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ABSTRACT 

One of the applications of Orthogonal Frequency Division Multiplexing 

(OFDM) is teleconferencing as it has shown to have ten times better downlink 

response time compared to 3G. Despite the robustness against multi-path fading and 

ease of OFDM implementation, OFDM still suffers from high sidelobes in frequency 

domain and high Bit Error Rate (BER). In the OFDM system, frequency mask 

regulation is adopted to overcome the issues, whereby a portion from both ends of the 

bandwidth is reserved as a frequency guard band.  This thus degrades the spectral 

efficiency and does not reduce the Out of Band Emission. Therefore, the goals of this 

research are to investigate the impact of filter types, and design a new filter in the 

filtered-OFDM (f-OFDM) system. Initially, several Infinite Impulse Response (IIR): 

Butterworth, Chebyshev, Elliptic; and Finite Impulse Response (FIR): Equiripple, 

Bohman, and Hamming filters were evaluated in terms of magnitude response, phase 

response and group delay. The results showed that Elliptic and Butterworth achieved 

good performance in magnitude response and phase response for FIR and IIR, 

respectively. The Equirriple was applied by varying the filter order in f-OFDM under 

different modulation schemes and channel models. It was found that f-OFDM achieved 

BER 10−6 at 11.9 dB while OFDM 12.4 dB, particularly when Equiripple with 512th

order was used. However, the complexity and group delay also increased. By using the 

results of the BER performance for the optimum Equiripple design in the f-OFDM, the 

link adaptation model was proposed. Next, because IIR is a non-linear phase filter, a 

new method called Phase Linear Regression Model, a combination of mean square 

error and best fit was proposed by considering the magnitude and phase responses in 

designing Butterworth for the f-OFDM waveform. The new IIR design with 5th order 

achieved BER 6.667 × 10−7 at SNR 12 dB, while Equirriple filter 1.552 × 10−5 at

the same SNR and filter order for the Quadrature Phase Shift Keying modulation. In 

conclusion, the feasible type of IIR (Butterworth) and FIR filter (Equiripple) can 

improve the BER performance for the f-OFDM system compared with OFDM. The 

findings on the link adaption model as well as the new IIR filter should be further 

investigated for the multi-cell f-OFDM system 
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ABSTRAK 

Salah satu daripada aplikasi yang mengunakan Pemultipleksan Bahagian 

Frekuensi Ortogon (OFDM) adalah telesidang yang mempunyai sepuluh kali ganda 

tindak balas masa pautan lebih baik berbanding 3G. Walaupun OFDM mempunyai 

kelebihan terhadap pelbagai laluan dan kemudahan pelaksanaan, ia masih mempunyai 

kekurangan, termasuklah sisi cuping dan Kadar Ralat Bit (BER) yang tinggi. Di dalam 

sistem OFDM, pengawalan topeng kekerapan digunakan untuk mengatasi masalah 

cuping sisi tinggi dan kesilapan BER, yang kedua-dua hujung jalur lebar dikhaskan 

sebagai penjaga jalur frekuensi. Ini dapat mengurangkan kecekapan spektrum tetapi 

tidak mengurangkan emisi jalur luar. Oleh itu, penyelidikan ini menyiasat kesan jenis 

penapis dan juga mereka bentuk penapis dalam sistem penapisan-OFDM (f-OFDM). 

Beberapa Tindak Balas Dorongan Infiniti (IIR): Butterworth, Chebyshev, dan Elliptic; 

dan Tindak Balas Dorongan Finiti (FIR): Equiripple, Bohman, dan penapis Hamming, 

dinilai dari segi tindak balas magnitud, tindak balas fasa dan kelewatan kumpulan. 

Keputusan menunjukkan Elliptic dan Butterworth mencapai prestasi tindak balas 

magnitud dan tindak balas fasa yang baik bagi FIR and IIR. Equirriple digunakan 

dengan mengubah aturan penapis dalam f-OFDM untuk modulasi dan juga model 

saluran berbeza. Didapati f-OFDM mencapai BER 10−6 pada 11.9 dB manakala

OFDM 12.4 dB, khususnya dengan mengunakan aturan ke-512. Walaupun begitu, 

kadar kerumitan dan kelewatan kumpulan meningkat. Dengan mengunakan keputusan 

prestasi BER, untuk rekaan tapisan Equirriple optimum dalam f-OFDM, adaptasi 

pautan dicadangkan. Berikutnya, disebabkan IIR tidak mempunyai fasa tapisan 

lelurus, kaedah baru yang diberi nama Model Fasa Lelurus Regresi diperkenalkan 

dengan mengunakan kombinasi ralat punca kuasa dua dan kesesuaian terbaik yang 

mengunakan magnitud dan fasa tindak balas sebagai pengiraan untuk membina tapisan 

Butterworth terbaik untuk gelombang f-OFDM. Rekaan IIR terbaru aturan ke-5 yang 

dihasilkan mampu mendapatkan BER 6.667 × 10−7 di SNR 12 dB, manakala tapisan

Equirriple hanya mendapatkan 1.552 × 10−5 pada SNR yang sama untuk modulasi

penguncian anjakan fasa kuadratur. Kesimpulannya, kebolehgunaan jenis tapisan IIR 

(Butterworth) dan tapisan FIR (Equirriple) mampu meningkatkan prestasi BER untuk 

sistem f-OFDM berbanding sistem OFDM. Hasil kajian dari model adaptasi pautan 

dan juga tapisan IIR yang baru boleh dilanjutkan dengan lebih mendalam untuk 

beberapa-sel f-OFDM. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

The increasing integration of the Internet of Everything in the industrial value 

chain has demanded an industrial revolution called Industry 4.0 (IR 4.0) [1]. The idea 

of smart factories is that machines are augmented with web connectivity and stay 

connected to a system that can visualise the entire production chain and make decisions 

on its own via artificial intelligence (AI). The trend is towards automation and data 

exchange in manufacturing technologies, which involves the Internet of Things (IoT), 

Industrial Internet of Things (IIoT), cloud computing and cognitive computing [1-2]. 

