
MODERN CODE REVIEW KNOWLEDGE SHARING MODEL TO REDUCE

SOFTWARE ENGINEERING WAITING WASTE

NARGIS FATIMA

UNIVERSITI TEKNOLOGI MALAYSIA

MODERN CODE REVIEW KNOWLEDGE SHARING MODEL TO REDUCE

SOFTWARE ENGINEERING WAITING WASTE

NARGIS FATIMA

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy

Razak Faculty of Technology and Informatics

Universiti Teknologi Malaysia

JULY 2021

iv

DEDICATION

This thesis is dedicated to my father, whose unconditional love and encouragement
sustained me throughout this Ph.D. Journey. It is also dedicated to my late mother

who taught me to be patient and have faith in Allah in every situation.

v

ACKNOWLEDGEMENT

This research journey has been challenging. I thank Allah Tallah for providing
me the courage and support to complete my research. To prepare this thesis many
people, researchers, academicians, and practitioners guided and helped me in different
ways. I would like to express my sincere gratitude to my supervisor Prof. Dr. Suriayati
Chuprat for continuous support, encouragement, and immense knowledge. Her
guidance helps me all the time in the research and writing of the thesis. As a learner, I
cannot imagine a better advisor than her. Without her guidance and support, this
research would not be possible. Besides my supervisor, I would like to thank the rest
of my thesis committee for the insightful feedback that guided in to broaden my
research. I am appreciative of Universiti Teknologi Malaysia (UTM) for partially
funding my Ph.D. research and providing me an excellent research environment. I am
also thankful to all my friends and colleagues, who supported me in the completion of
my research work. Special thanks to my best friend Sumaira Nazir and her family for
their continuous support. It is hard to explain how grateful I am for having such a
friend like her. Finally, I would like to thank my family for their support to complete
my Ph.D. research. I am especially thankful to my brother Syed Ammar Yasir and
sister Surraiya Tabassum who supported me throughout my Ph.D. Journey.

vi

ABSTRACT

Reducing waiting waste in software engineering activities such as software
requirement gathering, software modelling and construction, software inspections, and
modern code review is challenging. Waiting waste creates a blocking state for other
tasks, delays project, decreases developers’ productivity, and increases mental distress.
One of the major causes of waiting waste generation is a lack of knowledge sharing in
Modern Code Review (MCR). Although past studies have focused on knowledge
sharing in other software engineering activities, little evidence is available in the
context of MCR, resulting in the lack of knowledge sharing guidelines in MCR to
guide software engineers to reduce software engineering waiting waste. This study
developed a modern code review knowledge sharing model to reduce software
engineering waiting waste. To develop the model, the knowledge sharing factors in
MCR and the ranked most influential knowledge sharing factors for MCR activities
were identified. A systematic literature review was conducted to identify the
knowledge sharing factors, subfactors, and categories in MCR. An electronic
knowledge sharing MCR guideline was also developed based on the MCR knowledge
sharing model. Four software engineering experts validated the identified list of
knowledge sharing factors, sub-factors, and categories in MCR for their naming
conventions, grouping, and sub-grouping. A Delphi survey involving ten experts was
employed to identify the most influential knowledge sharing factors for MCR
activities. The results from the Delphi survey were used to develop the MCR
knowledge sharing model. The relationships between the categories of the MCR
knowledge sharing model - Individual, Team, Facility Conditions, Artefact, and Social
- were explored using regression analysis. An electronic reference guide of the MCR
knowledge sharing model was developed using ASP.NET and SQL server based on
the developed MCR knowledge sharing model. The experiment was conducted with
the support of the electronic reference guide of the MCR knowledge sharing model to
evaluate the effectiveness of the developed model to reduce software engineering
waiting waste. In sum, this study has developed MCR knowledge sharing mode, which
constitutes of evaluated list of knowledge sharing factors in MCR, and the most
influential knowledge sharing factors for MCR activities to reduce software
engineering waiting waste.

vii

ABSTRAK

Mengurangkan pembaziran menunggu dalam aktiviti kejuruteraan perisian
seperti pengumpulan keperluan perisian, permodelan dan pembangunan perisian,
pengujian perisian, serta tinjauan kod moden merupakan sesuatu yang mencabar.
Pembaziran menunggu mewujudkan keadaan terhalang bagi tugas-tugas lain,
kelewatan projek, mengurangkan produktiviti pembangun, dan meningkatkan
tekanan mental. Salah satu penyebab utama penghasilan pembaziran menunggu
adalah kurangnya perkongsian pengetahuan dalam Tinjauan Kod Moden (MCR).
Walaupun, kajian terdahulu menumpukan kepada perkongsian pengetahuan dalam
aktiviti kejuruteraan perisian lain, sedikit bukti kajian terdapat dalam konteks
MCR, menyebabkan kurangnya panduan perkongsian pengetahuan dalam MCR
bagi membantu jurutera perisian untuk mengurangkan pembaziran menunggu
kejuruteraan perisian. Kajian ini telah membangunkan model perkongsian
pengetahuan tinjauan kod moden bagi mengurangkan pembaziran menunggu
kejuruteraan perisian. Untuk membangunkan model tersebut, faktor perkongsian
pengetahuan dalam MCR serta faktor perkongsian pengetahuan paling utama
untuk aktiviti MCR telah dikenal pasti. Tinjauan literatur sistematik dijalankan
bagi mengenal pasti faktor perkongsian pengetahuan, sub-faktor serta kategori
dalam MCR. Garis panduan perkongsian pengetahuan elektronik juga
dibangunkan berdasarkan model perkongsian pengetahuan MCR. Empat pakar
kejuruteraan perisian mengesahkan senarai faktor perkongsian pengetahuan, sub-
faktor dan kategori dalam MCR yang dikenal pasti untuk penyelarasan penamaan,
pengelompokan dan sub-kumpulan mereka. Tinjauan Delphi yang melibatkan
sepuluh pakar dilaksanakan bagi mengenal pasti faktor perkongsian pengetahuan
yang paling berpengaruh dalam aktiviti MCR. Hasil kajian Delphi digunakan
untuk membangunkan model perkongsian pengetahuan MCR. Hubungan antara
kategori dalam model perkongsian pengetahuan MCR - Individu, Pasukan,
Keadaan Kemudahan, Artefak, dan Sosial - dikaji menggunakan analisis regresi.
Garis panduan elektronik model perkongsian pengetahuan MCR dibangunkan
menggunakan ASP.NET dan pelayan SQL berdasarkan model perkongsian
pengetahuan MCR yang telah dibina. Eksperimen telah dijalankan dengan
sokongan garis panduan elektronik model perkongsian pengetahuan MCR untuk
menilai keberkesanan model yang dibangunkan untuk mengurangkan pembaziran
menunggu kejuruteraan perisian. Secara keseluruhannya, kajian ini telah
membangunkan model perkongsian pengetahuan MCR, yang terdiri daripada
senarai faktor perkongsian pengetahuan yang dinilai dalam MCR, serta faktor
perkongsian pengetahuan yang paling berpengaruh dalam aktiviti MCR untuk
mengurangkan pembaziran menunggu kejuruteraan perisian.

viii

TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xv

LIST OF FIGURES xviii

LIST OF ABBREVIATIONS xxii

LIST OF SYMBOLS xxiii

LIST OF APPENDICES xxiv

INTRODUCTION 1

1.1 Introduction 1

1.2 Background of Research 1

1.3 Research Motivation 4

1.4 Problem Statement 5

1.5 Research Questions 6

1.6 Objectives of the Study 6

1.7 Research Scope 8

1.8 Contributions and Significance of Study 9

1.9 Thesis Outline 10

1.10 Chapter Summary 10

LITERATURE REVIEW 13

2.1 Introduction 13

2.2 Software Engineering Wastes 13

2.2.1 Waiting Waste 14

ix

2.2.1.1 Root Causes of Waiting Waste 15

2.2.1.2 Consequences of Waiting Waste 16

2.2.2 Defect Waste 16

2.2.2.1 Root Causes of Defect Waste 17

2.2.2.2 Consequences of Defect Waste 17

2.2.3 Rework Waste 18

2.2.3.1 Root Causes of Rework Waste 18

2.2.3.2 Consequences of Rework Waste 19

2.2.4 Developing Extra or Erroneous Features Waste 19

2.2.4.1 Root Causes of Developing Extra or
Erroneous Features Waste 19

2.2.4.2 Consequences of Developing Extra or
Erroneous Features Waste 20

2.2.5 Mental Distress Waste 20

2.2.5.1 Root Causes of Mental Distress Waste 20

2.2.5.2 Consequences of Mental Distress Waste 21

2.2.6 Needless Composite Solutions Waste 21

2.2.6.1 Root Causes of Needless Composite
Solution Waste 21

2.2.6.2 Consequences of Needless Composite
Solution Waste 22

2.2.7 Motion Waste 22

2.2.7.1 Root Causes of Motion Waste 22

2.2.7.2 Consequences of Motion Waste 23

2.2.8 Lack of Maintainability Waste 23

2.2.8.1 Root Causes of Lack of Maintainability
Waste 23

2.2.8.2 Consequences of Lack of Maintainability
Waste 23

2.3 Modern Code Review and Waiting Waste 28

2.3.1 Modern Code Review 28

2.3.1.1 Modern Code Review Process Overview 30

2.3.1.2 Benefits of Modern Code Review 31

x

2.3.2 Waiting Waste Generation in Modern Code Review 33

2.4 Need of Modern Code Review Knowledge Sharing Model to
Reduce Software Engineering Waiting Waste 38

2.5 Existing Research Regarding Knowledge Sharing in
Software Engineering 40

2.6 Existing Knowledge Sharing Models 42

2.6.1 Model of Knowledge Sharing Drivers in Software
Teams 42

2.6.2 Model for Knowledge Sharing among Employees in
Organization. 42

2.7 Existing Studies on Knowledge Sharing in Modern Code
Review 44

2.8 Research Gap in Literatures Regarding Knowledge Sharing
in Modern Code Review 48

2.9 Chapter Summary 54

RESEARCH METHODOLOGY 55

3.1 Introduction 55

3.2 Research Design and Research Procedure 55

3.3 Phases of the Research Study 57

3.3.1 Phase I of Research Study 57

3.3.2 Phase II of Research Study 59

3.3.3 Phase III of Research Study 60

3.4 Systematic Literature Review (SLR) 61

3.4.1 Research Question and Research Objective 61

3.4.2 Key Terms and their Alternatives 62

3.4.3 Search String 62

3.4.4 Search Process 63

3.4.5 Study Selection 63

3.4.5.1 Inclusion Criteria 64

3.4.5.2 Exclusion Criteria 64

3.4.6 Study Quality Assessment 65

3.4.7 Data Extraction 67

xi

3.5 Qualitative Analysis Using Data Coding, Constant
Comparison, and Memoing Techniques from Grounded
Theory 68

3.6 Expert Review 72

3.7 Delphi Survey 74

3.7.1 Research Objectives of Delphi Survey Conduction 74

3.7.2 Delphi Panel Design 75

3.7.3 Delphi Panel Recruitment Procedure 76

3.7.4 Delphi Rounds 76

3.7.5 Questionnaire Design 77

3.7.6 Pilot Study 79

3.7.7 Procedure for Data Analysis 79

3.7.7.1 Procedure to Analyze Data to Assess the
Perceived Practicality of Knowledge
Sharing Factors for MCR 80

3.7.7.2 Procedure to Analyze Data to Assess the
Perceived Level of Influence of Knowledge
Sharing Factor for MCR 83

3.8 Regression Analysis 85

3.9 Development of Modern Code Review Knowledge Sharing
Model and its Electronic Reference Guideline 85

3.10 Experiment 86

3.10.1 Objective of the Experiment Conduction 87

3.10.2 Experiment Environment 87

3.10.3 Hypothesis Formulation 87

3.10.3.1 Hypothesis formulated for Pre-test. 88

3.10.3.2 Hypothesis formulated for Post-test. 88

3.10.4 Experiment Variables 89

3.10.4.1 Independent Variables 89

3.10.4.2 Dependent Variable 89

3.10.5 Selection of Subject 90

3.10.6 Experiment Instrumentation 91

3.10.7 Validity Evaluation 92

3.11 Chapter Summary 93

xii

 IDENTIFICATION OF FACTORS AFFECTING
KNOWLEDGE SHARING IN MODERN CODE REVIEW 95

4.1 Introduction 95

4.2 Application of Methodologies to Identify knowledge Sharing
Factors 95

4.2.1 Procedure to Identify Data Units 95

4.2.1.1 Data Sources Distribution 96

4.2.1.2 Application of Data Coding 99

4.2.1.3 Application of Data Coding Example 101

4.2.2 Expert Review 132

4.3 Chapter Summary 140

 DELPHI SURVEY RESULTS 141

5.1 Introduction 141

5.2 Significance and Conduction of Delphi Survey 141

5.3 Delphi Survey Data Collection and Results Analysis 143

5.3.1 Data Collection Round 1 144

5.3.2 Results Analysis Round 1 144

5.3.2.1 Results Analysis of Perceived Level of
Practicality of Knowledge Sharing Factors
for MCR Delphi Round 1 145

5.3.2.2 Results Analysis of Most Influential
Knowledge Sharing Factors for MCR
Activities Delphi Round 1 147

5.3.2.3 Delphi Panel Members Suggestions and
Performed Amendments 160

5.3.3 Data Collection Round 2 167

5.3.4 Results Analysis Round 2 167

5.3.4.1 Result Analysis of Perceived Level of
Practicality of Knowledge Sharing Factors
Delphi Round 2 168

5.3.4.2 Result Analysis Regarding Most
Influential Knowledge Sharing Factors
for MCR Activities Delphi Round 2 173

5.3.4.3 Knowledge Sharing Factors, Sub-factors,
and Categories Attained as A Result of
Delphi Round 2 194

xiii

5.4 Chapter Summary 195

MODERN CODE REVIEW KNOWLEDGE SHARING
MODEL DEVELOPMENT AND EVALUATION 201

6.1 Introduction 201

6.2 Modern Code Review Knowledge Sharing Model to Reduce
Software Engineering Waiting Waste 201

6.3 Analysis of Relationship between Knowledge Sharing
Factors, sub-Factors and Categories through Regression
Analysis 202

6.4 Electronic Reference Guideline of Modern Code Review
Knowledge Sharing Model 206

6.4.1 Motivation of Electronic Reference Guideline of
Modern Code Review Knowledge Sharing Model. 206

6.4.2 Development of Electronic Reference Guideline of
Modern Code Review Knowledge Sharing Model. 210

6.4.3 Mapping Between Modern Code Review Knowledge
Sharing Model and Electronic Reference Guideline 211

6.4.4 Evaluation of Electronic Reference Guideline of
Modern Code Review Knowledge Sharing Model. 213

6.5 Evaluation of Modern Code Review Knowledge Sharing
Model 214

6.5.1 Experiment Execution 215

6.5.2 Data Collected in Experiment Session I and
Session II. 218

6.5.3 Data Analysis for Waiting Waste Evaluation 220

6.5.3.1 Data Analysis Group I and Group II
“Pre-test” 221

6.5.3.2 Data Analysis Group I and Group II
“Post-test” 223

6.6 Chapter Summary 226

CONCLUSION 227

7.1 Introduction 227

7.2 Summary of the Research 227

7.3 Research Objectives Achievements 230

7.4 Research Contributions and Significance 233

7.5 Research Limitations 235

xiv

7.6 Future Research Opportunities 236

7.7 Chapter Summary 237

REFERENCES 238

LIST OF PUBLICATIONS 322

xv

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 1.1 Research questions and research objectives 7

Table 2.1 Wastes generated during software engineering phases 24

Table 2.2 Benefits of modern code review 32

Table 2.3 Existing research regarding knowledge sharing in software
engineering. 41

Table 2.4 Existing studies on knowledge sharing in modern code review 45

Table 2.5 Research gap in the literature regarding the knowledge sharing
aspect in modern code review 50

Table 3.1 Summary of research design and research procedure 56

Table 3.2 Key terms and their alternatives 62

Table 3.3 Checklist for quality assessment (Kitchenham and Charters, 2007) 65

Table 3.4 Evaluation of selected studies depending upon quality assessment
checklists. 65

Table 3.5 Scoring scale for quality assessment 67

Table 3.6 Data extraction form to record extracted data 68

Table 3.7 Data extraction form representing data from one selected study 68

Table 3.8 Selection criteria of experts for expert review 73

Table 3.9 Delphi panel selection criteria 75

Table 3.10 Questions for designing the questionnaire, adopted from the work
of (Mark, 2006) 77

Table 3.11 Criteria to evaluate the Coefficient of variation of knowledge
sharing factors, adopted from the work of (Yang, 2000) 82

Table 4.1 Data sources extracted from particular databases 96

Table 4.2 Distribution of studies based on database 98

Table 4.3 Description of attributes and symbols used for application of data
coding techniques with data sources. 101

Table 4.4 Constant comparison and memoing within data source KSFP1 103

Table 4.5 Constant comparison and memoing within data source KSFP2 109

xvi

Table 4.6 Constant comparison and memoing among data sources KSFP1
& KSFP2 114

Table 4.7 Descriptions of knowledge sharing factors, sub-factors, and
categories 117

Table 4.8 Recommendations suggested by the experts 133

Table 4.9 Knowledge sharing factors, sub-factors, and categories attained
as a result of expert review. 135

Table 4.10 Description of modified and added knowledge sharing factors,
sub-factors, and categories as a result of expert review. 139

Table 5.1 Suggestions from Delphi panel members in Round 1 161

Table 5.2 Modified list of knowledge sharing factor, sub-factors, and
categories based on Delphi panel members suggestions in
Round 1 162

Table 5.3 Description of modified and added knowledge sharing factors,
sub-factors, and categories as a result of Delphi Round 1 166

Table 5.4 Ranking of knowledge sharing factors for perceived practicality
level 172

Table 5.5 Ranking of most influential knowledge sharing factors
(source code preparation) Round 2 177

Table 5.6 Ranking of most influential knowledge sharing factors
(source code submission) Round 2 181

Table 5.7 Ranking of most influential knowledge sharing factors
(reviewer selection and notification) Round 2 185

Table 5.8 Ranking of most influential knowledge sharing factors
(source code review) Round 2 190

Table 5.9 Ranking of most influential knowledge sharing factors
(source code approval) Round 2 194

Table 5.10 List of knowledge sharing factor, sub-factors, and categories
attained as a result of Delphi survey 194

Table 6.1 Form template to record waiting waste generation 217

Table 6.2 Experiment session I, waiting waste evaluation without using
modern code review knowledge sharing model (Pre-test) 219

Table 6.3 Experiment session II, waiting waste evaluation without and with
using modern code review knowledge sharing model (Post-test) 220

Table 6.4 Analysis for waiting waste “Group I” and “Group II” without
using modern code review knowledge sharing model. 221

xvii

Table 6.5 Analysis for waiting waste “Group I” without using knowledge
sharing model and “Group II” with using knowledge sharing
model. 224

xviii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 1.1 Problem statement flow diagram 6

Figure 1.2 Thesis outline 11

Figure 2.1 Keyword relationship diagram of chapter 2 14

Figure 2.2 Modern code review process (Bosu et al., 2017) 32

Figure 2.3 Model for knowledge sharing drivers in software teams
(Ghobadi, 2015) 43

Figure 2.4 Model for knowledge sharing among employees in organization
(Dheyaa Noor et al., 2014) 44

Figure 3.1 Phases and activities of research study (part a) 58

Figure 3.2 Phases and activities of research study (part b) 59

Figure 3.3 SLR steps overview (Kitchenham & Charters, 2007) 61

Figure 3.4 Systematized approach for identification of knowledge sharing
factors from literature 71

Figure 3.5 Activities performed during expert review. 72

Figure 4.1 Inclusion and exclusion process 97

Figure 5.1 Mean values for practicality analysis of knowledge sharing
factors in Round 1 146

Figure 5.2 Standard deviation values for practicality analysis of knowledge
sharing factors in Round 1 146

Figure 5.3 Coefficient of variation values for practicality analysis of
knowledge sharing factors in Round 1 147

Figure 5.4 Mean values for most influential knowledge sharing factors
(source code preparation) Round 1 149

Figure 5.5 Mean values for most influential knowledge sharing factors
(source code preparation) Round 1 149

Figure 5.6 Coefficient of variation for most influential knowledge sharing
factors (source code preparation) Round 1 150

Figure 5.7 Mean values for most influential knowledge sharing factors
(source code submission) Round 1 151

xix

Figure 5.8 Standard deviation for most influential knowledge sharing factors
(source code submission) Round 1 152

Figure 5.9 Coefficient of variation for most influential knowledge sharing
factors (source code submission) Round 1 152

Figure 5.10 Mean values for most influential knowledge sharing factors
(reviewer selection and notification) Round 1 154

Figure 5.11 Standard deviation values for most influential knowledge sharing
factors (reviewer selection and notification) Round 1 154

Figure 5.12 Coefficient of variation values for most influential knowledge
sharing factors (reviewer selection and notification) Round 1 155

Figure 5.13 Mean values for most influential knowledge sharing factors
(source code review) Round 1 156

Figure 5.14 Standard deviation for most influential knowledge sharing factors
(source code review) Round 1 157

Figure 5.15 Coefficient of variation for most influential knowledge sharing
factors (source code review) Round 1 157

Figure 5.16 Mean values for most influential knowledge sharing factors
(source code approval) Round 1 159

Figure 5.17 Standard deviation for most influential knowledge sharing
factors (source code approval) Round 1 159

Figure 5.18 Coefficient of variation for most influential knowledge sharing
factors (source code approval) Round 1 160

Figure 5.19 Mean values for practicality analysis of knowledge sharing
factors (Round 1) 170

Figure 5.20 Standard deviation values for practicality analysis of knowledge
sharing factors (Round 2) 170

Figure 5.21 Coefficient of variation values for the practicality of knowledge
sharing factors (Round 2) 171

Figure 5.22 Difference of coefficient of variation for practicality analysis of
knowledge sharing factors between Round 1 and Round 2 171

Figure 5.23 Comparison of the coefficient of variation for practicality analysis
of knowledge sharing factors in Round 1 and Round 2 172

Figure 5.24 Mean values for most influential knowledge sharing factors
(source code preparation) Round 2 175

Figure 5.25 Standard deviation values for most influential knowledge sharing
factors (source code preparation) Round 2 175

xx

Figure 5.26 Coefficient of variation values for most influential knowledge
sharing factors (source code preparation) Round 2 176

Figure 5.27 Difference of coefficient of variation between Round 1 and
Round 2 for most influential knowledge sharing factors
(source code preparation) 176

Figure 5.28 Comparison of Coefficient of variation between Round 1 and
Round 2 for most influential knowledge sharing factors
(source code preparation) 177

Figure 5.29 Mean values for most influential knowledge sharing factors in
Round 2 (source code submission) 179

Figure 5.30 Standard deviation values for most influential knowledge sharing
factors in Round 2 (source code submission) 179

Figure 5.31 Coefficient of variation values for most influential knowledge
sharing factors in Round 2 (source code submission) 180

Figure 5.32 Difference of coefficient of variation between Round 1 and
Round 2 or most influential knowledge sharing factors
(source code submission) 180

Figure 5.33 Comparison of the coefficient of variation between Round 1 and
Round 2 for most influential knowledge sharing factors
(source code submission) 181

Figure 5.34 Mean values for most influential knowledge sharing factors in
Round 2 (reviewer selection and notification) 183

Figure 5.35 Standard deviation values for most influential knowledge sharing
factors in Round 2 (reviewer selection and notification) 183

Figure 5.36 Coefficient of variation values for most influential knowledge
sharing factors in Round 2 (reviewer selection and notification) 184

Figure 5.37 Difference of coefficient of variation between Round 1 and
Round 2 for most influential knowledge sharing factors
(reviewer selection and notification) 184

Figure 5.38 Comparison of coefficient of variation between Round 1 and
Round 2 for most influential knowledge sharing factors
(reviewer selection and notification) 185

