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ABSTRACT 

Software engineering is knowledge-intensive work, and how to manage 

software engineering knowledge has received much attention. Agile is a common 

software development methodology among software developers. Requirements 

documentation (RD) is a challenging task for agile software developers. The existing 

agile RD does not incorporate the implicit thinking knowledge with the values it 

intends to achieve in the software project. Moreover, there is no clear framework that 

incorporates the implicit thinking knowledge of software developers. Therefore, this 

study developed a framework for Injecting the Implicit Thinking Knowledge in Agile 

Requirements Documentation (IITKARD). In doing so, a systematic literature review 

was conducted to identify the challenges of agile requirements engineering from 28 

primary studies. A survey administered to 25 software engineering experts was 

conducted to ascertain the identified challenges of agile requirements engineering.  

Responses from the experts highlighted that implicit thinking knowledge in agile 

requirements documentation as one of the challenges. An evaluation was conducted 

to validate and verify the proposed IITKARD framework using an experiment based 

on focus group of 10 experts. The feedback from the experts indicated that the 

injecting of the implicit thinking knowledge in agile RD is important. The 

experiment with the experts in agile software engineering was carried out to validate 

and verify the IITKARD and its prototype tool by using two measurement aspects, 

which were efficiency and usability. The results obtained from the experiment 

showed that IITKARD was able to assist the experts to inject the implicit knowledge 

in agile RD measured in efficiency and usability. In addition, the results showed that 

the IITKARD framework achieved the highest level of experts’ satisfaction. In 

conclusion, this research contributes to developing the IITKARD, which assists the 

software developers in injecting their implicit thinking knowledge in agile 

requirements documentation.  
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ABSTRAK 

Kejuruteraan perisian adalah pengetahuan intensif, dan bagaimana untuk 

mengurus pengetahuan berkaitan kejuruteraan perisian telah mendapat banyak 

perhatian. Kaedah Agile adalah salah satu metodologi perisian yang biasa dalam 

kalangan para pembangun perisian. Dokumentasi keperluan (RD) adalah tugas yang 

mencabar untuk pembangunan perisian Agile. Agile RD yang sedia ada tidak 

menggabungkan pengetahuan pemikiran tersirat dengan nilai-nilai yang ingin dicapai 

dalam sesuatu projek perisian. Lebih-lebih lagi, tidak ada kerangka yang jelas yang 

menggabungkan pengetahuan pemikiran tersirat terhadap pembangunan perisian. 

Oleh itu, kajian ini telah membangunkan satu rangka kerja untuk Menyuntik 

Pengetahuan Pemikiran Tersirat dalam Dokumentasi Keperluan Agile (IITKARD). 

Dengan berbuat demikian, Systematic Literature Review (SLR) dijalankan untuk 

mengenal pasti cabaran-cabaran dalam kejuruteraan keperluan Agile daripada 28 

kajian utama. Tinjauan turut dilakukan kepada 25 pakar kejuruteraan perisian yang 

dijalakan untuk menentukan cabaran kejuruteraan keperluan Agile. Maklum balas 

daripada pakar menekankan bahawa pengetahuan pemikiran yang tersirat dalam 

Agile RD sebagai salah satu cabaran. Penilaian telah dijalankan untuk mendapatkan 

keesahan kerangka kerja IITKARD yang dicadangkan dengan menggunakan 

eksperimen berdasarkan 10 pakar dari kumpulan berfokus. Maklum balas daripada 

pakar menunjukkan bahawa penyuntingan pengetahuan pemikiran tersirat dalam 

dokumentasi keperluan Agile adalah penting. Eksperimen dengan pakar kejuruteraan 

perisian Agile dilakukan untuk mendapatkan keesahan ke atas IITKARD dan alat 

prototaipnya dengan menggunakan dua aspek pengukuran, iaitu yang terdiri daripada 

kecekapan dan kebolehgunaan. Hasil daripada eksperimen ini menunjukkan bahawa 

IITKARD dapat membantu para pakar untuk menyuntik pengetahuan tersirat dalam 

RD Agile yang diukur berdasarkan kecekapan dan kebolehgunaan, di samping itu, 

keputusan menunjukkan bahawa rangka kerja IITKARD berjaya mencapai tahap 

tertinggi kepuasan dalam kalangan pakar. Sebagai kesimpulan, penyelidikan ini 

dapat memberi sumbangan kepada pembangunan IITKARD yang membantu 

pembangun perisian dalam menyuntik pengetahuan pemikiran tersirat dalam 

kalangan pembangun perisian bagi dokumentasi keperluan Agile. 
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CHAPTER 1 

INTRODUCTION 

 Overview 1.1

The most significant value in an organization is the knowledge, which 

affecting its competitiveness (Amin et al., 2017). Adopting knowledge management 

system is assists organizations to capture knowledge and share it to all their 

members. In fact, software development is highly requested. To achieve delivering 

the software product requiring to concentrate on better quality and better productivity 

(Martin-de Castro, 2015). To meet these achievement, software organizations have 

tried to use one of its most significant resource, which is the structured software 

engineering knowledge (Sandra et al., 2017). Previously, this knowledge was 

recorded on paper or kept in people’s mind. This makes it difficult to be accessible.  

Moreover, the knowledge that kept in peoples' brains is immediately lost when 

individual leave (Jurado et al., 2018). Furthermore, it is hardly to capture knowledge 

about some matter in large organizations. However, knowledge has to be 

systematically captured and stored in a corporate repository, and then can be easily 

shared among the organization members (Chugh et al., 2019). To make knowledge 

sharing in practice, knowledge should be acquired knowledge from organizations' 

members and formalize it to be available on structured level. In this context, 

knowledge management systems can be very beneficial (Shim and Lee, 2017).  