IR 4.0 is an enabler for communication between people, machines and resources. Cisco 

estimated that IoT will introduce 50 billion connected devices to the Internet in 2020 

[3]. Nokia Corporation, on the other hand, has gathered information from the market 

in 2010 which showed the growth of 10,000 times more traffic for all mobile 

broadband technologies between 2020 and 2030 [4].  

 

 

The current fourth generation (4G) cellular networks support remarkable 

features such as teleconferencing, wider bandwidths, higher data rate, entirely packet-

switch networks, high mobility communication of 12.5 Mbps and ten times better 

downlink response time than the 3G network [5]. However, such features can no longer 

support the exponential wireless traffic demand [6]. Research centres, universities and 

industries are aggressively working towards the evolution of wireless communication, 



2 

 

named fifth generation (5G) technology, that can cater to IoT and IR 4.0. The 5G 

technology is anticipated to be commercially launched in 2020, however as the 

pandemic Covid-19 hit nationwide in early 2020, the rollout of 5G in the entire globe 

is delayed [1-4]. The two main 5G visions, which are the 10 Gbps spectral efficiency 

and latency as low as 1 ms [7], are crucial for IR 4.0 and IoT.  

 

 

Since the past several decades, researchers have been developing a new 

generation of mobile wireless by adopting the latest physical waveforms or innovative 

multiple access schemes (MAS) to improve spectrum efficiency as well as other 

features. In the early stage of 5G network development, it was hard to predict the 5G 

channel model since the plan and design are much more challenging. Among the 

studied waveform candidates for 5G systems are Filter-Bank Multi-Carrier (FBMC) 

[8], Universal-Filtered Multi-Carrier (UFMC) [9], Filtered Orthogonal frequency-

division multiplexing (F-OFDM) [10] and Generalised Frequency Division 

Multiplexing (GFDM) [11].   

 

 

 

Figure 1.1 5G Performance requirements [12] 
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Figure 1.1 shows the performance requirements for standard 5G by 

the International Telecommunication Union Radiocommunication Sector (ITU-R) 

[12].  

1.2 Problem Statement 

In 4G radio access network (RAN), the Orthogonal Frequency-Division 

Multiplexing (OFDM) waveforms have taken place to determine the connection that 

fits the 4G standard protocol [13]. Despite the fact that 4G can achieve data rates up 

to 1 Gbps for low mobile applications and 100 Mbps for high mobile applications, it 

also suffers from several limitations [14-15]. Specifically, the path from a transmitting 

to a receiving end somehow encounters delay spread in the time domain. As a result, 

the OFDM symbol is spread out and interferes with the following symbols [16-17]. 

This is referred to as ISI, which is illustrated in Figure 1.2. To mitigate ISI, the OFDM 

introduced CP to eliminate ISI from the previous symbol as guard interval [18]. At the 

frequency domain, the carriers in the bandwidth also suffer from delay spread while 

sending data thru multipath which leads to loss of orthogonality and resulting high 

BER at receiver because each carrier carried a set of data [19-20]. Hence, the filter can 

be employed in shaping the data signal so that OOBE and carriers overlapping can be 

reduced resulting to low BER [21]. 

https://en.wikipedia.org/wiki/International_Telecommunication_Union
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Figure 1.2 Intersymbol interference in waveform [18]  

 

 

To date, with the goal of having stronger MAS schemes for 5G RAN, new 

OFDM-based MAS platforms have been developed by studying the limitations of the 

4G OFDM waveforms [22]. One of them is f-OFDM, which is the focus of this 

research. These new waveforms will be more robust against the time frequency 

synchronisation problem. They have the potential of mixing different traffic 

specifications and supporting the scenarios of spectrum fragmentation due to the 

improvement in the localisation of the spectrum compared to other 5G MAS 

candidates [23]. 

 

 

In f-OFDM, a filter is applied to the time domain of the OFDM symbol to 

improve out of band radiation of the sub-band signal, while the orthogonality of the 

OFDM symbols is simultaneously maintained [24]. The primary function of the filter 

is to preserve the actual data from being altered, and the purpose is to further increase 

the efficiency of the spectrum in digital communication [25]. With the filter, the band 

signals can be effectively suppressed, which reduces out-of-band emissions [26]. The 

filters are selected due to their unique filtering techniques and varied properties which 

can suppress side lobes and minimise the transition region [21]. By combining the CP 

of OFDM with a filter, the f-OFDM waveform can achieve a desirable frequency 

localisation for bandwidths as narrow as a few tens of subcarriers, while maintaining 
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the ISI within an acceptable limit [27]. Therefore, filter design and good specifications 

are essential for enhancing the data rate, as required by the 5G standard.   

