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ABSTRACT 

With the rapid growth of the internet and emerging technologies, developing 
media content, and sharing them globally have become simple and fast. Despite the 
abundance of advantages this phenomenon has brought, it has led to some concerns in 
exposing people to unwanted and offensive media content. Among unwanted images, 
objectionable images are the most offensive ones which people are trying to avoid 
viewing. Although a number of research have been conducted in this area, this field is 
still scarce and there are challenges that should be addressed. One major challenge in 
this field is the lack of a well-defined definition for objectionable images. Therefore, 
different scholars with varied perceptions of the objectionable image came up with 
algorithms to tackle the problem of detecting objectionable images. In this research, 
the objectionable image detection model which is called Holistic Local Aware Deep 
Network or in short HoLoNet has the following novel characteristic: the local and 
global features are seamlessly integrated into the network and mutually affect each 
other during training. Moreover, in order to include the age of humans in the image of 
final decision, Gender Aware Age Estimation Net or in short GeAeNet was proposed. 
GeAeNet estimates age under condition of identified facial attribute of gender which 
makes the estimation more accurate. Moreover, the loss function is proposed to 
supervise the GeAeNet. Using this loss function, the network tends to generate a more 
reasonable probability distribution of age classes, where the predicted probability of 
each age class should be inversely proportional to the deviation from the ground truth 
age class in general. The combination of HoLoNet and GeAeNet formed the proposed 
AgeHoLoNet excluding the False Positive (FP) cases wherein detected objectionable 
images would only be humans who are under adulthood borderline age. GeAeNet 
outperformed state-of-the-art techniques in both controlled and wild environments by 
achieving Mean Absolute Error (MAE) 2.43 in facial age estimation dataset 
(MORPHII) and 2.64 in facial aging dataset (FG-NET) and 5.12 in Age Database 
(AgeDB) datasets. Finally, comparing the objectionable model with state-of-the-art 
techniques proves that HoLoNet alone outperforms related works with accuracy of 
0.956 and AgeHoLoNet with accuracy of 0.964 over Pornography Dataset (NPDI). 
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ABSTRAK 

Dengan perkembangan internet yang pesat dan teknologi yang baru muncul, 
membangunkan kandungan media dan membagikannya di seluruh dunia menjadi 
mudah dan pantas. Walaupun terdapat banyak kelebihan yang dibawa oleh fenomena 
ini, ia menimbulkan beberapa kebimbangan dalam mendedahkan individu kepada 
kandungan media yang tidak diingini dan menyinggung perasaan. Di antara imej yang 
tidak diingini, imej yang tidak menyenangkan merupakan imej yang paling 
menyinggung yang cuba dielakkan oleh orang ramai untuk tidak melihatnya. 
Walaupun sejumlah kajian telah dilakukan dalam bidang ini, ia masih kurang dikaji 
dan terdapat cabaran yang harus ditangani. Satu cabaran utama dalam bidang ini 
adalah kurangnya definisi yang tepat untuk imej yang tidak menyenangkan. Oleh itu, 
para sarjana yang mempunyai persepsi yang berbeza-beza terhadap imej yang tidak 
menyenangkan muncul dengan algoritma untuk mengatasi masalah mengesan imej 
yang tidak menyenangkan. Dalam penyelidikan ini, model pengesanan imej yang tidak 
menyenangkan yang disebut Holistic Local Aware Deep Network atau ringkasnya 
HoLoNet mempunyai ciri-ciri berikut: ciri-ciri tempatan dan global disatukan dengan 
lancar ke dalam rangkaian dan saling mempengaruhi antara satu sama lain semasa 
latihan. Lebih-lebih lagi, untuk memasukkan usia manusia dalam imej keputusan 
akhir, Gender Aware Age Estimation Net atau ringkasnya GeAeNet. GeAeNet 
menganggarkan usia di bawah keadaan sifat jantina wajah yang dikenal pasti bagi 
menjadikan anggaran lebih tepat. Lebih-lebih lagi, fungsi kerugian dicadangkan untuk 
mengawasi GeAeNet. Dengan menggunakan fungsi kerugian ini, rangkaian cenderung 
menghasilkan taburan kebarangkalian kelas usia yang lebih munasabah, di mana 
kebarangkalian yang diramalkan bagi setiap kelas umur berkadar songsang dengan 
penyimpangan dari kelas usia kebenaran dasar secara umum. Gabungan HoLoNet dan 
GeAeNet membentuk AgeHoLoNet yang dicadangkan tidak termasuk kes Positif 
Palsu (FP) di mana imej yang tidak dapat dikesan hanya manusia yang berada di bawah 
usia dewasa. GeAeNet mengungguli teknik canggih di kedua-dua persekitaran 
terkawal dan terbiar dengan mencapai Mean Absolute Error (MAE) 2.43 dalam dataset 
anggaran usia wajah (MORPHII) dan 2.64 dalam dataset penuaan wajah (FG-NET) 
dan 5.12 dalam Pangkalan Data Umur ( Set data AgeDB). Akhirnya, membandingkan 
model yang tidak menyenangkan dengan teknik canggih membuktikan bahawa 
HoLoNet sahaja mengatasi karya yang berkaitan dengan ketepatan 0.956 dan 
AgeHoLoNet dengan ketepatan 0.964 berbanding set data Pornografi Dataset (NPDI). 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