Figure 5.39 Mean values for most influential knowledge sharing factors in
Round 2 (source code review) 187

Figure 5.40 Standard deviation values for most influential knowledge sharing
factors in Round 2 (source code review) 188

Figure 5.41 Coefficient of variation values for most influential knowledge
sharing factors in Round 2 (source code review) 188

xxi

Figure 5.42 Difference of the coefficient of variation between Round 1
and Round 2 for most influential knowledge sharing factors
(source code review) 189

Figure 5.43 Comparison of coefficient of variation between Round 1 and
Round 2 for most influential knowledge sharing factors
(source code review) 189

Figure 5.44 Mean values for most influential knowledge sharing factors in
Round 2 (source code approval) 191

Figure 5.45 Standard Deviation values for most influential knowledge
sharing factors in Round 2 (source code approval) 192

Figure 5.46 Coefficient of variation values for most influential knowledge
sharing factors in Round 2 (source code approval) 192

Figure 5.47 Difference of the coefficient of variation between Round 1 and
Round 2 for most influential knowledge sharing factors
(source code approval) 193

Figure 5.48 Comparison of coefficient of variation between Round 1 and
Round 2 for most influential knowledge sharing factors
(source code approval) 193

Figure 6.1 Modern code review knowledge sharing model to reduce
software engineering waiting waste (Part a) 208

Figure 6.2 Modern code review knowledge sharing model to reduce
software engineering waiting waste (Part b) 209

Figure 6.3 Main page of electronic reference guide 212

Figure 6.4 About us Page 212

Figure 6.5 Knowledge sharing factors, sub-factors, categories with their
descriptions 213

Figure 6.6 Most influencing Knowledge sharing factors for each MCR
activity 213

Figure 6.7 Process flow for MCR (Bosu et al., 2017) 215

xxii

LIST OF ABBREVIATIONS

ACM - Association for Computing Machinery

ASP.Net - Active Server Pages .Net

CV - Coefficient of Variation

CMPPV - Composite Mean Perceived Practicality Values

CMPIV - Composite Mean Perceived Influence Values

IEEE - Institute of Electrical and Electronics Engineers

KSF - Knowledge Sharing Factors

KSSbF - Knowledge Sharing Sub-factors

KSFP1 - Knowledge Sharing Factor Paper1

KSFP2 - Knowledge Sharing Factor Paper2

MCRKSM - Modern Code Review Knowledge Sharing Model

MCR - Modern Code Review

MPIV - Mean Perceived Influence Values

MPPV - Mean Perceived Practicality Values

RSN - Reviewer Selection and Notification

SLR - Systematic Literature Review

SCP - Source Code Preparation

SCS - Source Code Submission

SCR - Source Code Review

SCA - Source Code Approval

SQL - Structured Query Language

SWEBOK - Software Engineering Body of Knowledge

UTM - Universiti Teknologi Malaysia

WWW - World Wide Web

xxiii

LIST OF SYMBOLS

𝜎 - Standard Deviation

µ - Mean

β - Coefficient

▲ - Category

➔ - Group Cluster under Category

_ - Data Units Clustered Under a Group
1, 2, 3…. - Research Statement Number
1a, 1b, 1c… - Data Unit in Statement 1

R1 - Delphi Round 1

R2 - Delphi Round 2

xxiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Search Strings Executed to Database 254

Appendix B Distribution of Data Sources 256

Appendix C Quality Assessment Scores of Research Papers 257

Appendix D Research Papers Selected for SLR after Quality Assessment 262

Appendix E Implementation of Data Coding Techniques 268

Appendix F List of Knowledge Sharing Factors Attained after SLR 280

Appendix G Demographic Information 290

Appendix H Instructions and Feedback Form Template for Expert Review 293

Appendix I Delphi Surveys Invitation Letter 295

Appendix J Delphi Survey Questionnaires 297

Appendix K Delphi Survey Results 301

Appendix L Result of Regression Analysis 318

Appendix M Experiment Material 320

1

INTRODUCTION

1.1 Introduction

This chapter provides the details regarding the research background, problem

statement, research questions, research objectives, scope of the study, significance, and

contributions of the study.

1.2 Background of Research

Software engineering is a cost-effective development of high-quality software

within specified resources (Sedano and Ralph, 2017). The success factor of software

depends on whether the software solution can fulfil the expectations of the users

(Alvertis et al., 2016). Software engineering is a multifaceted socio-technical process

that encompasses managing activities for instance software requirement gathering,

software modelling and construction, software inspections, and modern code review

(Alahyari, Gorschek and Berntsson, 2019), (Sedano and Ralph, 2017). These activities

provide ample opportunities to generate software engineering wastes (Alahyari,

Gorschek and Berntsson, 2019), (Sedano, 2019), (Sedano and Ralph, 2017).

Software engineering waste refers to an action that does not yield any value to

the user (Sedano, 2019). It can also be defined as “anything that doesn’t make it to the

release” (Alahyari, Gorschek and Berntsson, 2019). It can also be demarcated as an

activity that utilizes resources but does not deliver quality software and thus not be

able to gain the client or end-user satisfaction (Sedano, 2019), (Alahyari, Gorschek

and Berntsson, 2019), (Sedano and Ralph, 2017). The wastes which can be generated

as a result of software engineering activities can be waiting, needless composite

solutions, defect, developing an extra or erroneous features, and mental distress

2

(Sedano, 2019), (Alahyari, Gorschek and Berntsson, 2019), (Rohan, et al., 2019),

(Sedano and Ralph, 2017). It is argued that these wastes should be considered and

reduce in every phase of the software development life cycle (Rohan, et al., 2019). It

is also conveyed that waiting is one of the major and critical wastes (Alahyari,

Gorschek and Berntsson, 2019), (Vlachos, Siachou and Langwallner, 2019). It is

reported that “one of the biggest wastes in software development is usually waiting for

the things to happen” (Poppendieck and Poppendieck, 2003). It is also claimed that if

the organization were to consider one waste, they should consider waiting (Alahyari,

Gorschek and Berntsson, 2019).

Several causes of waiting waste are reported in the literature. For instance delay

in formal approvals (Alahyari, Gorschek and Berntsson, 2019), lack of knowledge

sharing (MacLeod et al., 2018), (Sadowski et al., 2018), (Medidi, 2015) poor or

unreliable code review and testing, poor code quality, context switching, asynchronous

communication (Sedano and Ralph, 2017), large artifact size (Sadowski et al., 2018),

(MacLeod et al., 2018), (Thongtanunam et al., 2017), high workload and

unavailability of senior developers (Ruangwan et al., 2018), (Bosu et al., 2017),

(Kononenko, Baysal and Godfrey, 2016), lack of experience of developers (Ram et

al., 2018), (Bosu et al., 2017), (Bosu and Carver, 2014), interactional unfairness

(German, Rey and Carlos, 2018), geographical and organizational distance, and lack

of tool and process support etc., (MacLeod et al., 2018), (Sadowski et al., 2018),

(Medidi, 2015).

Researchers argued that software engineering waiting waste leads to a decrease

in developers’ productivity, creativity, efficiency, and confidence (Alahyari, Gorschek

and Berntsson, 2019), (Sedano, 2019), (German, Rey and Carlos, 2018), (Sedano and

Ralph, 2017), (dos Santos and Nunes, 2017). It is conveyed that waiting waste creates

a blocking state for other tasks and leads to project delays (Alahyari, Gorschek and

Berntsson, 2019), (Ikonen et al., 2010). It is also conveyed that waiting waste increase

development cost and effort as well as affect the software quality (Alahyari, Gorschek

and Berntsson, 2019), (Sedano and Ralph, 2017), (Menzies et al., 2017), (Behutiye et

al., 2017), (Nguyen and Zeng, 2017), (Sarkar and Parnin, 2017).

3

It is conveyed in the literature that to reduce software engineering waiting

waste, it is required to have effective knowledge sharing while performing software

engineering activities such as software requirement gathering, software modelling and

construction, software inspections, and modern code review (Rohana et al., 2019)

(Alahyari, Gorschek and Berntsson, 2019), (Sedano, 2019), (Vlachos, Siachou and

Langwallner, 2019), (Sadowski et al., 2018), (MacLeod et al., 2018), (Sedano and

Ralph, 2017), (Sambhanthan and Potdar, 2016).

It is also noted that knowledge sharing is dependent on a massive number of

factors. These factors arise from different aspects such as people, process and

technology and thus these factors need to be explored for effective knowledge sharing

and to reduce software engineering waiting waste (Alahyari, Gorschek and Berntsson,

2019), (Sedano, 2019), (Vlachos, Siachou and Langwallner, 2019), (Sadowski et al.,

2018), (MacLeod et al., 2018), (Ali and Dominic, 2017), (Sedano and Ralph, 2017),

(Sambhanthan and Potdar, 2016), (Medidi, 2015), (Mujtaba, Feldt and Petersen, 2010).

Even Though appreciated work has been performed in the context of

knowledge sharing in software engineering (Khalil and Khalil, 2019), (Hsseinoiun et

al., 2018), (Anwar et al., 2017), however less attention has been dedicated to the

detailed exploration of knowledge sharing factors in the context of modern code

review (Sadowski et al., 2018), (MacLeod et al., 2018), (Bosu et al., 2017). Modern

code review (MCR) is a significant software engineering activity and a potential means

to identify defects, identifying alternative solutions, and improve code quality

(MacLeod et al., 2018), (Sadowski et al., 2018), (dos Santos & Nunes, 2017), (Bosu

et al., 2017), (Kalyan et al., 2017). It is slightly investigated by researchers concerning

factors affecting knowledge sharing, no knowledge sharing model is available for

MCR that can support to reduce software engineering waiting waste (Sadowski et al.,

2018), (MacLeod et al., 2018), (Bosu et al., 2017), (Bosu, Greiler and Bird, 2015).

Therefore, there is a need for a comprehensive model containing knowledge sharing

factors affecting knowledge sharing in MCR to reduce software engineering waiting

waste.

4

This demands a modern code review knowledge sharing model to reduce

software engineering waiting waste (Alahyari, Gorschek and Berntsson, 2019),

(Sedano, 2019), (Sadowski et al., 2018), (Sedano and Ralph, 2017), (MacLeod et al.,

2018). Therefore, to reduce software engineering waiting waste, the study aims to

develop a modern code review knowledge sharing model by providing a

comprehensive list of knowledge sharing factors affecting knowledge sharing in MCR.

1.3 Research Motivation

Waste reduction in software engineering is a complicated task (Rohana et al.,

2019). Several wastes produced during software engineering activities such as

software requirement gathering, software modelling and construction, software

inspections, and modern code review (Rohana et al., 2019) (Alahyari, Gorschek and

Berntsson, 2019), (Sedano, 2019), (Sadowski et al., 2018), (MacLeod et al., 2018),

(Sedano and Ralph, 2017), (Sambhanthan and Potdar, 2016). It is argued that these

wastes should be managed and reduced for all software engineering activities (Rohana

et al., 2019). It is also conveyed that to reduce software engineering waiting waste,

current research has recommended to focus on knowledge sharing by identifying

factors affecting knowledge sharing for software engineering activities, specifically,

modern code review (Alahyari, Gorschek and Berntsson, 2019), (Sedano, 2019),

(Vlachos, Siachou and Langwallner, 2019), (Sadowski et al., 2018), (MacLeod et al.,

2018), (Sedano and Ralph, 2017), (Sambhanthan and Potdar, 2016).

Though valued work has been performed in the context of knowledge sharing

concerning software engineering (Khalil and Khalil, 2019), (Hsseinoiun et al., 2018),

(Anwar et al., 2017), (Ghobadi, 2015), however, limited attention has been devoted on

the thorough exploration of knowledge sharing factors in the context of modern code

review (Sadowski et al., 2018), (MacLeod et al., 2018), (Bosu et al., 2017), (Bosu,

Greiler and Bird, 2015). The generation of waiting waste creates, a blocking state for

other related tasks, delays in project delivery, a decrease in the developers’

productivity and increases mental distress (Alahyari, Gorschek and Berntsson, 2019),

(Sedano, 2019), (German, Rey and Carlos, 2018). This demands a modern code review

5

knowledge sharing model to reduce software engineering waiting waste (Alahyari,

Gorschek and Berntsson, 2019), (Sedano, 2019), (Sadowski et al., 2018), (MacLeod

et al., 2018), (Sedano and Ralph, 2017), (Sambhanthan and Potdar, 2016), (Medidi,

2015), (Mujtaba, Feldt and Petersen, 2010). Hence lack of such research motivated us

to develop a modern code review knowledge sharing model to reduce software

engineering waiting waste.

1.4 Problem Statement

Software Engineering activities such as software requirement gathering,

software modelling and construction, software inspections, and modern code review

delivers abundant prospects of generating waiting waste (Rohana et al., 2019),

(Alahyari, Gorschek and Berntsson, 2019). As a consequence, it creates, a blocking

state for other tasks, project delays, a decrease in the developers’ productivity and

increases mental distress (Alahyari, Gorschek and Berntsson, 2019), (Sedano, 2019).

To reduce software engineering waiting waste, recent research has suggested to have

effective knowledge sharing by identifying factors that affect knowledge sharing in

software engineering activities, particularly modern code review (Alahyari, Gorschek

and Berntsson, 2019), (Sedano, 2019), (Vlachos, Siachou and Langwallner, 2019),

(MacLeod et al., 2018). However, the current research in modern code review has been

explored to a lesser extent concerning factors influencing knowledge sharing. No

knowledge sharing model is available for MCR to reduce software engineering waiting

waste.

Therefore, to reduce software engineering waiting waste there is a need to have

a knowledge sharing model comprising of knowledge sharing factors for the MCR

process. Thus, we are proposing a modern code review knowledge sharing model to

reduce software engineering waiting waste. The summarized overview of the problem

statement is given in Figure 1.1.

6

 Figure 1.1 Problem statement flow diagram

1.5 Research Questions

This study comprises three research questions.

(a) What knowledge sharing factors of MCR team should be aware of in reducing

the software engineering waiting waste?

(b) How the identified knowledge sharing factors can be made effective to the

MCR team to reduce software engineering waiting waste?

(c) How modern code review knowledge sharing model can help the MCR team

to reduce software engineering waiting waste?

1.6 Objectives of the Study

The study comprises five research objectives. Table 1.1 summarizes the

research questions along with the objectives.

7

(a) To identify the knowledge sharing factors which can help the MCR team to

reduce the software engineering waiting waste.

(b) To evaluate the identified list of knowledge sharing factors that can help the

MCR team to reduce the software engineering waiting waste.

(c) To develop the modern code review knowledge sharing model to reduce

software engineering waiting waste.

(d) To develop an electronic reference guideline of modern code review

knowledge sharing model.

(e) To evaluate the effectiveness of the developed modern code review knowledge

sharing model to reduce software engineering waiting waste (waiting time).

Table 1.1 Research questions and research objectives

Research Questions Research Objectives

What knowledge sharing factors of MCR team

should be aware of in reducing software

engineering waiting waste?

To identify the knowledge sharing factors which

can help the MCR team to reduce the software

engineering waiting waste.

To evaluate the identified list of knowledge

sharing factors that can help the MCR team to

reduce the software engineering waiting waste.

How the identified knowledge sharing factors

can be made effective to the MCR team to reduce

software engineering waiting waste?

To develop the modern code review knowledge

sharing model to reduce software engineering

waiting waste.

How modern code review knowledge sharing

model can help the MCR team to reduce software

engineering waiting waste?

To develop an electronic reference guide of

modern code review knowledge sharing model.

To evaluate the effectiveness of the developed

modern code review knowledge sharing model to

reduce software engineering waiting waste

(waiting time).

8

1.7 Research Scope

The scope of the study includes the identification of the unique list of

knowledge sharing factors in modern code review to reduce software engineering

waiting waste. Systematic Literature Review (SLR) was performed following the

guidelines given by (Kitchenham and Charters, 2007). Data coding techniques of

grounded theory with constant comparison and memoing (Stol, Ralph and Fitzgerald,

2016), (Kathy Charmaz, 2007) were used to generate the unique list of knowledge

sharing factors. The considered duration of research papers for SLR was 2013 to 2019.

The expert review was performed to evaluate the list of knowledge sharing

factors, sub-factors, and their categories for their naming conventions, grouping,

subgrouping, terminologies, and new recommendations. The guidelines given by

(Ayyub, 2001) and (Boring et al., 2005) were utilized for expert review. The software

engineering professional expert either from industry or academia having experience of

10 or more than 10 years were considered for expert review. Four experts having

knowledge of MCR, software engineering wastes, and knowledge sharing were

considered for expert review.

The Delphi survey was performed to further evaluate the list of knowledge

sharing factors obtained as a result of expert review with industry practices for their

grouping, sub-grouping, and naming conventions. The experts were requested to check

the practicality of the recognized knowledge sharing factors as well as to identify the

most influential knowledge sharing factors concerning MCR activities from industry

perspectives. The experts were also requested to suggest new industry-based

knowledge sharing factors for MCR. The relationships between the knowledge sharing

factors, sub-factors in terms of categories were identified through regression analysis.

The guideline given by (Eye and Schuster, 1998) were followed for the regression

analysis. A Modern code review knowledge sharing model to reduce software

engineering waiting waste was developed after the analysis of Delphi results.

Guidelines specified by Murry and Hammons were utilized for conducting the Delphi

method (Skulmoski, Hartman and Jennifer Krahn, 2007) and (Hasson, Keeney and

9

McKenna, 2000). Ten experts with industry experience of more than eight years

contributed to the Delphi survey.

The developed modern code review knowledge sharing model to reduce

software engineering waiting waste was evaluated for the effectiveness in reducing

software engineering waiting waste with the help of an experiment. For the conduction

of the experiment, the electronic reference guideline of the modern code review

knowledge sharing model was developed. ASP.Net for the development of user

interface and Microsoft SQL Server for database development were used. The

experiment was conducted with the 28 part-time postgraduate students having industry

experience. As it is conveyed that there is no significant difference in the performance

of students compared to practitioners (Host, Regnell and Wohlin, 2000). The

experiment was conducted in two sessions. The 28 students were divided into two

groups each group containing 14 students. In the first session of the experiment,

“Group I” and “Group II” performed MCR activities without using the modern code

review knowledge sharing model. Later, in the second session the “Group II” was

provided with the modern code review knowledge sharing model supported with the

electronic reference guideline whereas “Group I” was not provided with the modern

code review knowledge sharing model.

1.8 Contributions and Significance of Study

The study contributes to the advancement in the Software engineering body of

knowledge (SWEBOK) (Bourque and Fairley, 2014), software engineering waste, and

particularly in modern code review. The study contributions are given below.

(a) The first contribution of the study was related to the identification and reporting

of knowledge sharing factors for MCR to reduce software engineering waiting

waste. Advances to the existing body of knowledge are made possible by

performing the SLR with the accessibility of published literature, expert

review, and the Delphi survey. As a result, a list of 22 knowledge sharing

factors, 135 sub-factors, and 5 categories was recognized.

10

(b) The second study contribution was connected with the development of the

modern code review knowledge sharing model to reduce software engineering

waiting waste. As it would specify precisely what knowledge sharing factors

would influence software knowledge sharing among MCR team in which

specific MCR activity.

(c) The third contribution of the study was the development of the electronic

reference guide of the modern code review knowledge sharing model. The

electronic guide can support the MCR team in using the modern code review

knowledge sharing model and reduce software engineering waiting waste.

1.9 Thesis Outline

The research thesis contains seven chapters. Figure 1.2 provides the outlines of

the chapters with a brief explanation.

1.10 Chapter Summary

This chapter provides details concerning the research background, research

motivation, and problem statement. It also covers the research questions and research

objectives. The research scope, significance and contributions of the study, and thesis

outline are presented in the last sections of this chapter.

11

Figure 1.2 Thesis outline

238

REFERENCES

Adler, M. and Erio, Z. (1996) Gazing into the Oracle: The Delphi method and its

application to social policy and public health. Jessica Kingsley.

Alahyari, H., Gorschek, T. and Berntsson, R. (2019) ‘An exploratory study of waste

in software development organizations using agile or lean approaches: A

multiple case study at 14 organizations’, Information and Software Technology.

Elsevier, 105(7), pp. 78–94. doi: 10.1016/j.infsof.2018.08.006.

Ali, A. A. and Dominic, P. D. D. (2017) ‘The relationship between management

support and individual motivation for knowledge sharing practice’, in

International Conference on Research and Innovation in Information Systems,

ICRIIS. doi: 10.1109/ICRIIS.2017.8002441.

Alshehri, S. A., Rezgui, Y. and Li, H. (2014) ‘Delphi-based consensus study into a

framework of community resilience to disaster’, Natural Hazards, 75(3), pp.

2221–2245. doi: 10.1007/s11069-014-1423-x.

Alvertis, I. et al. (2016) ‘User involvement in software development processes’,

Procedia Computer Science. Elsevier B.V., 97, pp. 73–83. doi:

10.1016/j.procs.2016.08.282.

Alves, N. S. R. et al. (2016) ‘Identification and management of technical debt: A

systematic mapping study’, Information and Software Technology, 70, pp. 100–

121. doi: 10.1016/j.infsof.2015.10.008.

Anwar, R. et al. (2017) ‘Conceptual framework for implementation of knowledge

sharing in global software development organizations’, in ISCAIE 2017 - 2017

IEEE Symposium on Computer Applications and Industrial Electronics, pp.

174–178. doi: 10.1109/ISCAIE.2017.8074972.

Armstrong, F., Khomh, F. and Adams, B. (2017) ‘Broadcast vs. unicast review

technology: Does it matter?’, in in Proc. 10th IEEE International Conference on

Software Testing, Verification and Validation. IEEE, pp. 219–229. doi:

10.1109/ICST.2017.27.

Aurum, A., Petersson, H. and Wohlin, C. (2002) ‘State-of-the-art: Software

inspections after 25 years’, Software Testing Verification and Reliability, 12(3),

pp. 133–154. doi: 10.1002/stvr.243.

239

Ayyub, B. (2001) A practical guide on conducting expert-opinion elicitation of

probabilities and consequences for corps facilities, Institute for Water

Resources, Alexandria, VA, USA.

B.S. Everitt, A. S. (2011) The Cambridge dictionary of Statistics. 4th edn.

Bacchelli, A. and Bird, C. (2013) ‘Expectations, outcomes, and challenges of modern

code review’, in Proc. International Conference on Software Engineering.

IEEE, pp. 712–721. doi: 10.1109/ICSE.2013.6606617.

Balachandran, V. (2013) ‘Reducing human effort and improving quality in peer code

reviews using automatic static analysis and reviewer recommendation’,

Proceedings - International Conference on Software Engineering, pp. 931–940.

doi: 10.1109/ICSE.2013.6606642.

Baum, T. et al. (2016) ‘Factors influencing code review processes in industry’,

Proceedings of the 2016 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering - FSE 2016, pp. 85–96. doi:

10.1145/2950290.2950323.

Behutiye, W. N. et al. (2017) ‘Analyzing the concept of technical debt in the context

of agile software development: A systematic literature review’, Information and

Software Technology, 82, pp. 139–158. doi: 10.1016/j.infsof.2016.10.004.

Di Biase, M., Bruntink, M. and Bacchelli, A. (2016) ‘A security perspective on code

review: The case of chromium’, in Proc. IEEE 16th International Working

Conference on Source Code Analysis and Manipulation, pp. 21–30. doi:

10.1109/SCAM.2016.30.

Bird, C., Carnahan, T. and Greiler, M. (2015) ‘Lessons learned from building and

deploying a code review analytics platform’, in Proc. IEEE International

Working Conference on Mining Software Repositories, pp. 191–201. doi:

10.1109/MSR.2015.25.

Boring, R. et al. (2005) Simplified expert elicitation guideline for risk assessment of

operating events, National Laboratory INL. Available at:

http://www.inl.gov/technicalpublications/documents/3310952.pdf.