 

 

Most researchers commonly employ FIR filters such as rectangular windows, 

Triangular windows, Hanning windows, Hamming windows and Blackman windows 

[28], which require high filter order to attain the desired parameter. Most of significant 

works are unable to reach bit-error-rate (BER) of 10-6, which is the standard of QoS of 

video buffed streaming, Transmission Control Protocol (TCP) based application (e.g. 

world wide web, file transfer protocol and peer-to-peer file sharing) and critical delay 

sensitive signal for 5G mobile communication[29]. By using Reed-Solomon, the BER 

performance for 256 QAM was analysed up to 10-4 and the filter order tested was very 

high (512th order), making the system more complex and the performances is 

insignificant compared to the other filters simulated [30]. On the one hand, the authors 

in [31] used Nuttall’s Blackman-Harris window with the 512th order and were only 

able to demonstrate the BER of up to 10-3. Besides the filter design, the appropriate 

modulation scheme is also vital for increasing the spectral efficiency. This can be 

solved by link adaptation. However, significant works found regarding the OFDM 

system [32-34] have not dealt with link adaptation in f-OFDM. Moreover, previous 

FIR studies did not include the link adaptation model. Although the filter consists of 

FIR and IIR, far too little attention has been paid to IIR in f-OFDM. In fact, most 

previous IIR works [35-37] were not implemented in the mobile communication 

system, even in simulations system because of non-linear phase and its poles and zeros 

complexity. The advantage of IIR is low filter order required for similar performance 

in FIR. Therefore, it will be interesting to employ IIR with a new design in f-OFDM.    
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1.3 Research Objectives 

 

 

The research aims to design the best FIR and IIR designs for f-OFDM that can 

achieve the BER of 10-6 with a minimum filter order. To achieve this aim, three 

specific research objectives are presented as follows: 

  

 

(a) To propose a new IIR design technique using magnitude, phase and group 

delay parameters  

(b) To simulate and evaluate a new IIR design technique for f-OFDM based on 

BER and Mean Square Error (MSE) performance 

(c) To validate the new IIR design with existing FIR filter for f-OFDM subject to 

BER performance 

 

 

 

 

1.4 Scope and Limitation of Work 

 

 

The scope of study in are divided into three main areas, which are filtering,    

multiplexing/multiple access and modulation technique. The research is conducted 

based on simulation works using MATLAB. The simulation performances of FIR 

filters, namely, Equiripple, Bohman, Hamming while theIIR filters such as 

Butterworth, Chebyshev and Elliptic, are extensively studied in terms of magnitude 

response, phase response, group delay as well as minimum filter order and nearly ideal 

filter responses. The maximum filter order for FIR and IIR are 512th and 30th orders, 

respectively. The reason why the filter is limited to such orders is because there is no 

significant roll-off of transition region after a few increments.  
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In this simulation work, the mobile communication assumed is point-to-point 

f-OFDM in AWGN channel model and Rician channel model. The simulator employs

QPSK, 64QAM, 128QAM and 256QAM for all FIR cases because of the 5G standard, 

while QPSK is solely selected for IIR due to the complexity of filter coefficient. The 

higher the modulation, the higher the throughput is, but prone to error. This is because 

for a low modulation scheme like QPSK represented 2 bits per symbol in a single 

carrier might achieve low ISI and BER leading to a robust communication, but low 

throughput. Meanwhile the higher modulation like 256QAM representing 8 bits per 

symbols may increase the ISI, but can carry more data per symbol resulting to high 

throughput. For QPSK, low transmit power is sufficient to transmit the data and 

normally suitable for the MS at edge networks. This contrasts with the higher 

modulation as high transmit power is required as often for the MS near to the BS.  

Since the focus is on the filtering technique, the limit of the work is to uncoded 

simulation so that the complexity is not increased. In addition to that, a coded 

simulation is not straightforward simulation, as the encoder involves hard- and soft-

encoder. For the range of SNR chosen in the study is -5dB to 45dB due to the common 

practises found for the 5G performance evaluation and in wireless communication 

40dB is consider excellent signal. All BER performance in this work are compared 

with OFDM as a validation. 

1.5 Significance of the Study 

Since most previous works only examined a few filter characteristics, the 

present research includes an extensive evaluation such as magnitude response, phase 

response, group delay and minimum filter order. The filter responses with different 

filter orders that are feasible to increase the performance of the f-OFDM system are 

specifically investigated for both FIR and IIR. The study determines the IIR and FIR 

parameters with the best filter order that can achieve optimum BER performance and 
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has low complexity. The optimum FIR design demonstrated the BER performance of 

10-6 under several modulations.  

 

 

Based on the results of group delay, implementation cost and BER of 10-6 of 

each FIR design a new Link-Adaptation Model for f-OFDM using optimum FIR is 

proposed. The Link-Adaptation Model consists of entry and exit SNR thresholds as a 

reference for the BS to decide which modulation is the optimum to be employed for 

data transmission to the MS. The significant of 5G link adaptation model in the current 

work l can be used in the actual mobile communication system for selecting the 

adaptive modulation scheme by considering the radio link condition, which is SNR 

Although the work does not assume the coding rate, the link adaptation model can still 

be used to validate the respective modulation and coding rate whether fall between the 

proposed exit and entry  SNR thresholds. Figure 1.3 show that Coding rate gain for 

uncoded BPSK, the proposed link adaption results can be extended to the specific 

coded system by knowing the type of code and its coding gain. In other words, the 

BER performances of proposed link adaption model will be moved to the left by the 

value of the coding gain. Changing the channel code will give different coding gain 

that will change proposed link adaption model accordingly [38]. 