KM incorporates human resource, structural organization, and the 

information technology (Nonaka and von Krogh, 2009). Moreover, KM also includes 

methods and tools, which support its process (Ahmad, 2018). KM systems facilitate 

processes of knowledge creation and retrieving. KM systems aim to increase 

knowledge development and sharing.  In software engineering, KM can be 

implemented to capture the knowledge and experience created during the software 

development lifecycle (Wang and Noe, 2010).  Though there is a variety among 
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software projects, but experiences might be similar and assist software developers to 

practice their activities. Reusing knowledge might also help to avoid past failures 

repetition and provide the solution of frequent problems. The integration of software 

process and knowledge management systems make it more effective. Basically, 

Software Engineering Environments incorporate many tools supporting software 

engineering activities during software development lifecycle (Amritesh and Misra, 

2014), so KM can be easily integrated in a SEE.   

Agile is a software development methodology, which provides a teamwork 

support, face-to-face communication, customer collaboration and quick delivery 

(Rizvi, 2013).   Agile development derived from the agile manifesto stated on 2001 

by designers of agile approaches, such as Extreme Programming (XP), Scrum, 

Crystal and Dynamic Systems Development Method (DSDM), and other experts in 

software industry (Harris, 2006; Kapuruge et al., 2010).  Agile manifesto started by 

including a common set of significant standards and features for all of agile 

methodology approaches (Jin-Hua et al., 2008).  The manifesto includes four main 

standards to improve the effectiveness of teamwork, such as the interactions among 

team members, a quick software deliver, managing any unexpected changes, and 

customer involvement (Karlsen, Hagman and Pedersen, 2011). These features are 

included in each agile methodology approaches with a slightly different of each one, 

but all of agile approaches have its own process (Sandra et al., 2017). 

Agile Methodology has gradually improved in software engineering best 

practices. Recently, developers are looking for more flexibility to develop software 

systems, which can provide efficient services to their customers (Ernst et al, 2013). 

However, agile approaches are mostly having the same practices such as user story 

cards, face-to-face communication, iteration and user collaboration. Indeed, many 

software development models are designed to assist developers to build their 

software effectively (Kettunen, 2010). Agile methodology has its own features with 

regard to the concentration of productionizing the software system, starting from the 

first phase to the end phase. This includes the considering of iterations of each phase, 

and the small releases of the product that can make early product releases (Asghar et 

al., 2017).   
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According to Martakis et al. (2013) Software Development Methodologies 

(SDM) have dissimilarities with agile methodology; agile methodology emphasizes 

the influence of software developers and clients who are playing significant roles in 

agile software development process. Using traditional software development 

methodologies, users mostly do not largely contribute in software development 

practices (Nerur et al., 2005). However, customers in agile contribute with software 

developers as effective team members.  For example, clients and developers together 

outline the system structures for software development lifecycle implementation.  

Boehm and Turner (2004) stated that agile methodology has changed the role of 

users who are supposed to be collaborated, represented, committed, and well-

informed.  

The aim of adopting agile methodology is to avoid common heaviness 

software development practices used in traditional software development 

methodologies, and to support software requirements changes management and fast 

product delivery (Erickson, Lyytinen and Siau, 2005). The philosophy of agile 

methodology approaches is to deliver software working editions in short iterations, 

then upgrade the edition of the software based on customers’ feedback (Karlsen, 

2011).  By accepting requirements changes, quicker development, and clients will 

get the system they need (Hannay et al., 2003).  Therefore, agile methodology 

includes several common approaches such as Extreme Programming, SCRUM, 

Crystal methodologies family, Feature-Driven Development and Adaptive Software 

Development.  

Software requirements engineering (RE) is the early practice of software 

development lifecycle (Karlsson, 2007; Panian, 2009).  This practice identifies the 

user’s requirements, which involves customer and developers’ deliberations 

(Hurtado, 2013).  The requirements engineering goal is to provide complete, 

unambiguous software project requirements (Talbot and Connor, 2011).  An 

individual software requirement can be defined as a capability or a condition needed 

by customer to achieve software-facilitated tasks (Ghani et al., 2014).  Meanwhile, 

the requirements engineering process concerns about the identification, modeling and 

verification of the functionalities of a software product (V and Donn, 2009).  

Requirements engineering includes four main tasks, requirements elicitation, 
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negotiation, specification, and validation/verification (Carlson and Matuzic, 2010).  

There are many requirements elicitation techniques available, such as Joint 

Application Development (JAD) (Hughes and Cotterell, 2006), Storyboarding and 

Rapid Application Development (RAD) (Beynon-Davies, 2000).  The objective of 

these techniques was to provide requirement engineers or system analysts a platform 

to conclude final list of requirements collaboratively.  However, none of these 

techniques support capturing tacit knowledge and documenting the collaborative 

arguments held during the RE process (Inayat et al., 2014). 

RE is a traditional software engineering process, which includes identifying, 

analyzing, documenting and validating requirements for the developed software 

system (Liu et al., 2010).  In fact, more than one issue has been raised during the 

software development, such as requirements specification, software design, 

implementation and software testing (Martakis and Daneva, 2013). Scholars agree 

that it is difficult to manage and model unstructured elicited requirements from 

operational domain (Bano, 2014).  Requirements need to be summarized and well-

designed based on any standard requirement specification template (Donn, 2009).  

Besides, this assist stakeholders and maintenance team to understand requirements 

because it is a significant practice to be validated by stakeholders. Poor requirements 

specifications lead to ambiguity requirements and become difficult to understand and 

might be the cause of failure of software application (Ivari, 2010).  Therefore, the 

issue of implicit thinking mismanagement forms a major threat for organizations. 

Though experts' know-how should be considered as part of the organizational 

memory, the organizations have no control on the experience knowledge kept in 

experts' minds (Hussain et al., 20117).  This is especially applicable to knowledge-

intensive organizations such as software organizations.  According to Hoffman et al., 

(2008), such organizations are subjected to lose their ability to conduct business as 

their workforce ages and their knowledge will be lost once they leave the 

organization (Kang et al., 2008). 