In last decade with overwhelming pace of growth in penetration rate of internet 

in world, people witnessed lots of benefits which before internet era was not accessible 

globally. Not only access to internet became available globally but the speed of internet 

access and convenience for all users led to some advantages such as facilitating 

knowledge management and sharing globally, producing helpful content in massive 

scale for all users around the world which can be used for improving skills or 

enhancing careers and connecting people which are far from each other geographically 

but able to communicate using voice or video calls and conference. However, this 

technology advancement was not harmless and likewise some other technology 

features, some challenges were raised while internet access was growing. For instance, 

development of harmful content and sharing it through internet became easier and 

faster. Therefore, the demand for development and implementing filtering techniques 

which blocks unwanted contents which objectionable image is one of content types 

which is known most offensive for users to maintain safe internet surfing raised 

significantly. While rapid growth of internet brought advantages to human being such 

as more convenience, but some drawbacks also emerged like getting exposed to 

objectionable content mostly pornographic (Jin, Wang and Tan, 2019).  

Statistics presented in Maris, Libert and Henrichsen (2019) shows traffic of 

websites which are delivering content are higher than Amazon, Netflix and other well-

known websites. Surprisingly in 2017, 30 percent of all data transfer in internet was 

pornographic related content. Although there is no accurate method which calculates 

number of visitors and maintains total number of internet sites which are producing 

objectionable content and sharing them globally but there are some estimates available 

such as the estimates mentioned in Ahmed, Shafiq and Liu (2016) which suggests there 



2 

are at least 4 million adult websites on the internet. Considering that number, number 

of adult websites makes at least 12% of all websites on the internet for the time of 

report. The result which is shown in Table 1.1 presents overwhelming numbers which 

reported from a research which was done in 2006 (Islam, Watters, Yearwood, Hussain 

and Swarna, 2013) . This shocking information reveals the huge amount of offensive 

media content which is generated every single second in the world. While since 2006, 

technology was enhanced and therefore this information shall be higher. Although this 

information is surprising for everybody but most of all parents are resented due to its 

social impact on youngsters. 

Table 1.1 Pornography Statistics 
Every Second 

Expenditure on porn $3,075.64 

Number of viewers 28,258 

Number of people searching for porn 372 

It is important to mention that many users are innocent users of internet and 

leveraging it for their daily usages from communication to streaming TV and movies 

and work from home while they are not aware of risks that they can encounter in 

internet. However, danger of being exposed to objectionable images are studied in 

different research and their impacts have been investigated and direct correlation was 

reported between watching objectionable content and increasing social concerns such 

as raise in number of divorces, reducing morale and productivity and increasing 

aggressive behaviour (Sun, Bridges, Johnson and Ezzell, 2016; Rasmussen and 

Bierman, 2016; Stanley, Barter, Wood, Aghtaie, Larkins, Lanau and Överlien, 2018; 

Malamuth and Hald, 2016; Wright and Tokunaga, 2016; Malamuth, 2018; Mellor and 

Duff, 2019).  

These mentioned dangers raised the concern and urged demand to governments 

for controlling the risk especially for those who are in high risk which are minors by 

regulating objectionable image access (Qamar Bhatti, Umer, Adil, Ebrahim, Nawaz 

and Ahmed, 2018; Roy, Paul, Pirsiavash and Pan, 2017; Gangwar, Fidalgo, Alegre and 

González-Castro, 2017). Considering the statistics and mentioned concerns by society, 
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industry and government, the need for filtering the objectionable images is serious 

issue. Developing an effective objectionable image classifier and filtering technique is 

a valid concern. 