 

 

 

 

Figure 1.3 Coding gain for uncoded BPSK [38] 
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For IIR, a new design technique called Phase Linear Regression Model 

(PLMR) for f-OFDM communication is proposed and analysed. The results of the new 

IIR outperformed FIR in the QPSK modulation with the 5th filter order are compared 

to a similar order of FIR. The new design is beneficial in reducing the latency and 

implementation cost of the filter particularly for the robust modulation like QPSK 

when applied in a real communication system. The proposed IIR design can also be an 

advantage in the future generation networks particularly for latency-sensitive 

applications. 

1.6 Thesis Organisation 

The overall structure of the thesis consists of five chapters. Chapter 2 reviews 

previous multiple access schemes and explains IIR and FIR concepts: link adaptation 

model and IIR design method. Chapter 3 presents the methodology used in this 

research including the research framework and PMLR technique. Chapter 4 discusses 

the results of the simulation, which can be divided into three categories: conventional 

IIR and FIR with different filter orders, link adaptation and new IIR performance. 

Chapter 5 concludes the research and provides recommendations for future works. 
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Appendix A f-OFDM Source Code 

 

 

 

  

s = rng(211);       % Set RNG state for repeatability 

  

iter=1; 

iter_max=30000;          % iteration 

numFFT = 1024;           % Number of FFT points 

numRBs = 50;             % Number of resource blocks 

rbSize = 12;             % Number of subcarriers per 

resource block 

  

cpLen = 72;              % Cyclic prefix length in 

samples 

  

bitsPerSubCarrier = 2;% 2: QPSK, 4: 16QAM, 6: 64QAM, 8: 

256QAM 

%for indexb=12 

    

snrdB = 10;              % SNR in dB 

  

%snrdB = 0:5:30; 

toneOffset = 2.5;        % Tone offset or excess 

bandwidth (in subcarriers) 

L = 6;                 % Filter length (=filterOrder+1), 

odd 

  

  

numDataCarriers = numRBs*rbSize;    % number of data 

subcarriers in subband 

halfFilt = floor(L/2); 

n = -halfFilt:halfFilt; 

  

% Sinc function prototype filter 

%pb = sinc((numDataCarriers+2*toneOffset).*n./numFFT); 

  

  

% Sinc truncation window 

%w = (0.5*(1+cos(2*pi.*n/(L-1)))).^0.6; 

%fnum = (pb.*w)/sum(pb.*w); 

  

fnum = dsp.FIRFilter( ... 

        'Numerator', [-0.00129297062251294 

0.0028746681437046 ... 

        -0.00198896626508255 -0.00104127087750144 

0.00358851821050419 ... 

        -0.00266854436758257 -0.00152676408801444 

0.00474062990323758 ... 
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-0.00286187361250132 -0.00277247066091464

0.00587285746088036 ... 

-0.00225186493835712 -0.00452042434014246

0.00649912631530904 ... 

-0.000784745462286556 -0.00631503894485589

0.0062695488938624 ... 

0.00130759653289175 -0.00765263676900739 

0.00508900729048407 ... 

0.0035805388612653 -0.00814678837811479 

0.00315088676057515 ... 

0.0055199604448021 -0.00765427535224208 

0.00087542341868381 ... 

0.00670758432284593 -0.00632025849050218 -

0.00122593840765462 ... 

0.00695348418293188 -0.00452866630711557 -

0.00271451398277242 ... 

0.00635252729948489 -0.00277543386604857 -

0.00336238953331757 ... 

0.00524739512656047 -0.00150735243179677 -

0.00321975631072424 ... 

0.00411188261678024 -0.000979726331937306 -

0.00259094875175215 ... 

0.00339398574222734 -0.0011787101723204 -

0.00192883957732998 ... 

0.00337046974175737 -0.0018320456161499 -

0.00168354041335424 ... 

0.00405957905090085 -0.00250265678119563 -

0.00215519334065166 ... 

0.00521850121575128 -0.00273297490535387 -

0.00339792381731131 ... 

0.00642415433337397 -0.00219248400929695 -

0.00520420827542902 ... 

0.00720917764943498 -0.000781381874801068 -

0.00717226506854014 ... 

0.00720820672696281 0.0013412551437444 -

0.0088324621718415 ... 

0.00626763388599739 0.00381131424045872 -

0.00979063930867297 ... 

0.0044851705690665 0.00617561217631924 -

0.00984212264602301 ... 

0.00216898254062711 0.00803081330346628 -

0.00902092500505215 ... 

-0.000267761913868458 0.00913981416262169 -

0.00757037640615827 ... 

-0.00244067713064482 0.00948842129445358 -

0.00584712575083124 ... 

-0.00411154227161785 0.00926518388339088 -

0.00419197719917961 ... 