A significant knowledge is usually exist during the software team 

deliberations.  Generally, a part of shared knowledge is explicitly documented as a 

meeting minutes form, diagrams, test cases and other software documentations 

(Neves et al., 2011). The explicitly documented knowledge is easy to be organized 
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and also can be shared easily among software team members (Jafarinezhad and 

Ramish, 2012).  However, significant experience knowledge is still undocumented 

and tacitly kept in software engineers' brains (Nonaka and Krogh, 2009).  This 

experience knowledge is categorized as an implicit thinking knowledge, which is 

usually observed from an orally communication. Capturing the implicit thinking 

knowledge has two main challenges. Firstly, it is unnoticed and secondly experts’ 

knowledge is usually unconsciously exploit it.  In other words, implicit thinking 

knowledge is not easy to be explained.  This feature is reflected by personal 

knowledge of Polanyi’s theory “we know more than we can tell” (Sandra et al., 

2017). 

 Background of the Research 1.2

Software development is a knowledge-intensive activity in which its success 

depends fundamentally on the developers’ experience and skills (Kavitha and Irfan, 

2011).  According to Standish Group Report, one of project failure factors relate with 

requirements, which is simple requirements documentation (Inayat et al., 2014).  

Agile software development has put a new focus on how to share knowledge among 

members of software development teams (Saini, Arif and Kulonda, 2018).  In 

contrast to heavyweight, document-centric approaches, agile approaches rely on 

face-to-face communication for capturing implicit thinking of software engineers 

(Ahmed, 2018).   

Several researches have figured out that the realization of ignoring implicit 

thinking documentation has led to increased interest in observing the ways in which 

knowledge of software engineers could be effectively determined, identified, 

organized and documented (Elghariani and Kama, 2016).  The field of implicit 

thinking injection in agile requirements documentation has emerged to address this 

need (Shim and Lee, 2017).  Therefore, this research aims to provide a framework to 

inject implicit thinking knowledge in agile methodology.  This framework is 

supported by a prototype tool to assist software developers to understand and analyze 

the requirements.   
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 Motivation of the Research 1.3

Given the range and variety of software methodologies, it is becoming 

increasingly to adopt one of agile approaches.  This adoption has shown the 

significance of involving the client while developing the software.  Moreover, agile 

has mentioned clearly that it could accept any addition features to its practices 

without losing the term of agility (Srifastava, Bhardwaj and Sarswat, 2017).   

This work on dimension and smoothness yields a variety of new 

understandings, which this study suggests a framework to capture and document the 

implicit thinking knowledge of software engineers during requirements engineering 

phase.  These understandings have also allowed to derive the framework which can 

self-tune optimally to both dimension and smoothness, simultaneously at all points in 

the requirements engineering in agile methodology.  The new framework can help 

and assist software developers to manage and track the implicit thinking knowledge 

during developing the software.  

Since agile approaches have been commonly used, scholars have increased 

their focus on challenges of agile requirements engineering. Researchers aim to 

provide a framework that allows software developers to manage agile requirements 

documentation and helps to resolve the issue of minimal documentation in agile 

approaches, by providing a unified documentation including implicit thinking 

knowledge of agile software developers.    

 Statement of the Problem 1.4

The success of software development projects depends critically on 

knowledge quality, which software organizations apply to their development 

processes (Andriyani, Hoda and Amor, 2017).  The significant challenge is how to 

capture and share this knowledge.  Agile methodology implies that software 

developers have focused on delivering software products (Ahmed, 2018).  The 

simplicity of agile documentation has been considered as one of agile methodology 
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issues (Fannoun and Kerins, 2017).  However, agile requirements are usually 

documented in the form of user story cards and task description. Implicit rationale of 

software developers is almost ignored by many software methodologies including 

agile approaches (Kavitha and Irfan, 2011). 

Explicit documentation is commonly captured in most software development 

methodologies (Shim and Lee, 2017).  Unlike explicit, implicit thinking knowledge 

is always hidden and not clearly stated. It is all about software engineers thinking 

knowledge such as their assumptions, views, suggestions and opinions, and explicit 

coded documenting governed the software engineer’s decisions in the software 

engineering process (Saini, Arif and Kulonda, 2018).  The lack of such implicit 

knowledge experience could lead to more difficulty during the software maintenance 

phase (Sandra et al., 2017).   

A framework for injecting implicit thinking knowledge of software engineers 

in agile requirements documentation is proposed.  The aim of this framework is to 

assist software engineers to manage requirements and provide unified requirements 

documentation including implicit thinking knowledge of each team member.   

Requirements engineering practices are activities that assist developers to manage 

requirements with recording the implicit thinking of team members by giving views, 

assumptions, and observations during requirements engineering practices.    

 Research Questions 1.5

This study aims to answer the following questions: 

(a) RQ1: What are the issues and challenges in agile requirements 

documentation? 

 

(b) RQ2:  How to develop a framework that injects implicit thinking 

knowledge in agile requirements documentation? 

 

(c) RQ3: How to develop a prototype tool that can support the injection of 

implicit thinking knowledge in agile requirements engineering?  
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(d) RQ4:  How to evaluate the efficiency of the developed framework?

(e) RQ5:  How to evaluate the usability of the developed framework?

 Research Objectives 1.6

The objective of this research is to explore and investigate issues and 

challenges of RE in Agile Methodology and to provide a solution to minimize these 

challenges.  Overall, the objective has five parts: 

(a) RO1:  To analyze issues and challenges in agile requirements

documentation.

(b) RO2:  To develop a framework that injects implicit thinking knowledge in

agile requirements documentation.

(c) RO3:   To develop a prototype tool to support the framework of injecting the

implicit thinking of requirement engineering in agile methodology.

(d) RO4:   To evaluate the efficiency of the developed framework.

(e) RO5:   To evaluate the usability of the developed framework.

 Scopes of Research 1.7

Focusing on the research area is the significance need to emphasize the 

boundaries and constraints of the study. The scope in this study is limited to the 

following:  
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i. The study limited to agile software development methodology. The study

only focused on Extreme programming approach (XP) as it is commonly used

among agile approaches.

ii. Since, the purpose of this study is to develop a framework for injecting the

implicit thinking knowledge of software developers during agile requirements

engineering, this study focused only on agile requirements documentation.

iii. A prototype tool is developed using Microsoft Visual Studio. Net (C#) and

SQL Server as programming platform to support the framework process of

injecting the implicit thinking knowledge in agile requirements

documentation.