As mentioned, rapid growth of internet made content creation and sharing 

through internet easier and as a result, sharing unwanted content became a threat to 

internet users. Among Not Suitable/Safe For Work (NSFW) images which are shared 

in internet, objectionable images which also known as pornographic images are most 

unwanted (Shen, Zou, Song, Yan and Zhou, 2018a).  

Initially, the main approach to solve this challenge was manual or with 

utilization of simple techniques such as blacklisting IP addresses or dictionary of 

keywords. But pace of development was fast and volume of new content which was 

spread in internet was vast and manual solution were not capable of handling the size 

of objectionable images shared. Therefore, researchers were investigating new 

techniques to overcome this challenge. 

Meanwhile, recent development in field of computer vision opened new 

opportunities and proved promising results in different problem areas such as skin 

segmentation, face detection, biometrics, pose tracking and motion tracking and object 

detection. The compelling result of advanced computer vision techniques initiated 

some research in leveraging sophisticated computer vision techniques to overcome 

challenge of objectionable image detection. 

1.2 Background of the Problem 

As mentioned, in order to make internet a safer place for exchanging 

information among users, researchers were studying different techniques to filter 

objectionable images. Available methods for objectionable image filtering cans be 

divided to three categories as keyword-based methods, methods relying on blacklisting 

of IP addresses and finally techniques which are relying on visual content (Nian, Li, 

Wang, Xu and Wu, 2016; Zhou, Zhuo, Geng, Zhang and Li, 2016).  
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While keyword-based methods as well as methods relying on blacklisting of 

IP addresses are efficient in terms of implementation complexity and computational 

power but reliable filtering of objectionable images using these approaches is not 

feasible due to their shortcomings. These  methods are relying on comprehensive 

dataset of keywords or internet site addresses which contain objectionable images and 

hence these lists are dynamic and pace of adding and updating new sites are faster than 

possible speed of updating the dataset, these methods are not effective (Hettiarachchi 

and Peters, 2016). 

Visual content-based techniques are addressing the mentioned limitations by 

analysing image contents (Yaghoubyan, Maarof, Zainal and OGHAZ, 2016; Osman, 

Maarof and Rohani, 2016). These methods rely on skin detection and image 

processing. One step that among all these methods is common is detection on nudity. 

The fact that these methods are not accurate enough to be applied reliably is 

acknowledged regardless of their complexity and being expensive in terms of 

computation power (Rahmat, Chairunnisa, Gunawan and Sitompul, 2016; Brancati, 

De Pietro, Frucci and Gallo, 2017; Nugroho, Hardiyanto and Adji, 2016; Mao, Li, Liu 

and Zou, 2018; Wang, Cheng, Wang, Sun, Liu and Zhou, 2018). 

Forsyth et al (1996), (1996), (1997) are well known for their research 

conducted in this field as pioneers. Their approach was a two-stage approach by 

utilizing human skin detection and in second stage using grouper for identifying human 

shape to detect images which contain human subject which is naked presented in 

image. In this technique, colour information as well as texture data was used for skin 

detection in first stage to identify region of containing human skin exposed. In second 

stage, for identifying shape of human using identified skin regions, geometry analysis 

is employed. 

One important challenge in this field is lack of well accepted definition which 

is shared among academia working in this field. Some researchers focused on 

intentions, some focused-on exposures of sensitive parts and so on (Shayan, Abdullah 

and Karamizadeh, 2015; Osman et al., 2016) . They have shown that a vase range of 

objectionable postures exists. While some images exhibit several naked people or very 
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light dressed. Some other images present small body parts of one person. In this 

research, the definition mentioned in (Zaidan, Karim, Ahmad, Zaidan and Kiah, 

2015b) is used which defines any image that depicts body exposed between neck and 

knee area as objectionable image. 

Machine Learning approaches are used in classification problems in order to 

reduce human interventions in solving these issues and increasing accuracy. This 

approach can be applied in classification of objectionable images to overcome this 

problem with higher accuracy and simpler (Zaidan et al., 2015b; Hettiarachchi and 

Peters, 2016).   

Classification of objectionable images needs to follow a few steps, starting with 

skin detection (Yas, Zadain, Zaidan, Lakulu and Rahmatullah, 2017). Detection of skin 

is popular in image processing field. Outcome of skin detection phase which is 

generated feature vectors extracted from image will be used in training phase and 

classification of objectionable images (Zaidan et al., 2015b; Jang and Lee, 2018). 