Bosu, A. (2013) ‘Modeling modern code review practices in open source software

development organizations’, in Proc. IDoESE ’13 Baltimore. Maryland.

Bosu, A. et al. (2014) ‘Peer impressions in open source organizations: A survey’,

Journal of Systems and Software. Elsevier Inc., 94, pp. 4–15. doi:

10.1016/j.jss.2014.03.061.

240

Bosu, A. et al. (2017) ‘Process aspects and social dynamics of contemporary code

review: Insights from open source development and industrial practice at

Microsoft’, IEEE Transactions on Software Engineering, 43(1), pp. 56–75. doi:

10.1109/TSE.2016.2576451.

Bosu, A. and Carver, J. C. (2013) ‘Impact of peer code review on peer impression

formation: A survey’, International Symposium on Empirical Software

Engineering and Measurement, pp. 133–142. doi: 10.1109/ESEM.2013.23.

Bosu, A. and Carver, J. C. (2014) ‘Impact of developer reputation on code review

outcomes in OSS projects’, Proc. 8th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement, pp. 1–10. doi:

10.1145/2652524.2652544.

Bosu, A., Greiler, M. and Bird, C. (2015) ‘Characteristics of useful code reviews: An

empirical study at Microsoft’, in Proc. IEEE International Working Conference

on Mining Software Repositories, pp. 146–156. doi: 10.1109/MSR.2015.21.

Bourque, P. and Fairley, R. E. (2014) Guide to the software engineering - Body of

knowledge., IEEE Computer Society. doi: 10.1234/12345678.

Bryant, A. and Charmaz, K. (2010) The SAGE Handbook of Grounded Theory. SAGE

Publication Limited.

Buse, R. P. L. and Weimer, W. R. (2010) ‘Learning a metric for code readability’,

IEEE Transactions on Software Engineering, 36(4), pp. 546–558. doi:

10.1109/TSE.2009.70.

Carroll, J. M. et al. (2006) ‘Awareness and teamwork in computer-supported

collaborations’, Interacting with Computers, 18(1 SPEC. ISS.), pp. 21–46. doi:

10.1016/j.intcom.2005.05.005.

Chaves, M. S., Scornavacca, E. and Fowler, D. (2018) ‘Affordances of social media

in knowledge sharing in intra-organizational information technology projects’,

Lecture Notes in Information Systems and Organisation, 23, pp. 35–47. doi:

10.1007/978-3-319-62051-0_4.

Chen, X. et al. (2017) ‘Managing knowledge sharing in distributed innovation from

the perspective of developers: empirical study of open source software projects

in China’, Technology Analysis and Strategic Management, 29(1), pp. 1–22. doi:

10.1080/09537325.2016.1194387.

Clarke, P. et al. (2016) ‘A complexity theory viewpoint on the software development

process and situational context’, in IEEE/ACM International Conference on

241

Software and System Processes. IEEE/ACM. doi: 10.1145/2904354.2904369.

Cohen, J. (1988) Statistical power analysis for the behavioral science. 2nd edn. New:

Lawrence Erlbaum Associates.

Contreras-Pacheco, O. E., Claasen, C. and Nishant, R. (2017) ‘Knowledge sharing

among engineers: An empirical examination’, in 2017 IEEE Technology and

Engineering Management Society Conference, TEMSCON 2017, pp. 260–266.

doi: 10.1109/TEMSCON.2017.7998386.

Cooke, N. J. et al. (2000) ‘Measuring team knowledge’, Human Factors, 42(1), pp.

151–173. doi: 10.1518/001872000779656561.

Corral, L. et al. (2014) ‘Code review analytics: WebKit as case study’, in IFIP

Advances in Information and Communication Technology, pp. V–VI. doi:

10.1007/978-3-642-55128-4.

Czerwonka, J. (2018) ‘CodeFlow: Improving the code review process at Microsoft’,

Queue, 16(5), pp. 1–20. doi: 10.1145/3291276.3292420.

Czerwonka, J., Greiler, M. and Tilford, J. (2015) ‘Code Reviews Do Not Find Bugs.

How the Current Code Review Best Practice Slows Us Down’, in Proc.

International Conference on Software Engineering, pp. 27–28. doi:

10.1109/ICSE.2015.131.

Dajani, J. S., Sincoff, M. Z. and Talley, W. K. (1979) ‘Stability and agreement criteria

for the termination of Delphi studies’, Technological Forecasting and Social

Change, 13(1), pp. 83–90. doi: 10.1016/0040-1625(79)90007-6.

Daud, M. A. (2000) The students’ perceptions on the factors that motivate them to

participate in accounting class.

Delbecq, A., Ven, A. and Gustafson, D. (1986) Group techniques for program

planning: A guide to nominal group and Delphi processes. 1st edn. Green Briar

Press.

Van Deursen, A. J. A. M., Verlage, C. and Van Laar, E. (2019) ‘Social network site

skills for communication professionals: Conceptualization, operationalization,

and an empirical investigation’, IEEE Transactions on Professional

Communication, 62(1), pp. 43–54. doi: 10.1109/TPC.2018.2867168.

Dheyaa, A., Salah, H. and Ali, N. (2014) ‘Factors influencing knowledge sharing in

organizations: A literature review’, International Journal of Science and

Research, 3(9), pp. 1314–1319. Available at: www.ijsr.net.

Ducheneaut, N. (2005) ‘Socialization in an open source software community: A socio-

242

technical analysis’, Computer Supported Cooperative Work: CSCW: An

International Journal, 14(4), pp. 323–368. doi: 10.1007/s10606-005-9000-1.

Ebert, F. et al. (2017) ‘Confusion detection in code reviews’, in Proc. IEEE

International Conference on Software Maintenance and Evolution, pp. 549–553.

doi: 10.1109/ICSME.2017.40.

Ebert, F. et al. (2018) ‘Communicative intention in code review questions’. doi:

10.1136/jfprhc-2012-100335.

Ebert, F. et al. (2019) ‘Confusion in code reviews: reasons, impacts, and coping

strategies’, in SANER- Proceedings of the 2019 IEEE 26th International

Conference on Software Analysis, Evolution, and Reengineering. IEEE, pp. 49–

60. doi: 10.1109/SANER.2019.8668024.

Efstathiou, V. and Spinellis, D. (2018) ‘Code review comments: language matters’, in

Proceedings of the 40th International Conference on Software Engineering.

ACM, pp. 69–72.

English, J. M. and Kernan, G. L. (1976) ‘The prediction of air travel and aircraft

technology to the year 2000 using the Delphi method’, Transportation Research,

10(1), pp. 1–8. doi: 10.1016/0041-1647(76)90094-0.

Eye, A. and Schuster, C. (1998) Regression Analysis for Social Sciences.

Faegri, T. E., Stray, V. and Moe, N. B. (2016) ‘Shared knowledge in virtual software

teams: A preliminary framework’, Proceedings - 11th IEEE International

Conference on Global Software Engineering, ICGSE 2016, pp. 174–178. doi:

10.1109/ICGSE.2016.22.

Fagan, M. E. (1999) ‘Design and code inspections to reduce errors in program

development’, IBM Systems Journal, 38(2.3), pp. 258–287. doi:

10.1147/sj.382.0258.

Fakhoury, S. (2018) ‘The effect of poor source code lexicon and readability on

developers’ cognitive load’, in Proc. ICPC, pp. 286–296. doi:

10.1145/3196321.3196347.

Fejzer, M., Przymus, P. and Stencel, K. (2018) ‘Profile based recommendation of code

reviewers’, Journal of Intelligent Information Systems. Journal of Intelligent

Information Systems, 50(3), pp. 597–619. doi: 10.1007/s10844-017-0484-1.

Fountaine, A. and Sharif, B. (2017) ‘Emotional awareness in software development:

Theory and measurement’, Proceedings - 2017 IEEE/ACM 2nd International

Workshop on Emotion Awareness in Software Engineering, SEmotion 2017, pp.

243

28–31. doi: 10.1109/SEmotion.2017.12.

Fracz, W. and Jacek, D. (2016) ‘Experimental Validation of Source Code Reviews on

Mobile Devices’, CEUR Workshop Proceedings, 1603(July), pp. 1–8. doi:

10.1007/978-3-319-62404-4.

Gachechiladze, D. et al. (2017) ‘Anger and its direction in collaborative software

development’, Proc.- 2017 IEEE/ACM 39th International Conference on

Software Engineering: New Ideas and Emerging Results Track, pp. 11–14. doi:

10.1109/ICSE-NIER.2017.18.

Ge, X. et al. (2017) ‘Refactoring-Aware code review’, in Proceedings of IEEE

Symposium on Visual Languages and Human-Centric Computing, VL/HCC, pp.

71–79. doi: 10.1109/VLHCC.2017.8103453.

German, D. M., Rey, U. and Carlos, J. (2018) ‘“ Was my contribution fairly

reviewed ?” A Framework to Study the Perception of Fairness in Modern Code

Reviews’, in Proc. ACM/IEEE 40th International Conference on Software

Engineering Synthesizing, pp. 523–534.

Ghobadi, S. (2015) ‘What drives knowledge sharing in software development teams:

A literature review and classification framework’, Information and

Management. Elsevier B.V., 52(1), pp. 82–97. doi: 10.1016/j.im.2014.10.008.

Glasser, B. G. (1992) Basics of Grounded Theory Analysis: Emergence Vs. Forcing.

Sociology Press.

Glasser, B. G. (1998) Doing grounded theory: Issues & discussion. Sociology Press.

Goldman, K. et al. (2008) ‘Identifying important and difficult concepts in introductory

computing courses using a delphi process’, SIGCSE’08 - Proceedings of the 39th

ACM Technical Symposium on Computer Science Education, pp. 256–260. doi:

10.1145/1352135.1352226.

Gousios, G., Storey, M.-A. and Bacchelli, A. (2016) ‘Work practices and challenges

in pull-based development’, in Proc. 38th International Conference on Software

Engineering, pp. 285–296. doi: 10.1145/2884781.2884826.

Gracht, H. (2012) ‘Consensus measurement in Delphi studies. Review and

implications for future quality assurance’, Technological Forecasting and Social

Change. Elsevier Inc., 79(8), pp. 1525–1536. doi:

10.1016/j.techfore.2012.04.013.

Greatorex, Jane & Dexter, T. (2000) ‘An accessible analytic approach for investigating

what happens between the rounds of a Delphi study’, Journal of Advanced

244

Nursing, 32, pp. 1016–24. doi: 1016-24. 10.1046/j.1365-2648.2000.01569.x.

Grisham, T. (2009) ‘The Delphi technique: a method for testing complex and

multifaceted topics’, International Journal of Managing Projects in Business,

2(1), pp. 112–130. doi: 10.1108/17538370910930545.

Guo, B. and Song, M. (2017) ‘“Interactively decomposing composite changes to

support code review and regression testing”’, in Proceedings - International

Computer Software and Applications Conference, pp. 118–127. doi:

10.1109/COMPSAC.2017.153.

Harold Sackman (1974) Delphi critique; expert opinion, forecasting, and group

process. Lexington Books.

Hasson, F., Keeney, S. and McKenna, H. (2000) ‘Research guidelines for the

Delphi survey technique’, Journal of Advanced Nursing, 32(4), pp. 1008–1015.

doi: 10.1046/j.1365-2648.2000.t01-1-01567.x.

Hatcher, T. and Colton, S. (2007) ‘Using the internet to improve HRD research: The

case of the web-based Delphi research technique to achieve content validity of

an HRD-oriented measurement’, Journal of European Industrial Training,

31(7), pp. 570–587. doi: 10.1108/03090590710820060.

Holey, E. A. et al. (2007) ‘An exploration of the use of simple statistics to measure

consensus and stability in Delphi studies’, BMC Medical Research

Methodology, 7(February). doi: 10.1186/1471-2288-7-52.

Holvitie, J., Leppänen, V. and Hyrynsalmi, S. (2014) ‘Technical debt and the effect of

agile software development practices on it - An industry practitioner survey’, in

Proc. 2014 6th IEEE International Workshop on Managing Technical Debt, pp.

35–42. doi: 10.1109/MTD.2014.8.

Host, M., Regnell, B. and Wohlin, C. (2000) ‘Using students as subjects — A

comparative study of students and professionals in lead-time impact

assessment’, Empirical Software Engineering, 5, pp. 201–214.

Hsseinoiun, S. et al. (2018) ‘Information system success and knowledge grid

integration in facilitating knowledge sharing among big data community’, in

Proceedings - 2018 4th International Conference on Information Retrieval and

Knowledge Management: Diving into Data Sciences, CAMP 2018. IEEE, pp.

211–215. doi: 10.1109/INFRKM.2018.8464790.

Ikonen, M. et al. (2010) ‘Exploring the sources of waste in Kanban software

development projects’, in Proceedings - 36th EUROMICRO Conference on

245

Software Engineering and Advanced Applications, SEAA 2010, pp. 376–381.

doi: 10.1109/SEAA.2010.40.

ISO/IEC/IEEE (2013) ‘ISO/IEC/IEEE Systems and software engineering -- System

life cycle processes’, Iso/Iec/Ieee P15288-Fdis-1412.

ISO/IEC and IEEE (2010) ‘ISO/IEC/IEEE 24765:2010 - Systems and software

engineering -- Vocabulary’, Iso/Iec Ieee. doi: 10.1109/IEEESTD.2010.5733835.

Jiang, Y., Adams, B. and German, D. M. (2013) ‘Will my patch make it? And how

fast?: Case study on the linux kernel’, in Proc. IEEE International Working

Conference on Mining Software Repositories, pp. 101–110. doi:

10.1109/MSR.2013.6624016.

Juliet, C. and Strauss, A. (2008) Basics of qualitative research: Techniques and

procedures for developing grounded theory. 3rd edn.

Kalyan, A. et al. (2017) ‘A collaborative code review platform for GitHub’, in Proc.

IEEE International Conference on Engineering of Complex Computer Systems,

pp. 191–196. doi: 10.1109/ICECCS.2016.032.

Kangas, M. et al. (2018) ‘Why do managers leave their organization? Investigating the

role of ethical organizational culture in managerial turnover’, Journal of

Business Ethics, 153(3), pp. 707–723. doi: 10.1007/s10551-016-3363-8.

Kathy Charmaz (2007) Situational requirement engineering in global software

development.

Khalil, C. and Khalil, S. (2019) ‘Exploring knowledge management in agile software

development organizations’, International Entrepreneurship and Management

Journal. International Entrepreneurship and Management Journal. doi:

10.1007/s11365-019-00582-9.

Khan, H. H. (2015) Situational requirement engineering model for global. University

Technology Malaysia.

Kitchenham et al. (2002) Preliminary guidelines for empirical research in software

engineering, IEEE Transactions on Software Engineering. doi:

10.1109/TSE.2002.1027796.

Kitchenham, B. and Charters, S. (2007) Guidelines for performing systematic

literature reviews in software engineering. doi: 10.1145/1134285.1134500.

Knapp, K. and Ferrante, C. (2012) ‘Policy Awareness, Enforcement and Maintenance:

Critical to Information Security Effectiveness in Organizations’, Journal of

Management Policy and Practice, 13(5), pp. 66–80.

246

Kollanus, S. and Koskinen, J. (2007) ‘Survey of software inspection’, Information

Systems, 35, pp. 1991–2005. doi: 10.2174/1874107X00903010015.

Kononenko, O. et al. (2015) ‘Investigating code review quality: Do people and

participation matter?’, in Proc. IEEE 31st International Conference on Software

Maintenance and Evolution, pp. 111–120. doi: 10.1109/ICSM.2015.7332457.

Kononenko, O. et al. (2018) ‘Studying pull request merges : A case study of shopify

’s active merchant’’, in Proc. 40th International Conference on Software

Engineering: Software Engineering in Practice, pp. 124–133. doi:

10.1145/3183519.3183542.

Kononenko, O., Baysal, O. and Godfrey, M. W. (2016) ‘Code review quality: How

developers see it’, in Proc. International Conference on Software Engineering.

ACM, pp. 1028–1038. doi: 10.1145/2884781.2884840.

Kovalenko, V. et al. (2018) ‘Does reviewer recommendation help developers?’, IEEE

Transactions on Software Engineering. IEEE, PP(c), p. 1. doi:

10.1109/TSE.2018.2868367.

Lal, H. and Pahwa, G. (2017) ‘Code review analysis of software system using machine

learning techniques’, in in Proc. 11th International Conference on Intelligent

Systems and Control. IEEE, pp. 8–13. doi: 10.1109/ISCO.2017.7855962.

Lanford, H. W. (1972) Technological forecasting methodologies; a synthesis. New

York: American Management Association.

Lee, A., Carver, J. C. and Bosu, A. (2017) ‘Understanding the impressions,

motivations, and barriers of one time code contributors to FLOSS projects: A

survey’, in in Proce. IEEE/ACM 39th International Conference on Software

Engineering, pp. 187–197. doi: 10.1109/ICSE.2017.25.

Lin, B., Robles, G. and Serebrenik, A. (2017) ‘Developer turnover in global, industrial

open source projects: Insights from applying survival analysis’, Proceedings -

2017 IEEE 12th International Conference on Global Software Engineering,

ICGSE 2017, pp. 66–75. doi: 10.1109/ICGSE.2017.11.

Luxton-reilly, A., Lewis, A. and Plimmer, B. (2018) ‘Automating the software

inspection process’, in Proc. 20th Australasian Computing Education

Conference, pp. 45–52. doi: 10.1145/3160489.3160498.

Macdonald, F. et al. (1996) ‘Automating the Software Inspection Process’, Automated

Software Engineering, 3(3–4), pp. 193–218. doi: 10.1007/BF00132566.

MacLeod, L. et al. (2017) ‘Code reviewing in the trenches: Challenges and best

247

practices’, IEEE Software. doi: 10.1109/MS.2017.265100500.

MacLeod, L. et al. (2018) ‘Code reviewing in the trenches: Challenges and best

practices’, IEEE Software. IEEE, 35(4), pp. 34–42. doi:

10.1109/MS.2017.265100500.

Magnuson, L. A. (2012) A Delphi study to understand relational bonds in supervision

and their effect on rehabilitation counselor disclosure in the public

rehabilitation program, ProQuest Dissertations and Theses. University of Iowa.

Mark, K. (2006) Designing an effective survey.

Marlow, J., Dabbish, L. and Herbsleb, J. (2013) ‘Impression formation in online peer

production : Activity traces and personal profiles in GitHub’, in Proc. 16th ACM

Conference on Computer Supported Cooperative Work, pp. 117–128. doi:

10.1145/2441776.2441792.

Medidi, P. (2015) Waste in Lean Software Development: a Root Cause Analysis.

Blekinge Institute of Technology, Karlskrona, Sweden.

Meneely, A. et al. (2014) ‘An empirical investigation of socio-technical code review

metrics and security vulnerabilities’, 6th International Workshop on Social

Software Engineering, SSE 2014 - Proceedings, pp. 37–44. doi:

10.1145/2661685.2661687.

Menzies, T. et al. (2017) ‘Are delayed issues harder to resolve? Revisiting cost-to-fix

of defects throughout the lifecycle’, Empirical Software Engineering, 22(4), pp.

1903–1935. doi: 10.1007/s10664-016-9469-x.

Morales, R., McIntosh, S. and Khomh, F. (2015) ‘Do code review practices impact

design quality? A case study of the Qt, VTK, and ITK projects’, in Proc. IEEE

22nd International Conference on Software Analysis, Evolution, and

Reengineering (SANER), pp. 171–180. doi: 10.1109/SANER.2015.7081827.

Morrison, E. W. (2002) ‘Newcomers’ relationships: The role of social network ties

during socialization’, Academy of Management Journal, 45(6), pp. 1149–1160.

doi: 10.2307/3069430.

Mujtaba, S., Feldt, R. and Petersen, K. (2010) ‘Waste and lead time reduction in a

software product customization process with value stream maps’, Proceedings

of the Australian Software Engineering Conference, ASWEC, pp. 139–148. doi:

10.1109/ASWEC.2010.37.

Naoum, S. G. (2012) Dissertation research and writing for construction students,

Second Edition. 2nd edn. Oxford : Butterworth-Heinemann. doi:

248

10.4324/9780080467047.

Narayanam, R. and Narahari, Y. (2009) ‘Stability and efficiency of social networks

with strategic, resource constrained nodes’, 2009 IEEE Conference on

Commerce and Enterprise Computing, CEC 2009, pp. 188–193. doi:

10.1109/CEC.2009.59.

Nazir, S., Fatima, N. and Malik, S. (2008) ‘Effective hybrid review process (EHRP)’,

Proceedings - International Conference on Computer Science and Software

Engineering, CSSE 2008, 2, pp. 763–771. doi: 10.1109/CSSE.2008.1417.

Nguyen, T. A. and Zeng, Y. (2017) ‘Effects of stress and effort on self-rated reports in

experimental study of design activities’, Journal of Intelligent Manufacturing.

Springer US, 28(7), pp. 1609–1622. doi: 10.1007/s10845-016-1196-z.

NSPE (2013) ‘Professional engineering body of knowledge’, p. 61. Available at:

https://www.nspe.org/sites/default/files/resources/nspe-body-of-

knowledge.pdf.

Ouni, A., Kula, R. G. and Inoue, K. (2017) ‘Search-based peer reviewers

recommendation in modern code review’, in Proc. - IEEE International

Conference on Software Maintenance and Evolution, pp. 367–377. doi:

10.1109/ICSME.2016.65.

Pessôa, M. V. P., Seering, W. and Rebentisch, E. (2008) ‘Understanding the waste net:

A method for waste elimination prioritization in product development’,

Proceedings of DETC ’08, 55(21), pp. 1–9. doi: 10.1007/978-1-84882-762-

2_22.

Peter C. Rigby, Yue Cai Zhu, Samuel M. Donadelli, A. M. (2016) ‘Quantifying and

mitigating turnover-induced knowledge loss: Case studies of chrome and a

project at Avaya’, in Proc. IEEE/ACM 38th International Conference on

Software Engineering, pp. 1006–1016. doi: 10.1145/2884781.2884851.

Pletea, D., Vasilescu, B. and Serebrenik, A. (2014) ‘Security and emotion: Sentiment

analysis of security discussions on GitHub’, 11th Working Conference on

Mining Software Repositories, MSR 2014 - Proceedings, pp. 348–351. doi:

10.1145/2597073.2597117.

Polit, D. F. and Beck, C. T. (2011) Nursing research: generating and assessing

evidence for nursing practice. Lippincott Williams and Wilkins, Philadelphia.

9th edn. LWW.

Poppendieck, M. and Poppendieck, T. (2003) Lean software development: An agile

249

toolkit, Addilson-Wesley. doi: 10.1109/MC.2003.1220585.

Power, K. and Conboy, K. (2014) ‘Impediments to flow: Rethinking the lean concept

of “waste” in modern software development BT - 15th International Conference

on Agile Software Development, XP 2014, May 26, 2014 - May 30, 2014’, 179

LNBIP, pp. 203–217. doi: 10.1007/978-3-319-06862-6.

Ram, A. et al. (2018) ‘What makes a code change easier to review? An empirical

investigation on code change reviewability’, in Proc. ESEC/FSE. ACM. doi:

10.5281/zenodo.1323659.

Rigby et al. (2014) ‘Peer review on open-source software projects: Parameters,

statistical models, and theory’, ACM Transactions on Software Engineering and

Methodology, 23(4). doi: 10.1145/2594458.

Rigby, P. C. (2011) Understanding open source software peer review: Review

processes, parameters and statistical models , and underlying behaviours and

mechanisms. University of Victoria.

Rigby, P. C. and Bird, C. (2013) ‘Convergent contemporary software peer review

practices categories and subject descriptors’, in Proc. ESEC/FSE, pp. 202–212.

Rigby, P. C., German, D. M. and Storey, M.-A. (2008) ‘Open source software

peer review practices: a case study of the apache server’, Proceedings of the 30th

international conference on Software engineering, pp. 541–550. doi:

10.1145/1368088.1368162.