 Significance of the Research 1.8

This research aims to develop a framework that injects the implicit thinking 

knowledge in agile requirements documentation to enable software developers to 

manage agile requirements documentation as part of an agile software development 

methodology.  The proposed framework helps to resolve the issue of minimal 

documentation by providing a unified documentation, which incorporates implicit 

thinking knowledge of agile software developers.    

Therefore, the importance of capturing the implicit thinking knowledge of 

software developers during requirements engineering phase, assists to understand 

how software project is built up (Saini, Arif and Kulonda, 2018).  In addition, the 

proposed framework provides the ability of software developer’s community during 

software maintenance phase.  Based on researches made by (Sandra et al., 2017), few 

models and tools are designed and developed to support software project 

management phases, but there is no attention paid for the implicit thinking 

knowledge documentation, and that is clearly mean that providing a framework to 

solve this problem is needed. 
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 Organization of the Thesis 1.9

This thesis is structured into six chapters. Chapter 1 gives an overview of the 

research. It begins with introducing the overview of the research, research 

background, which briefly introducing the agile software development methodology, 

agile requirements engineering and implicit thinking knowledge. Then, it describes 

the statement of the problem, motivation of the research, research questions, and 

research objectives. Then, it continues with describing the research scope and the 

significance of the research.  

Chapter 2 discusses the literature review of the research and highlights the 

knowledge gaps in extant research to justify the novelty of this research. The chapter 

starts with a discussion of the related works in the common software development 

methodologies. Subsequently, the chapter describes a systematic literature review 

(SLR) that have been conducted in identifying related theories of Agile requirements 

engineering practices and the practical challenges of Agile RE. Then, the chapter 

discusses the tools support agile RE and the implicit thinking knowledge in agile 

methodology. The review mainly focuses on identifying the strength and weaknesses 

of the previous studies that drive to the identification of gaps to be explored. 

Chapter 3 discusses the research methodology, which refers to the overall 

process involved in the research in fulfilling the research objectives and obtaining the 

expected deliverables. It starts with a discussion of conceptual framework, research, 

research roadmap design, and operational framework phases.  

Chapter 4 discussed the results on the steps to formulate IITKARD. In 

addition, the IITKARD together with the prototype tool development are explained 

and discussed.  

Chapter 5 presents the evaluation procedures and processes of IITKARD 

framework and its prototype tool. Also, presents the discussion of empirical findings 

of the evaluation process 
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Chapter 6 consists of the thesis summary, contribution and significance of the 

study, limitations of the research and the works that can be extended from the 

proposed IITKARD.  
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7 APPENDIX A 

SURVEY VALEDATION CONTENT FORM 

 

 
 

CONTENT VALIDITY SURVEY FORM 
 

Research Title  : Injecting Implicit Thinking in Agile Requirements 

Documentation 

Author              : Kaiss Ali Elghariani 

Supervisors      : Dr. Mohd Nazri Kama and Dr. Nurulhuda Firdaus Mohd 

Azmi 

 

Introduction 

The research is about to inject implicit thinking of software engineers as 

part of agile requirements documentation. Implementing the injection of the 

implicit thinking shall be carried out in two real software projects consists 

of few practices, which will lead to explore the challenges of agile 

requirements engineering documentation.  

 

Procedures to be followed 

We have classified the research questions and grouped into 4 sections, 

which should be answered by the participants of the software projects. The 

questions are divided into four (4) sections based on research requirements, 

which are Demographic Profile of Respondents, Agile methodology, Agile 

Requirements Engineering and Framework effectiveness evaluation. The 

experts are requested to rate the relevancy of each group of questions by 

rating from 1-5. The experts can also add any comments or suggestions can 

be added to the group of questions. 

 

 

Relevancy Rates:  

Strongly     Not Relevant     Relevant (but not important)      Relevant     Strongly Relevant 

    1                   2                                   3                                       4                       5 
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Thank You  

Section Rate Scale 
Comment 

Questions 1 2 3 4 5 

A. Demographic Profile of Respondents 

A.1 Respondent Profile 

Q1 What is your age?       

Q2 What is the highest degree or 

level of school you have 

completed? 

      

A.2 Software Project Profile 

Q3 Which of the following best 

describes your position while 

engaged in this project? 

 

      

Q4 How many years have you 

worked with an outsourcing 

company? 

      

Q5 Which of the following 

categories best describes the 

type of software developed for 

this project? 

 

      

Q6 Which of the following 

application domains does/did 

the project apply to?  

 

      

Q7 What is/was the duration of the 

project (from inception to 

delivery)? 

      

Q8 How would you estimate the 

size of the project in terms of 

lines of code? 

      

B. Agile Methodology 

B.1 Not applying Agile Methodology 

Q9 Which of the following software 

development methodology best 

describes the one you are 

using/did use in the project? 

      

B.2 Applying Agile Methodology 

Q10 If you are using agile 

methodology, which of the 

following agile approaches 

describes the one you are 

using/did use in the project? 

      

C. Agile Requirements Engineering 
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Section Rate Scale 
Comment 

Questions 1 2 3 4 5 

Q11 The following statements are the 

challenges of requirements 

engineering in agile 

methodology. (Please rate these 

statements by clicking one box 

with the following scales)? 

      

Q12 Are the requirements 

engineering practices affects 

analysis and design phases in 

agile software methodology? 

(Please rate these statements by 

clicking one box with the 

following scales)? 

 

      

Q13 Do the user stories and task 

cards have provided the basic 

practice of requirement 

engineering?  

      

Q14 Is Implicit thinking of software 

engineers included in agile 

requirements engineering? 