However, existing skin detection methods are not perfectly effective due to lack of 

high accuracy skin colour models (Yas, Zaidan, Zaidan, Rahmatullah and Abdul 

Karim, 2018; Naji, Jalab and Kareem, 2019). The need to develop a robust skin 

detection is highly justifiable as it is foundation of objectionable image classifier. The 

reliable skin detector should prove high accuracy by improving number of true 

positives and meanwhile reducing false negatives. Also, it is important to address 

classification of objectionable images which contain people with skin colours rather 

than white which was missed in existing methods (Zaidan, Karim, Ahmad, Zaidan and 

Kiah, 2015a; Tariq, Razi, Badillo-Urquiola and Wisniewski, 2019a). 

1.3 Problem Statement 

Since the first phase of all content based objectionable image classifiers is skin 

detection, some of challenges lie in this stage such as variant colour of human skin 

presented in given image, which mainly is related to the illumination and available 

conditions of lighting and colour when given image is initially captured. Maintaining 
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colour consistency and its invariance especially against illumination is important 

challenge. Choosing the appropriate colour space will help to increase robustness of 

skin detector against illumination invariant. Another challenging concern in selecting 

robust skin detector against water and glass reflections (Naji et al., 2019). In order to 

make an algorithm widely accepted in automatic objectionable image classification 

field, the accuracy of algorithm is crucial to make it reliable. Models introduced in Ou 

et al. (2017) and Wang et al. (2018) shows higher accuracy and suggests that 

techniques which are utilizing local features with global features are achieving better 

performance. However, combining local feature and global feature extraction in 

closely integration and mutually affecting is missing and age estimation is not included 

in existing algorithms and false positive errors due to this is not inevitable. 

Therefore, this research proposes to ensemble facial age estimation with 

objectionable image classifier which is deep neural based and has holistic view as well 

as local view to images in order to decrease false positive and increase accuracy of 

objectionable image detection. 

1.4 Research Questions 

Research questions which led this study are as follow: 

(a) What are the available state-of-the-art techniques of age estimation and 

classifying pornographic images? 

(b) How will the ensemble deep neural technique improve the accuracy of 

pornographic image classification? 

(c) How the accuracy of proposed algorithm with existing state-of-the-art 

techniques will be compared? 
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1.5 Research Objectives 

The main objective of this research is to improve accuracy of objectionable 

image classifier techniques. Therefore, research objectives of this research which are 

providing response to mentioned research questions are stated as following: 

(a) To investigate existing age estimation techniques based on face images and

objectionable image classification techniques.

(b) To design and enhancement of ensemble of age estimation deep neural based

algorithm of objectionable image classifier.

(c) To evaluate accuracy of proposed technique with other objectionable image

classifier algorithms.

1.6 Research Scope 

The scope of this research is as follow: 

(a) Ensemble algorithm which combines objectionable image classifier and age

estimation is introduced,

(b) Image size greater than 50 × 50.

(c) The NPDI Dataset introduced in (Avila, Thome, Cord, Valle and de A. Araújo,

2013) is used to be able to benchmark objectionable image classifier with state-

of-the-art techniques for different skin colours.

(d) Objectionable Image Classification or OIC dataset is used for ablation study

on objectionable image classifier.

(e) MORPHII, AgeDB and FG-NET datasets are used for benchmarking GeAeNet

with state-of-the-art age estimation techniques.

(f) C# and Python is used for programming of algorithm.
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1.7 Significant of the Study 

The outcome of this research would greatly contribute to objectionable image 

classification and age estimation based on facial attributes with the following 

contributions: 

(a) Developing and demonstrating a deep neural network-based algorithm which

employs global and local features together and learns them in multi-task

learning which enables seamless integration and correlated mutually. This

algorithm which benefits of highly representative feature extraction and make

the algorithm both globally and locally context aware.

(b) Developing and introducing a novel age estimation algorithm which is deep

neural network-based and utilizes facial attributes which contributes to facial

aging process. The algorithm outputs the age and gender as age related

attribute, and it is extendable to include more age-related facial attributes.

Design of algorithm is based on conditional problem decided by facial

attributes involved in facial aging process.

(c) New Loss function used in supervision of GeAeNet which results in more

accurate probability distribution by making estimated age class distribution

deviation a standard deviation. This function not only reduces the deviation

from ground truth and more accurate age estimation but improved the

performance of AgeHoLoNet by reducing the error for age estimation of adult

border age subjects.

(d) Ensemble algorithm which integrates HoLoNet and GeAeNet to make

AgeHoLoNet, improves the accuracy of objectionable image classification by

reducing False Positive cases which a naked underage person is only seen in

image. Moreover, this approach can be used in tagging child sexual abuse

detection by considering the estimated age of human subject presented in

objectionable image.
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(e) Developing Objectionable Image Classification or OIC and its subset which is 

used for training objectionable image classifier and human sensitive body parts 

region of interest detector. 

