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ABSTRACT 

Natural Language Processing (NLP) is a way for computers to derive, analyze, 

and understand the meaning of human language in a smart and useful way. NLP 

considers the hierarchical structure of language that enables real-world applications 

such as automatic text summarization, event resolution, relationship extraction, and 

entity recognition to be presented in a proper human-computer interaction. One of the 

NLP components called Coreference Resolution (CR) is to determine whether the two 

noun phrases in natural language are referring to the same entity. In this context, an 

entity can be a real person, organization, place, or others, in which the referred term of 

such entity is called a mention. The task of CR when extended to resolve co-referent 

entities across multiple documents creates the Cross-Document Coreference 

Resolution (CDCR) task which requires special techniques to manage and address the 

mention chains within documents co-referring to the same entity across different 

documents. Currently, there are some limitations in the existing works in which the 

CDCR entities by variant referencing mentions are not well identified, and the 

grouping process to differentiate entities with lexical similarity is not well addressed. 

The main objective of this research is to propose a CDCR model using neural 

embedding of the entities and their mentions created by the representation of words 

using merely the input documents. This model created vectors of mentions and entities 

using neural embedding of mentions, regardless of the use of any external resources 

such as Knowledge Bases. For an advanced grouping of entities and their mentions, 

an improved density-based clustering technique containing DBSCAN and H-

DBSCAN clustering algorithms was employed. In addition, a prototype named 

CROCER was designed and developed as proof of concept to assess the model in an 

experimental environment. For evaluation, this model was applied to three publicly 

available datasets, called ‘John Smith Corpus’, ‘WePS-2 Collection’, and ‘Google 

Wikilinks’ from public open-source repositories. It measured the precision, recall, and 

F1 score of the model by three known scoring systems for Coreference Resolution, 

which are MUC, B3, and CEAF. Based on the findings, it can be concluded that the 

proposed model improved the F1 score of the datasets by almost 15.7%, 1.5%, and 

9%, respectively. 
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ABSTRAK 

Pemprosesan Bahasa Semula jadi (NLP) adalah satu cara untuk komputer 

memperoleh, menganalisis, dan memahami makna bahasa manusia dengan cara yang 

pintar dan berguna. NLP menggunakan struktur hierarki bahasa yang membolehkan 

aplikasi dunia nyata seperti ringkasan teks automatik, penyelesaian peristiwa, 

pengekstrakan hubungan, dan pengiktirafan entiti untuk dipersembahkan dalam 

interaksi manusia-komputer yang tepat. Salah satu komponen NLP yang disebut 

sebagai Resolusi Rujukan Bersama (CR) adalah untuk menentukan sama ada dua frasa 

nama dalam bahasa semula jadi dapat merujuk kepada entiti yang sama. Dalam 

konteks ini, entiti boleh menjadi orang, organisasi, tempat, atau lain-lain, yang disebut 

sebagai istilah penyebutan entiti tersebut. Apabila tugas CR ini diperluaskan kepada 

beberapa dokumen, ia dipanggil sebagai  Resolusi Rujukan Bersama Dokumen Silang 

(CDCR) yang memerlukan teknik khas untuk mengurus dan menangani rantai 

penyebutan dalam dokumen yang merujuk kepada entiti serupa di dokumen yang 

berbeza. Pada masa ini, terdapat beberapa limitasi dalam literatur yang ada di mana 

entiti CDCR yang dijana oleh varian rujukan tidak dapat dikenal pasti dengan baik, 

dan proses pengelompokan untuk membezakan entiti dengan kesamaan leksikal tidak 

ditangani dengan baik. Objektif utama penyelidikan ini adalah untuk mencadangkan 

satu model CDCR yang menggunakan penyisipan neural entiti dan penyebutan 

mereka, yang dijana dengan hanya menggunakan perkataan-perkataan daripada 

dokumen input. Model ini mencipta vektor penyebutan dan entiti menggunakan 

penyisipan neural, tanpa mengira penggunaan sumber luaran seperti Pangkalan 

Pengetahuan. Untuk pengelompokan entiti dan penyebutan yang lebih baik, teknik 

pengelompokan berdasarkan kepadatan yang diperbaiki yang mengandungi algoritma 

pengelompokan DBSCAN dan H-DBSCAN digunakan. Sebagai tambahan, satu 

prototaip bernama CROCER telah dirancang dan dibangunkan sebagai bukti konsep 

untuk menilai model dalam persekitaran eksperimen. Untuk penilaian, model ini 

diterapkan pada tiga set data yang tersedia untuk umum, yang disebut ‘John Smith 

Corpus’, ‘WePS-2 Collection’, dan ‘Google Wikilinks’ dari repositori sumber terbuka 

awam. Proses penilaian ini mengukur ketepatan, penarikan, dan skor F1 model oleh 

tiga sistem pemarkahan yang diketahui untuk Resolusi Rujukan Bersama iaitu MUC, 

B3, dan CEAF. Penemuan penyelidikan ini menunjukkan bahawa model yang 

dicadangkan dapat meningkatkan skor F1 dari set data masing-masing kepada 15.7%, 

1.5%, dan 9%.  
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INTRODUCTION 