      

Q15 Does the Implicit thinking of 

software engineer’s affects 

software maintenance phase? 
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8 APPENDIX B 

9  

SUMMARY OF SURVEY VALEDATION CONTENT FORM 
 

Expert’s‎Name University/ORG 

Overall Evaluation 

Comments 
Not 

Relevant 
Relevant 

Strongly 

Relevant 

Faizura Haneem UTM  √  
Last section’s questions are mostly depends on 

Q14 

Dr.  Mazidah UUM  √  Outsourcing company shouldn’t be specified 

Dr.  Mazni UUM  √  

Outsourcing company shouldn’t be specified 

Sections B1&2 are confused, so better simplify 

them 

Dr.  Abdulmajid IIUM  √  Project scale not necessary 

Dr.   Akram IIUM  √  Questions in section B need further explanation 

Dr.  Elammari Apple Company  √  

Question shouldn’t be stated 

Need further explanation to the participant about 

implicit thinking of software developers 
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APPENDIX C 

10  

GUIDELINE OF INJECTING THE IMPLICIT THINKING 

KNOWLEDGE IN AGILE REQUIREMENTS 

DOCUMENTATION FRAMEWORK  

 

 

User Guideline for Implicit Thinking Knowledge 

Injection for Software System Requirements 

Documentation in Agile Methodology (IITKARD) 
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1 Introduction 

1.1 Intended Readership 

The users of the tool that supports IITKARD framework are classified 

as follow. 

 Team Leader (Admin) 

 Expert, accessing the tool for a significant to manage software project 

requirements (User Stories) 

 Team member, create and interact with the requirements arguments. 

 Team members, including   

 Experts, accessing the tool to interact with the arguments.  

 The level of experience of agile methodology needed is minimum 

1 year. 

 Please follow section 3 for using the tool. 

Then language used for the tool is understandable for non-speaker 

English. 

 

 

1.2 Purpose 

The purpose of IITKARD framework tool is to inject implicit thinking 

knowledge of software engineers in agile requirements engineering, and 

this user guide describing how to use the tool.   

The processes supported by the tool of IITKARD framework as follow: 

1- Create User Story 

2- Set Admin First Argument 

3- Inject implicit hiking knowledge of software engineers 

4- Document implicit thinking knowledge 
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1.3  Conventions 

As is the purpose of this tool is to support the implantation of 

IITKARD framework, the implicit thinking knowledge has been 

categorized into 4 types as follow: 

1- Issue 

2- Assumption 

3- Opinion 

4- Question 

 

 

2 Overview 

IITKARD is an extension of JIRA software framework of issue and 

project tracking for agile team provided by Atlassian Company, which 

is an enterprise software company that builds software products for 

software engineers, project management.  IITKARD includes the 

existing practices in agile requirements engineering and the novelty 

feature of adding the software engineers’ implicit thinking in agile 

software development methodology. 

 

3  Instructions  

3.1 Signing in  

 

A user ID and password is required to log onto web interface. 

1- Key in username 

2- Key in password 

3- Choose software project (dropdown list) 

4- Click sign button  

 

http://www.atlassian.com/
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3.2 System Menu and Dashboard 

 

 
 

 

3.3. Add User Story 

 

This function assists user to create a user story as a software 

requirement, the team leader should fill up the form based on user story 

attributes. 
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1- Key in user story title 

2- Choose task engineer (Developer) (dropdown list) 

3- Choose Requirement Priority 

4- Click Next 

5- Key in user story description 

 

  

 

 

 

 

 

 

For example: a user story called user login.  This is considered as a 

requirement, so following is a user story details: 

 

Title: Delete Student Record. 

Developer: TAUFEEQ 

Priority: High.   

Description: As a user, I want to delete student record any time I need. 
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3.4 Add First Argument 

Before finishing adding the user story admin shall  

1- Choose one of the argument types such as issues, 

assumption, suggestion, question and opinion. 

2- Choose effort (High, Normal or low)  

3- Choose one of the argument type (Issue, Assumption, 

Suggestion, Question) 

4- Insert argument’s text. 

5- Click next  

6- Click confirmed 

 

 
 

 

 

Based on the example given in the previous section (Delete Student 

Record), the admin or the team member shall set the following info: 

 

Effort: The expected effort is normal. 

Argument: in this example the team leader will ask a question “Student 

record should be physically deleted or we better set a flag as a 

deactivated student?”  
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3.5 Add Team Members Arguments 

Team members can interact with arguments such as Issues, 

Assumptions, Suggestions, Questions and Opinions related to user 

story.   

1- click on the icon shown on the user story list  

2- choose one of the arguments type and then pop-up windows 

appeared 

3- Key in the argument text. 

The following figure shows the form of adding argument. 

 

 

 

 

 

 

Following the previous example (Delete student record), one of the 

team members given a suggestion: “better you set a flag to show 

student status is active or inactive!”.  Another team member gave an 
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assumption: “if you physically delete student record, student data will 

be lost”. 

 

 

3.6 Search for documented user story/Argument. 

 

All user stories and arguments are documented in IITKARD tool.  

From the dashboard page user can follow the below step: 

4- In the search form, key in in keywords related to what are you 

looking for 

5- List of user stories contain the specific keywords will be displayed. 

6- Click on the user story argument  

7- Arguments will be displayed includes all arguments details. 

A list of stories contains any of the key word will be displayed in sort 

of storyline.  Also, to display in stories contains any key word will be 

displayed It contains the title and its arguments member’s photo, name, 

text and icon of the argument type whether it is an issue, assumption or 

suggestion, the following shows implicit thinking knowledge 

documentation. The following figure shows the list of user stories. 
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3.7 Exit System 

Click Logout 
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11 APPENDIX D 

EXPERIMENTATION BRIEFING  

 

 
 

 

 
 

 

  

Kaiss Elghariani  

	

	

Injecting Implicit Thinking Knowledge in Agile Requirements Documentation 

(IITKARD) 
 

Experiment of 
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Experiment Goals 

Implementing a real traditional 
project requirements in Agile 
requirements engineering by using 
IITKARD framework and its tool 

Assists software engineers to inject 
implicit thinking knowledge in agile 
R E d o c u m e n t a t i o n b y u s i n g 
IITKARD tool.   