1.8 Thesis Outline 

The outline of this thesis is formed from 6 chapters which its organization is as 

following: 

(a) Chapter 1 starts with introduction and background of problem and followed by 

research objectives to be achieved. Background of research is explained in this 

chapter and after elaboration over problem statement and highlighting the 

research questions, research objectives and scope of research is described. 

(b) Chapter 2 starts with different objectionable image filtering techniques and age 

estimation techniques are explained and reviewed. Explanation of basics of 

deep learning and evaluation metrics leads to elaboration of related works and 

critical analysis of them. 

Chapter 3 describes research methodology, design, and procedures. Moreover, 

implementation of proposed technique, HoLoNet Implementation details and 

GeAeNet and AgeHoloNet with details and formulas are explained and 

elaborated with diagrams and pseudocode. 

(c) Chapter 4 presents analysing and discussing on the results.  First of all, 

hypermeter selection for both HoLoNet and GeAenet is explained. Ablation 

study is then conducted for both   HoLoNet and GeAenet and analysed the 

result. Comparison with state-of-the-art algorithms is done for both 

objectionable image detection and age estimation and finally some sample 

image are showcased to illustrated performance of age estimation and 

objectionable image detection using HoLoNet and GeAenet and AgeHoLoNet 

over sample images from datasets. 
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(d) Chapter 5 reveals conclusion of this research, elaborates novelty of proposed

scheme, contribution, and suggested future work.
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Appendix A Python Coding for AgeHoLoNet 

Developing Age Aware Holistic Local Aware Deep Network for Objectionable 

Image Classification 

Introduction This research aims to develop an objectionable image classifier which 

is integrating local and global features of image and is aware of age 

and gender of human subjects in given image. The machine is 

installed with a python software that enables to run the code of 

machine learning algorithms and visualization analysis. 

Training Process of GeAeNet for Age Estimation 

import argparse 
from pathlib import Path 
import numpy as np 
from keras.callbacks import LearningRateScheduler, ModelCheckpoint 
from keras.optimizers import SGD, Adam 
import better_exceptions 
import random 
import math 
from PIL import Image 
import pandas as pd 
import cv2 
from keras.utils import Sequence, to_categorical 
import Augmentor 
from keras.applications import ResNet50 
from keras.layers import Dense 
from keras.models import Model 
from keras import backend as K 

def get_args(): 
    parser = argparse.ArgumentParser(description="This script trains 
GeAeNet for Age Estimation.", 

formatter_class=argparse.ArgumentDefaultsHelpFormatter) 
    parser.add_argument("--appa_dir", type=str, required=True, 

help="path to the APPA-REAL dataset") 
    parser.add_argument("--utk_dir", type=str, default=None, 

help="path to the UTK face dataset") 
    parser.add_argument("--output_dir", type=str, 
default="checkpoints", 

help="checkpoint dir") 
    parser.add_argument("--batch_size", type=int, default=32, 

help="batch size") 
    parser.add_argument("--nb_epochs", type=int, default=30, 

help="number of epochs") 
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    parser.add_argument("--lr", type=float, default=0.1, 
                        help="learning rate") 
    parser.add_argument("--opt", type=str, default="sgd", 
                        help="optimizer name; 'sgd' or 'adam'") 
    parser.add_argument("--model_name", type=str, 
default="ResNet50", 
                        help="model name: 'ResNet50'") 
    args = parser.parse_args() 
    return args 
 
 
class Schedule: 
    def __init__(self, nb_epochs, initial_lr): 
        self.epochs = nb_epochs 
        self.initial_lr = initial_lr 
 
    def __call__(self, epoch_idx): 
        if epoch_idx < self.epochs * 0.25: 
            return self.initial_lr 
        elif epoch_idx < self.epochs * 0.50: 
            return self.initial_lr * 0.2 
        elif epoch_idx < self.epochs * 0.75: 
            return self.initial_lr * 0.04 
        return self.initial_lr * 0.008 
 
 
def get_optimizer(opt_name, lr): 
    if opt_name == "sgd": 
        return SGD(lr=lr, momentum=0.9, nesterov=True) 
    elif opt_name == "adam": 
        return Adam(lr=lr) 
    else: 
        raise ValueError("optimizer name should be 'sgd' or 'adam'") 
 