-0.00525045359525928 0.00877257337230905 -

0.00281169474925382 ... 
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        -0.00602224794920579 0.00830038358399934 -

0.00171242844531442 ... 

        -0.00670171818372541 0.00800516607335774 -

0.000708788328573691 ... 

        -0.00754609704856054 0.0078385495370069 

0.000492194163813304 ... 

        -0.00866866425475229 0.00755240087978245 

0.00215837832630725 ... 

        -0.00995905283069019 0.00678416660760067 

0.0043953263460896 ... 

        -0.0110827915167818 0.00519869067679692 

0.00705353087820685 ... 

        -0.0115681588545458 0.0026417321496662 

0.00971801561231223 ... 

        -0.0109595594553728 -0.000747638094869436 

0.0117940553911732 ... 

        -0.00899219937518317 -0.0045100698791826 

0.0126719635229063 ... 

        -0.00573096355212342 -0.00794497664918187 

0.0119257651627445 ... 

        -0.00162196701146748 -0.0102834512609644 

0.00948435223220589 ... 

        0.00257190582013343 -0.0109108400497905 

0.00571572912540515 ... 

        0.0059457067579055 -0.00957368119388859 

0.00138634606307455 ... 

        0.00769547170098674 -0.00650349184510665 -

0.00250668270992168 ... 

        0.00736134515303356 -0.00240910314618024 -

0.00499256593907904 ... 

        0.00499537130371724 0.00167419901499132 -

0.00540318890029303 ... 

        0.00119476544646516 0.00464668487209812 -

0.00358630421306654 ... 

        -0.00302197233466137 0.00564772397743266 

1.45875891591288e-05 ... 

        -0.00647181761629011 0.00431251939299703 

0.00444817968251989 ... 

        -0.00812950536312869 0.000901421195916077 

0.00849632472336178 ... 

        -0.0074229466131132 -0.0037450418288435 

0.0110050805363855 ... 

        -0.00441177004311671 -0.00842149767693316 

0.0112114910700073 ... 

        0.000210126117400496 -0.011886949326936 

0.00896827406622053 ... 

        0.005295923808617 -0.0132138468874027 

0.0047957234176204 ... 

        0.00956291799697611 -0.012053337825748 -

0.000259321699409394 ... 
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        0.01195379669218 -0.00873563673657472 -

0.00491891242005716 ... 

        0.0119348718267122 -0.00417328560656288 -

0.00803710631769935 ... 

        0.00964149297833989 0.000404799626892683 -

0.00892216823774878 ... 

        0.00582703608439111 0.00380829872330514 -

0.00752136007293715 ... 

        0.0016323261716538 0.00522183149393028 -

0.00441452339304242 ... 

        -0.00175222946277583 0.00442161721566695 -

0.000622423981635296 ... 

        -0.00342714735905247 0.00181004719100156 

0.00270668166801213 ... 

        -0.00302358315745182 -0.00173608604197327 

0.00463229166762307 ... 

        -0.000773096567284987 -0.00514942127817722 

0.00467498789738723 ... 

        0.00260591034742895 -0.00749389614499319 

0.0029139014296532 ... 

        0.00615982126475415 -0.00822244181248824 -

9.27479992955364e-05 ... 

        0.00900218080386671 -0.00729371059166804 -

0.00352718396358992 ... 

        0.0105675898684877 -0.0051207138747711 -

0.00659134545328195 ... 

        0.0107392571811887 -0.00238079253390681 -

0.00875069523464552 ... 

        0.0098186970695597 0.000239575766837326 -

0.00986513580773795 ... 

        0.00836076985445592 0.00227456080616935 -

0.0101727227232639 ... 

        0.00694126292124289 0.00360752359348772 -

0.0101444539223465 ... 

        0.00594275138856741 0.0044625980867498 -

0.0102718036210544 ... 

        0.00543219480546351 0.00527395131002566 -

0.0108680642577595 ... 

        0.00516630918996285 0.00648977251407498 -

0.011954198083756 ... 

        0.00471260557511973 0.00838780749430396 -

0.0132648571530267 ... 

        0.00363279634618963 0.0109703808392217 -

0.014364266065165 ... 

        0.00165551241258244 0.0139739604148831 -

0.0148219588626788 ... 

        -0.00122698399513444 0.0169846775364131 -

0.0143791477550246 ... 

        -0.00477252405451684 0.0196136863036951 -

0.0130439198871333 ... 
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-0.00860663883552916 0.0216692143364498 -

0.0110835566444407 ... 

-0.0124035172203535 0.0232730227554918 -

0.00892278851970855 ... 

-0.0160791417947462 0.0249080517920774 -

0.00699201341891221 ... 

-0.0199733472364694 0.0274538228932466 -

0.00558624969941048 ... 

-0.0250975798126064 0.0324135989133329 -

0.00478816698976356 ... 

-0.0338766684086574 0.0431051066171956 -

0.00448067440981878 ... 

-0.0538530230390796 0.0718580180251039 -

0.00443775591035841 ... 

-0.13594866946996 0.278054900137096

0.662215460421545 0.278054900137096 ... 

-0.13594866946996 -0.00443775591035841

0.0718580180251039 ... 

-0.0538530230390796 -0.00448067440981878

0.0431051066171956 ... 

-0.0338766684086574 -0.00478816698976356

0.0324135989133329 ... 

-0.0250975798126064 -0.00558624969941048

0.0274538228932466 ... 