Rosai, J. (1978) A Guide to the Project Management Body of Knowledge, American

Journal of Clinical Pathology. doi: 10.1093/ajcp/69.5.475.

Ruangwan, S. et al. (2018) ‘The impact of human factors on the participation decision

of reviewers in modern code review’, Empirical Software Engineering

manuscript, pp. 1–43. Available at: http://arxiv.org/abs/1806.10277.

Sadowski, C. et al. (2018) ‘Modern code review: : A case study at google’, in Proc.

ACM/IEEE 40th International Conference on Software Engineering: Software

Engineering in Practice, pp. 181–190. doi: 10.1145/3183519.3183525.

Saide, Indrajit, R. E. and Hafiza, W. (2017) ‘Information technology and individual

factors on knowledge sharing activities’, 2017 2nd International Conference on

Knowledge Engineering and Applications (ICKEA), pp. 162–165. doi:

10.1109/ICKEA.2017.8169922.

Salam, M. and Khan, S. U. (2017) ‘Risks mitigation practices for multi-sourcing

vendors in green software development’, in Proc. of the Pakistan Academy of

250

Sciences, pp. 71–87.

Sambhanthan, A. and Potdar, V. (2016) ‘Waste management strategies for Software

Development companies: An explorative text analysis of business sustainability

reports’, 2016 IEEE/ACIS 14th International Conference on Software

Engineering Research, Management and Applications, SERA 2016, pp. 179–

184. doi: 10.1109/SERA.2016.7516144.

dos Santos, E. W. and Nunes, I. (2017) ‘Investigating the effectiveness of peer code

review in distributed software development’, in Proc. 31st Brazilian Symposium

on Software Engineering. ACM, pp. 84–93. doi: 10.1145/3131151.3131161.

Sarkar, S. and Parnin, C. (2017) ‘Characterizing and predicting mental fatigue during

programming tasks’, Proceedings - 2017 IEEE/ACM 2nd International

Workshop on Emotion Awareness in Software Engineering, SEmotion 2017, pp.

32–37. doi: 10.1109/SEmotion.2017.2.

Sarker, Saonee, Ahuj, M. and Sarker, Suprateek (2018) ‘Work-life conflict of globally

distributed software development personnel: An empirical investigation using

Border Theory’, Information Systems Research, 29(1), pp. 103–126. doi:

10.1287/isre.2017.0734.

Savu, I., Popa, C. L. and Cotet, C. E. (2017) ‘Mitigating friction in multicultural virtual

organizations / teams’, Annals of DAAAM and Proceedings of the International

DAAAM Symposium, (January 2017), pp. 737–742. doi:

10.2507/28th.daaam.proceedings.104.

Scott, L. et al. (2002) ‘Understanding the use of an electronic process guide’,

Information and Software Technology, 44(10), pp. 601–616. doi:

10.1016/S0950-5849(02)00080-0.

Sedano, T. (2019) ‘Removing Software Development Waste to Improve Productivity’,

in Rethinking Productivity in Software Engineering. Apress, pp. 221–240. doi:

10.1007/978-1-4842-4221-6.

Sedano, T. and Ralph, P. (2017) ‘Software Development Waste’, in Proc. IEEE/ACM

39th International Conference on Software Engineering. doi:

10.1109/ICSE.2017.20.

Sedano, T., Ralph, P. and Peraire, C. (2016) ‘Practice and perception of team code

ownership’, in Proc. EASE ’16,.

Shah, H. A. and Kalaian, S. A. (2009) ‘Which is the best parametric statistical method

for analyzing delphi data?’, Journal of Modern Applied Statistical Methods,

251

8(1), pp. 226–232. doi: 10.22237/jmasm/1241137140.

Shariff, N. J. (2015) ‘Utilizing the Delphi survey approach: A review’, Journal of

Nursing & Care, 04(03). doi: 10.4172/2167-1168.1000246.

Shimagaki, J. et al. (2016) ‘A study of the quality-impacting practices of modern code

review at Sony mobile’, in Proc. 38th International Conference on Software

Engineering Companion, pp. 212–221. doi: 10.1145/2889160.2889243.

Singh, D. et al. (2017) ‘Evaluating how static analysis tools can reduce code review

effort’, IEEE Symposium on Visual Languages and Human-Centric Computing,

pp. 101–105. doi: 10.1109/VLHCC.2017.8103456.

Skulmoski, G. J., Hartman, F. T. and Jennifer Krahn (2007) ‘The Delphi method for

graduate research’, Journal of Information Technology Education, 6. doi:

10.1007/3-540-47847-7_10.

Sommerville, I. (2013) Software Engineering, Clinical Engineering: A Handbook for

Clinical and Biomedical Engineers. doi: 10.1016/B978-0-12-396961-3.00009-

3.

Stol, K.-J., Ralph, P. and Fitzgerald, B. (2016) ‘Grounded theory in software

engineering research’, (October 2017), pp. 120–131. doi:

10.1145/2884781.2884833.

Taber, K. S. (2018) ‘The Use of Cronbach’s Alpha When Developing and Reporting

Research Instruments in Science Education’, Research in Science Education.

Research in Science Education, 48(6), pp. 1273–1296. doi: 10.1007/s11165-

016-9602-2.

Tao, Y., Han, D. and Kim, S. (2014) ‘Writing acceptable patches: An empirical study

of open source project patches’, Proceedings - 30th International Conference on

Software Maintenance and Evolution, ICSME 2014, pp. 271–280. doi:

10.1109/ICSME.2014.49.

Thongtanunam, P. et al. (2014) ‘REDA: A web-based visualization tool for analyzing

modern code review dataset’, Proceedings - 30th International Conference on

Software Maintenance and Evolution, ICSME 2014, pp. 605–608. doi:

10.1109/ICSME.2014.106.

Thongtanunam, P. et al. (2016) ‘Revisiting code ownership and its relationship with

software quality in the scope of modern code review’, in Proceedings of the 38th

International Conference on Software Engineering - ICSE ’16, pp. 1039–1050.

doi: 10.1145/2884781.2884852.

252

Thongtanunam, P. et al. (2017) ‘Review participation in modern code review’,

Empirical Software Engineering, 22(2), pp. 768–817. doi: 10.1007/s10664-016-

9452-6.

Thung, F. et al. (2013) ‘Network structure of social coding in GitHub’, Proceedings

of the European Conference on Software Maintenance and Reengineering,

CSMR, pp. 323–326. doi: 10.1109/CSMR.2013.41.

Tobias, D. (2017) ‘Continuous Code Reviews’, in Proc. Programming’17, Brussels,

Belgium. ACM, pp. 5–7.

Tottossy, A. P. (2005) Teacher selection: A Delphi study.

Travassos, G. H. (2014) ‘Software defects: Stay away from them. Do inspections!’, in

Proc. 2014 9th International Conference on the Quality of Information and

Communications Technology, pp. 1–7. doi: 10.1109/QUATIC.2014.8.

Tsay, J., Dabbish, L. and Herbsleb, J. (2014) ‘Influence of Social and Technical

Factors for Evaluating Contribution in GitHub’, in Proc. International Conference

on Software Engineering, pp. 356–366. doi: 10.1145/2568225.2568315.

Tymchuk, Y., Mocci, A. and Lanza, M. (2015) ‘Code Review : Veni , ViDI , Vici’, in

Proc. 171 SANER, Montréal, Canada, pp. 151–160.

Urrego, J. et al. (2014) ‘Archinotes: A global agile architecture design approach’,

Lecture Notes in Business Information Processing, 179 LNBIP, pp. 302–311. doi:

10.1007/978-3-319-06862-6.

Vasanthapriyan, S. et al. (2017) ‘An ontology-based knowledge sharing portal for

software testing’, 2017 IEEE International Conference on Software Quality,

Reliability and Security Companion (QRS-C), pp. 472–479. doi: 10.1109/QRS-

C.2017.82.

Vlachos, I., Siachou, E. and Langwallner, E. (2019) ‘A perspective on knowledge

sharing and lean management: an empirical investigation’, Knowledge

Management Research and Practice. Taylor & Francis, 00(00), pp. 1–16. doi:

10.1080/14778238.2019.1589399.

Wen, R. et al. (2018) ‘BLIMP tracer: Integrating build impact analysis with code

review’, in Proc. IEEE International Conference on Software Maintenance and

Evolution, pp. 685–694. doi: 10.1109/ICSME.2018.00078.

Winter, J. C. F. (2013) ‘Using the student’s t-test with extremely small sample sizes’,

Practical Assessment, Research and Evaluation, 18(10), pp. 1–12.

Wohlin, C. et al. (2000) Experimentation in software engineering, Springer

253

International Publishing. Edited by V. Basili R. Springer. doi: 10.1007/978-1-

4615-4125-7.

Wong, Y. K. (2006) Modern software review: Techniques and technologies.

Xia, Z. et al. (2017) ‘A hybrid approach to code reviewer recommendation with

collaborative filtering’, in SoftwareMining 2017, Urbana-Champaign, IL, USA.

IEEE, pp. 24–31.

Yang, X. et al. (2016) ‘Peer review social network (PeRSoN) in open source projects’,

IEICE Transactions on Information and Systems, E99D(3), pp. 661–670. doi:

10.1587/transinf.2015EDP7261.

Yang, Y. N. (2000) ‘Convergence on the guidelines for designing a web- based Art-

teacher education curriculum : A Delphi Study’, American Educational Research

Association, (Cv).

Yu, Y. et al. (2014) ‘Reviewer recommender of pull-requests in GitHub’, in

Proceedings - 30th International Conference on Software Maintenance and

Evolution, ICSME 2014, pp. 609–612. doi: 10.1109/ICSME.2014.107.

Yu, Y. et al. (2015) ‘Reviewer recommendation for pull-requests in GitHub: What can

we learn from code review and bug assignment?’, Information and Software

Technology. Elsevier B.V., 000, pp. 1–15. doi: 10.1016/j.infsof.2016.01.004.

Zahedi, M., Shahin, M. and Ali, M. (2016) ‘A systematic review of knowledge sharing

challenges and practices in global software development’, International Journal

of Information Management, Elsevier. Elsevier Ltd, 36, pp. 995–1019.

Zanaty, F. El et al. (2018) ‘An empirical study of design discussions in code review’,

in Proc. 12th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement - ESEM ’18, pp. 1–10. doi:

10.1145/3239235.3239525.

Zhang, Z. X. (2001) ‘The effects of frequency of social interaction and relationship

closeness on reward allocation’, Journal of Psychology: Interdisciplinary and

Applied, 135(2), pp. 154–164. doi: 10.1080/00223980109603687.

254

APPENDICES

Appendix A Search Strings Executed to Database

An example of search strings executed to ACM database

D
at

a
ba

se
 Search String Total

Papers

Found

1st level

Extraction

2nd level

Extraction

3rd level

Extraction

Papers

before

Quality

Assessment

A
C

M
 (knowledge sharing OR

knowledge transfer) AND
(modern code review) AND
(software engineering waiting
waste)

32 6 14 00 12

(knowledge sharing or
knowledge transfer) AND
(modern code review or
contemporary code review)
AND (lean software
development OR lean
software engineering)

26 9 13 00 04

(knowledge sharing) AND
(modern code review) AND
(software engineering linger
waste OR software
engineering delay waste)

19 10 08 00 01

(knowledge sharing) AND
(modern code review) AND
(software engineering
blocking waste)

21 13 05 00 03

(knowledge sharing) AND
(modern code review) AND
(software development delay
waste)

157 153 00 01 03

(knowledge sharing) AND
(modern code review) AND
(software development linger
waste)

121 118 02 00 01

(knowledge
sharing) AND (modern code
inspection) AND (lean
software engineering OR
lean software
development)

264 257 07 07 00

(knowledge
sharing) AND (code
review) AND (lean software
engineering)

301 294 05 01 01

(knowledge sharing)
AND code
inspection) AND (lean
software engineering OR
lean software
development)
..

1017 996 10 09 02

255

D
at

a
ba

se
 Search String Total

Papers
Found

1st level

Extraction

2nd level

Extraction

3rd level

Extraction

Papers
before

Quality
Assessment

 knowledge
sharing) AND (lightweight
code review) AND (lean
software engineering OR
lean software
development)

261 253 07 00 01

(knowledge
sharing) AND (lightweight
code inspection (lean software
engineering OR lean
software development)

121 115 05 00 01

(knowledge
sharing) AND (peer code
review) AND (lean software
engineering OR lean
software development)

266 246 15 00 05

(knowledge dissemination)
AND (modern code
review) AND (lean software
engineering)

776 765 11 11 00

(knowledge exchange)
modern code
review) AND (lean software
engineering)

827 818 07 00 02

(knowledge exchange OR
knowledge transfer) AND
(modern code
review) AND (lean software
engineering OR lean software
engineering)

610 540 59 06 05

(knowledge exchange) AND
(contemporary code review)
AND (lean software
engineering)

715 703 12 02 10

256

Appendix B Distribution of Data Sources

Distribution of data sources for particular database

Database

Repository

Papers

Found

Inclusion/

Exclusion

Criteria

Papers

Selected after

Inclusion and

exclusion

Exclusion

after QA

Papers

Included for

detail review

after QA

ACM 2209 2151 58 1 57

IEEE 4052 3970 82 5 77

Springer

Link
1420 1409 11 0 11

Wiley

Online
516 514 2 0 2

Scopus 804 801 3 0 3

Web-of

Science
288 282 6 0 6

Total

Research

Paper

9289 9127 162 6 156

257

Appendix C Quality Assessment Scores of Research Papers

Quality assessment scores of selected papers

Paper

ID
Q1 Q2 Q3 Q4 Q5 Q6 Q7

C
um

ul
at

iv
e

Q
ua

lit
y

A
ss

es
sm

en
t

Sc
or

e

KSFP1 Y Y Y Y Y Y Y 7
KSFP2 Y Y Y Y Y Y Y 7
KSFP3 Y Y Y Y Y Y Y 7
KSFP4 Y Y Y Y Y Y Y 7
KSFP5 Y Y Y Y Y Y P 6.5
KSFP6 Y P P Y Y Y P 5.5
KSFP7 Y Y Y Y Y Y Y 7
KSFP8 Y Y Y Y Y Y Y 7
KSFP9 Y Y Y Y Y Y Y 7

KSFP10 Y Y Y Y Y Y Y 7
KSFP11 Y P Y Y P Y P 5.5
KSFP12 Y Y Y Y Y P P 6
KSFP13 Y Y Y P Y Y P 6
KSFP14 Y P Y Y Y Y P 6
KSFP15 Y Y Y P Y Y Y 6.5
KSFP16 Y Y Y Y P Y P 6
KSFP17 Y Y Y Y P Y P 6
KSFP18 Y P Y Y Y Y Y 6.5
KSFP19 Y Y P Y N Y P 5
KSFP20 Y Y Y P Y Y Y 6.5
KSFP21 Y Y Y Y Y Y Y 7
KSFP22 Y Y Y Y Y Y Y 7
KSFP23 Y Y Y P Y Y P 6
KSFP24 Y Y P P Y Y P 5.5
KSFP25 Y Y Y Y Y Y P 6.5
KSFP26 Y Y Y P P P P 5
KSFP27 Y Y Y Y Y Y Y 7
KSFP28 Y Y Y Y Y Y Y 7
KSFP29 Y Y Y 0 Y P P 5
KSFP30 Y P Y Y Y P P 5.5
KSFP31 Y Y Y P P P P 5
KSFP32 Y Y P P P Y P 5
KSFP33 Y P Y Y Y P Y 6
KSFP34 Y Y Y Y Y P P 6
KSFP35 Y Y Y P Y Y P 6
KSFP36 Y Y Y Y P Y P 6
KSFP37 Y Y Y Y Y Y Y 7
KSFP38 Y Y Y Y Y Y Y 7
KSFP39 Y Y Y P Y Y Y 6.5
KSFP40 Y Y Y Y Y Y Y 7

258

Paper

ID
Q1 Q2 Q3 Q4 Q5 Q6 Q7

C
um

ul
at

iv
e

Q
ua

lit
y

A
ss

es
sm

en
t

Sc
or

e

KSFP41 Y Y Y P Y P Y 6
KSFP42 Y Y P Y P P P 5
KSFP43

Y

Y Y Y P Y P

6

KSFP44 Y Y Y Y P Y P 6
KSFP45 Y P Y P Y Y P 5.5
KSFP46 Y Y Y P P Y P 5.5
KSFP47 Y Y Y Y Y Y P 6.5
KSFP48 Y Y Y Y Y Y Y 7
KSFP49 Y Y P P P Y P 5
KSFP50 Y Y Y Y P Y Y 6.5
KSFP51 Y Y Y P Y Y P 6
KSFP52 Y Y Y Y P Y P 6
KSFP53 Y Y Y Y P Y P 6
KSFP54 Y Y Y Y P Y Y 6.5
KSFP55 Y Y Y Y P Y Y 6.5
KSFP56 Y Y Y P Y Y Y 6.5
KSFP57 Y P Y P Y Y Y 6
KSFP58 Y Y Y P Y Y P 6
KSFP59 Y Y Y P Y Y P 6
KSFP60 Y Y Y Y N Y P 5.5
KSFP61 Y Y Y P P Y P 5.5
KSFP62 Y Y Y Y P Y P 6
KSFP63 Y Y Y Y P Y P 6
KSFP64 Y Y Y Y Y Y P 6.5
KSFP65 Y P P P Y Y Y 5.5
KSFP66 Y Y Y P P Y P 5.5
KSFP67 Y Y Y P P P Y 5.5
KSFP68 Y Y Y Y Y Y P 6.5
KSFP69 Y Y Y Y P Y Y 6.5
KSFP70 Y Y Y Y P Y P 6
KSFP71 Y Y Y Y P Y Y 6.5
KSFP72 Y Y Y Y Y Y Y 7
KSFP73 Y Y Y Y Y Y Y 7
KSFP74 Y P Y Y Y Y P 6
KSFP75 Y Y Y Y Y P Y 6.5
KSFP76 Y Y Y Y Y Y P 6.5
KSFP77 Y Y Y Y Y Y Y 7
KSFP78 Y P Y Y Y Y P 6
KSFP79 Y Y Y P Y Y P 6
KSFP80 Y Y Y P Y P Y 6
KSFP81 Y Y P P Y P P 5
KSFP82 Y Y Y Y P Y P 6
KSFP83 Y Y Y P Y P Y 6
KSFP84 Y Y P Y P P P 5

259

Paper

ID
Q1 Q2 Q3 Q4 Q5 Q6 Q7

C
um

ul
at

iv
e

Q
ua

lit
y

A
ss

es
sm

en
t

Sc
or

e

KSFP85 Y P Y Y Y Y P 6
KSFP86 Y Y Y Y Y Y Y 7
KSFP87 Y Y Y P Y Y P 6
KSFP88 Y P P Y Y P Y 5.5
KSFP89 Y Y Y Y Y Y P 6.5
KSFP90 Y Y P Y Y Y P 6
KSFP91 Y Y Y P Y Y Y 6.5
KSFP92 Y Y Y P Y Y P 6
KSFP93 Y Y P Y Y P P 5.5
KSFP94 Y Y P Y Y Y P 6
KSFP95 Y Y P Y Y P Y 6
KSFP96 Y P Y P Y Y Y 6
KSFP97 Y Y P Y Y Y Y 6.5
KSFP98 Y Y Y Y Y Y P 6.5
KSFP99 Y Y Y Y Y Y Y 7
KSFP10

0

Y Y Y P Y Y Y 6.5
KSFP10

1

Y Y P Y Y Y P 6
KSFP10

2

Y Y P Y Y Y P 6
KSFP10

3

Y Y Y Y Y Y Y 7
KSFP10

4

Y Y Y Y Y Y Y 7
KSFP10

5

Y Y P P Y Y Y 6
KSFP10

6

Y Y Y Y Y Y Y 7
KSFP10

7

Y Y P P Y Y Y 6
KSF108 Y Y P P Y P Y 5.5
KSFP10

9

Y P P Y Y Y Y 6
KSFP11

0

Y Y Y P Y Y Y 6.5
KSFP11

1

Y P Y Y P Y Y 6
KSFP11

2

Y Y P P Y Y Y 6
KSFP11

3

Y Y P P Y Y Y 6
KSFP11

4

Y Y Y Y Y Y Y 7
KSFP11

5

Y Y P P Y Y Y 6
KSFP11

6

Y Y Y Y Y Y Y 7
KSFP11

7

Y Y Y Y Y Y Y 7
KSFP11

8

Y Y Y P Y Y P 6
KSFP11

9

Y Y Y P Y Y Y 6.5
KSFP12

0

Y Y Y Y Y Y Y 7
KSFP12

1

Y Y Y P Y Y Y 6.5
KSFP12

2

Y Y Y P Y Y Y 6.5
KSFP12

3

Y Y Y P Y Y Y 6.5
KSFP12

4

Y P Y Y Y Y P 6
KSFP12

5

Y Y Y Y Y P Y 6.5
KSFP12

6

Y Y Y Y Y Y Y 7
KSFP12

7

Y Y Y Y Y P Y 6.5
KSFP12

8

Y Y Y P Y Y Y 6.5

260

Paper

ID
Q1 Q2 Q3 Q4 Q5 Q6 Q7

C
um

ul
at

iv
e

Q
ua

lit
y

A
ss

es
sm

en
t

Sc
or

e

KSFP12

9

Y Y Y Y Y P P 6
KSFP13

0

Y Y Y P Y Y Y 6.5
KSFP13

1

Y P Y Y Y Y P 6
KSFP13

2

Y Y Y P Y Y P 6
KSFP13

3

Y Y Y Y Y Y Y 7
KSFP13

4

Y Y Y Y Y Y Y 7
KSFP13

5

Y Y P P Y P Y 5.5
KSFP13

6

Y Y P P Y Y Y 6
KSFP13

7

Y Y Y Y Y Y Y 7
KSFP13

8

Y Y Y Y Y Y Y 7
KSFP13

9

Y Y Y P Y Y Y 6.5
KSFP14

0

Y Y Y Y Y Y P 6.5
KSFP14

1

Y Y Y Y Y Y Y 7
KSFP14

2

Y Y Y Y Y Y P 6.5
KSFP14

3

Y Y Y Y Y Y P 6.5
KSFP14

4

Y Y Y Y Y Y Y 7
KSFP14

5

Y Y P P Y Y Y 6
KSFP14

6

Y Y Y Y Y Y P 6.5
KSFP14

7

Y Y Y Y Y Y Y 7
KSFP14

8

Y Y Y P Y Y Y 6.5
KSFP14

9

Y Y Y P Y Y Y 6.5
KSFP15

0

Y Y Y Y Y Y Y 7
KSFP15

1

Y Y Y Y Y Y Y 7
KSFP15

2

Y Y Y Y Y Y Y 7
KSFP15

3

Y Y Y Y Y Y P 6.5
KSFP15

4

Y Y Y Y Y P Y 6.5
KSFP15

5

Y Y Y P Y Y Y 6.5
KSFP15

6

Y Y Y Y Y P P 6

Quality assessment scores of excluded papers

Paper Title Q1 Q2 Q3 Q4 Q5 Q6 Q7
Cumulative

Quality
Assessment

Score

Collaborations and Code

Reviews
Y P P P P Y P 4.5

How long does it take to fix the

code: A case study of Open

Stack
Y Y P P P P P 4.5

261

Paper Title Q1 Q2 Q3 Q4 Q5 Q6 Q7

Cumulative

Quality

Assessment

Score

Gamifying software

engineering tasks based on

cognitive principles: The case

of code review

Y P P P P P P 4

MCT: A Tool for Commenting

Programs by Multimedia

Comments

Y Y P 0 P P Y 4.5

Does Bug Prediction Support

Human Developers? Findings

from a Google Case Study

Y Y P P P P P 4.5

0-1 Programming Model-

Based Method for Planning

Code Review using Bug Fix

History

Y Y Y P N P P 4.5

262

Appendix D Research Papers Selected for SLR after Quality Assessment

Research studies selected for SLR after quality assessment
Paper ID Paper Title

KSFP1 Code reviewing in the trenches challenges and best practices

KSFP2 Code review quality: how developers see it?