1.1 Overview 

The mainstream part of the information produced by digital devices is globally 

expressed in the form of natural language text such as web pages, news articles, 

medical records, government documents, social media, etc. Such form of data is 

termed unstructured versus structured data. They are normalized and stored in a 

database that each record is divided from other records and relevant features that are 

associated with it. Information Extraction (IE) systems concern about automatically 

extraction of information from unstructured/semi-structured data (McCallum, 2005). 

For this purpose, to extract the locked information in unstructured text, Natural 

Language Processing (NLP) is used to discover and produce structured information. 

NLP is a way for computers to analyze, understand, and derive meaning from 

human language in a smart and useful way. NLP considers the hierarchical structure 

of language: several words make a phrase, several phrases make a sentence and, 

ultimately, sentences convey ideas. By analyzing language for its meaning, NLP 

systems have long filled useful roles specially to analyze text, which allow machines 

to understand how human speak. 

The field of NLP involves making computers to perform useful tasks with the 

natural language of human. NLP is characterized as a hard problem in computer 

science due to human language is rarely precise, or plainly spoken. To understand 

human language is to understand not only the words, but the concepts and how they 

are linked together to create meaning. Despite language being one of the easiest things 

for humans to learn, the ambiguity of language is what makes natural language 

processing a difficult problem for computers to master. 
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In NLP, there are various levels of ambiguity from Lexical Ambiguity which 

refers to the ambiguity of a single word to Pragmatic Ambiguity which refers to 

multiple interpretations of the text. To overwhelm the problems of NLP ambiguities, 

there are five general steps including Lexical Analysis, Syntactic Analysis, Semantic 

Analysis, Discourse Integration and Pragmatic Analysis. 

Among various sub-tasks of NLP related to Discourse Integration (i.e., how the 

immediately preceding text’s elements can affect the meaning and interpretation of the 

next elements). Coreference Resolution (CR) is essential to identify entity mentions in 

the text and resolve them into equivalent classes (H. Lee, Peirsman, Chang, Chambers, 

Surdeanu, & Jurafsky, 2011; Rahman & Ng, 2011b; Hajishirzi, Zilles, Weld, & 

Zettlemoyer, 2013; Màrquez, Recasens, & Sapena, 2013; Ng, 2016). In such context, 

an entity can be a real-world person, organization, or place, which is referred to, by a 

mention, i.e., a word or phrase referring to such an entity (Figure 1.1). 

Figure 1.1 An Example of Coreference Resolution 

The initial level of CR is to process the text within a single document, known 

as Intra-document Coreference Resolution (ICR) (Rao, McNamee, & Dredze, 2010). 

Expanding the scope of CR to process a collection of documents and resolving the 

entities across the documents leads to Cross-Document Coreference Resolution 

(CDCR) (Rao et al., 2010; Singh, Subramanya, Pereira, & McCallum, 2011; Ngomo, 

Röder, & Usbeck, 2014; Dutta & Weikum, 2015b; Beheshti, Benatallah, Venugopal, 

Ryu, Motahari-Nezhad, & Wang, 2016). CDCR plays a key role for several high-end 

NLP applications such as Automatic Knowledge Base Construction, Question 

Answering System, Automatic Text Summarization and Search Engines (Baron & 

Freedman, 2008; Dutta & Weikum, 2015b). 

The reminder of this chapter consists of the different critical aspects of the 

research. Firstly, the background and statement of the problem are elaborated. This is 
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followed by the research questions and objectives. Finally, the scope and significance 

of the research are briefly discussed. 

1.2 Background of the Problem 

CDCR consists of a variety of subtasks, starting with identifying mentions and 

entities and then co-referring them. The main goal is to group co-referring mentions to 

similar entities in clusters and distinct non-related mentions and entities. Mentions 

referring to the same entity are termed “coreferent” (Singh et al., 2011). CDCR can be 

viewed as a clustering problem of entity mention embedding based on their context 

similarities. However, local dependencies and entity contexts are ignored in standard 

clustering and high computational complexity is suffering as well. Accordingly, the 

main challenges of CDCR can be mentioned in three parts of, context detection 

dependencies, entity embedding for large datasets, and processing runtime of entity 

clustering.  