-0.0199733472364694 -0.00699201341891221

0.0249080517920774 ... 

-0.0160791417947462 -0.00892278851970855

0.0232730227554918 ... 

-0.0124035172203535 -0.0110835566444407

0.0216692143364498 ... 

-0.00860663883552916 -0.0130439198871333

0.0196136863036951 ... 

-0.00477252405451684 -0.0143791477550246

0.0169846775364131 ... 

-0.00122698399513444 -0.0148219588626788

0.0139739604148831 ... 

0.00165551241258244 -0.014364266065165 

0.0109703808392217 ... 

0.00363279634618963 -0.0132648571530267 

0.00838780749430396 ... 

0.00471260557511973 -0.011954198083756 

0.00648977251407498 ... 

0.00516630918996285 -0.0108680642577595 

0.00527395131002566 ... 

0.00543219480546351 -0.0102718036210544 

0.0044625980867498 ... 

0.00594275138856741 -0.0101444539223465 

0.00360752359348772 ... 

0.00694126292124289 -0.0101727227232639 

0.00227456080616935 ... 
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0.00836076985445592 -0.00986513580773795 

0.000239575766837326 ... 

0.0098186970695597 -0.00875069523464552 -

0.00238079253390681 ... 

 0.0107392571811887 -0.00659134545328195 -

0.0051207138747711 ... 

0.0105675898684877 -0.00352718396358992 -

0.00729371059166804 ... 

0.00900218080386671 -9.27479992955364e-05 -

0.00822244181248824 ... 

0.00615982126475415 0.0029139014296532 -

0.00749389614499319 ... 

0.00260591034742895 0.00467498789738723 -

0.00514942127817722 ... 

-0.000773096567284987 0.00463229166762307 -

0.00173608604197327 ... 

-0.00302358315745182 0.00270668166801213

0.00181004719100156 ... 

-0.00342714735905247 -0.000622423981635296

0.00442161721566695 ... 

-0.00175222946277583 -0.00441452339304242

0.00522183149393028 ... 

0.0016323261716538 -0.00752136007293715 

0.00380829872330514 ... 

0.00582703608439111 -0.00892216823774878 

0.000404799626892683 ... 

0.00964149297833989 -0.00803710631769935 -

0.00417328560656288 ... 

0.0119348718267122 -0.00491891242005716 -

0.00873563673657472 ... 

0.01195379669218 -0.000259321699409394 -

0.012053337825748 ... 

  0.00956291799697611 0.0047957234176204 -

0.0132138468874027 ... 

0.005295923808617 0.00896827406622053 -

0.011886949326936 ... 

0.000210126117400496 0.0112114910700073 -

0.00842149767693316 ... 

-0.00441177004311671 0.0110050805363855 -

0.0037450418288435 ... 

-0.0074229466131132 0.00849632472336178

0.000901421195916077 ... 

-0.00812950536312869 0.00444817968251989

0.00431251939299703 ... 

-0.00647181761629011 1.45875891591288e-05

0.00564772397743266 ... 

-0.00302197233466137 -0.00358630421306654

0.00464668487209812 ... 

0.00119476544646516 -0.00540318890029303 

0.00167419901499132 ... 
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0.00499537130371724 -0.00499256593907904 -

0.00240910314618024 ... 

0.00736134515303356 -0.00250668270992168 -

0.00650349184510665 ... 

0.00769547170098674 0.00138634606307455 -

0.00957368119388859 ... 

0.0059457067579055 0.00571572912540515 -

0.0109108400497905 ... 

0.00257190582013343 0.00948435223220589 -

0.0102834512609644 ... 

-0.00162196701146748 0.0119257651627445 -

0.00794497664918187 ... 

-0.00573096355212342 0.0126719635229063 -

0.0045100698791826 ... 

-0.00899219937518317 0.0117940553911732 -

0.000747638094869436 ... 

-0.0109595594553728 0.00971801561231223

0.0026417321496662 ... 

-0.0115681588545458 0.00705353087820685

0.00519869067679692 ... 

-0.0110827915167818 0.0043953263460896

0.00678416660760067 ... 

-0.00995905283069019 0.00215837832630725

0.00755240087978245 ... 

-0.00866866425475229 0.000492194163813304

0.0078385495370069 ... 

-0.00754609704856054 -0.000708788328573691

0.00800516607335774 ... 

-0.00670171818372541 -0.00171242844531442

0.00830038358399934 ... 

-0.00602224794920579 -0.00281169474925382

0.00877257337230905 ... 

-0.00525045359525928 -0.00419197719917961

0.00926518388339088 ... 

-0.00411154227161785 -0.00584712575083124

0.00948842129445358 ... 

-0.00244067713064482 -0.00757037640615827

0.00913981416262169 ... 

-0.000267761913868458 -0.00902092500505215

0.00803081330346628 ... 

0.00216898254062711 -0.00984212264602301 

0.00617561217631924 ... 

0.0044851705690665 -0.00979063930867297 

0.00381131424045872 ... 

0.00626763388599739 -0.0088324621718415 

0.0013412551437444 ... 

0.00720820672696281 -0.00717226506854014 -

0.000781381874801068 ... 

0.00720917764943498 -0.00520420827542902 -

0.00219248400929695 ... 
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        0.00642415433337397 -0.00339792381731131 -

0.00273297490535387 ... 