Assists software engineers experts to 
unders tand the usefulness o f 
IITKARD framework.  

Evaluate the over all process of the 
IITKARD framework and the tool. 	

Goals 
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Implicit Thinking Knowledge 

Implicit Thinking knowledge categorizations: 

 

 

User	Story	(REQ)	

Issue	 Assumption	 Suggestion	 Question	

Argument	

Opinion	

Experiment Process 

Software Project 

Team	

Create User Story 
5 requirements of each team	

Start Argument 

Interact	
with	the	
argument	

Implicit Thinking Knowledge 
Documentation 

Framework Evaluation 

Team Member II	Team Member I	

Team Leader	
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12 APPENDIX E 

SGIS DATA USED FOR IMPLIMINTING THE 

EXPERIMENT EVALUATION 

  

 

GROUP 1 
 

Module: User Administration  

 

 

#UM_2 

Maintain 

user 

roles 
Date 16/10/2017 

Task 

Engineer 

Developer 

1 

 

Task estimate: 34 hours 

 

As a User, I would like to Add, Edit and Delete roles for each created user, so I can 

manage the user roles. 

 

Acceptance criteria, done 

 

Effort: Medium 

Priority: Very High 
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#UM_3 

Managing 

main 

administrator 

roles 

Date 16/10/2017 
Task 

Engineer 

Developer 

1 

Task estimate: 34 hours 

As a user, I would like the main administrator to interpret have full access to the CMS 

module and its sub modules as follow:  

 User Management

 User Administration

 Role Configuration

 Knowledge Management

 Post Management

 Management of Forms and Links

 File Management

 Content Management of Religious Questions

 Portal Life Event Management

 Reports

 Settings & Configuration

 Audit Trail Activity

Acceptance criteria, done 

Effort: Medium 

Priority: Very High 

#UM_4 
Managing 

user roles 
Date 16/10/2017 

Task 

Engineer 

Developer 

1 

Task estimate: 34 hours 

As a User, I would like the user has a specific role in a system, so I only be able to see the parts 

marked as 'viewable'. 

Acceptance criteria, done 

Effort: Medium 

Priority: Very High 
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#UM_7 
Send 

Email 
Date 16/10/2017 

Task 

Engineer 
Developer 1 

Task estimate: 34 hours 

As a User, I would like, users created in the system receive an email that aims to tell them how to 

create their own username and change the user's password (if necessary). The user can then log in to 

CMS by using the username and password that was previously created. 

Acceptance criteria, done 

Effort: Medium 

Priority: Very High 

#UM_5 

Managing 

primary 

administrator 

roles 

Date 16/10/2017 
Task 

Engineer 

Developer 

1 

Task estimate: 34 hours 

As a User, I would like, the primary administrator can do the actions below: 

8- Add Administrator User (webmasters)

9- Delete User

10- Assign / Convert user role

Acceptance criteria, done 

Effort: Medium 

Priority: Very High 
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GROUP 2 

Module Title: Knowledge Management  

 

 

 

 

#KM_1 
Acquire data 

from agencies 
Date 16/10/2017 

Task 

Engineer 
Developer 2 

 

Task estimate: 1 week 

 

As a User, I would like this module to acquire and collect various types of data from different 

agency portals, all into CMS. Data collected in the Knowledge Management module will be 

published to the Life Portal. 

 

Acceptance criteria, done 

 

Effort: Medium 

Priority: Very High 

 

 

 

 

 

#KM_2 

Types of 

agencies’ 

data 
Date 16/10/2017 

Task 

Engineer 

Developer 

2 

 

Task estimate: 34 hours 

 

As a user, I would like data from other agencies include information content from their 

website, forms and downloads and direct links to the agency's website. 

 

Acceptance criteria, done 

 

Effort: Medium 

Priority: Very High 
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#KM_3 
Obtaining 

Method 
Date 16/10/2017 

Task 

Engineer 
Developer 2 

 

Task estimate: 1 week 

 

As a User, I would like the data from different agencies can be obtained and updated through 

the following methods: 

 

11- Content manager manually entering content other users include content that has 

been provided by agencies 

 Content that has been found in the template file (excel) will be uploaded, which 

files have been filled out by webmaster SGIS or content manager from agencies. 

 Extracting content from the website specific agencies and content submissions 

to SGIS CMS 

 Extract data for agencies' website via feeds, using JSON endpoints 

 

Through the method of uploading content, the excel template file will be uploaded, and once 

processed, the contents will be available in relevant sections / sections 

 

Acceptance criteria, done 

 

Effort: Medium 

Priority: Very High 

 

 

 

 

 

#KM_4 
Display latest 

content 
Date 5/6/2013 

Task 

Engineer 
Developer 2 

 

Task estimate: 48 hours 

 

As a User, I would like, the list of agencies that are now integrated with the latest content, 

will appear. Administrators can click on any agency to go to the agency's website within the 

CMS link. 

  

 

Acceptance criteria, done 

 

Effort: Medium 

Priority: Very High 
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#KM_5 

Add 

Agency’s 

page tabs 
Date 16/10/2017 

Task 

Engineer 
Developer 2 

 

Task estimate: 34 hours 

 

As a User, I would like, agency page contains 3 tabs, namely: 1) Content / Information 2) 

Download 3) Link 

 

 

Acceptance criteria, done 

 

Effort: Medium 

Priority: Normal 

 

 

 

 

 

 

GROUP 3 
 

Module Title: Religious Questions and Answers 
 

 

 

# SJ_01 

Religious 

Questions and 

Answer sub 

module 

Date 16/10/2017 
Task 

Engineer 

Developer 

3 

 

Task estimate: 34 hours 

 

As a User, I would like to have sub module under Knowledge Management module called the 

Religious Questions and Answer. This module enables relevant users to add and organize content 

in the Religious Questions and Answer section of Portal Life Event. 