For detecting the context of mentions and compute their similarities, pair-wise 

methods are used which are computationally expensive. Accordingly, such methods 

are unfeasible for CDCR tasks especially for large datasets. Furthermore, the entity 

disambiguation with similar strings or of the entity name variation should be enriched 

with precise detection of the mention contexts. While Knowledge Bases (KB’s) are 

employed in recent works (Hajishirzi et al., 2013; Dutta & Weikum, 2015b, 2015a) 

are used to enrich the relational information of entities, however, such featurization 

approaches cannot be reliable because the construction of KB’s depends on CDCR 

results. 

Additionally, while machine learning algorithms are needed to be maintained 

with fixed-length inputs and produce fixed-length outputs, however text is not well-

defined for such techniques. Word embedding is the collective name for a set of 

language modeling and feature learning techniques in NLP, where words or phrases 

from the vocabulary are mapped to vectors of real numbers (Goldberg, 2017). 

Considering the size of the feature vectors by recent techniques which depends on the 
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vocabulary size of the document collection, by increasing in the number of mentions, 

the word embedding approaches based on them meet the problem with large datasets.  

For the clustering step of CDCR task, it also meets two challenges. (1) Often 

the number of underlying entities and their identities are not known. (2) Unlike 

inference in other language processing tasks that scales linearly in the size of the 

corpus, the hypothesis dimension of features for coreference across documents grows 

super exponentially with the number of mentions. However, local dependencies and 

entity contexts are ignored in standard clustering and high computational complexity 

is suffering as well. 

To handle the abovementioned problems, several solutions are proposed by 

researchers. Bagga and Baldwin (Bagga & Baldwin, 1998b) used the Vector Space 

Model (VSM) to disambiguate entities across documents. Later, Gooi and Allan (Gooi 

& Allan, 2004) presented three other models for CDCR based on the incremental 

vector space, KL divergence (the probabilistic approach), and a hierarchical clustering 

approach. More complicated models were presented by researchers later, established 

on one of the three main modelling approaches (Keshtkaran, Yuhaniz, & Ibrahim, 

2017): graph-based model (Ngomo et al., 2014; Rahimian, Girdzijauskas, & Haridi, 

2014; Emami, 2019), probabilistic model (Singh, Wick, & McCallum, 2010; Singh et 

al., 2011), and clustering-based model (Baron & Freedman, 2008; Finin, Syed, 

Mayfield, McNamee, & Piatko, 2009; Mayfield, Alexander, Dorr, Eisner, Elsayed, 

Finin, Fink, Freedman, Garera, & McNamee, 2009; Rao et al., 2010; Dutta & Weikum, 

2015b). Using other approaches like streaming CDCR (Shrimpton, 2017), joint 

modeling of Cross-Document Entity and Event Coreference Resolution (Barhom, 

Shwartz, Eirew, Bugert, Reimers, & Dagan, 2019), and cross-lingual CDCR (Kundu, 

Sil, Florian, & Hamza, 2018) were also considered by researchers to use other external 

resources to outperform the results of CDCR.  Nonetheless, they have not fully paved 

the way to satisfying results of resolving entities across documents regardless of any 

external information for any size of document collection.  

Accordingly, while a few studies have been conducted in the area of CDCR, 

there are still open issues related to the CDCR task for processing effective context 
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detection especially for large datasets. In order to address this goal, difficulties of large 

datasets for the number of records and dimension of the dataset, as well as effective 

context detection without conducting any contextual enrichment based on external 

sources should be considered. Therefore, the current research aims to design an 

improved model for CDCR task compared to the previous works which can outperform 

the effectiveness of the CDCR results. 

1.3 Problem Statement 

Identification and resolving co-referring entities across multiple documents by 

statistical data of the words and phrases of the document’s text (i.e., frequency of the 

words  or n-grams), provide useful data of the entity mentions and their context. 

Although such approaches deliver utilizable information of mention context to assist 

the differentiation of entities across documents, they are incapable of giving precise 

relationship between mentions and their context due to the ignorance of the sequence 

of words in the text. While, this problem is tried to be solved in recent works, however 

this procedure leads to a recursive dependency between CDCR task and KB’s. This 

issue is produced due to the Automatic Knowledge Base Construction techniques 

which are relied on the results of CDCR. Accordingly, current techniques for CDCR 

task are suffering from limitations in independent context detection.  