        0.00521850121575128 -0.00215519334065166 -

0.00250265678119563 ... 

        0.00405957905090085 -0.00168354041335424 -

0.0018320456161499 ... 

        0.00337046974175737 -0.00192883957732998 -

0.0011787101723204 ... 

        0.00339398574222734 -0.00259094875175215 -

0.000979726331937306 ... 

        0.00411188261678024 -0.00321975631072424 -

0.00150735243179677 ... 

        0.00524739512656047 -0.00336238953331757 -

0.00277543386604857 ... 

        0.00635252729948489 -0.00271451398277242 -

0.00452866630711557 ... 

        0.00695348418293188 -0.00122593840765462 -

0.00632025849050218 ... 

        0.00670758432284593 0.00087542341868381 -

0.00765427535224208 ... 

        0.0055199604448021 0.00315088676057515 -

0.00814678837811479 ... 

        0.0035805388612653 0.00508900729048407 -

0.00765263676900739 ... 

        0.00130759653289175 0.0062695488938624 -

0.00631503894485589 ... 

        -0.000784745462286556 0.00649912631530904 -

0.00452042434014246 ... 

        -0.00225186493835712 0.00587285746088036 -

0.00277247066091464 ... 

        -0.00286187361250132 0.00474062990323758 -

0.00152676408801444 ... 

        -0.00266854436758257 0.00358851821050419 -

0.00104127087750144 ... 

        -0.00198896626508255 0.0028746681437046 -

0.00129297062251294]); 

end 

     

filtTx = fnum; 

filtRx = clone(filtTx); 

%NormalizedFrequency 

  

% QAM Symbol mapper 

qamMapper = comm.RectangularQAMModulator( ... 

    'ModulationOrder', 2^bitsPerSubCarrier, 'BitInput', 

true, ... 

    'NormalizationMethod', 'Average power'); 

 

  

while(iter<=iter_max)  
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% Generate data symbols 

bitsIn = randi([0 1], bitsPerSubCarrier*numDataCarriers, 

1); 

symbolsIn = qamMapper(bitsIn); 

  

% Pack data into an OFDM symbol 

offset = (numFFT-numDataCarriers)/2; % for band center 

symbolsInOFDM = [zeros(offset,1); symbolsIn; ... 

                 zeros(numFFT-offset-numDataCarriers,1)]; 

ifftOut = ifft(ifftshift(symbolsInOFDM)); 

  

% Prepend cyclic prefix 

txSigOFDM = [ifftOut(end-cpLen+1:end); ifftOut]; 

  

% Filter, with zero-padding to flush tail. Get the 

transmit signal 

txSigFOFDM = filtTx([txSigOFDM; zeros(L-1,1)]); 

%filtTx([txSigOFDM; zeros(L-1,1)]); 

% Plot power spectral density (PSD) 

%[psd,f] = periodogram(txSigFOFDM, 

rectwin(length(txSigFOFDM)), ... 

%                      numFFT*2, 1, 'centered'); 

%plot(f,10*log10(psd)); 

  

% Compute peak-to-average-power ratio (PAPR) 

PAPR = comm.CCDF('PAPROutputPort', true, 'PowerUnits', 

'dBW'); 

[~,~,paprFOFDM] = PAPR(txSigFOFDM); 

disp(['Peak-to-Average-Power-Ratio for F-OFDM = ' 

num2str(paprFOFDM) ' dB']); 

 

% Compute peak-to-average-power ratio (PAPR) 

PAPR2 = comm.CCDF('PAPROutputPort', true, 'PowerUnits', 

'dBW'); 

[~,~,paprOFDM] = PAPR2(txSigOFDM); 

%disp(['Peak-to-Average-Power-Ratio for OFDM = ' 

num2str(paprOFDM) ' dB']); 

  

% Add WGN 

rxSig = awgn(txSigFOFDM, snrdB, 'measured'); 

%ee=rxSig; 

  

  

% Receive matched filter 

rxSigFilt = filtRx(rxSig); 

  

% Account for filter delay 

rxSigFiltSync = rxSigFilt(L:end); 

  

% Remove cyclic prefix 

rxSymbol = rxSigFiltSync(cpLen+1:end); 
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% Perform FFT 

RxSymbols = fftshift(fft(rxSymbol)); 

% Select data subcarriers 

dataRxSymbols = RxSymbols(offset+(1:numDataCarriers)); 

% Plot received symbols constellation 

switch bitsPerSubCarrier 

case 2  % QPSK 

refConst = qammod((0:3).', 4, 'UnitAveragePower', 

true); 

case 4  % 16QAM 

refConst = qammod((0:15).', 

16,'UnitAveragePower', true); 

case 6  % 64QAM 

refConst = qammod((0:63).', 

64,'UnitAveragePower', true); 

case 8  % 256QAM 

refConst = qammod((0:255).', 

256,'UnitAveragePower', true); 

end 

qamDemod = 

comm.RectangularQAMDemodulator('ModulationOrder', ... 

  2^bitsPerSubCarrier, 'BitOutput', true, ... 

