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Moore’s law is approaching its limit due to various challenges, especially the size limit of the transistors. Te International
Roadmap for Devices and Systems (IRDS), the successor of International Technology Roadmap for Semiconductors (ITRS), has
included 2Dmaterials as an alternative approach for theMore-than-Moore nanoelectronic applications. Among the 2Dmaterials,
graphene nanoribbons (GNRs) have been widely used as the alternative channel materials of feld-efect transistors (FETs). In this
paper, the impacts of physical scaling on the device performance of double-gate Schottky-barrier GNR FETs (DG-SB-GNRFETs)
are investigated by using NanoTCAD ViDES simulation tool based on the tight-binding Hamiltonian and self-consistent so-
lutions of 3D Poisson and Schrödinger equations with open boundary conditions within the nonequilibrium Green’s function
formalism. Te extracted device performance parameters include the subthreshold swing and on-to-of current ratio. Te results
suggest that the performances of DG-SB-GNRFETs are strongly dependent on their physical parameters, especially the widths of
the GNRs.

1. Introduction

Over the last few decades, the continuous scaling of tran-
sistors, as described by Moore’s law, has resulted in as-
tonishing innovations, especially in the semiconductor
industry. According to Moore’s law, the number of tran-
sistors in an integrated circuit would be doubled every
2 years [1]. However, the scaling of silicon (Si) comple-
mentary metal-oxide-semiconductor (CMOS) technology is
expected to face its fundamental limit as it enters the sub-
10 nm scaling regime [2, 3]. To leverage these shortcomings,
various innovations involving feld-efect transistors (FETs),
such as the tunnelling FETs (TFETs) [4], nanowire FETs
(NWFETs) [5], multibridge-channel FETs (MBCFETs) [6],
and two-dimensional (2D) FETs, have been actively de-
veloped and studied. Interestingly, 2D material-based FETs
have been listed as the potential candidates for further
transistor miniaturisation in the International Roadmap for
Devices and Systems (IRDS) [7]. Among the potential 2D

material candidates, graphene has attracted outstanding
research interests among researchers since its introduction
by Novoselov et al. [8].

Graphene possesses unique electronic and mechanical
properties, but its gapless properties inhibit its application
in FETs for switching applications (which typically require
a band gap value between 0.1 eV and 3.0 eV [9]). Never-
theless, the band gap of graphene can be engineered by
simply limiting its width, inducing the lateral confnement
within its fnite width and producing graphene nano-
ribbons (GNRs) [10, 11]. Teoretical works show that
Armchair GNRs (AGNRs) have energy gap values which
are inversely proportional to their widths. Tese widths
can be classifed into three families: the 3p group (with
semiconducting properties), the 3p + 1 group (with sem-
iconducting properties), and the 3p + 2 group (with me-
tallic properties) [12]. Te bandgap of the channel
materials of FETs are crucial in the design of nano-
electronic devices [13].
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Graphene is a 2D monolayer of carbon atoms con-
structed in the form of 2D honeycomb lattice. As a potential
candidate for More-than-Moore CMOS technology, gra-
phene ofers several advantages such as high mobility for
electron transport, high carrier velocity for fast switching,
monolayer thin body for optimum scaling, and excellent
thermal conductivity [14]. Te band gap tuning of gapless
graphene can be achieved by tailoring it into GNRs, enabling
its application as digital switching devices, namely the
GNRFETs [15, 16]. Careful selection of physical parameters
of GNRFETs must be performed because the device per-
formances of GNRFETs are strongly dependent on their
widths. Previous studies showed that the carefully designed
GNRFETs can have comparable current-voltage (I–V)
characteristics as compared to silicon-based FETs [17]. In
addition to the band gaps of the channel materials, the metal
contacts in FETs are also important. Upon connection with
metal contacts, Schottky-barrier (SB) is formed at the in-
tersections between the GNR channel material and the
contact metals [18]. Terefore, studying merely the electron
transport properties within the GNR-based FET channels is
insufcient to predict the overall performance of the
GNR FETs.

In this paper, the simulation of double-gate SB-
GNRFETs (DG-SB-GNRFETs) is performed using Nano-
TCAD ViDES simulation tool [15, 16, 19]. Figure 1 shows
the schematic structure of the SB-GNR-FET used in this
work. Subsequently, the efects of physical scaling to the
device performance of DG-SB-GNRFETs are also in-
vestigated. Te remaining sections of this paper are
organised as follows: Section 2 shows the theoretical
equations employed in the NanoTCAD ViDES simulation
tool [15, 16]. Section 3 compiles the results and discussions
of this work. Conclusion of this study is drawn in Section 4.