Other than the abovementioned issue, the CDCR task is facing with large 

datasets. The common approaches for embedding of mentions and their context (i.e., 

mapping words into numerical vectors) are heavily depended on the size of vocabulary 

of the data corpus. Increasing the size of vocabulary produces vectors with higher 

dimension in size and accordingly, will be more computationally expensive, time 

consuming or even impossible for the clustering analysis. 

The problems of detecting the context of entities and their mentions in large 

datasets also produce the difficulties for the task of clustering of detected entities. Such 

problem becomes a critical issue together with the clustering challenge of CDCR (i.e., 
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unknown number of clusters), which can raise the computation cost of the clustering 

task for CDCR.  

1.4 Research Questions 

Considering the aforementioned issues, this research aims to answer the 

following main question: 

How to improve the effectiveness of detection and clustering of co-referent 

entities across multiple documents using only the documents’ text, regardless of 

external information, for varied sizes of datasets? 

In order to address the abovementioned question, three other questions are 

raised to answer that are defined in the following section. This research aims to answer 

the following questions: 

(a) What are the existing approaches for detecting and clustering co-referent 

entities across documents? 

(b) How to effectively construct the context of entities by merely document’s text, 

regardless of external information? 

(c) How to improve the effectiveness for the clustering task of detected entities by 

the proposed model? 

(d) What is the improvement made by the proposed model for the results of 

CDCR? 

1.5 Research Objectives 

Based on the research questions, the research objectives are as follows: 
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(a) To identify the existing approaches for detecting and clustering co-referent 

entities across documents. 

(b) To design a model for detecting the context of entities using the surrounding 

words of the mentions and their sequences regardless of external resources. 

(c) To develop and improved clustering technique to enhance the effectiveness of 

CDCR. 

(d) To evaluate the effectiveness of the model over benchmark datasets using 

standard metrics and comparing it results with the previous works. 

1.6 Scope of the Study 

The following research directions outline the boundaries of this study: 

• Coreference Resolution Across Documents:  While Coreference Resolution 

is about referring similar mentions in any kind of document set, the focus of 

this research is on Coreference Resolution across multiple documents as an 

advanced task against Coreference Resolution across the text of a document.  

• Document Types: Source of text document can be any form like web pages, 

news articles, literary works, social media and so on. However, processing the 

text achieved from each source has its limitations. Generated text in social 

media may contain informal words, typo mistakes, or grammatical mistakes, 

literary text could be constructed with many literary terms, and web content 

may consist of many short phrases like titles, tables, or even in-complete 

sentences. Based on this, this research is limited to work on formal text which 

are almost certainly free of grammatical and typo mistakes and are made by 

complete sentences. 

• Entity Discovery: This research focuses on Entity Discovery which is the task 

of clustering mentions into sets such that mentions in a given set all refer to the 

same real-world entity. Entity Discovery is against Entity Linking which is the 
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problem of matching an entity with all of its referent mentions. The Entity 

Discovery is similar to Entity Linking, except it is more difficult because there 

are no known entities. 

• Entity Types: Based on the definition by ACE (Automatic Content Extraction)

which was a program of the early and mid of 2000’s, entities are the most basic

building blocks of the semantic representation. There are 7 types of entities:

persons, organizations, GPEs (geo-political entities: locations with a

government), [other] locations, facilities, vehicles, and weapons. Each entity

has one or more mentions within the document. Each mention is either a name,

a nominal, or a pronominal mention. However, this research is about resolving

three main entity types, consist of Person, Organization and Location.

• Cluster Analysis: Coreferences within a document are generally based on

rules or supervised learning using various kinds of linguistic features, such as

syntactic paths between mentions, the distances between them, and their

semantic compatibility as derived from co-occurrences. The CDCR task is

essentially a clustering problem of entity embedding based on their context

similarities. Based on this, this research is about learning the model for CDCR

in an unsupervised manner regarding the contextual features of the text.

1.7 Assumptions and Limitations 

Cross-Document Coreference Resolution (CDCR) is the task of identifying and 

co-referring similar entities across multiple documents. This task encompasses various 

kinds of activities and sub-tasks. Accordingly, the following assumptions and 

limitations are made in this research: 

(a) CDCR consist of various stages which the initial is Intra-Document

Coreference Resolution (ICR). In this research, this stage is conducted using a

library called Stanford CoreNLP. This local CR stage may produce errors (e.g.,

incorrect chaining of mentions or omissions) which propagate the later stages.

However, improving the result of ICR is out of the scope of this research.
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(b) Based on the definition by ACE (Automatic Content Extraction) there are 7 

types of entities: persons, organizations, GPEs (geo-political entities: locations 

with a government), [other] locations, facilities, vehicles, and weapons. 

However, this research is about resolving three main entity types, consist of 

Person, Organization and Location. 