'NormalizationMethod', 'Average power'); 

BER = comm.ErrorRate; 

% Perform hard decision and measure errors 

rxBits = qamDemod(dataRxSymbols); 

ber= BER(bitsIn, rxBits); 

total_run(:,iter) = ber; 

qqk = ber(1); 

disp(['F-OFDM Reception, BER = ' num2str(ber(1)) ' at SNR 

= ' ... 

num2str(snrdB) ' dB']); 

end 

rng(s); 

avg = mean(total_run,2); 

save 10 total_run avg; 
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Appendix B  Points of MSE value 

 

 

 

 

F1 
  

SSE HV NSSE 

5.995119 12.80693505 0.468115065 

1.069044 12.80693505 0.083473874 

2.550098 12.80693505 0.199118547 

5.511656 12.80693505 0.430364969 

7.997891 12.80693505 0.624496849 

9.876266 12.80693505 0.771165463 

11.27791 12.80693505 0.880609939 

12.10672 12.80693505 0.945325125 

12.55025 12.80693505 0.979957057 

12.75173 12.80693505 0.995689443 

12.80694 12.80693505 1 

94.49362 
 

7.378316329 
   

   

Phase HV NSSE 

0.4214 0.4214 1 

0.2652 0.4214 0.629330802 

0.121 0.4214 0.287138111 

0.00563 0.4214 0.013360228 

0.08501 0.4214 0.201732321 

0.1588 0.4214 0.376839108 

0.2237 0.4214 0.530849549 

0.2869 0.4214 0.680825819 

0.3306 0.4214 0.784527765 

0.3246 0.4214 0.770289511 

0.2332 0.4214 0.55339345 
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0.06687 0.4214 0.158685335 

0.09827 0.4214 0.233198861 

0.2069 0.4214 0.490982439 

0.2681 0.4214 0.636212625 

0.3233 0.4214 0.767204556 

3.41948 8.114570479 

F2 

SSE HV NSSE 

8.786518 12.29152 0.714844 

0.878153 12.29152 0.071444 

3.856593 12.29152 0.31376 

6.482222 12.29152 0.527374 

8.423652 12.29152 0.685322 

9.915515 12.29152 0.806696 

10.99384 12.29152 0.894425 

11.70267 12.29152 0.952093 

12.08275 12.29152 0.983015 

12.24702 12.29152 0.99638 

12.29152 12.29152 1 

97.66046 7.945353 

Phase HV NSSE 

0.226 0.37 0.610811 

0.009576 0.37 0.025881 

0.1284 0.37 0.347027 

0.2479 0.37 0.67 

0.3112 0.37 0.841081 

0.2611 0.37 0.705676 

0.04785 0.37 0.129324 

0.1985 0.37 0.536486 

0.3154 0.37 0.852432 
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0.3221 0.37 0.870541 

0.2738 0.37 0.74 

0.1957 0.37 0.528919 

0.09044 0.37 0.244432 

0.04077 0.37 0.110189 

0.2007 0.37 0.542432 

0.37 0.37 1 

3.239436 
 

8.755232 

 

F3 

 

SSE HV NSSE 

5.864587 11.49592 0.510145 

0.563499 11.49592 0.049017 

3.513262 11.49592 0.305609 

6.713862 11.49592 0.584021 

9.177256 11.49592 0.798305 

10.67547 11.49592 0.928631 

11.36349 11.49592 0.988481 

11.49592 11.49592 1 

11.41608 11.49592 0.993055 

11.32018 11.49592 0.984713 

11.27931 11.49592 0.981158 

93.38293 
 

8.123136 
   

   

Phase HV NSSE 

0.5357 0.5357 1 

0.3002 0.5357 0.560388 

0.09254 0.5357 0.172746 

0.08408 0.5357 0.156954 

0.1994 0.5357 0.372223 

0.2505 0.5357 0.467612 
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0.2586 0.5357 0.482733 

0.2599 0.5357 0.48516 

0.2643 0.5357 0.493373 

0.2449 0.5357 0.457159 

0.1617 0.5357 0.301848 

0.02143 0.5357 0.040004 

0.1168 0.5357 0.218032 

0.199 0.5357 0.371477 

0.2374 0.5357 0.443158 

0.2632 0.5357 0.49132 

3.48965 
 

6.514187 

 

F4 

 

SSE HV NSSE 

4.58225 10.38089 0.441412 

0.205808 10.38089 0.019826 

2.695488 10.38089 0.259659 

4.860157 10.38089 0.468183 

6.502469 10.38089 0.626388 

7.768447 10.38089 0.748341 

8.774967 10.38089 0.8453 

9.491666 10.38089 0.91434 

9.99506 10.38089 0.962832 

10.2828 10.38089 0.990551 

10.38089 10.38089 1 

75.54 
 

7.276831 
   

   

Phase HV NSSE 

0.5904 0.5904 1 

0.4997 0.5904 0.846375 

0.2292 0.5904 0.388211 
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0.05799 0.5904 0.098222 

0.104 0.5904 0.176152 

0.2482 0.5904 0.420393 

0.3718 0.5904 0.629743 

0.4647 0.5904 0.787093 

0.5068 0.5904 0.858401 

0.4747 0.5904 0.804031 

0.3419 0.5904 0.579099 

0.1275 0.5904 0.215955 

0.09383 0.5904 0.158926 

0.2748 0.5904 0.465447 

0.408 0.5904 0.691057 

0.577 0.5904 0.977304 

5.37052 
 

9.096409 
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