KSFP3
Was my contribution fairly reviewed?” a framework to study the perception of fairness

in modern code reviews

KSFP4 The effect of poor source code lexicon and readability on developers’ cognitive load

KSFP5
Understanding review expertise of developers: a reviewer recommendation approach

based on latent Dirichlet allocation

KSFP6 Poster: understanding and leveraging developer inexpertise

KSFP7 Studying pull request merges: a case study of shopify’s active merchant

KSFP8
What makes a code change easier to review? an empirical investigation on code change

reviewability

KSFP9 Modern code review: a case study at google

KSFP10 Comparing sequential and parallel code review techniques

KSFP11 An empirical study of design discussions in code review

KSFP12 BLIMP tracer: integrating build impact analysis with code review

KSFP13
The impact of human factors on the participation decision of reviewers in modern code

review

KSFP14 Profile based recommendation of code reviewers

KSFP15 Communicative intention in code review questions

KSFP16 Context is king: the developer perspective on the usage of static analysis tools

KSFP17
Are fix-inducing changes a moving target? a longitudinal case study of just-in-time

defect prediction

KSFP18 Information needs in contemporary code review

KSFP19 Code review tool for visual programming languages

KSFP20 Code review comments: language matters

KSFP21 Analysing the impact of feedback in GitHub on the software developer’s mood

KSFP22 Review feedbacks influence to a contributor’s time spent on OSS projects?

KSFP23
Feedback topics in modern code review:

automatic identification and impact on changes

KSFP24 Codeflow: improving the code review process at Microsoft

KSFP25
CFAR: a tool to increase communication, productivity, and review quality in

collaborative code review

KSFP26 Visualization of inter-module dataflow through global variables for source code review

KSFP27 Does reviewer recommendation help developers?

263

Paper ID Paper Title

KSFP28 When testing meets code review: why and how developers review tests

KSFP29 CROP: linking code reviews to source code changes

KSFP30 Assisted discovery of software vulnerabilities

KSFP31 Salient-class location: help developers understand code change in code review

KSFP32 Poster: guiding developers to make informative commenting decisions in source code

KSFP33 State of mutation testing at google

KSFP34 Eye movements in code review

KSFP35 Finding impact factors for rejection of pull requests on GitHub

KSFP36 A large-scale study of test coverage evolution

KSFP37 Investigating the effectiveness of peer code review in distributed software development

KSFP38
Process aspects and social dynamics of contemporary code review: insights from open

source development as well as industrial practice at Microsoft

KSFP39 Code review analysis of software system using machine learning techniques harsh

KSFP40 Continuous code reviews a social coding tool for code reviews inside the IDE

KSFP41 Broadcast vs. unicast review technology: does it matter?

KSFP42 Impact of continuous integration on code reviews

KSFP43 Comparing pre-commit reviews and post-commit reviews using process simulation

KSFP44 Confusion detection in code reviews

KSFP45 Evaluating how static analysis tools can reduce code review effort

KSFP46 A large-scale study of modern code review and security in open source projects

KSFP47 A hybrid approach to code reviewer recommendation with collaborative filtering

KSFP48
Understanding the impressions, motivations, and barriers of onetime code contributors

to floss projects: a survey

KSFP49 The top 10 adages in continuous deployment

KSFP50
What are they talking about? analysing code reviews in pull-based development model

article

KSFP51
Are fix-inducing changes a moving target? a longitudinal case study of just-in-time

defect prediction

KSFP52
Decoding the representation of code in the brain: an FMRI study of code review and

expertise

KSFP53
Who should comment on this pull request? analysing attributes for more accurate

commenter recommendation in pull-based development

KSFP54 Search-based peer reviewers’ recommendation in modern code review

KSFP55
Review participation in modern code review. An empirical study of the android, qt, and

open stack projects

KSFP56 On the optimal order of reading source code changes for review

KSFP57 Experimental validation of source code reviews on mobile devices

KSFP58 Using metrics to track code review performance

264

Paper ID Paper Title

KSFP59 WAP: does reviewer age affect code review performance?

KSFP60 How is if statement fixed through code review? a case study of QT project

KSFP61 An empirical study of reviewer recommendation in pull-based development model..

KSFP62
The impact of continuous integration on other software development practices: a large-

scale empirical study

KSFP63
Interactively decomposing composite changes to support code review and regression

testing

KSFP64
Predicting usefulness of code review comments using textual features and developer

experience

KSFP65 Which review feedback did long-term contributors get on OSS projects?

KSFP66 Semantics-assisted code review an efficient toolchain and a user study

KSFP67 Refactoring-aware code review: a systematic mapping study

KSFP68 SENTICR: a customized sentiment analysis tool for code review interactions

KSFP69
Characterizing software engineering work with personas based on knowledge worker

actions

KSFP70
Are one-time contributors different? a comparison to core and periphery developers in

floss repositories

KSFP71
Reviewer recommendation for pull-requests in GitHub: what can we learn from code

review and bug assignment?

KSFP72 Work practices and challenges in pull-based development: the contributor’s perspective

KSFP73 Factors influencing code review processes in industry

KSFP74 A collaborative code review platform for GitHub

KSFP75 A study of the quality-impacting practices of modern code review at Sony mobile

KSFP76 A security perspective on code review: the case of chromium

KSFP77 A faceted classification scheme for change-based industrial code review processes

KSFP78 Code review participation: game theoretical modelling of reviewers in Gerrit datasets

KSFP79
Revisiting code ownership and its relationship with software quality in the scope of

modern code review

KSFP80
Quantifying and mitigating turnover-induced knowledge loss: case studies of chrome

and a project at AVAYA

KSFP81 Peer review social network (PeRSoN) in open source projects

KSFP82 Mining the modern code review repositories: a dataset of people, process, and product

KSFP83 The emotional side of software developers in JIRA

KSFP84 Visualizing code and coverage changes for code review

KSFP85
Automatically recommending code reviewers based on their expertise: an empirical

comparison

KSFP86 Correct: code reviewer recommendation at GitHub for vendasta technologies

KSFP87 Predicting defectiveness of software patches

265

Paper ID Paper Title

KSFP88 Effective assignment and assistance to software developers and reviewers

KSFP89 Characterization of the xen project code review process: an experience report

KSFP90 Teaching code review management using branch based workflows

KSFP91 Automatically recommending peer reviewers in modern code review

KSFP92
Who should review this change? putting text and file location analyses together for

more accurate recommendations

KSFP93 Lessons learned from building and deploying a code review analytics platform

KSFP94
Code reviews do not find bugs. how the current code review best practice slows us

down

KSFP95 Code review: Veni, Vidi, Vici

KSFP96 Why did this reviewed code crash? an empirical study of Mozilla Firefox

KSFP97
Do code review practices impact design quality? a case study of the QT, VTK, and ITK

projects

KSFP98 Interactive code review for systematic changes

KSFP99 Characteristics of useful code reviews: an empirical study at Microsoft

KSFP100 Investigating code review quality: do people and participation matter?

KSFP101 Four eyes are better than two: on the impact of code reviews on software quality

KSFP102 Partitioning composite code changes to facilitate code review

KSFP103 Investigating technical and non-technical factors influencing modern code review

KSFP104 Wait for it: determinants of pull request evaluation latency on GitHub

KSFP105
Helping developers help themselves: automatic decomposition of code review

changesets

KSFP106
Investigating code review practices in defective files: an empirical study of the QT

system,

KSFP107 Would static analysis tools help developers with code reviews?

KSF108 An exploratory study to identify similar patches: a case study in modern code review

KSFP109 Developers assignment for analysing pull requests

KSFP110 Network structure of social coding in GitHub

KSFP111 CoreDevRec: automatic core member recommendation for contribution evaluation

KSFP112 Treating software quality as a first-class entity

KSFP113 Vidi: the visual design inspector

KSFP114 Will they like this? evaluating code contributions with language models

KSFP115 Let's talk about it: evaluating contributions through discussion in GitHub

KSFP116
The impact of code review coverage and code review participation on software quality

a case study of the QT, VTK, and ITK projects

KSFP117 Modern code reviews in open-source projects: which problems do they fix?

KSFP118 Peer review on open-source software projects: parameters, statistical models, and theory

KSFP119 Who does what during a code review? datasets of OSS peer review repositories

266

Paper ID Paper Title

KSFP120 Peer impressions in open source organizations: a survey

KSFP121 Influence of social and technical factors for evaluating contribution in GitHub

KSFP122
Impact of developer reputation on code review outcomes in OSS projects. an empirical

investigation

KSFP123 How do social interaction networks influence peer impressions formation? a case study

KSFP124
An empirical investigation of socio-technical code review

metrics and security vulnerabilities

KSFP125
Understanding review helpfulness as a function of reviewer reputation, review rating,

and review depth

KSFP126 Identifying the characteristics of vulnerable code changes: an empirical study

KSFP127 Security and emotion: sentiment analysis of security discussions on GitHub

KSFP128
Tracing back the history of commits in low-tech reviewing environments a case study of

the Linux kernel

KSFP129
 RefDistiller: a refactoring aware code review tool for inspecting manual refactoring

edits

KSFP130 towards refactoring-aware code review

KSFP131 Code review analytics: Webkit as case study

KSFP132
Mining peer code review system for computing effort and contribution metrics for patch

reviewers

KSFP133 Reviewer recommender of pull-requests in GitHub

KSFP134 Reviewer recommendation to expedite crowd collaboration

KSFP135 Critics: an interactive code review tool for searching and inspecting systematic changes

KSFP136 Writing acceptable patches: an empirical study of open source project patches

KSFP137 Convergent contemporary software peer review practices

KSFP138 Expectations, outcomes, and challenges of modern code review

KSFP139 Impact of peer code review on peer impression formation: a survey

KSFP140
Impression formation in online peer production: activity traces and personal profiles in

GitHub

KSFP141 Will my patch make it? and how fast? case study on the Linux kernel

KSFP142
Reducing human effort and improving quality in peer code reviews using automatic

static analysis and reviewer recommendation

KSFP143 The influence of non-technical factors on code review

KSFP144 Code review for newcomers: Is it different?

KSFP145 Gerrit software code review data from android

KSFP146 Assessing MCR discussion usefulness using semantic similarity

KSFP147 When a patch goes bad: exploring the properties of vulnerability-contributing commits

KSFP148 A study on the interplay between pull request review and continuous integration builds

KSFP149 An empirical study on the effectiveness of security code review

267

Paper ID Paper Title

KSFP150 On the understanding of programs with continuous code reviews

KSFP151 Confusion in code reviews: reasons, impacts, and coping strategies

KSFP152
Social network site skills for communication professionals: conceptualization,

operationalization, and an empirical investigation.

KSFP153
Associating working memory capacity and code change ordering with code review

performance

KSFP154 Expressions of sentiments during code reviews: male vs. female

KSFP155 Investigating the social representations of code smell identification: a preliminary study

KSFP156
Decomposing composite changes for code review and regression test selection in

evolving software

268

Appendix E Implementation of Data Coding Techniques

 Examples of implementation of data coding techniques within data source KSFP1

Paper Statement Open Coding Focused Coding Axial Coding
1 “Interestingly, not all teams

have 1aexplicit rules or
1bpolicies around code review

and 1ccode review policy

vary”.

1a Team Rules
1bTeam Policies
1cVariation in

Code Review

Policy

 Team Strategies

- Team Rules

-Team Policies

-Team Workflow

-Variation in

Code Review

Policies

▲Team

➔ Team Strategies

➔ Team Culture

➔ Team Intentions

➔ Team Drives

➔ Team Organization

2“2aIteration involving
2bcommunication between

authors and reviewers”.

2aIteration
2bCommunication

3 “Notification of the selected

reviewers as well as other

stakeholders, with team

policy dictating who should

be informed and how”.

3Team Policy for

Notification of

Reviewer

(a)

4 “the 4aorder of review steps

can vary slightly depending

on a 4bteam’s policies,
4cculture, and 4dtools”.

4aOrder of Review

Steps
4bTeam Policies
4cTeam Culture
4dReview Tools

Team Culture

Team Intentions

-Improve Code

-Finding Defects

-Transfer

Knowledge

-Explore

Alternative

Solution

-Improve

Development

Process

-Avoid Build

Breaking

-Increase Team

Awareness

-Share Code

Ownership

-Assess Team

269

Paper Statement Open Coding Focused Coding Axial Coding

“Whether they are a code

author or reviewer, the
5process also helps them

become more confident”.

5Code Review

Process

Process

-Code Review

Process

Tool

-Review Tool

▲Facility Conditions

➔ Process

➔ Tool

➔ Communication

➔ Organization

Support

..
6“Most communication

between author and reviewer

occurs through the 6acode

review tool, but other
6bcommunication channels,

such as 6cface-to-face

discussions, 6dwhiteboard

sessions, 6evideo and 6f voice

chats, are used for

contentious issue”.

6aCommunication

through Code

Review Tool
6bFace to Face

Discussion
6cWhite board

Session
6dVideo Chats
6eVoice Chats

Communication

-Communication

Channel

7“Microsoft Engineers

perform code reviews 7ato

improve code,
7bfind defects, 7c transfer

knowledge, 7dexplore

alternative solutions
7eimprove the development

process 7favoid build breaks,
7gincrease team awareness
7hshare code ownership, 7i to

assess the team”.

7a Improve Code
7bFinding Defects
7cTransfer

Knowledge
7dExplore

Alternative

Solution
7eImprove

Development

Process
7fAvoid Build

Break
7gIncrease Team

Awareness
7hShare Code

Ownership
7i Assess Team

8“getting timely feedback as

their top challenge”.

8Feedback

Timeliness

Feedback

-Feedback

Temporal Aspect

-Feedback

Usefulness

▲Artefact

➔ Feedback

➔ Source Code

➔ Testing

270

Paper Statement Open Coding Focused Coding Axial Coding
9“Usually you write up some

code and then you send it out

for review, and then about a

9a day later you ping them to

remind them... and then about

half a day later you go to their

office and knock on their

door”.

9Delay Feedback

10“reviewers sometimes focus

on insignificant details rather

than looking for larger

issues”

10Insignificant

Details

11“There is a lot of style

[comments] a lot of the time,

which I find annoying. And

people will be like, maybe you

should use this name?”

11Style Comments

12“When preparing for a

review, interviewees said they

are unsure how to document

changes for review”.

12Change

Documentation

Source Code

-Change

Documentation

-Source Code

Complexity

-Source Code

Structure
13“tooling slows down code

velocity and 13atools should be

modified to better suit the
13bteam’s context,
13cworkflow, and 13dpolicies”.

13aReview Tool
13bTeam Context
13cTeam

Workflow
13dTeam Policies

Team

Organization

-Team Context

-Team Size

14“receiving a 14arejection can

be harsh and that they prefer

being given a 14breason why a

change is rejected”.

14aRejection
14bConvey

Rejection Reason

Individual

Emotions

-Fear

-Frustration
15“it can be tough managing

multiple communication

channels”.

15Communication

Channel

16“Code reviewers said they

struggle with large reviews”.

..

16 Review Size

271

Paper Statement Open Coding Focused Coding Axial Coding
17“understanding the
17acode’s purpose, the
17bmotivations for the change,

and 17chow the change was

implemented”.

17a Code Purpose
17bChange

motivation
17cChange

Implementation

Procedure

18“For code changes that are
18alarge and 18bdifficult to

understand, one developer

expressed 18cfrustration

around the value of his

review: “It’s just this big

incomprehensible mess... then

you can’t add any value

because they are just going to

explain it to you and you’re

going to parrot back what

they say”.

18aChange Size
18bComplex

Change
18cFrustration

“Regarding Comprehension,

finding relevant
19documentation about

changes was another

frequently reported

challenge”.

19Change

Documentation

“A lack of 20training on the

review process itself, and that

their reviewing activities are

perceived as not being valued

enough”.

20Review Process

Activities

21“lack insights into how their

code review activities impact

job evaluations”.

21Reviewer

Awareness Impact

of Code Review

on Job

Individual

Awareness

-Awareness of

Role-oriented

Task

▲Individual

➔ Individual

Awareness

➔ Individual

Historical Factors

➔ Individual

Intention

➔ Individual

Emotions

..

272

Paper Statement Open Coding Focused Coding Axial Coding
22“when authors prepare a

change for review, they

should read through the

change thoroughly”.

22Pre-review the

Change before

Sending for

Review

23“Viewing changes in a code

review tool can expose simple

issues (such as code style) to

the author.”

23Pre-review by

Author using Tool

for Code Style.

24“Small, incremental

changes that are be easier to

understand”.

24Change Size

25“25aclustering related

changes, 25bdocumenting the

motivation for a change, and
25cdescribing the change and

how to approach the review

will help reviewers.”

25aClustering of

Related Changes
25bChange

Motivation
25cChange

Description

26“Authors should 26atest their

changes, and 26bif no test

exists, they should create

one”.

26aPrior Testing of

Changes
26bTest Case

 Testing

-Test Case

-Automated

Testing

-Manual Testing

27“Running automated

analysis tools can expose

formatting and low-level

issues that would otherwise

waste reviewers’ time”.

27Automated

Testing

28“authors should carefully

consider
28awhen to skip a review while

referring to their
28borganization’s code review

policy (if one exists)”.

28aDecision to skip

review
28bOrganizations

Code review

policy

Organization

Support

-Organization

Strategies and

Policies

-Organization

Tasks

29“they must determine 29ahow

many reviewers are needed,

consulting their
9borganization’s policy if

necessary”.

29aTeam Size
29bOrganization’s

Policy

Team

Organization

-Team Size

273

Paper Statement Open Coding Focused Coding Axial Coding
30“It is important to select

appropriate reviewers,

Authors might select

reviewers who have 30acode

expertise, are responsible for

the code, or need 30bto build

expertise. If not against a
30cteam policy, it may be

advisable to allow reviewers

to volunteer for motivational

reasons”..

30aReviewer

Expertise
30b Build Expertise
30c Team Policy

Individual

Historical Factor

-Individual

Expertise

Individual

Intention

-Build Expertise

31“reducing the senior

engineers’ load was an

important consideration”.

31Individual

Workload

Individual

Pressure

-Individual

Workload
32“Reviewers should choose
32acommunication channels

carefully. Richer channels,

such as 32bface-to-face or
32cvoice, are preferred for

contentious issues or for

discussing complex code

changes. While for non-

contentious or sensitive

issues, 3dtools that provide
3etraceability are preferred”.

32aCommunication

Channels
32bFace to Face
32cVoice
32dReview Tool

 3eTraceability

Facility of tool

Tool Support

-Automated

Feature

Assistance

-Integration with

Development

Tool

33“skill to give 33aconstructive

and 33brespectful feedback

while also clearly explaining

the 3creasons for rejecting a

change”.

33aConstructive

Feedback
33bRespectful

Feedback
33cConvey Reason

for Rejection

Feedback

-Feedback

Structure

34“an organization should

consider 34aestablishing a

code review policy. Such a

policy should help in building

a 34bpositive review culture

that sets the tone for
34cconstructive feedback”

34aEstablishment

of Code Review

Policy
34bPositive Review

Culture Policy
34cConstructive

Review Feedback

Organization

Support

-Organization

Strategies and

Policies

274

Paper Statement Open Coding Focused Coding Axial Coding
35“organization or team

should watch for negative

impacts of 35aemployee

assessment or 35bincentives

that may be linked to 35ccode

reviewing activities”.

35aEmployee

Assessment
35bIncentives
35cCode

Reviewing

Activities

36“Encourage 6arewarding

engineers who spend

considerable effort reviewing

others’ code is encouraged,
36bpenalizing engineers who

do not (often with a good

reason) may lead to gaming of

the system”.

36aRewards
36bPenalties

37“It is also important to

ensure that author and

reviewer use 37a appropriate

tools that match the desired
37breviewing culture and
37cdefined process (if there is

one)”.

37aReview Tool
37bReview Culture
37cReview Process

38“Tools might support

certain steps in the process,

such as 38afinding and
38bnotifying reviewers,
38cautomating feedback,
38drunning style checkers, and
38etesting.”

38aFinding

Reviewer Feature
38bNotifying

Reviewer Feature
38cAutomated

Feedback
38dStyle Checker
38eAutomated

Testing

39 “Tools should be

lightweight and 39aintegrate

well with other developer

tools, especially with
39binformal 39ccommunication

channels.”

39aIntegration of

Review Tool with

Development Tool

39bIntegration of

Review Tool with

Communication

Channel
39cCommunication

Channel..

275

Paper Statement Open Coding Focused Coding Axial Coding
40“Distributed teams might

have additional tool needs”.

..

40Distributed

Teams

41“knowing the expected
41aprocess or how to use

desired 41b tools, an

organization can ensure there

is sufficient training in place
41cInformal training through

mentorship might be all that is

required”.

41aTraining of

Process
41bTraining of

Tool
41cInformal

Training

42“Finally, an organization

should to 41adevelop, 42breflect

on, 42crevise code reviewing

policies and checklists”.

42aDevelopment of

Code Review

Policies and

Checklist
42bReflect on Code

Review Policies

and Checklist
42cRevision of

Code Review

Policies and

Checklist

Organization

Support

-Organization

Practices

276

 Examples of implementation of data coding techniques within data source KSFP2

Paper Statement Open Coding Focused Coding Axial Coding
1“developers with 1ahigh

workloads (i.e., over 10

patches/reviews per week)

tend to concentrate their

efforts on a single task type,

i.e., either writing patches or

reviewing them”.

1Developers’

Workload

Individual

Pressure

-Individual

Workload

2“The need for 2a“dedicated”

reviewers is pursued to bring

their unique 2bknowledge and
2cexpertise, e.g., overall
2darchitecture or 2edomain

knowledge, to the project to

ensure the correctness and fit

of code contributions”.

2aDedicated

Reviewers
2bReviewer

Knowledge

2cReviewer

Expertise
2dReviewer

Architectural

Knowledge

2eReviewer

Domain

Knowledge
..

Individual

Historical

Factors

-Individual

Characteristic

-Individual

Knowledge

-Reviewer

Expertise

-Personality of

the Reviewer

3“The majority of reviewers

conduct code review in

Bugzilla despite having

access to a custom-built code

review tool, and use various
3acommunication channels for

discussing code

modifications”.

3aComunication

Channel

Communication

Support

-Communication

Channel

4“smaller 4apatches are more

likely to receive 4bfaster

responses”.

4a Patch Size
4bResponse Time

Source Code

-Complexity

-Patch Size

-Readability

Feedback

-Feedback

Timeliness

277

Paper Statement Open Coding Focused Coding Axial Coding
5“Readability/variable

naming affecting how hard it

is to understand any

particular hunk of the patch

on its own”.

5Readability

6“There are different

characteristics that identify

the suitability of a reviewer.

For R87 it is “the
6apersonality of a reviewer”,

while for R52 it is presence

of“6bpersonal backlog of

work, and 6cpersonal

priorities”..

6aPersonality of

the Reviewer
6bPersonal

Backlog of Work,
6cPersonal

Priorities

Individual

Pressure

-Personal

Backlog

7“When developers submit a

patch they can include the
7aresults of running existing

tests, as well as include the
7btests they wrote specifically

for that patch”.

7aTest Results

7bTest Case

“The two sub- categories that

we identified reflect the option

patch writers have. The first

sub-category is focused on the
8presence of automated tests

in a patch: “... changes that

are accompanied by tests are

much more likely to be

accepted”.

8Presence of

Automated Test

Testing

-Test Result

-Test Case

-Presence of

Automated Test

-Presence of Test

9“completeness of tests is also

important: “thoroughness of

tests included in patch”.

9Completeness of

Test

10“including 10atest results as

a message on the bug tracker

can either give the reviewer

more confidence to accept the

patch (if the tests pass) or

likewise lead them to reject

the patch (if the tests fail)”.

10a Test Results

278

Paper Statement Open Coding Focused Coding Axial Coding
11“11aChange scope and
11brationale is believed to be

an of influential factor for

reviewers making their

decisions”.