 
def main(): 
    args = get_args() 
    appa_dir = args.appa_dir 
    utk_dir = args.utk_dir 
    model_name = args.model_name 
    batch_size = args.batch_size 
    nb_epochs = args.nb_epochs 
    lr = args.lr 
    opt_name = args.opt 
 
    if model_name == "ResNet50": 
        image_size = 224 
     
 
    train_gen = FaceGenerator(appa_dir, utk_dir=utk_dir, 
batch_size=batch_size, image_size=image_size) 
    val_gen = ValGenerator(appa_dir, batch_size=batch_size, 
image_size=image_size) 
    model = get_model(model_name=model_name) 
    opt = get_optimizer(opt_name, lr) 
    model.compile(optimizer=opt, loss="categorical_crossentropy", 
metrics=[age_mae]) 
    model.summary() 
    output_dir = 
Path(__file__).resolve().parent.joinpath(args.output_dir) 
    output_dir.mkdir(parents=True, exist_ok=True) 
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    callbacks = [LearningRateScheduler(schedule=Schedule(nb_epochs, 
initial_lr=lr)), 

ModelCheckpoint(str(output_dir) + 
"/weights.{epoch:03d}-{val_loss:.3f}-{val_age_mae:.3f}.hdf5", 

monitor="val_age_mae", 
verbose=1, 
save_best_only=True, 
mode="min") 

] 

    hist = model.fit_generator(generator=train_gen, 
epochs=nb_epochs, 
validation_data=val_gen, 
verbose=1, 
callbacks=callbacks) 

    np.savez(str(output_dir.joinpath("history.npz")), 
history=hist.history) 

def get_transform_func(): 
    p = Augmentor.Pipeline() 

p.flip_left_right(probability=0.5)
p.rotate(probability=1, max_left_rotation=5,

max_right_rotation=5) 
p.zoom_random(probability=0.5, percentage_area=0.95)
p.random_distortion(probability=0.5, grid_width=2,

grid_height=2, magnitude=8) 
p.random_color(probability=1, min_factor=0.8, max_factor=1.2)
p.random_contrast(probability=1, min_factor=0.8, max_factor=1.2)
p.random_brightness(probability=1, min_factor=0.8,

max_factor=1.2) 
p.random_erasing(probability=0.5, rectangle_area=0.2)

    def transform_image(image): 
image = [Image.fromarray(image)] 
for operation in p.operations: 

r = round(random.uniform(0, 1), 1) 
if r <= operation.probability: 

image = operation.perform_operation(image) 
return image[0] 

    return transform_image 

class FaceGenerator(Sequence): 
    def __init__(self, appa_dir, utk_dir=None, batch_size=32, 
image_size=224): 

self.image_path_and_age = [] 
self._load_appa(appa_dir) 

if utk_dir: 
self._load_utk(utk_dir) 

self.image_num = len(self.image_path_and_age) 
self.batch_size = batch_size 
self.image_size = image_size 
self.indices = np.random.permutation(self.image_num) 
self.transform_image = get_transform_func() 
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    def __len__(self): 
return self.image_num // self.batch_size 

    def __getitem__(self, idx): 
batch_size = self.batch_size 
image_size = self.image_size 
x = np.zeros((batch_size, image_size, image_size, 3), 

dtype=np.uint8) 
y = np.zeros((batch_size, 1), dtype=np.int32) 

sample_indices = self.indices[idx * batch_size:(idx + 1) * 
batch_size] 

for i, sample_id in enumerate(sample_indices): 
image_path, age = self.image_path_and_age[sample_id] 
image = cv2.imread(str(image_path)) 
x[i] = self.transform_image(cv2.resize(image, 

(image_size, image_size))) 
age += math.floor(np.random.randn() * 2 + 0.5) 
y[i] = np.clip(age, 0, 100) 

return x, to_categorical(y, 101) 

    def on_epoch_end(self): 
self.indices = np.random.permutation(self.image_num) 

    def _load_appa(self, appa_dir): 
appa_root = Path(appa_dir) 
train_image_dir = appa_root.joinpath("train") 
gt_train_path = appa_root.joinpath("gt_avg_train.csv") 
df = pd.read_csv(str(gt_train_path)) 

for i, row in df.iterrows(): 
age = min(100, int(row.apparent_age_avg)) 
# age = int(row.real_age) 
image_path = train_image_dir.joinpath(row.file_name + 