 

 

Effort: Medium 

Priority: Very High 
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# SJ_04 

Religious 

Questions and 

Answer bulk 

search 

Date 16/10/2017 
Task 

Engineer 

Developer 

3 

 

Task estimate: 34 hours 

 

As a User, I would like to have more than one choice, so I can do bulk research on Religious 

Questions and Answers 

 

 

 

Effort: Medium 

Priority: Very High 

 

 

 

 

 

 

# SJ_05 

Add 

Questions and 

Answers  
Date 16/10/2017 

Task 

Engineer 

Developer 

3 

 

Task estimate: 34 hours 

 

As a User, I would like to add a Q & A entry, so the user will be taken to the form where they 

will be asked to provide the following information: 

o Questions 

o Answers 

o Categories, Tags & Keywords 

 

When clicking on Submit, this new Question and Answer entry will appear in the full list of 

entries in the Religious Questions page 

 

 

 

Effort: Medium 

Priority: Very High 
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# SJ_06 

Delete 

Questions 

and 

Answers 

Date 16/10/2017 
Task 

Engineer 
Developer 3 

Task estimate: 34 hours 

As a User, I would like to post entries, and also delete them 

Effort: Medium 

Priority: Very High 

# SJ_07 

Publish / 

un publish 

questions 

& 

Answers 

Date 16/10/2017 Task Engineer 
Developer 

3 

Task estimate: 34 hours 

As a User, I would like to The Religious Questions and Answer entry will have publish/un 

publish options. This will control the appearance of question-answer entries on the portal. 

Effort: Medium 

Priority: Very High 
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GROUP 4 

Module Title: Portal Life Event management 

#LP_01 

Control 

visual 

elements 
Date 16/10/2017 

Task 

Engineer 
Developer 3 

Task estimate: 34 hours 

As a User, I would like, administrators be able to control some visual elements of the Life Event 

portal that will be visible to the public. 

Visual element settings depend on their presence on the Portal (For example, if a theme is 

selected without a "slider", the settings are based on "Slider" will not be here) 

Effort: Medium 

Priority: Very High 

#LP_02 

Include 

upload and 

settings 
Date 16/10/2017 

Task 

Engineer 
Developer 3 

Task estimate: 34 hours 

As a User, I would like this module includes sections for uploading and setting banners / images 

"sliders" for portals. Upon entering the module, the administrator will be able to upload / remove the 

"slider" image. 

Effort: Medium 

Priority: Very High 
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#LP_03 

Show 

current 

slider 
Date 16/10/2017 

Task 

Engineer 
Developer 3 

 

Task estimate: 34 hours 

 

As a User, I would like the page will display a table showing the current "slider" image that has been 

uploaded. On the side of the image there will be a button to delete, un publish. 

 

 

Effort: Medium 

Priority: Very High 

 

 

 

 

 

 

#LP_04 
delete 

slider 
Date 16/10/2017 

Task 

Engineer 
Developer 3 

 

Task estimate: 34 hours 

 

As a User, I would like click delete button, the "slider" image will be deleted from the system. When 

clicking on un publish, users can control whether the "slider" image is visible on the Life Event portal 

or not. 

 

 

Effort: Medium 

Priority: Very High 
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#LP_05 

Upload 

slider 

image 
Date 16/10/2017 

Task 

Engineer 
Developer 3 

Task estimate: 34 hours 

As a User, I would like to have upload options. Here, users will be able to click the upload 

button, and add a "slider" image from their computer. When images are uploaded, the system 

will present the function of the size in which the user should measure the image to a certain 

dimension suitable for "slider". 

Effort: Medium 

Priority: Very High 
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13 APPENDIX F 

THE OUTCOME OF IITKARD FRAMEWORK 
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14 APPENDIX G 

THE EXPERIMENT INSTRUMENT 

Implicit Thinking Knowledge Injection Framework for Software 

System Requirements Documentation in Agile Methodology  

PhD Candidate: Kaiss Elghariani, kais.gh@hotmail.com, +60178805576 

Supervisors: 

Assoc. Prof.  Dr. Mohd 

Nazri Kama 

Main Supervisor 

mdnazri@utm.my 

Dr. Nurulhuda Firdaus 

Mohd Azmi 

Co-supervisor I 

huda@utm.my 

Dr. Nur Azaliah Bt Abu 

Bakar 

Co-supervisor II 

azaliah@utm.my 

Advanced Informatics School, Level 5, Menara Razak, Jalan Sultan Yahya 

Petra, 54100 Kuala Lumpur. 

Purpose of the Study 

We are conducting a research on integrating implicit thinking knowledge in 

agile software requirements documentation.  Also, we are collecting experts’ 

satisfaction level by using IITKARD framework and prototype tool, which 

supports the implementation of the framework. The information required is for 

evaluation purpose. 

Procedures to be followed 

The questionnaire is divided into 4 sections, 1) Demographic profile of 

respondents, which divided into 2 subsections 1.1) Respondent Profile and 2.2) 

Project profile. Followed by section 3) Agile Methodology and Section 4) 

IITKARD framework and its prototype tool evaluation. 

Statement of Confidentiality 

Your participation in this research is confidential. In the event of any 

publication or presentation resulting from the research, no personally 

identifiable information will be shared because your name is in no way linked 

to your responses. Your confidentiality will be kept to the degree permitted by 

the technology used.  
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A. Demographic Profile of Respondents

A.1 Respondent Profile

1. What is your age?

Under 22 years old 

23-30 years old 

31-40 years old 

41-50 years old 

51-60 years old 

61 years or older 

2. What is the highest qualification you have completed?
Doctorate degree 

Master’s degree 

Bachelor’s degree 

Diploma and Advanced Diploma 

Academic and Vocational and Technical Certificates 

Skills Certificates 

3. What is your experience duration in Software Development Methodology?

Less than 6 months

6 months - 12 months

1 year – 2 years

2 years - 3 years

3 years - 4 years

4 years - 5 years

More than 5 years

4. What is your experience duration in Agile Software Development

Methodology?