..

11aChange Scope
11bChange

Rationale

12 “Developers believe that

factors such as the
12aexperience of developers,

the 12bchoice of a reviewer,
12csize of a patch, its 12dquality

and 12erationale affect the

time needed for review”.

..

12aExperience of

Developers
12bChoice of a

Reviewer
12cSize of a Patch
12dQuality of Patch
12ePatch rationale

13 “13abug severity, 13bcode

quality and its 13crationale,
3dpresence and 13equality of

tests, and 13fdeveloper

personality impact review

decisions”.

13aBug Severity
13bCode Quality
13cCode Rationale
13dPresence of Test
13eQuality of

Tests,
13fDevelopers’

Personality

..
14“Change rationale is the

second top property that

reviewers look for”.

..

14Change

Rationale

15“Reviewers expect code

changes to come with a
15acorresponding test change.

The lack of such tests is a

good sign that “15btest

coverage is lacking and we’re

taking a risk”.

..

15aCorresponding

Test Change
15bTest Coverage

16 “The presence of tests in the

patch also boosts developer’s

confidence”.

..

16Presence of

Tests

279

Paper Statement Open Coding Focused Coding Axial Coding
17 “when testing is not

practical, they perform
17amanual testing as well. As a

part of manual testing,

developers often perform an
17boperational proof such as

code walks through”.

17aManual Testing
17bOperational

Proof

18“18aclear and 18bthorough

feedback is the key attribute of

a well-done re- view”.

..

18aClear Feedback
18bThorough

feedback

19“Reviewers are expected to

provide feedback that

is19aclear to understand; is

not only “about 19bcode

formatting and 19cStyle” (R6);

3) provides 19dconstructive

advice”.

19aClear Feedback
19bFeedback

Focusing Code

Formatting
19cFeedback

Focusing Code

Style
19dConstructive

Feedback

20 “enough 20adomain

knowledge is always the first

criteria for a well-done

code”.

..

20aDomain

Knowledge

21“personal factors such as
21apatch writer experience,
21breviewer workloads,
21cdeveloper participation in

the discussion of code

changes, module and
21dnumber of resubmitted

patches are more likely to

affect the quality of reviews”.

21aPatch Writer

Experience
21bReviewer

Workloads
21cDeveloper

Participation
21dNumber of

Resubmitted

Patches
22“Reviewers are often

required to evaluate 22large

patches”.

22 Patch Size

280

Appendix F List of Knowledge Sharing Factors Attained after SLR

List of knowledge sharing factors, sub-factors, and categories attained after SLR with references

Category KSF KSF Paper

ID

Sub-Factors Sub-Factor Paper ID

In
di

vi
du

al

In
di

vi
du

al

Im
pa

rt
ia

lit
y

[K
SF

P1
] Biasness [KSFP3, KSFP9, KSFP38, KSFP70, KSFP140]

Balance Between Equity and

Equality

[KSFP3, KSFP139]

In
di

vi
du

al
 H

is
to

ri
ca

l F
ac

to
rs

[K
SF

P1
20

, K
SF

P1
40

] Individual Characteristics [KSFP2, KSFP3, KSFP7, KSFP38, KSFP51, KSFP60, KSFP73, KSFP99, KSFP109]

Individual Knowledge [KSFP2, KSFP6, KSFP7, KSFP14, KSFP39, KSFP44, KSFP48, KSFP54, KSFP137,

KSFP138, KSFP140, KSFP150]

Individual Expertise [KSFP1, KSFP2, KSFP3, KSFP5, KSFP6, KSFP17, KSFP18, KSFP19, KSFP38,
KSFP47, KSFP51, KSFP52, KSFP54, KSFP55, KSFP69, KSFP71, KSFP73,
KSFP77, KSFP78, KSFP92, KSFP145]

Individual Experience [KSFP1, KSFP2, KSFP3, KSFP6, KSFP7, KSFP8, KSFP9, KSFP13, KSFP17,

KSFP27, KSFP32, KSFP37, KSFP48, KSFP54, KSFP55, KSFP59, KSFP68,

KSFP71, KSFP73, KSFP77, KSFP78, KSFP124, KSFP141, KSFP149]

Individual Technical Skills [KSFP1, KSFP2, KSFP3, KSFP5, KSFP6, KSFP17, KSFP38, KSFP47, KSFP51,

KSFP52, KSFP54, KSFP55, KSFP69, KSFP71, KSFP73, KSFP77, KSFP78, KSFP,

KSFP85, KSFP86, KSFP92, KSFP140, KSFP145]

Individual Non-Technical Skills [KSFP2, KSFP9, KSFP38, KSFP43, KSFP48, KSFP73, KSFP146, KSFP152]

Work Style [KSFP1, KSFP7, KSFP8, KSFP46, KSFP69, KSFP77, KSFP116, KSFP120,

KSFP140]

281

Category KSF KSF

Paper ID

Sub-Factors Sub-Factor Paper ID

 Work Track Record [KSFP2, KSFP7, KSFP71]

Affiliation [KSFP7, KSFP8, KSFP38, KSFP140]
In

di
vi

du
al

 E
m

ot
io

ns

[K
SF

P2
1,

 K
SF

P8
3,

K
SF

P1
27

, K
SF

P1
40

,

K
SF

P1
54

, K
SF

P1
55

] Anger [KSFP2, KSFP83, KSFP 127, KSFP151]

Frustration [KSFP2, KSFP83, KSFP124, KSFP127, KSFP140, KSFP151]

Empathy [KSFP2, KSFP72, KSFP83]

Mood [KSFP2, KSFP21, KSFP83, KSFP154]

Fear [KSFP1, KSFP3, KSFP38, KSFP72, KSFP73, KSF80, KSFP83, KSFP110,

KSFP124, KSFP153]

In
di

vi
du

al
 P

re
ss

ur
e

[K
SF

P2
, K

SF
P3

] Cognitive Load [KSFP4, KSFP9, KSFP66, KSFP153]

Individual Workload [KSFP1, KSFP2, KSFP3, KSFP7, KSFP8, KSFP13, KSFP39, KSFP47, KSFP54,

KSFP136, KSFP140]

Time Pressure [KSFP1, KSFP2, KSFP7, KSFP8, KSFP12, KSFP38, KSFP39, KSFP47 , KSFP72,

KSFP73, KSFP138, KSFP140, KSFP146]

Context Switching [KSFP2]

In
di

vi
du

al
 A

w
ar

en
es

s

[K
SF

P2
, K

SF
P3

] Awareness of Code Quality [KSFP1, KSFP2, KSFP4, KSFP7, KSFP8, KSFP38, KSFP39, KSFP41, KSFP47,

KSFP66, KSFP79, KSFP94, KSFP120, KSFP137]

Awareness of Process

Improvement

[KSFP1, KSFP72, KSFP77, KSFP153]

Awareness of Knowledge Sharing [KSFP1, KSFP7, KSFP49, KSFP82, KSFP150]

Awareness of Effective

Communication

[KSFP2, KSFP9, KSFP38, KSFP71, KSFP72]

282

Category KSF KSF

Paper ID

Sub-Factors Sub-Factor Paper ID

Awareness of Role-Oriented Tasks [KSFP1, KSFP7, KSFP8, KSFP17, KSFP38, KSFP45, KSFP56, KSFP72, KSFP75,

KSFP78, KSFP91, KSFP106, KSFP118, KSFP138]
In

di
vi

du
al

T
ur

no
ve

r

[K
SF

P8
0,

K
SF

P1
27

,

K
SF

P1
50

] Job-Dissatisfaction [KSFP80]

Personal Conflicts [KSFP39, KSFP80, KSFP127, KSFP140]

Personal Issues [KSFP80]

Alternative Job Opportunities [KSFP80]

Impact of Turnover [KSFP80]

In
di

vi
du

al
 In

te
nt

io
ns

[K
SF

P1
] Self-Learning [KSFP3, KSFP8, KSFP47, KSFP51, KSFP73, KSFP80, KSFP83, KSFP90,

KSFP118]

Collaboration [KSFP38, KSFP75, KSFP82, KSFP137]

Problem Solving [KSFP9, KSFP38, KSFP75]

Impression Formation [KSFP2, KSFP38 , KSFP39 KSFP118, KSFP120, KSFP123 KSFP139, KSFP140

KSFP146]

Build Relationships [KSFP38, KSFP118]

So
ci

al

R
el

at
io

na
l

[K
SF

P1
0,

 K
SF

P1
10

,

K
SF

P1
21

] Trust [KSFP2, KSFP7, KSFP8, KSFP9, KSFP38, KSFP47, KSFP53, KSFP54, KSFP71,

KSFP75, KSFP106, KSFP111, KSFP120, KSFP121, KSFP123, KSFP137,

KSFP139]

Reputation [KSFP2, KSFP7, KSFP38, KSFP48, KSFP104, KSFP122, KSFP125, KSFP136,

KSFP140, KSFP141, KSFP178]

Familiarity [KSFP13, KSFP46, KSFP54, KSFP20, KSFP124]

Frequency of Interaction [KSFP39, KSFP50, KSFP77, KSFP121, KSFP140, KSFP144]

283

Category KSF KSF

Paper ID

Sub-Factors Sub-Factor Paper ID

St
ru

ct
ur

al

[K
SF

P8
1,

 K
SF

P1
44

] Social Network [KSFP38, KSFP71, KSFP81, KSFP82, KSFP123, KSFP133, KSFP134, KSFP152]

Social Network Ties [KSFP104, KSFP121, KSFP134]

Network Channel [KSFP144, KSFP81]

Network Stability [KSFP123]

Social Network Structure [KSFP71, KSFP8, KSFP133]

Socio-Political Structure [KSFP72, KSFP124, KSFP140]

A
rt

ef
ac

t

So
ur

ce
 C

od
e

[K
SF

P1
, K

SF
P2

, K
SF

P3
8]

 Source Code Structure [KSFP1, KSFP2, KSFP3, KSFP4, KSFP7, KSFP8, KSFP9, KSFP17, KSFP13,

KSFP14, KSFP16, KSFP23, KSFP26, KSFP37, KSFP38, KSFP40, KSFP41,

KSFP42, KSFP44, KSFP54, KSFP55, KSFP57, KSFP76, KSFP82, KSFP87,

KSFP116, KSFP132, KSFP137, KSFP143, KSFP153, KSFP155]

Source Code Complexity [KSFP2, KSFP3, KSFP7, KSFP8, KSFP13, KSFP31, KSFP34, KSFP37, KSFP38,

KSFP54, KSFP58, KSFP63, KSFP70, KSFP 73, KSFP87, KSFP116, KSFP118,

KSFP124, KSFP126, KSFP132, KSFP148, KSFP150, KSFP156]

Source Code Readability [KSFP2, KSFP4, KSFP8, KSFP9, KSFP10, KSFP32, KSFP33, KSFP34, KSFP38,

KSFP41, KSFP137 , KSFP140 KSFP151]

Source Code Efficiency [KSFP2, KSFP5, KSFP10, KSFP43, KSFP47, KSFP151]

Source Code Associated Risks [KSFP2, KSFP3, KSFP18, KSFP38, KSFP126, KSFP128, KSFP140]

Handling of Error Situations [KSFP2, KSFP38]

Adherence to Coding Standards [KSFP8, KSFP10, KSFP14, KSFP16, KSFP45, KSFP59, KSFP60, KSFP72,

KSFP137, KSFP140]

Source Code Change Motivation [KSFP1, KSFP2, KSFP44, KSFP72]

284

Category KSF KSF

Paper ID

Sub-Factors Sub-Factor Paper ID
 Source Code Change

Documentation

[KSFP1, KSFP2, KSFP4, KSFP7, KSFP8, KSFP37, KSFP38, KSFP55, KSFP71,

KSFP72 KSFP76, KSFP99, KSFP100, KSFP137, KSFP138]

Source Code Change Scope [KSFP2, KSFP7, KSFP8, KSFP117]

Nature of Change [KSFP8, KSFP37, KSFP128, KSFP137]

Change Impact [KSFP8, KSFP12, KSFP67, KSFP140, KSFP141, KSFP142]

Source Code Change Revertability [KSFP7]

Fe
ed

ba
ck

[K
SF

P2
, K

SF
P3

, K
SF

P7
] Feedback Language [KSFP3, KSFP7, KSFP10, KSFP19, KSFP20, KSFP38, KSFP39, KSFP110,

KSFP154]

Feedback Temporal Aspects [KSFP1, KSFP3, KSFP7, KSFP8, KSFP9, KSFP13 KSFP38, KSFP39, KSFP 41,

KSFP45, KSFP 47, KSFP53, KSFP54, KSFP51, KSFP70, KSFP72, KSFP78,

KSFP91, KSFP94, KSFP103, KSFP118, KSFP122, KSFP131, KSFP140, KSFP141]

Feedback Targeted Object [KSFP3, KSFP10]

Feedback Usefulness [KSFP1, KSFP9, KSFP12, KSFP15, KSFP16, KSFP22, KSFP23, KSFP24, KSFP30,

KSFP37, KSFP38, KSFP53, KSFP64, KSFP65, KSFP68, KSFP 90, KSFP94,

KSFP100]

Feedback Source [KSFP1, KSFP37]

Feedback Structure [KSFP1, KSFP2, KSFP7, KSFP8, KSFP10, KSFP11, KSFP18, KSFP21, KSFP103,

KSFP126]

Feedback Training [KSFP1, KSFP9, KSFP13, KSFP21, KSFP43, KSFP37, KSFP38, KSFP39,

KSFP45, KSFP47, KSFP55, KSFP65, KSFP81, KSFP91, KSFP93, KSFP100,

KSFP119, KSFP120]

285

Category KSF KSF

Paper ID

Sub-Factors Sub-Factor Paper ID
 Feedback Size [KSFP9, KSFP13, KSFP37, KSFP38, KSFP39, KSFP43 KSFP45, KSFP47, KSFP55,

KSFP65, KSFP81, KSFP91 , KSFP93, KSFP100, KSFP119, KSFP120, KSFP137]

Feedback Cycle [KSFP1, KSFP9, KSFP13, KSFP25, KSFP38, KSFP72, KSFP76, KSFP96,

KSFP117]

Feedback Content [KSFP10, KSFP30 KSFP35, KSFP38, KSFP94, KSFP95, KSFP96]

Feedback Perception [KSFP10]

Feedback Communication [KSFP38, KSFP91, KSFP112, KSFP118, KSFP137]

Feedback Frequency [KSFP40, KSFP65, KSFP115, KSFP116, KSFP118, KSFP140]

Defect Details Conveyed in

Feedback

[KSFP10, KSFP38, KSFP95]

T
es

tin
g

[K
SF

P2
, K

SF
P3

, K
SF

P7
] Test Results [KSFP2, KSFP136]

Manual Tests [KSFP2, KSFP3, KSFP72, KSFP149]

Test Suits [KSFP2, KSFP7, KSFP33, KSFP36, KSFP63, KSFP69, KSFP104]

Test Quality [KSFP7]

Test Case [KSFP1, KSFP2, KSFP8, KSFP63, KSFP115, KSFP121]

Automated Tests [KSFP1, KSFP2, KSFP7, KSFP9, KSFP28, KSFP36 , KSFP66, KSFP69, KSFP104]

Test Documentation [KSFP2, KSFP9, KSFP12, KSFP18, KSFP72, KSFP121]

Test Coverage [KSFP2, KSFP7, KSFP14, KSFP36, KSFP66, KSFP104]

Test Type [KSFP7]

Proof of Testing [KSFP2]

..

286

Category KSF KSF

Paper ID

Sub-Factors Sub-Factor Paper ID
Fa

ci
lit

y
C

on
di

tio
ns

Pr
oc

es
s S

up
po

rt

[K
SF

P2
, K

SF
P3

, K
SF

P7
] Development Process [KSFP1, KSFP7, KSFP9, KSFP38, KSFP43, KSFP46, KSFP73]

Review Process [KSFP1, KSFP3, KSFP19, KSFP39, KSFP41, KSFP42, KSFP46, KSFP73,

KSFP150]

Process Complexity [KSFP7, KSFP43, KSFP48, KSFP74, KSFP105, KSFP109, KSFP133]

Process Selection [KSFP1, KSFP3, KSFP73, KSFP84, KSFP101, KSFP108]

Process Quality [KSFP41, KSFP42]

Process Availability [KSFP74]

T
oo

l S
up

po
rt

[K
SF

P2
, K

SF
P3

, K
SF

P7
, K

SF
P3

9,
 K

SF
P7

3]
 Development Tool [KSFP1, KSFP63]

Review Tool [KSFP3, KSFP17, KSFP19, KSFP25, KSFP26, KSFP28, KSFP29, KSFP67,

KSFP88, KSFP111, KSFP112, KSFP 113, KSFP129, KSFP130, KSFP135]

Technical Maturity [KSFP1, KSFP2, KSFP9, KSFP74, KSFP84, KSFP138]

Integration of Review Tool with

Development Tool

[KSFP1, KSFP27, KSFP142]

Automated Feature Assistance [KSFP1, KSFP2, KSFP5, KSFP9, KSFP16, KSFP39, KSFP41, KSFP44, KSFP45,

KSFP50, KSFP66, KSFP72, KSFP74, KSFP77, KSFP107, KSFP111, KSFP112,

KSFP113, KSFP133, KSFP134, KSFP135]

Selection of Tool [KSFP2]

Tool Flexibility [KSFP1]

Tool Complexity [KSFP1, KSFP74]

Tool Portability [KSFP1, KSFP57]

Tool Availability [KSFP1, KSFP74]

287

Category KSF KSF

Paper ID

Sub-Factors Sub-Factor Paper ID

O
rg

an
iz

at
io

n

Su
pp

or
t

[K
SF

P1
,

K
SF

P3
,

K
SF

P9
3]

 Availability of Resources [KSFP3, KSFP21, KSFP38, KSFP62, KSFP73]

Organization Policies [KSFP1, KSFP3, KSFP16, KSFP38, KSFP94, KSFP105, KSFP126]

Organization Characteristics [KSFP1, KSFP2, KSFP38, KSFP74, KSFP79, KSFP103]

Organization Practices [KSFP1, KSFP38, KSFP44, KSFP128, KSFP150]

C
om

m
un

ic
at

io
n

Su
pp

or
t

[K
SF

P2
, K

SF
P2

5]
 Communication Type [KSFP1, KSFP2, KSFP140, KSFP141]

Communication Channel [KSFP1, KSFP2, KSFP7, KSFP112, KSFP24, KSFP25, KSFP44, KSFP72, KSFP75,

KSFP77, KSFP120, KSFP121, KSFP137, KSFP139]

Communication Purpose [KSFP15, KSFP39, KSFP72]

Communication Pattern [KSFP2, KSFP38, KSFP39, KSFP73]

Communication Procedure [KSFP1]

Pr
oj

ec
t S

up
po

rt

[K
SF

P9
3]

 Problem Domain [KSFP2, KSFP4, KSFP7, KSFP16, KSFP17]

Project Quality Assessment [KSFP2]

Project Attributes [KSFP1, KSFP2, KSFP7, KSFP38, KSFP41, KSFP72, KSFP118, KSFP138,

KSFP139]

Release Management [KSFP2, KSFP12, KSFP38, KSFP73]

Adherence to Standards [KSFP2, KSFP14, KSFP114, KSFP121, KSFP126]

Risk Management [KSFP3]

T
ea

m

T
ea

m

O
rg

an
iz

at
io

n

[K
SF

P1
] Team Size [KSFP3, KSFP116, KSFP65, KSFP121, KSFP124, KSFP131, KSFP140, KSFP149,

KSFP150]

Team Roles [KSFP9, KSFP77, KSFP88, KSFP101, KSFP107, KSFP148]

Team Responsibilities [KSFP107, KSFP114, KSFP131]

288

Category KSF KSF

Paper ID

Sub-Factors Sub-Factor Paper ID

 Team Distance [KSFP1, KSFP9, KSFP37, KSFP38, KSFP73, KSFP75, KSFP92, KSFP139]

Role Multiplicity [KSFP2]
T

ea
m

St
ra

te
gi

es

[K
SF

P1
16

] Team Policies [KSFP1, KSFP16, KSFP24, KSFP73, KSFP137]

Team Work Practices [KSFP1, KSFP24, KSFP38, KSFP72, KSFP90]

Team Rules [KSFP1, KSFP73, KSFP76]

Team Work Processes [KSFP1, KSFP90, KSFP136]

T
ea

m
 C

ul
tu

re

[K
SF

P1
, K

SF
P7

,

K
SF

P7
3]

 Familiarity among Team Members [KSFP21, KSFP124]

Friction among Team Members [KSFP9, KSFP72]

Team Accountability [KSFP100]

Team Values [KSFP9, KSFP73, KSFP155]

..

T
ea

m
 In

te
nt

io
ns

[K
SF

P3
] Identify Better Solutions [KSFP38, KSFP59, KSFP137, KSFP138]

Improve Code Quality [KSFP2, KSFP79, KSFP138]

Knowledge Distribution [KSFP1, KSFP2, KSFP7, KSFP11 KSFP38, KSFP49, KSFP73, KSFP74, KSFP78,

KSFP82, KSFP89, KSFP121]

Improve Development Process [KSFP1, KSFP7, KSFP153]

Avoid Breaking Builds [KSFP1]

Share Code Ownership [KSFP1, KSFP137]

Increase Team Awareness [KSFP1, KSFP59, KSFP74, KSFP78, KSFP150]

Improve Software Quality [KSFP54, KSFP76, KSFP79, KSFP80]

Identify Defects [KSFP1, KSFP38, KSFP54, KSFP73, KSFP137, KSFP138]

289

Category KSF KSF

Paper ID

Sub-Factors Sub-Factor Paper ID

T

ea
m

 D
ri

ve
s

[K
SF

P1
, K

SF
P7

2]
 Team Productivity [KSFP23, KSFP25, KSFP51, KSFP75, KSFP93, KSFP98, KSFP102, KSFP120,

KSFP139]

Team Motivations [KSFP1, KSFP2, KSFP38]

Team Priorities [KSFP2, KSFP38, KSFP48, KSFP73, KSFP116, KSFP131]

Team Workload [KSFP1, KSFP2, KSFP3, KSFP7, KSFP13, KSFP39, KSFP54, KSFP136]

Team Cohesion [KSFP139]

Team Participation [KSFP1, KSFP7, KSFP12, KSFP13, KSFP17, KSFP38, KSFP61, KSFP89, KSFP97,
KSFP101, KSFP108, KSFP109]

290

Appendix G Demographic Information

Experts of expert review
Expert

Reviewer

Designation Association Experiance Domain of Experience

Reviewer 1 Dean -Superior Univeristy Lahore

-Air University, Islamabad, Pakistan

15 years -Software Engineering

Teachning 13 years

-Software Development

& MCR 9 years

Reviewer 2 Dean -My University, Islamabad, Pakistan

-International Islamic University,

Islamabad, Pakistan

15 years -Software Engineering

Professional teaching 12

years

-Software Development

10 years

Reviewer 3 Assisatnt

Professor

-International Islamic University,

Islamabad Pakistan

12 years -Software Engineering

teachning 12 years

-Software development 9

years

Reviewer 5 Product

Manager

-Computer Share

-LMKR, Islamabad, Pakistan

14 years -Software Development

14 years

 -MCR 10 years

291

Delphi panel members
Delphi

Expert ID

Designation Association Experience

in Software

Development

Domain of

Experience

DP-01 Manager Showroom, interwood mobel

pvt ltd.