2. Simulation Procedures

Te performance of GNRFETs can be evaluated by using
diferent carrier transport models such as simplifed semi-
classical transport model or quantum transport model.
However, simplifed semiclassical transport model does not
treat quantum tunnelling efect and electrostatic short
channel efect, making it difcult to explore the behaviour of
GNRFETs due to physical scaling [20]. Te quantum-based
transport simulation approach is more efcient and accurate
than that of other method. Te NanoTCAD ViDES simu-
lation tool performs the calculations based on the tight-
binding Hamiltonian and self-consistent solutions of 3-D
Poisson and Schrödinger equations with open boundary
conditions within the nonequilibrium Green’s function
formalism [15, 16]. Non-equilibrium Green’s function for-
malism (NEGF) formalism provides the atomistic de-
scription of the channel material, producing relatively
accurate results in investigating the performance of
GNRFETs in the sub-10 nm channel length regime [21].
Green’s function [15, 16] can be expressed as follows:

G(E) � EI − H − 􏽘
s

− 􏽘
D

⎡⎣ ⎤⎦
−1

, (1)

where E is the energy, I the identity matrix, H is the
Hamiltonian of GNR, and 􏽐s and 􏽐D are the self-energies of
the source and drain. In this simulation tool, the transport is
assumed to be completely ballistic and the type of graphene
nanoribbon is armchair. Tis model assumes that the
chemical potential of reservoirs is aligned at the equilibrium
with Fermi energy level of the GNR channel. Given that
there are no fully confned state, the electrons and holes
concentration equations [15, 16] are expressed as follows:
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where r
→ represents the coordinate of the carbon atoms, f is

the Fermi–Dirac occupation factor, and |ψS|2 and |ψD|2 are
the probability of the states injected by the source and drain,
respectively. EFS and EFD are the Fermi energy levels at the
source and drain, respectively. Following that, the output
current of DG-SB-GNRFETs [15, 16] are then simulated by
using the following formula:

I �
2q

h
􏽚

+∞

−∞
dET(E) f E − EFS( 􏼁 − f E − EFD( 􏼁􏼂 􏼃, (4)

where T(E) is the transmission coefcient, q is the electron
charge, and h is Plank’s constant. In addition, the widths of
the AGNRs with NA dimers of carbon atoms are calculated
by using the following formula:

W � NA − 1( 􏼁

�
3

√

2
ac−c, (5)

where ac−c � 0.142 nm is the carbon-carbon bond length. To
better illustrate the model in this work, Figure 2 shows the
3D structure of the SB-GNR-FET.

3. Results and Discussion

In this work, the DG-SB-GNRFETs are simulated with the
scaling physical parameter, including the channel length (LC),
the gate oxide thickness (tOX), and width of GNRs (W). For all
the simulations in this work, the temperature and dielectric
constant are fxed to T � 300K (ambient temperature) and
εr � 3.9, respectively. Table 1 shows the values that are used in
the simulation of DG-SB-GNRFETs, whereas the physical
parameters are shown in Figure 1.
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For simulation 1, the channel length (LC) of DG-SB-
GNRFETs is manipulated while fxing other physical pa-
rameters. For simulation 2 and simulation 3, the manipu-
lated variables are the width of GNR channels (W) and gate
oxide thickness (tOX), respectively. All simulation results are
analysed by extracting the on-to-of current (ION/IOFF) ratio
and subthreshold swing (SS) from I–V characteristics as
shown in [22]. Te ION/IOFF ratio is one of the important
parameter performances of this device that is related to the
short channel efect and leakage current, whereas SS is an
important measure of the performance for switching op-
eration in FET devices. Figure 3 shows the I–V character-
istics of DG-SB-GNRFETs with the width of W � 0.98 nm
(NA � 9), with their channel length scaled, at low
(VD � 0.1V) and high (VD � 0.3V) drain voltages. Based on
the I–V characteristics obtained, it is clearly shown that the
IOFF for VD � 0.3V is generally higher than that for
VD � 0.1V.

In Figure 3, the I–V characteristics do not show sig-
nifcant diference for diferent channel length. Teoreti-
cally, scaling down the channel length of transistor will be
resulting the short channel efect on the transistor and
therefore leading to current leakage. However, the ION/IOFF
ratio and SS do not show signifcant changes when the
channel lengths of SB-GNR-FETs are scaled down from
14 nm to 7 nm, where only slight decimal points diferences
can be observed. Tis condition is observed due to the
ballistic transport [23] assumption employed in the
NanoTCAD ViDES simulation tool. Table 2 summarises the
results of device performance of the SB-GNR-FETs with
respect to channel length scaling. Te device metrics sum-
mary clearly shows that the performances of SB-GNR-FETs
are severely degraded at high drain biasing voltage. Tis

observation has also been observed in the previous study on
SB-GNR-FETs [15]. Terefore, the subsequent simulations
are carried out at low drain voltage, that is Vd � 0.10V.

Figure 4 shows the I–V characteristics of SB-GNR-FETs
with GNR width scaling. From the I–V characteristics in
Figure 4, SB-GNR-FET with W � 1.72 nm has higher of-
current compared to the SB-GNR-FET with W � 0.98 nm.
Tis shows that the scaling of GNRwidth signifcantly afects
the ION/IOFF ratio due to the altered band gap values. In
other words, increasing the GNR width reduces the band
gap, and hence, increasing the tendency of band-to-band
tunnelling and smaller Schottky-barrier height. Moreover,
the SS of SB-GNR-FETs is also degraded signifcantly when
the width is increased to W � 1.35 nm and W � 1.72 nm,
while the SB-GNR-FET with W � 0.98 nm possesses SS
value of 72mV/dec, which is close to the ideal room tem-
perature limit (SS� 60mV/dec). Table 3 shows the sum-
marised device metrics of SB-GNR-FETs with GNR width
scaling.