"_face.jpg") 

if image_path.is_file(): 
self.image_path_and_age.append([str(image_path), 

age]) 

    def _load_utk(self, utk_dir): 
image_dir = Path(utk_dir) 

for image_path in image_dir.glob("*.jpg"): 
image_name = image_path.name  # 

[age]_[gender]_[race]_[date&time].jpg 
age = min(100, int(image_name.split("_")[0])) 

if image_path.is_file(): 
self.image_path_and_age.append([str(image_path), 

age]) 

class ValGenerator(Sequence): 
    def __init__(self, appa_dir, batch_size=32, image_size=224): 

self.image_path_and_age = [] 
self._load_appa(appa_dir) 
self.image_num = len(self.image_path_and_age) 
self.batch_size = batch_size 
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        self.image_size = image_size 
 
    def __len__(self): 
        return self.image_num // self.batch_size 
 
    def __getitem__(self, idx): 
        batch_size = self.batch_size 
        image_size = self.image_size 
        x = np.zeros((batch_size, image_size, image_size, 3), 
dtype=np.uint8) 
        y = np.zeros((batch_size, 1), dtype=np.int32) 
 
        for i in range(batch_size): 
            image_path, age = self.image_path_and_age[idx * 
batch_size + i] 
            image = cv2.imread(str(image_path)) 
            x[i] = cv2.resize(image, (image_size, image_size)) 
            y[i] = age 
 
        return x, to_categorical(y, 101) 
 
    def _load_appa(self, appa_dir): 
        appa_root = Path(appa_dir) 
        val_image_dir = appa_root.joinpath("valid") 
        gt_val_path = appa_root.joinpath("gt_avg_valid.csv") 
        df = pd.read_csv(str(gt_val_path)) 
 
        for i, row in df.iterrows(): 
            age = min(100, int(row.apparent_age_avg)) 
            # age = int(row.real_age) 
            image_path = val_image_dir.joinpath(row.file_name + 
"_face.jpg") 
 
            if image_path.is_file(): 
                self.image_path_and_age.append([str(image_path), 
age]) 
 

 
def age_mae(y_true, y_pred): 
    true_age = K.sum(y_true * K.arange(0, 101, dtype="float32"), 
axis=-1) 
    pred_age = K.sum(y_pred * K.arange(0, 101, dtype="float32"), 
axis=-1) 
    mae = K.mean(K.abs(true_age - pred_age)) 
    return mae 
 
 
def get_model(model_name="ResNet50"): 
    base_model = None 
 
    if model_name == "ResNet50": 
        base_model = ResNet50(include_top=False, weights='imagenet', 
input_shape=(224, 224, 3), pooling="avg") 
    elif model_name == "InceptionResNetV2": 
        base_model = InceptionResNetV2(include_top=False, 
weights='imagenet', input_shape=(299, 299, 3), pooling="avg") 
 
    prediction = Dense(units=101, kernel_initializer="he_normal", 
use_bias=False, activation="softmax", 
                       name="pred_age")(base_model.output) 
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    model = Model(inputs=base_model.input, outputs=prediction) 

    return model 

Performing Age Estimation Using GeAeNet 

from pathlib import Path 
import cv2 
import dlib 
import numpy as np 
import argparse 
from contextlib import contextmanager 
from keras.utils.data_utils import get_file 

pretrained_model = "GEAENET.hdf5" 

def get_args(): 
    parser = argparse.ArgumentParser(description="This script 
estimates age for the detected faces.", 

formatter_class=argparse.ArgumentDefaultsHelpFormatter) 
    parser.add_argument("--model_name", type=str, 
default="ResNet50", 

help="model name: 'ResNet50'") 
    parser.add_argument("--weight_file", type=str, default=None, 

help="path to weight file GEAENET.hdf5") 
    parser.add_argument("--margin", type=float, default=0.4, 

help="margin around detected face for age-
gender estimation") 
    parser.add_argument("--image_dir", type=str, default=None, 

help="target image directory; if set, images 
in image_dir are used") 
    args = parser.parse_args() 
    return args 

def draw_label(image, point, label, font=cv2.FONT_HERSHEY_SIMPLEX, 
font_scale=1, thickness=2): 

    size = cv2.getTextSize(label, font, font_scale, thickness)[0] 
    x, y = point 
    cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 
0, 0), cv2.FILLED) 
    cv2.putText(image, label, point, font, font_scale, (255, 255, 
255), thickness) 

def yield_images_from_dir(image_dir): 
    image_dir = Path(image_dir) 

    for image_path in image_dir.glob("*.*"): 