8 year -Software

development

and MCR

DP-02 Software

Developer

Broadlytech 8 years -Software

development

and MCR

DP-03 Software

Developer

Broadlytech 8 years -Software

development

and MCR

DP-04 CEO Broadlytech 08 years -Software

development

and MCR

DP-05 Senior Web

Developer

Quaid Tech 9 years -Software

development

and MCR

DP-06 Pricipal

Software

Engineer

Datum Square Islamabad 9 Years -Software

development

and MCR

DP-07 Software

Developer

Broadlytech 9 years -Software

development

and MCR

DP-08 Software

Developer

Software Engineer Seven

Technology Islsmsbad

09 years -Software

development

and MCR

DP-09 Software

Developer

Broadlytech 10 Years -Software

development

and MCR

DP-10 Senior

Software

Engineering

Synergy IT 10 years -Software

development

and MCR

292

Profile of Subjects Participated in Experiment
Subject ID Program of

Study

Programming Skills Development Experience

1 BSCS C++, Java 2 year 5 months

2 BSCS C++, C, Java 2 year

3 BSCS C++, C, Java , JavaScript 3 year

5 BSCS C++, C, Java, PhP, 2 year

6 BSCS C#, C++, 2 year 2 months

7 BSCS C++, C#, 3 year

8 BSCS C++, VB, C# 2 year

9 BSCS C++, Java 3 year

10 BSCS C++, 2.5 year

11 BSCS C, Java, Visual C# 2 year 2 months

12 BSCS C#, C++, 2 year

13 BSCS C++, C#, 2 year

14 BSCS C#, C++, 2 year

15 BSCS C++, C#, VB 2 year

16 BSCS Java, C++, 3 year 2 months

17 BSCS C++, 2 year

18 BSCS Visual Programming, C++, Java 2 year

19 BSCS C++, C#, VB 2 year

20 BSCS Java, C++, 3 year

21 BSCS C, C++ 2 year

22 BSCS C++, C#, VB 2 year

23 BSCS Java, C++, C 3 year

24 BSCS C++, 2 year

25 BSCS C#, C++, 2 year

26 BSCS C++, C#, VB 2 year

27 BSCS Java, C++, 3 year

28 BSCS C++, 2 year

293

Appendix H Instructions and Feedback Form Template for Expert Review

Instructions

Review the naming conventions of factors, sub-factors and categories and please

mention if there are any suggestions regarding naming convention in Column

“Suggestions on Naming Convention” of the form.

Review the grouping and sub-grouping of knowledge sharing factors. Please mention

the suggested modifications and names for the new and existing category/s in the

column “Suggestions on Grouping/Sub-grouping” of Table, if required.

Suggesting new knowledge sharing factors that should be included in the list. Please

mention the suggested knowledge sharing factors, sub-factors, or categories. in column

“Suggested New Knowledge Sharing Factors” of Table, if required.

If there are any other suggestions, please mention in the column other Remarks.

294

Experts feedback form to record reviewers suggestions

C
at

eg
or

y Knowledge

Sharing

Factors

Knowledge

Sharing

Sub-Factors

Description Suggestions

on Naminig

Convention

Suggestions on

Grouping/Sub-

grouping

Suggested New

Knowledge Sharing

Factors/Sub-factors

or Categories

Other

Remarks

In
di

vi
du

al
 Individual perspective is most obvious lens in code review. The

individual can be an author or reviewer

Individual

Impartiality

It refers to the equal treatment of all individuals

and the group.

Biasness Biasness refers to attitude for or
as opposed to one individual or
group. For instance, reviewing
code of selected authors.

Balance

Between

Equity and

Equality

Equity refers to the distribution
of resources in harmony with
one’s contribution. Equality is
the state of being equal,
particularly in position,
privileges, that are all
participants deserve the same
resources, and irrespective of
contribution.

. .

.

.

.

 .

.

295

Appendix I Delphi Surveys Invitation Letter

19th June 2019

Invitation Letter

Dear Sir/Madam

Subject: Delphi Survey to develop a knowledge sharing model for

modern code review to reduce software engineering waiting waste.

My name is Nargis Fatima. I am undertaking a Ph.D. research program

with Razak Faculty of Technology and Informatics at Universiti Teknologi
Malaysia (UTM). The title of my research is “Knowledge sharing model for
modern code review to reduce software engineering waiting waste”. I am
writing to invite your participation in a Delphi survey. This study will help me
in my PhD research in the development of knowledge sharing model for
modern code review to reduce software engineering waiting waste. My Ph.D.
research supervised by Associate Professor Dr. Suriayati Bt. Chuprat from
Razak Faculty of Technology and Informatics at Universiti Teknologi
Malaysia at UTM University.

 The aim and objectives of conducting the Delphi survey are:

(a) To assess the recognized knowledge sharing factors, sub-factors, and

categories for appropriate naming conventions, grouping, and sub-grouping.

(b) To assess the practicality of the recognized knowledge sharing factors, sub-

factors, and categories in the context of MCR with industry to reduce software

engineering waiting waste.

(c) To recognize the most influential knowledge sharing factors for MCR activities

concerning the industry.

(d) To recognize new industry-based knowledge sharing factors, with their

associated sub-factors and categories in the context of MCR for reducing

software engineering waiting waste.

A panel of 10 experts will be surveyed using Delphi Technique. You have
been selected and invited to contribute to this Delphi survey. Your knowledge,

296

experiences, and feedback will provide an invaluable contribution to my research.
The data collected as part of the Delphi survey will seek to classify areas of
consensus and disagreement among the panel members. The study is scheduled to
be completed in one months. The summary result of each round will be made
available to you for your reexamination in the next stage. Final report will be given
to you at the conclusion of this research.

All panel members will maintain anonymity, each participant will be
assigned a distinctive code which will only be known by the researcher and
supervisor. We hope you are willing to contribute to the study. Thank you for your
consideration and please do not hesitate to contact us for any inquiries.

Nargis Fatima
PhD Student

 UTM
 Kuala Lumpur, Malaysia

Email: fatimanargis@graduate.utm.my
Contact: +60102683914

Dr. Suriayati Chuprat
Assistant Professor

 UTM
 Kuala Lumpur, Malaysia
 Email: suriayati.kl@utm.my

mailto:fatimanargis@graduate.utm.my
mailto:suriayati.kl@utm.my

297

Appendix J Delphi Survey Questionnaires

The Questionaires for Round 1 and Round 2 were same except the Section I, in which

the background information of the Delpji panel memebers was collected. Round 1

Delphi Round 1 questionnare has four sections and Round 2 has three sections.

Section I: We will begin with collecting some background information from you.

Section II: This section will request you to assess

1) The percieved level of practicality of knowledge sharing factors by assigning score

to their associated sub factors. The score that should be assigned are distributed as

(5=Very High, 4= High, 3= Moderate, 2 =Low, 1 Very Low)

2) The percived level of influence of listed knowledge sharing factors for MCR

actvities by assigning the score to their associated sub-factors. The socre are

distributed as (5=Most Influencial, 4= Influencial, 3= Moderate, 2 =Weakly

influencial, 1 Not Infleuncial)

Section III: This section is designed to mention any new knowledge sharing factors,

categories and associated sub factors.

Section IV: This section is designed to mention real project example for which the

panel members were involved or had perfomed the MCR activities.

We have assigned you a user ID for this study and it is: ___________

Please do not hesitate to contact the researcher at fatimanargis@graduate.utm.my.

Once again, thank you for your time and your contribution to this research.

Regards,
Nargis Fatima
PhD Student
Razzak Faculty of Technology and Informatics
University Technology Malaysia

298

Questionaire Section I (Round I)

 Background Information

Intsructions: In this section we would like to know about your background

information Please tick in appropriate boxes or fill in the blanks.

Personal Information

First Name: _________________________ Last Name: _______________________

Company: ___

Email Address: ___

Phone Number: ___

How long you have been working in the field of _____________________________

__

How much of the time you spend in coding or code reviewing_________________

Number of projects approx you have been involved in code revewing ____________

__

Your experience in industry ___

299

Questionaire Section II for Round 1 and Section I for Round 2

Assement of knowledge sharing factors for their perceived level of practicality

and perceieved level of influence

Instructions:

You need to assess the level of practicality of knowledge sharing factors by assigning

score to their associated sub-factors. You also have to assess the percived level of

influence of listed knowledge sjaring factors for each MCR actvity by assigning the

score to their associated subfactors.

Scale to assess the practicallity of knowledge sharing factors.

1=Very High, 2= High, 3= Moderate, 4 =Low, 5 Very Low.

Scale for most influencial knowledge sharing factors.

1=Strongly Influencial, 2= Influencial, 3= Moderate, 4 =Weakly influencial, 5 Not

Infleuncial

 Form to record Delphi panel member feedback

C
at

eg
or

y

K
no

w
le

dg
e

Sh

ar
in

g
Fa

ct
or

s

K
no

w
le

dg
e

Sh
ar

in
g

Su
-

fa
ct

or
s Description

D
eg

re
e

of

Pr
ac

tic
al

ity
 Knowleddge Sharing Factors

influence for MCR actvity

SC
P

SC
S

R
SN

SC
R

SC
A

In
di

vi
du

al
 Individual perspective is most obvious

lens in code review. The individual can be
an author or reviewer

In
di

vi
du

al
 Im

pa
rti

al
ity

 It refers to the equal treatment of
all individuals and the group.

B
ia

sn
es

s It refers to attitude for or
as against to one
individual or group. For
instance, reviewing
code of particular
authors.

B
al

an
ce

 B
et

w
ee

n
Eq

ui
ty

 a
nd

Eq

ua
lit

y Equity refers to the
distribution of
treatment, resources,
and outcomes in
harmony with one’s
contribution Equality is
the state of being equal,
particularly in position,
privileges, or
opportunities that are all
participants deserve the
same treatments,
irrespective of
contribution.

. . . .

300

Questionaire Section III for Round 1 and Section II for Round 2

Suggestion of new knowledge sharing factors, sub-factors, and categories

 Template of form to enter suggestions concerning new knowledge sharing

factors, subfactors, and categories

Questionaire Section IV for Round 1 and Section III for Round 2

Real Project Example

Please share any of your recent software project in which you were involved as a
developer or reviewer.
Project Name

Project Description ___

Programming Language
used___

Thank you for your participation.

 Regards,
 Nargis Fatima
 PhD Student
 Razzak Faculty of Technology and Informatics,
 University Technology Malaysia
 fatimanargis@graduate.utm.my

C
at

eg
or

y

K
no

w
le

dg
e

 S
ha

ri
ng

Fa
ct

or
s

K
no

w
le

dg
e

Sh
ar

in
g

Su
b-

fa
ct

or
s

Description

D
eg

re
e

of
 P

ra
ct

ic
al

ity
 Knowleddge Sharing Factors

Influence for MCR actvity

SCP SCS RSN SCR SCA

mailto:fatimanargis@graduate.utm.my

301

Appendix K Delphi Survey Results

Mean, standard deviation, coefficient of variation for percieved level of practicality Round 1

Knowledge
Sharing Factors
(KSF)

Knowledge Sharing Sub-Factor (KSSbF) MPPV
(KSSbF)

R1

𝛔(𝐊𝐒𝐒𝐛𝐅)
R1

CMPPV
(KSF)
R1

𝛔(𝐊𝐒𝐅) R1 CV(KSF)
R1

Individual
Impartiality

Biasness 4.8 0.421637 4.65 0.58214164 0.125191751
Balance Between Equity and Equality 4.5 0.707107

Individual
Historical Factors

Individual Characteristics 4.4 0.699206 4.575 0.450308536 0.098428095
Individual Knowledge 5 0
Individual Experience 5 0
Individual Expertise 5 0
Individual Skills 4.3 0.483046
Work Style 4.2 0.421637
Work Track Record 4.3 0.483046
Affiliation 4.4 0.699206

Individual
Emotions

Feelings 4.4 0.516398 4.35 0.5 0.114942529
Fear 4.3 0.483046

Individual
Pressure

Cognitive Load 4.8 0.421637 4.675 0.337474279 0.072187012
Individual Workload 5 0
Time Pressure 4.1 0.316228
Context Switching 4.8 0.421637

Individual
Awareness

Awareness of Code Quality 4.5 0.527046 4.02 1.048808848 0.260897723
Awareness of Process Improvement 3.7 0.823273
Awareness of Knowledge Sharing 3.9 1.197219
Awareness of effective Communication 4 1.054093
Awareness of Role-Oriented Tasks 4 1.414214

302

Individual
Turnover

Individual
Intentions

Interpersonal Conflicts 4 1.054093 4 1.10888662 0.277221655
Individual Matters 4.2 1.032796
Impact of Turnover 3.8 1.229273
Self-Learning 5 0 4.52 0.382970843 0.084728063
Collaboration 4.2 0.421637
Problem Solving 4.8 0.421637
Impression Formation 4.1 0.316228
Build Relationships 4.5 0.527046

Relational Trust 4.7 0.483046 4.2 0.532290647 0.126735868
Reputation 4.2 0.421637
Familiarity 4.1 0.567646
Frequency of Interaction 3.8 0.632456

Structural Social Network 5 0 4.38 0.419435246 0.095761472
Social Network Ties 4.3 0.483046
Network Channel 3.8 0.421637
Network Stability 4.2 0.421637
Social Network structure 4.3 0.483046
Social Political Structure 4.7 0.483046

Source Code Source Code Structure 5 0 4.88 0.187197049 0.038360051
Source Code Complexity 5 0
Source Code Readability 5 0
Source Code Efficiency 4.8 0.421637
Source Code Associated Risks 5 0
Exception Handling 5 0
Adherence to Coding Standards 4 0
Source Code Change Motivation 5 0
Source Code Change Documentation 5 0

303

 Source Code Change Scope 5 0
Nature of Change 4.9 0.316228
Change Impact 5 0
Source Code Change Revertability 4.8 0.421637

Feedback

Feedback Language 5 0 4.635 0.463766498 0.100057497
Feedback Temporal Aspects 4.5 0.527046
Feedback Targeted Object 4.8 0.421637
Feedback Usefulness 4.8 0.421637
Feedback Source 4.5 0.527046
Feedback Structure 4.7 0.483046
Feedback Training 4.7 0.483046
Feedback Size 4.8 0.421637
Feedback Cycle 3.7 0.483046
Feedback Content 4.8 0.421637
Feedback Perception 4.8 0.421637
Feedback Communication 4.8 0.421637
Feedback Frequency 4.3 0.674949
Defect Details Conveyed in Feedback 4.7 0.483046

Testing

Test Results 4.8 0.421637 4.27 0.574133808 0.134457566
Manual Tests 3.6 1.074968
Test Suits 4.7 0.483046
Test Quality 4.1 0.567646
Automated Tests 3.8 0.421637
Test Documentation 4.8 0.421637
Test Coverage 4.4 0.516398
Test Type 3.5 0.527046
Proof of Testing 4.8 0.421637

304

Process Support Development Process 4.4 0.516398 4.16 0.509175077 0.122397855
Review Process 4.1 0.316228
Process Complexity 4.7 0.483046
Process Selection 3.8 0.632456
Process Quality 4.5 0.527046
Process Availability 3.5 0.527046

Tool Support Development Tool 4 0 4.66 0.347610894 0.074594612
Review Tool 4.7 0.483046
Technical Maturity 4.7 0.483046
Integration of Review Tool with Development Tool 5 0
Automated Feature Assistance 5 0
Selection of Tool 4.3 0.483046
Tool Quality 5 0
Tool Availability 4.6 0.516398

Organization
Support

Availability of Resources 4.3 0.674949 4.24 0.46547466 0.109781759
Organization Policies 4 0
Organization Characteristics 4.2 0.421637
Organizational Practices 4.3 0.483046

Communication
Support

Communication Type 5 0 4.86 0.316227766 0.065067442
Communication Channel 5 0
Communication Purpose 4.6 0.516398
Communication Pattern 5 0
Communication Procedure 4.7 0.483046

Project Support Problem Domain 4.5 0.527046 4.46 0.519971509 0.11658554
Project Quality Assessment 4.4 0.516398
Project Attributes 4.6 0.516398
Release Management 4.4 0.516398

305

Adherence to Standards 4.5 0.527046
Risk Management 4.4 0.516398

Team
Organization

Team Size 3.6 0.516398 4.24 0.45704364 0.107793311
Team Roles 4.4 0.516398
Team Responsibilities 4.5 0.527046
Team Distance 5 0
Role Multiplicity 3.7 0.483046

Team Strategies Team Policies 4.7 0.483046 4.375 0.320589734 0.073277653
Team Work Practices 5 0
Team Rules 4 0
Team Work Processes 3.8 0.421637

Team Culture Familiarity among Team Members 4.5 0.527046 4.55 0.521749195 0.114670153
Friction among Team Members 4.6 0.516398
Team Accountability 4.5 0.527046
Team Values 4.6 0.516398

Team Intentions Identify Better Solutions 4.2 0.421637 4.644 0.281091348 0.060527853
Improve Code Quality 5 0
Knowledge Distribution 5 0
Improve Development Process 5 0
Avoid Breaking Builds 4.2 0.421637
Share Code Ownership 4.2 0.421637
Increase Team Awareness 4.2 0.421637
Improve Software Quality 5 0
Identify Defects 5 0

Team Drives Team Productivity 4.3 0.483046 4.55 0.5 0.10989011
Team Motivations 4.6 0.516398
Team Priorities 4.6 0.516398

306

Team Workload 4.8 0.421637
Team Cohesion 4.5 0.527046
Team Participation 4.5 0.527046

Mean, standard deviation, coefficient of variation for percieved level of practicality Round 2
Knowledge

Sharing
Factors (KSF)

Knowledge Sharing Sub-Factor (KSSbF) MPPV
(KSSbF)

R2

𝛔(𝐊𝐒𝐒𝐛𝐅)
R2

CMPPV
(KSF) R2

𝛔(𝐊𝐒𝐅) R2 CV(KSF)
R2

Individual
Impartiality

Biasness 4.7 0.483046 4.7 0.483045892 0.102776

Balance Between Equity and Equality 4.7 0.483046

Individual
Historical
Aspects

Individual Characteristics 4.6 0.516398 4.825 0.353553391 0.073275

Individual Knowledge 5 0

Individual Experience 5 0

Individual Expertise 5 0

Individual Skills 5 0

Work Style 4.7 0.483046

Work Track Record 4.7 0.483046

Affiliation 4.6 0.516398

Individual
Emotions

Feelings 4.7 0.483046 4.5 0.483045892 0.107344
Fear 4.3 0.483046

Individual Load

Cognitive Load 5 0 4.725 0.263523138 0.055772

Individual Workload 5 0

Time Pressure 4.1 0.316228

Context Switching 4.8 0.421637

Awareness of Code Quality 4.6 0.516398 4.14 0.880656321 0.212719

307

Individual
Awareness

Awareness of Process Improvement 3.7 0.823273

Awareness of Knowledge Sharing 4 1.054093

Awareness of effective Communication 4 1.054093

Awareness of Role-Oriented Tasks 4.4 0.843274

Individual
Turnover

Interpersonal Conflicts 4.4 0.516398 4.333333 0.779363463 0.179853

Individual Matters 4.4 0.966092

Impact of Turnover 4.2 0.788811

Individual
Intentions

Self-Learning 5 0 4.64 0.377123617 0.081277

Collaboration 4.5 0.527046

Problem Solving 4.9 0.316228

Impression Formation 4.1 0.316228

Build Relationships 4.7 0.483046
Social
Relational
Aspects

Trust 5 0 4.475 0.411636301 0.091986

Reputation 4.8 0.421637

Familiarity 4.2 0.421637
Frequency of Interaction 3.9 0.567646

Social
Structural
Aspects

Social Network 5 0 4.416667 0.382486988 0.086601

Social Network Ties 4.3 0.483046

Network Channel 4 0

Network Stability 4.2 0.421637

Social Network structure 4.3 0.483046

Social Political Structure 4.7 0.483046

Source Code

Source Code Structure 5 0 4.9 0.146176337 0.029832

Source Code Complexity 5 0

Source Code Readability 5 0

Source Code Efficiency 4.8 0.421637

308

Source Code Associated Risks 5 0

Exception Handling 5 0

Adherence to Coding Standards 4 0

Source Code Change Motivation 5 0

Source Code Change Documentation 5 0

Source Code Change Scope 5 0

Nature of Change 5 0

Change Impact 5 0

Source Code Change Revertability 4.9 0.316228

Feedback

Feedback Language 5 0 4.685714 0.423515147 0.090384

Feedback Temporal Aspects 4.6 0.516398

Feedback Targeted Object 4.8 0.421637

Feedback Usefulness 5 0

Feedback Source 4.5 0.527046

Feedback Structure 4.7 0.483046

Feedback Training 4.7 0.483046

Feedback Size 4.8 0.421637

Feedback Cycle 3.7 0.483046

Feedback Content 4.8 0.421637

Feedback Perception 4.9 0.316228

Feedback Communication 4.8 0.421637

Feedback Frequency 4.3 0.674949

Defect Details Conveyed in Feedback 5 0
Test
Deliverables

Test Results 5 0 4.411111 0.443053379 0.10044

Manual Tests 3.9 0.875595

Test Suits 4.9 0.316228

Test Quality 4.2 0.421637

309

Automated Tests 3.8 0.421637

Test Documentation 5 0

Test Coverage 4.4 0.516398

Test Type 3.5 0.527046

Proof of Testing 5 0

Process
Support

Development Process 4.4 0.516398 4.383333 0.436738756 0.099636

Review Process 4.5 0.527046

Process Complexity 4.9 0.316228

Process Selection 4 0.471405

Process Quality 4.5 0.527046

Process Availability 4 0

Tool Support

Development Tool 4 0 4.78 0.253859104 0.053109

Review Tool 4.8 0.421637

Testing Tool 5 0

Technical Maturity 4.7 0.483046

Integration of Review Tool with Development Tool 5 0

Integration of Testing Tool with Development Tool 5 0

Automated Feature Assistance 5 0

Selection of Tool 4.3 0.483046

Tool Quality 5 0

Tool Availability 5 0
Organization
Support

Availability of Resources 4.4 0.516398 4.25 0.421637021 0.099209

Organization Policies 4 0

Organization Characteristics 4.2 0.421637

Organizational Practices 4.4 0.516398

Communication
Support

Communication Type 5 0 4.88 0.298142397 0.061095

Communication Channel 5 0

310

Communication Purpose 4.6 0.516398

Communication Pattern 5 0

Communication Procedure 4.8 0.421637

Project Support

Problem Domain 4.7 0.483046 4.533333 0.512799145 0.113117

Project Quality Assessment 4.4 0.516398

Project Attributes 4.6 0.516398

Release Management 4.6 0.516398

Adherence to Standards 4.5 0.527046

Risk Management 4.4 0.516398

Team
Organization

Team Size 3.6 0.516398 4.3 0.402768199 0.093667

Team Roles 4.4 0.516398

Team Responsibilities 4.5 0.527046

Team Distance 5 0

Role Multiplicity 4 0
Team
Strategies

Team Policies 4.7 0.483046 4.425 0.241522946 0.054581

Team Work Practices 5 0

Team Rules 4 0

Team Work Processes 4 0

Team Culture

Familiarity among Team Members 4.7 0.483046 4.6 0.510990324 0.111085

Friction among Team Members 4.6 0.516398

Team Accountability 4.5 0.527046

Team Values 4.6 0.516398

Team
Intentions

Identify Better Solutions 4.9 0.316228 4.722222 0.265274142 0.056176

Improve Code Quality 5 0

Knowledge Distribution 5 0

Improve Development Process 5 0

Avoid Breaking Builds 4.2 0.421637

311

Share Code Ownership 4.2 0.421637

Increase Team Awareness 4.2 0.421637

Improve Software Quality 5 0

Identify Defects 5 0

Team Drives

Team Productivity 4.2 0.421637 4.714286 0.402373908 0.085357

Team Motivations 4.8 0.421637

Team Priorities 4.6 0.516398

Team Workload 5 0

Team Shared Vision 4.9 0.316228

Team Cohesion 4.7 0.483046

Team Participation 4.8 0.421637

312

Difference of coefficient of variation among Round 1 and Round 2 for perceieved practicality
Knowledge Sharing Factors
Round 1 CV- Round 1 CV-Round 2 CV (R1-R2)