(c) The ICR sub-task may detect multiple entities from each document, related to 

the gold labels of the dataset or not. However, this research only concentrates 

on entities which their labels are provided in the dataset. Based on this, in the 

clustering stage, it is assumed that there is no outlier, and all of the entities will 

be included in one cluster. 

(d) In the analytical phase for developing the model, it is assumed that the gold 

labels of benchmarking datasets are defined precisely. However, if any wrong 

or irrelevant gold label is found, it would be ignored. 

(e) This research is only defined for applying the model on three selected datasets 

called, “John Smith Corpus”, “WePS-2 Collection”, and “Google Wikilinks” 

which are described in detail in Section 3.6.2. 

1.8 Significance of the Study 

By a new revolution in web search systems, user recommendations, and data 

analytics, transitioning from merely results of documents and keywords to knowledge 

and entities results is happening. Some instances of this phenomena are  the IBM 

Watson technology, which is designed for deep question answering,  and the Google 

Knowledge Graph and its applications. It seems that the most important value-adding 

part in this revolution is the identification and disambiguation of named entities in all 

of web and users’ contents.  

These advances have been enabled by the creation of large knowledge bases 

(KB’s) such as DBpedia, Yago, or Freebase. Such semantic resources provide 

exceptionally large collections of entities like people, organizations, places, etc., which 
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are enriched with more knowledge, describe their properties and relationships. In this 

situation, CDCR is a task which recognize and co-refer all mentions in an entire corpus 

that are related to the similar entity. CDCR does not involve mapping mentions to the 

entities of a KB, and unlike tasks like Named Entity Disambiguation, CDCR can deal 

with unknown or long-tail entities in KB’s or even entities that are in very sparse form. 

CDCR processes are also particularly important and have various applications 

in e-Health (processing the electronic health records), legal databases, opinions, 

sentiment analysis, and also understanding what is happening around us. Consider 

open-source intelligence as a motivating example, where millions of people broadcast 

events and opinions every second. In this context, cross document coreference occurs 

when the same person, place, event, or concept is discussed in more than one text 

source, e.g., tweets in Twitter. Consequently, CDCR can help in analyzing huge 

number of tweets generating in seconds, linking related tweets, and discovering more 

insight from them to understand what is happening now and predict what may happen 

later. 

Designing and evaluating a suitable CDCR process are not only extremely 

important but also hugely challenging. Analyzing the state of the art, shows that a 

CDCR process involves multiple stages, where there are many possible choices for 

each stage, and only some combinations are valid. 

1.9 Thesis Organization 

This chapter fully discussed the nature of the research, the research gaps and 

problems faced, the research purpose and objectives, how these research gaps and 

problems will be addressed, as well as the research scope and significance. The 

remainder of this thesis is organized as in the second chapter a background on research 

directions, explains the unaddressed challenges, and presents a literature review of 

existing works on CDCR is described. The proposed research methodology is 

discussed in Chapter 3 by providing an overview of the research phases, operational 

framework, and explanations on benchmarking dataset and the validation and 
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evaluation of these phases. The fourth chapter presents the research design and 

implementation by introducing the mathematical modeling of the CDCR process. The 

proposed techniques and algorithms are described in detail. The experimental results 

and a discussion are provided in Chapter 5 to indicate the applicability and feasibility 

of the proposed approach and investigate its evaluation and validation. Finally, a 

summary and conclusions of the thesis are provided in Chapter 6 by discussing the 

contributions of this research and suggesting for potential future research directions. 
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Appendix A Alphabetical List of Part-of-speech Tags Used in The Penn 

Treebank Project 

Tag Description 

CC Coordinating conjunction 

CD Cardinal number 

DT Determiner 

EX Existential there 

FW Foreign word 

IN Preposition or subordinating conjunction 

JJ Adjective 

JJR Adjective, comparative 

JJS Adjective, superlative 

LS List item marker 

MD Modal 

NN Noun, singular or mass 

NNS Noun, plural 

NNP Proper noun, singular 

NNPS Proper noun, plural 

PDT Predeterminer 

POS Possessive ending 

PRP Personal pronoun 

PRP$ Possessive pronoun 

RB Adverb 

RBR Adverb, comparative 

RBS Adverb, superlative 

RP Particle 

SYM Symbol 

TO to 

UH Interjection 

VB Verb, base form 

VBD Verb, past tense 

VBG Verb, gerund, or present participle 

VBN Verb, past participle 

VBP Verb, non-3rd person singular present 

VBZ Verb, 3rd person singular present 

WDT Wh-determiner 

WP Wh-pronoun 

WP$ Possessive wh-pronoun 

WRB Wh-adverb 
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