173 

   img = cv2.imread(str(image_path), 1) 

if img is not None: 
h, w, _ = img.shape 
r = 640 / max(w, h) 
yield cv2.resize(img, (int(w * r), int(h * r))) 

def draw_label(image, point, label, font=cv2.FONT_HERSHEY_SIMPLEX, 
font_scale=0.8, thickness=1): 

    size = cv2.getTextSize(label, font, font_scale, thickness)[0] 
    x, y = point 
    cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 
0, 0), cv2.FILLED) 
    cv2.putText(image, label, point, font, font_scale, (255, 255, 
255), thickness, lineType=cv2.LINE_AA) 

depth = 16 
k = 8 
weight_file = get_file("weights.hdf5", pretrained_model, 
cache_subdir="pretrained_models", file_hash=modhash, cache_dir=None) 
margin = 0.4 
image_dir = 'images' 

# for face detection 
detector = CenterFace_detector() 

# load model and weights 
img_size = 64 
model = WideResNet(img_size, depth=depth, k=k)() 
model.load_weights(weight_file) 

image_generator = yield_images_from_dir(image_dir) 

for img in image_generator: 
input_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 
img_h, img_w, _ = np.shape(input_img) 

# detect faces using dlib detector 
detected = detector(input_img, 1) 

     faces = np.empty((len(detected), img_size, img_size, 3)) 

if len(detected) > 0: 
for i, d in enumerate(detected): 

x1, y1, x2, y2, w, h = d.left(), d.top(), d.right() 
+ 1, d.bottom() + 1, d.width(), d.height()

xw1 = max(int(x1 - margin * w), 0) 
yw1 = max(int(y1 - margin * h), 0) 
xw2 = min(int(x2 + margin * w), img_w - 1) 
yw2 = min(int(y2 + margin * h), img_h - 1) 
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 

2) 
# cv2.rectangle(img, (xw1, yw1), (xw2, yw2), (255, 

0, 0), 2) 
faces[i, :, :, :] = cv2.resize(img[yw1:yw2 + 1, 

xw1:xw2 + 1, :], (img_size, img_size)) 
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# predict ages and genders of the detected faces 
results = model.predict(faces) 
predicted_genders = results[0] 
ages = np.arange(0, 101).reshape(101, 1) 
predicted_ages = results[1].dot(ages).flatten() 

# draw results 
for i, d in enumerate(detected): 

label = str(int(predicted_ages[i])) 
draw_label(img, (d.left(), d.top()), label) 

plt.figure(num=None, figsize=(20, 20), dpi=80, 
facecolor='w', edgecolor='k') 

plt.imshow(img) 
plt.show() 

Performing Objectionable Image Classification Using HoLoNet 

import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
%matplotlib inline 
from keras.models import load_model 
from datetime import datetime 
import warnings 
warnings.filterwarnings("ignore") 
import matplotlib.image as mpimg 
import cv2 
from PIL import Image 
import numpy as np 
from skimage import transform 

model = load_model("weights.h5") 

def load(filename): 
    np_image = Image.open(filename) 
    np_image = np.array(np_image).astype('float32')/255 
    np_image = transform.resize(np_image, (224, 224, 3)) 
    np_image = np.expand_dims(np_image, axis=0) 
    img=mpimg.imread(filename) 
    plt.imshow(img) 
    return np_image 

image = load("image.jpg") 

ans = model.predict(image) 

maping = {0 : "Normal", 1 : "Objectinable", 2 : "Racy"} 

new_ans = np.argmax(ans[0]) 

print(maping[new_ans], np.round(ans,2)) 
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print("With {} probability".format(ans[0][new_ans])) 
 
 
 
 

  

Performing Objectionable Image Classification Using AgeHoLoNet 
 
 
 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
%matplotlib inline 
from keras.models import load_model 
from datetime import datetime 
import warnings 
warnings.filterwarnings("ignore") 
import matplotlib.image as mpimg 
import cv2 
from PIL import Image 
import numpy as np 
from skimage import transform 
 
model = load_model("weights.h5") 
 
def load(filename): 
    np_image = Image.open(filename) 
    np_image = np.array(np_image).astype('float32')/255 
    np_image = transform.resize(np_image, (224, 224, 3)) 
    np_image = np.expand_dims(np_image, axis=0) 
    img=mpimg.imread(filename) 
    plt.imshow(img) 
    return np_image 
 
image = load("image.jpg") 
 
ans = model.predict(image) 
 
maping = {0 : "Normal", 1 : "Objectinable", 2 : "Racy"} 
 
new_ans = np.argmax(ans[0]) 
 
print(maping[new_ans], np.round(ans,2)) 
print("With {} probability".format(ans[0][new_ans])) 
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