Figure 5 shows the I–V characteristics of SB-GNR-FETs
with three gate oxide thickness at 1 nm, 2 nm, and 3 nm.
Table 4 lists the summarised device metrics of SB-GNR-FETs
with gate oxide thickness scaling. Based on the gate oxide
thickness scaling in Figure 5, it is shown that the oxide
thicknesses of the SB-GNR-FETs have minimal impacts on
their I–V characteristics. Although the SS and ION/IOFF ratio
are slightly degraded due to thicker gate oxide, the per-
formances of the SB-GNR-FETs are still decent. Tis ob-
servation is most probably due to the excellent gate
electrostatic control ofered by the DG structure [24]. In
summary, the results in this work imply that the widths of
the GNR channels are the most signifcant physical pa-
rameter infuencing the device performance of SB-GNR-
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Figure 2: 3D structure of the SB-GNR-FET [19].
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Figure 1: Schematic structure of the SB-GNR-FET used in the simulation [19].
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Table 1: Physical device structure of DG-SB-GNRFETs.

Physical parameters Simulation 1 Simulation 2 Simulation 3
Channel length, LC (nm) 7, 10, 14 10 10
Oxide thickness, tOX (nm) 1.0 1.0 1.0, 2.0, 3.0
Dimers of carbon atoms, NA 9 9, 12, 15 9
GNR width, W (nm) 0.98 0.98, 1.35, 1.72 0.98
Lateral space, S (nm) 1.0 1.0 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6
Gate Voltage (V)

10-6

10-5

10-4
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en
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Figure 3: I–V characteristics of SB-GNR-FETs with diferent channel lengths: (a) LC � 7 nm, (b) LC � 10 nm, and (c) LC � 14 nm, simulated
at low and high drain voltages.
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Table 2: Device performance of SB-GNR-FETs with channel length scaling.

Device metrics
Vd � 0.10V Vd � 0.30V

LC � 7 nm LC � 10 nm LC � 14 nm LC � 7 nm LC � 10 nm LC � 14 nm

On-current, ION (A) 7.47 × 10− 6 7.52 × 10− 6 7.53 × 10− 6 1.52 × 10− 5 1.56 × 10− 5 1.61 × 10− 5

Of-current, IOFF (A) 6.11 × 10− 10 6.11 × 10− 10 6.11 × 10− 10 2.55 × 10− 6 2.61 × 10− 6 2.67 × 10− 6

ION/IOFF ratio 1.22 × 104 1.23 × 104 1.23 × 104 5.96 × 100 5.98 × 100 6.03 × 100
SS (mV/dec) 73.2 72.0 72.53 127.9 125.8 125.7

0 0.1 0.2 0.3 0.4 0.5 0.6
Gate Voltage (V)

10-10

10-8

10-6

10-4

Cu
rr

en
t (

A
)

W=1.72 nm (NA=15)
W=1.35 nm (NA=12)
W=0.98 nm (NA=9)

Figure 4: I–V characteristics of SB-GNR-FETs with GNR width scaling, simulated at Vd � 0.1V.
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Figure 5: I–V characteristics of SB-GNR-FETs with gate oxide thickness scaling, simulated at Vd � 0.1V.

Table 3: Device performance of SB-GNR-FETs with GNR width scaling.

Device metrics
Width of GNR

W � 0.98 nm W � 1.35 nm W � 1.72 nm
On-current, ION (A) 7.52 × 10− 6 7.82 × 10− 6 9.47 × 10− 6

Of-current, IOFF (A) 6.11 × 10− 10 4.25 × 10− 9 1.37 × 10− 8

ION/IOFF ratio 1.23 × 104 1.84 × 103 6.92 × 102
SS (mV/dec) 72.0 114.1 123.2

Journal of Nanotechnology 5
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FETs. In the future, this study can be extended by in-
corporating other band gap engineering techniques such as
doping and defects [25].

 . Conclusion

In conclusion, the performances of SB-GNR-FETs with
physical scaling are studied by using NanoTCAD ViDES
tool. Te performances of these devices are investigated by
comparing the device metrics including the on-to-of cur-
rent ratio and subthreshold swing.Te results also show that
DG structure can provide excellent gate control for GNR-
based FETs. In addition, among the three physical scaling
parameters investigated in this work, the widths of GNR
channels are identifed as the most vital design parameter
that strongly afects the device performances of SB-GNR-
FETs. Te on-to-of current decreases and subthreshold
swing increases when the width of SB-GNR-FET increases,
causing its device performance to degrade. In summary, the
physical parameters of SB-GNR-FETs must be carefully
designed to achieve optimum performances for nano-
electronic applications.
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