Individual Impartiality 0.125191751 0.102775722 0.022416029
Individual Historical Aspects 0.098428095 0.073275314 0.025152781
Individual Emotions 0.114942529 0.107343531 0.007598997
Individual Load 0.072187012 0.055772093 0.016414919
Individual Awareness 0.260897723 0.212718918 0.048178805
Individual Turnover 0.277221655 0.179853107 0.097368548
Individual Intentions 0.084728063 0.081276642 0.003451421
Social Relational Aspects 0.126735868 0.091985766 0.034750103
Social Structural Aspects 0.095761472 0.086600828 0.009160644
Source Code 0.038360051 0.029831905 0.008528146
Feedback 0.100057497 0.09038433 0.009673167
Test Deliverables 0.134457566 0.100440313 0.034017254
Process Support 0.122397855 0.099636218 0.022761637
Tool Support 0.074594612 0.053108599 0.021486013
Organization Support 0.109781759 0.099208711 0.010573049
Communication Support 0.065067442 0.061094753 0.003972688
Project Support 0.11658554 0.113117458 0.003468082
Team Organization 0.107793311 0.093667023 0.014126288
Team Strategies 0.073277653 0.054581457 0.018696197
Team Culture 0.114670153 0.111084853 0.0035853
Team Intentions 0.060527853 0.056175701 0.004352152
Team Drives 0.10989011 0.085357214 0.024532896

313

Mean, standard deviation, coefficient of variation for percieved level of influence for MCR actvities Round 1

Knowledge Sharing Factors
Round 1

Mean, Standard Deviation, Coefficient of Variation for Percieved Level of Influence for MCR Actvities
Round 1

Source Code Preparation Source Code Preparation Source Code Preparation
MPIV
(KSF) 𝛔(𝐊𝐒𝐅) CV

(KSF)
MPIV
(KSF) 𝛔(𝐊𝐒𝐅) CV

(KSF)
MPIV
(KSF) 𝛔(𝐊𝐒𝐅) CV

(KSF)
Individual Impartiality 1.55 0.5 0.322581 1.5 0.516398 0.344265 4.6 0.516398 0.11226
Individual Historical Factors 4.5125 0.381881 0.084627 3.925 0.401386 0.102264 4.862 0.314024 0.064587
Individual Emotions 3.7 0.483046 0.130553 1.75 0.428174 0.244671 2.3 0.434613 0.188962
Individual Pressure 4.275 0.431406 0.100914 2.65 0.718795 0.271244 2.75 0.401386 0.145959
Individual Awareness 3.64 1.20185 0.330179 2.48 0.635959 0.256435 3.24 0.904311 0.279108
Individual Turnover 3.633333 1.08696 0.299163 2.633 0.490653 0.186348 3.833333 1.01653 0.265182
Individual Intentions 3.98 0.637704 0.160227 2.64 0.489898 0.185567 3.28 0.298142 0.090897
Relational 2.15 0.471405 0.219258 1.52 0.512076 0.336892 4.65 0.428174 0.092081
Structural 2 0.370185 0.185093 1.666667 0.471405 0.282843 4.783333 0.419435 0.087687
Source Code 4.915385 0.191708 0.039002 4.438 0.428673 0.096592 4.115 0.377803 0.091811
Feedback 4 0.394405 0.098601 1.742857 0.4291 0.246205 3.114 0.311168 0.099925
Testing 4.033333 0.356596 0.088412 4.4 0.486864 0.110651 1.68 0.424555 0.252711
Process Support 4.016667 0.419435 0.104424 4.183333 0.362604 0.086678 4.016667 0.481125 0.119782
Tool Support 4.5375 0.466964 0.102912 4.55 0.349603 0.076836 4.4875 0.457954 0.102051
Organization Support 4.325 0.397911 0.092003 4.175 0.337474 0.080832 4.275 0.345607 0.080844
Communication Support 1.84 0.382971 0.208136 2 0.34641 0.173205 1.84 0.426875 0.231997
Project Support 4.216667 0.507353 0.120321 4.15 0.319142 0.076902 4.11 0.215166 0.052352
Team Organization 4.4 0.405518 0.092163 2.74 0.418994 0.152917 3.54 0.469042 0.132498
Team Strategies 4.475 0.508265 0.113579 4.325 0.616892 0.142634 4.325 0.508265 0.117518
Team Culture 3.325 0.474342 0.142659 2.325 0.411636 0.177048 4.275 0.462481 0.108183
Team Intentions 3.311111 0.45542 0.137543 2.177778 0.28545 0.131074 3.722222 0.366835 0.098553
Team Drives 4.316667 0.377614 0.087478 2.183333 0.313286 0.14349 3.183333 0.401386 0.12609

314

Mean, standard deviation, coefficient of variation for percieved level of influence for MCR actvities Round 1

Knowledge Sharing Factors

Mean, Standard Deviation, Coefficient of Variation for Percieved
Level of Influence for MCR Actvities Round 1

Source Code Review Source Code Approval
MPIV
(KSF) 𝛔(𝐊𝐒𝐅) CV

(KSF)
MPIV
(KSF) 𝛔(𝐊𝐒𝐅) CV

(KSF)
Individual Impartiality 4.55 0.5 0.10989 3.85 0.582142 0.151206
Individual Historical Factors 4.275 0.316228 0.073971 4.725 0.376386 0.079658
Individual Emotions 4.15 0.372678 0.089802 2.1 0.316228 0.150585
Individual Pressure 4.775 0.390868 0.081857 3.225 0.491596 0.152433
Individual Awareness 3.34 0.971825 0.290966 3.5 1.210142 0.345755
Individual Turnover 2.7 0.498145 0.184498 2.3 0.451335 0.196233
Individual Intentions 4.62 0.368179 0.079692 2.72 0.485341 0.178434
Relational 3.37 0.485913 0.144188 3.225 0.390868 0.121199
Structural 3.566667 0.498145 0.139667 2.9 0.370185 0.12765
Source Code 4.915385 0.281935 0.057358 4.915385 0.275805 0.056111
Feedback 4.635714 0.283123 0.061074 2.185 0.287297 0.131486
Testing 4.788889 0.349603 0.073003 2.222222 0.41574 0.187083
Process Support 4.383333 0.419435 0.095689 4.383333 0.396746 0.090512
Tool Support 4.6375 0.281366 0.060672 4.45 0.361325 0.081197
Organization Support 4.125 0.456435 0.110651 4.375 0.468449 0.107074
Communication Support 4.7 0.469042 0.099796 3 0.442217 0.147406
Project Support 4.183333 0.352241 0.084201 4.266667 0.370185 0.086762
Team Organization 3.82 0.439697 0.115104 3.18 0.478423 0.150448
Team Strategies 3.85 0.372678 0.096799 4.55 0.521749 0.11467
Team Culture 2.95 0.324893 0.110133 4.15 0.477261 0.115003
Team Intentions 4.488889 0.272166 0.060631 2.2 0.412759 0.187618
Team Drives 3.983333 0.352241 0.088429 3.583333 0.6101 0.170261

315

Mean, standard deviation, coefficient of variation for percieved level of influence for MCR actvities Round 2

Knowledge Sharing Factors
(KSF)

Mean, Standard Deviation, Coefficient of Variation for percieved level of influence for MCR actvities Round 2

Source Code Preparation Source Code Review Reviewer Selection and
Notification

MPIV
(KSF) 𝛔(𝐊𝐒𝐅) CV (KSF) MPIV

(KSF) 𝛔(𝐊𝐒𝐅) CV
(KSF)

MPIV
(KSF) 𝛔(𝐊𝐒𝐅) CV

(KSF)
Individual Impartiality 1.6 0.50552503 0.315953144 1.6 0.516397779 3.165026 4.7 0.471405 0.100299
Individual Historical Aspects 4.6 0.349602949 0.076000641 4 0.387298335 11.44155 4.8875 0.300463 0.061476
Individual Emotions 3.9 0.316227766 0.081084043 1.8 0.365148372 5.6921 2.45 0.372678 0.152113
Individual Load 4.375 0.337474279 0.077136978 2.675 0.513701167 7.92653 2.775 0.390868 0.140853
Individual Awareness 4 0.837987006 0.209496751 2.58 0.47375568 3.078807 3.36 0.676593 0.201367
Individual Turnover 3.83 0.879814795 0.229716657 2.7 0.451335467 3.068828 3.966667 0.818761 0.20641
Individual Intentions 4.06 0.418993503 0.10320037 2.68 0.452155332 6.396281 3.32 0.266667 0.080321
Social Relational Aspects 2.35 0.440958552 0.187641937 1.575 0.450308536 3.571764 4.775 0.411636 0.086207
Social Structural Aspects 2.033333333 0.327730693 0.16117903 1.7 0.455420034 5.187186 4.833333 0.360041 0.074491
Source Code 4.923076923 0.170469437 0.034626604 4.469230769 0.395487366 26.2172 4.130769 0.359249 0.086969
Feedback 4.1 0.333333333 0.081300813 1.757142857 0.414039336 5.271429 3.121429 0.307318 0.098454
Test Deliverables 4.088888889 0.293972368 0.071895416 4.45 0.472712164 15.13748 1.7 0.411261 0.241918
Process Support 4.066666667 0.380058475 0.093457002 4.25 0.275546595 11.18249 4.1 0.403687 0.09846
Tool Support 4.63 0.357460176 0.077205222 4.51 0.202758751 12.61679 4.52 0.194365 0.043001
Organization Support 4.4 0.357460176 0.081240949 4.1 0.298142397 11.46981 4.3 0.223607 0.052002
Communication Support 1.86 0.355902608 0.191345488 1.94 0.21602469 5.450929 1.88 0.382971 0.203708
Project Support 4.333333333 0.434613494 0.100295422 4.183333333 0.215165741 9.625411 4.15 0.129099 0.031108
Team Organization 4.44 0.359010987 0.08085833 2.76 0.394405319 7.687787 3.58 0.449691 0.125612
Team Strategies 4.575 0.437797518 0.095693447 4.4 0.45338235 10.05031 4.475 0.41833 0.093482
Team Culture 3.375 0.437797518 0.129717783 2.3 0.387298335 5.25357 4.4 0.453382 0.103041
Team Intentions 3.455555556 0.414252264 0.119880076 2.177777778 0.204878766 5.257129 3.755556 0.318174 0.084721
Team Drives 4.442857143 0.311167795 0.070037767 2.314 0.21821789 7.436502 3.342857 0.39841 0.119182

316

Mean, standard deviation, coefficient of variation for percieved level of influence for MCR actvities Round 2

Knowledge Sharing Factors

Mean, Standard Deviation, Coefficient of Variation for percieved level
of influence for MCR actvities Round 2

Source Code Review Source Code Approval
MPIV
(KSF) 𝛔(𝐊𝐒𝐅) CV

(KSF)
MPIV
(KSF) 𝛔(𝐊𝐒𝐅) CV

(KSF)
Individual Impartiality 4.65 0.5 0.107527 4 0.459468 0.114867
Individual Historical Aspects 4.3 0.278887 0.064857 4.75 0.353553 0.074432
Individual Emotions 4.35 0.341565 0.078521 2.1 0.298142 0.141973
Individual Load 4.925 0.263523 0.053507 3.275 0.491596 0.150106
Individual Awareness 3.64 0.656591 0.180382 3.56 0.845905 0.237614
Individual Turnover 3.033333 0.426006 0.140442 2.366667 0.434613 0.18364
Individual Intentions 4.7 0.270801 0.057617 2.76 0.476095 0.172498
Social Relational Aspects 3.6 0.440959 0.122488 3.3 0.387298 0.117363
Social Structural Aspects 3.633333 0.46746 0.128659 2.933333 0.327731 0.111726
Source Code 4.961538 0.191708 0.038639 4.884615 0.269536 0.055181
Feedback 4.685714 0.191071 0.040777 2.2 0.281718 0.128054
Test Deliverables 4.822222 0.302255 0.06268 2.222222 0.412759 0.185742
Process Support 4.43 0.370185 0.083563 4.5 0.360041 0.080009
Tool Support 4.7 0.266667 0.056738 4.6 0.274874 0.059755
Organization Support 4.175 0.383695 0.091903 4.4 0.453382 0.103041
Communication Support 4.76 0.416333 0.087465 3.04 0.405518 0.133394
Project Support 4.2 0.344265 0.081968 4.533333 0.327731 0.072294
Team Organization 3.84 0.416333 0.10842 3.22 0.459468 0.142692
Team Strategies 4.1 0.258199 0.062975 4.65 0.5 0.107527
Team Culture 3.075 0.241523 0.078544 4.2 0.414997 0.098809
Team Intentions 4.533333 0.210819 0.046504 2.311111 0.388094 0.167925
Team Drives 4 0.338062 0.084515 3.642857 0.536005 0.147139

317

Difference of coeeficient of variation among Round 1 and Round 2 for percieved level of influence for MCR activities

Knowledge Sharing Factors

Perceived Level of Influence of Knowledge Sharing Factors
CV Round 1- Round2

Source
Code

Preparation

Source
Code

Submission

Reviewer
Selection

and
Notification

Source
Code

Review

Source
Code

Approval

Individual Impartiality 0.006628 0.021517 0.011962 0.002363 0.036339
Individual Historical Aspects 0.008627 0.005439 0.003112 0.009114 0.005226
Individual Emotions 0.049469 0.041811 0.036849 0.011281 0.008612
Individual Load 0.023777 0.079206 0.005105 0.02835 0.002327
Individual Awareness 0.120682 0.072809 0.077741 0.110584 0.108141
Individual Turnover 0.069447 0.019186 0.058771 0.044056 0.012593
Individual Intentions 0.057027 0.016853 0.010576 0.022075 0.005936
Social Relational Aspects 0.031616 0.050982 0.005874 0.021699 0.003836
Social Structural Aspects 0.023914 0.014949 0.013196 0.011008 0.015924
Source Code 0.004375 0.0081 0.004842 0.018719 0.00093
Feedback 0.017301 0.010573 0.001471 0.020297 0.003432
Test Deliverables 0.016517 0.004424 0.010793 0.010323 0.001341
Process Support 0.010967 0.021844 0.021322 0.012125 0.010503
Tool Support 0.025707 0.031878 0.05905 0.003934 0.021441
Organization Support 0.010762 0.008115 0.028842 0.018748 0.004033
Communication Support 0.016791 0.061852 0.028289 0.012331 0.014012
Project Support 0.020026 0.025468 0.021243 0.002233 0.014469
Team Organization 0.011305 0.010017 0.006886 0.006684 0.007756
Team Strategies 0.017885 0.039593 0.024036 0.033824 0.007143
Team Culture 0.012941 0.008657 0.005141 0.031589 0.016194
Team Intentions 0.017663 0.036997 0.013832 0.014127 0.019692
Team Drives 0.01744 0.049186 0.006908 0.003913 0.023122

318

Appendix L Result of Regression Analysis

Relationship between knowledge sharing factors and sub-factors in terms of
categories.

Relationship p-value
(sig. (2-
tailed))

β

Facility Conditions -> Individual
Project Support->Individual Turnover 0.014 -0.5
Communication Support-> Individual Emotions 0.000 3.7
Process Support->Individual Turn Over 0.001 -1.94
Project Support ->Individual Emotion 0.004 -0.7
Availability of Resources->Individual Load 0.00 -0.7
Facility Condition->Team
Availability of Resources-> Team Drive 0.000 0 .249
Facility Condition ->Artefact
Process Selection->Feedback 0.004 0.021
Availability of Resources->Test Deliverable 0.00 0.203
Individual ->Artefact
Individual Historical Aspects->Source Code 0.003 0.29
Individual Load->Test Deliverable 0.018 -0.633
Individual Emotions->Feedback 0.09 0.237
Individual Intention ->Feedback 0.049 0.716
Biasness->Feedback 0.00 -0.06
Awareness of knowledge sharing->Feedback 0.00 0.157
Awareness of Code Quality->Feedback 0.00 0.140
Affiliation->Feedback 0.00 0.121
Adherence to Standards->Feedback 0.00 0.010
Awareness of Code Quality->Source Code 0.00 0.080
Individual->Team
Individual Impartiality->Team Culture 0.00 -1.2
Individual Load->Team Culture 0.002 1.57
Individual Turnover->Team Culture 0.008 -0.41
Individual Intentions->Team Intentions 0.003 0.4
Individual->Social
Individual Intentions->Social Structural Aspects 0.007 0.7
Individual Turnover->Social Structural Aspects 0.05 -0.165
Awareness of Code Quality->Social Relational Aspects 0.00 0.5
Affiliation->Social Structural Aspects 0.00 0.585
Artefact -> Individual
Source Code->Individual Historical Aspects 0.009 -0.1
Test Deliverable->Individual Impartiality 0.036 -0.9
Source Code->Individual Emotions 0.04 -2.7
Adherence to Standards->Feedback 0.00 0.010
Automated Test->Individual Load 0.00 -0.250
Artefact ->Team
Adherence to Standards->Team Drive 0.00 0.223
Team -> Individual

319

Relationship p-value
(sig. (2-
tailed))

β

Team Intentions->Individual Turnover 0.00 3.6
Team Organization->Individual Load 0.043 -0.4
Team Intentions->Individual Intentions 0.003 1.2
Team->Social
Team Strategies->Social Structural Aspects 0.003 1.1
Team->Artefact
Team Intentions->Test Deliverable 0.00 1.75
Team Strategies->Test Deliverable 0.008 0.6
Team Organization->Test Deliverable 0.25 0.39
Familiarity among team members->Feedback 0.00 -0.15
Social-> Individual
Social Structural Aspects->Individual Turnover 0.001 -1.4
Social Relational Aspects->Individual Intentions 0.06 0.34
Social -> Team
Social Structural Aspects->Team Strategies 0.029 0.4

320

Appendix M Experiment Material

Instructions for Subjects (Author)

1. Read the given problems statement carefully and write the source code for the

given problem using C++.

2. After completing the source code submit the source code to the facilitator and

wait for the feedback on the source code

3. After receiving the feedback, read and understand the feedback and make

corrections on the source and resubmit the source code to the facilitator and

wait for the feedback. You can exchange comments with the reviewer who

have provided the feedback for any clarification.

4. Repeat the cycle until your source code is approved by the reviewer.

Instructions for Subjects (Reviewers)

1. Review the source code given to you.

2. Write your feedback and give that feedback to the reviewer and waits for the

resubmission of source code by the subject (author). You can exchange

comments with the reviewer who have provided the feedback for any

clarification.

3. Repeat the cycle until source code is approved.

321

Problem Statement for Session I

Create a Tic Tac Toe game with its basic functionality that can be played by two

players on single standard computer system. Use C++ programming language to

program the Tic Tac Toe game.

Problem Statement Session II

Design a bank administration application using C++ programming language having

following features.

The user can create database.

The user can add new record to the database.

The user can search customer by name.

The user can search customer by phone number.

The user can modify customer data by name.

The user can view your database.

322

LIST OF PUBLICATIONS

Indexed Journal

1. Nargis. F., Sumaira. N., & Suriayati. C. (2020). “Knowledge Sharing

Framework for Modern Code Review to Diminish Software Engineering

Waste” International Journal of Advanced Computer Science and Applications

(IJACSA), 11(6), http://dx.doi.org/10.14569/IJACSA.2020.0110656.

(Indexed by SCOPUS & WOS)

2. Nargis. F., Sumaira. N., & Suriayati. C. (2020). “ Knowledge Sharing Factors

for Modern Code Review to Minimize Software Engineering Waste”

International Journal of Advanced Computer Science and Applications, 11(1),

490–497. http://dx.doi.org/10.14569/IJACSA.2020.0110160. (Indexed by

SCOPUS & WOS)

3. Sumaira. N., Nargis. F., & Suriayati. C. (2020). “Situational Modern Code

Review Framework to Support Individual Sustainability of Software

Engineers”, International Journal of Advanced Computer Science and

Applications (IJACSA), 11(6), 2020. 366-375,

doi: 10.14569/IJACSA.2020.0110648. (Indexed by SCOPUS &WOS)

4. Sumaira. N., Nargis. F., & Suriayati. C. (2020). “Situational Factors for

Modern Code Review to Support Software Engineers’ Sustainability”

International Journal of Advanced Computer Science and Applications

(IJACSA), 11(1), 2020. 498-

504 http://dx.doi.org/10.14569/IJACSA.2020.0110161. (Indexed by

SCOPUS & WOS)

5. Sumaira. N., Nargis. F., Suriayati. C., Sarkan. H.. F., & (2020), Sarkan,

Haslina, F, Nurulhuda & Sjarif, Nilam. (2020) “Sustainable Software

Engineering: A Perspective of Individual Sustainability”, International

Journal on Advanced Science, Engineering and Information Technology, doi:

10. 676. 10.18517/ijaseit.10.2.10190. (Indexed by SCOPUS)

http://dx.doi.org/10.14569/IJACSA.2020.0110160
https://dx.doi.org/10.14569/IJACSA.2020.0110161

323

Indexed Conference Proceedings

1. Nargis. F., Sumaira. N., & Suriayati. C. (2020). “Software engineering wastes-

A perspective of modern code review. ACM International Conference

Proceeding Series, 93–99. https://doi.org/10.1145/3378936.3378953.

(Indexed by SCOPUS)

2. Sumaira. N., Nargis. F., & Suriayati. C. (2020). “Modern Code Review

Benefits-Primary Findings of A Systematic Literature Review”. ACM

International Conference Proceeding Series, pp 210-215, doi:

10.1145/3378936.3378954. (Indexed by SCOPUS)

3. Nargis. F., Sumaira. N., & Suriayati. C. (2019). “Understanding the Impact of

Feedback on Knowledge Sharing in Modern Code Review”. 6th IEEE

International Conference on Engineering Technologies and Applied Sciences

(ICETAS), Kuala Lumpur, Malaysia. 10.1109/ICETAS48360.2019.9117268.

(Indexed by SCOPUS)

4. Nargis. F., Sumaira. N., & Suriayati. C. (2019). “Knowledge sharing, a key

sustainable practice is on risk: An insight from Modern Code Review”. 6th

IEEE International Conference on Engineering Technologies and Applied

Sciences (ICETAS), Kuala Lumpur, Malaysia, doi:

10.1109/ICETAS48360.2019.9117444. (Indexed by SCOPUS)

5. Nargis. F., Sumaira. N., & Suriayati. C. (2019). "Individual, Social and

Personnel Factors Influencing Modern Code Review Process," IEEE

Conference on Open Systems (ICOS), Pulau Pinang, Malaysia, pp. 40-45, doi:

10.1109/ICOS47562.2019.8975708. (Indexed by SCOPUS)

6. Sumaira. N., Nargis. F., & Suriayati. C. (2019) "Does Project Associated

Situational Factors have Impact on Sustainability of Modern Code Review

Workforce?," IEEE 6th International Conference on Engineering

Technologies and Applied Sciences (ICETAS), Kuala Lumpur, Malaysia, doi:

10.1109/ICETAS48360.2019.9117541. (Indexed by SCOPUS).

https://doi.org/10.1145/3378936.3378953

324

7. Sumaira. N., Nargis. F., & Suriayati. C. (2019), " Situational factors affecting

Software Engineers Sustainability: A Vision of Modern Code Review," IEEE

6th International Conference on Engineering Technologies and Applied

Sciences (ICETAS), Kuala Lumpur, Malaysia, doi:

10.1109/ICETAS48360.2019.9117366. (Indexed by SCOPUS)

8. Sumaira. N., Nargis. F., & Suriayati. C. (2019) "Individual Sustainability

Barriers and Mitigation Strategies: Systematic Literature Review

Protocol," IEEE Conference on Open Systems (ICOS), Pulau Pinang,

Malaysia, doi: 10.1109/ICOS47562.2019.8975707. (Indexed by SCOPUS)

9. Nargis. F., Sumaira. N., & Suriayati. C. (2018). “Challenges and Benefits of

Modern Code Review-Systematic Literature Review Protocol”. International

Conference on Smart Computing and Electronic Enterprise (ICSCEE), Shah

Alam, doi: 1109/ICSCEE.2018.8538393. (Indexed by SCOPUS)

