capacitors are 

capacitance density, symmetry and high quality factor.  Recent literature [6] 

emphasizes exclusively either high capacitance density or high Q because 

improvement in Q tends to come at the expense of capacitance density. 

 For a number of sensitive applications, capacitors with a Q > 15-20 at 

frequency range of interest are required.  However, there is a limitation in obtaining a 
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high Q factor especially at high frequency range in most of today’s applications. 

These limitations in the poor Q factor are primary due to the resistive losses in the 

plates and contacts and due to the parasitic capacitance between the passive 

component and the lossy silicon substrate [7].  Thus, lots of researches and studies 

are currently on going and some has been carried out focusing on different ways to 

obtain high Q and high capacitance capacitors.  Some researches focus on various 

capacitors layout and dimensions; some of these studies focus on material science 

looking for new low loss materials which is suitable for planar capacitor 

implementation.   Accurate capacitor model which gives accurate simulation results 

for Q factor and series resistance (ESR) is crucial as well for RF circuit design and 

characterization. 

1.3 Objectives 

 The main objective of this project is to improve the characteristics of a planar 

interdigital radio frequency capacitor by employing combine structure.  The 

performance in the form of capacitance and Q factor of the modified interdigital 

capacitor with the conventional configuration interdigital capacitor are compared.  It 

is aimed to obtain a planar combline interdigital capacitor which is able to produce 

higher capacitance with sufficiently high Q factor of at least 15 in a wider frequency 

range which suits today’s application in various fields. The basic and combline 

configurations are depicted in Figure 1.2.
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(a)

(b)

Figure 1.2:  IDC configurations (a) basic, (b) six fingers. 

1.4 Scope of Project 

 The project is focused on developing an interdigital capacitor configuration 

that will exhibit a high capacitance density as well as high Q-factor.  The scope of 

the project covers the following areas: 
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Study of the theory and fundamentals of RF interdigital capacitor.

This includes basic design of lumped elements, basic capacitor theories, 

parameters that affect capacitor performance, parameters that used for capacitor 

performance evaluation, electrical representation of capacitors, interdigital capacitor 

design and performance improvement techniques. 

Modification of the conventional interdigital configuration with combline 

structure for performance improvement. 

Based on the theories and work done by other researchers, the study further 

explore and investigate the possibility of improving the interdigital capacitor 

performance by varying different layout options with combline structure. 

Electromagnetic simulations. 

Simulations of the conventional and modified interdigital configurations were 

performed using Ansoft HFSS electromagnetic simulation software.

Analysis of the results. 

Performance comparison of the modified and conventional configuration 

interdigital capacitor in terms of Q factor and capacitance density. 

1.5 Outline of Thesis 

Chapter one discusses the objectives and scope of the project and gives a 

general introduction to RFICs and functions of on chip capacitors in RFIC.  This 

chapter also clearly discusses the motivation behind the study and the limitations in 

order to achieve the project objectives. 
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In Chapter two, relevant literature and previous work regarding planar 

interdigital capacitor characterization are reviewed.   This chapter also elaborates on 

the principles of capacitor and the factors that must be taken into consideration to 

obtain a good capacitor for RFIC usage. 

The design and analysis approach used in this project are elaborated in 

Chapter three. The overall activities of this study are discussed in this chapter.   

Besides, this chapter also discusses in detail the capacitor modification flow of the 

proposed interdigital capacitor with combline structure and simulation flow of the 

designed capacitors using Ansoft HFSS simulation software. 

In Chapter four, the final results are presented and analyzed in detail. This 

includes the modifications from the basic configuration to various combline 

configurations. 

The final chapter concludes the thesis.  Suggestions for further improvement 

are also presented. 
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