Less than 6 months

6 months - 12 months

1 year – 2 years

2 years - 3 years

3 years - 4 years

4 years - 5 years

More than 5 years

A.2 Software Project Profile

5. Which of the following scales is the project involved in?

Small-scale software project

Medium-scale software project

 
0

 
0
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Large-scale software project 

 

6. Which of the following categories best describes the type of software 

developed for this project? 

Desktop 

Web-based (not Web services)  

2-Tier client/server     

Database 

Mobile Application 

Other 

If other please specify   

 

7. Which of the following requirements engineering practices you involved in 

while engaged in this project? 

Software Requirements analysis  

Software Requirements Specification 

Software Requirements Management 

Software Requirements Validation 

Software Requirements Documentation 

Other    

If other please specify   

 

 

8. What is/was the duration of the project (from inception to delivery)? 

Less than 6 months 

6 months - 12 months 

1 year – 2 years 

2 years - 3 years 

3 years - 4 years 

4 years - 5 years 

More than 5 years 

 

 

B. Agile Methodology 

1. If you are using agile methodology, which of the following agile approaches 

describes the one you are using/did use in the project?  

SCRUM approach 

Extreme Programming (XP) approach 

Feature-Driven Development approach 

Dynamic Systems Development Method 

Lean and Kanban Software Development 

Crystal 

Other    

If other please specify   

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

0 

 

 

 

 

 
 

 

 



238 

2. What is your experience duration in Agile Requirements Engineering?

Less than 6 months

6 months - 12 months

1 year – 2 years

2 years - 3 years

3 years - 4 years

4 years - 5 years

More than 5 years

3. What is your experience duration in Agile Requirements Documentation?

Less than 6 months

6 months - 12 months

1 year – 2 years

2 years - 3 years

3 years - 4 years

4 years - 5 years

More than 5 years

*Note: Please answer this section after using the framework tool.

C. IITKARD Framework Evaluation
1

For this section please refer to the following footnote

Please answer the following three questions with regards to this framework:

C.1 Efficiency

Efficiency of IITKARD relates to the use of all inputs in producing any given

output, including personal time and energy. Also, efficiency minimizes the

waste of resources such as physical materials, energy and time, while

successfully achieving the desired output of IITKARD framework and its

prototype tool.

1. Can you indicate how fast to convert the input of implicit thinking

knowledge to output as a documentation after adopting the IITIKARD

framework?

    Very slow     Slow  Normal   Fast   Very fast 

1 The proposed framework shall be an extension JIRA framework & tool with additional following 
features: 
i- The ability of adding and managing software developers’ issues, assumptions, suggestions, 
questions and opinions while detecting analyzing the requirements.
ii- A formal documentation of the above feature to be tracked in the later software developing 
phases. 

 
0

 
0
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2. How fast is IITKARD displaying the implicit thinking knowledge of 

software engineers? 

 
                                                 Very slow     Slow      Normal      Fast       Very fast  

 

  

 

3. IITKARD inputs of implicit user stories and implicit thinking knowledge 

converted to outputs without cost of a user effort? 
 

Strongly Disagree        Disagree        Neither agree and disagree       Agree         Strongly agree  
                                  

 

4. IITKARD framework was coordinating agile requirements documentation in 

an efficient and appropriate way?  

 
Strongly Disagree        Disagree        Neither agree and disagree       Agree         Strongly agree  
                                  

 

5. IITKARD framework was monitoring agile requirements documentation in 

an efficient and appropriate way?  

 
Strongly Disagree        Disagree        Neither agree and disagree       Agree         Strongly agree  
                                  

 

 6. IITKARD framework and the tool assist software engineers who are newly 

involved in the software project to understand how the requirement was 

developed? 

 
Strongly Disagree        Disagree        Neither agree and disagree       Agree         Strongly agree  
                                  

 

 

 

 

C.2 Usability  

Usability is the degree of ease with which IITKARD framework tool can be 

used to achieve required goals effectively and efficiently. Usability assesses the 

level of difficulty involved in using IITKARD tool.   

 

7. In a range of 1 to 5, what can you rate in terms of the difficulties of the 

usage of the IITKARD tool? 

 
Very difficult     Difficult      Normal      Easy to use       Very easy to use  

 

For answer 1, please specify your comment:  
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8. IITKARD framework and the tool completed the task successfully?

 Strongly Disagree  Disagree  Neither agree and disagree  Agree  Strongly agree 

9. The overall usability of the IITKARD framework and its prototype tool is

satisfactory?

      Not satisfied     Moderately Satisfied  Neutral   Satisfied  Very Satisfied 

10. There are still many limitations to make the IITKARD framework and its

tool usable?

Strongly Disagree  Disagree  Neither agree and disagree  Agree  Strongly agree 

If you are agree or strongly agree, can you please specify your comment: 

End of the questions & Thank you for your cooperation. 
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15  

16 APPENDIX H 

17 DEMOGRAPHIC RESULTS 

(a) Respondent Age Rate 

The overall age of respondents involved in this survey shows the 

highest of 76% age rate between 31-40 years old. While 16 % of respondents’ 

age ranged between 41-50 years old and 4% equally between 23-30 and 51-60 

years old.  The following table shows the total of respondents to this research 

questionnaire. Figure 1 summarizes the over result of respondents’ age. 

 
 
Figure 1 The bar chart of the over all results of the respondents' age rate 

(b) Respondent Education Level 

From Figure 2, it can be summarized that the majority of respondents 

were Master degree holders at 52%, followed by Doctorate at 36 % and 

Bachelor Degree at 12%.  
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Figure 2 The bar chart of the overall results of the respondents' degree 

level 

(c) Respondents’‎Position‎as‎a‎Software‎Engineer

Figure 3 shows that of the majority of the respondent hold a position of 

software engineers, some other were software architects, programmers and 

software testers. 

Figure 3 The bar chart of the overall results of the respondents' project 
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(d) Respondents Software Project Type

The majority of the respondents in this survey previously participated in 

the software project of Web-Based (not Web services) at 47.83%. The detail of 

the findings on software project type is presented in Figure 4. 

Figure 4 The bar chart of the overall results of the respondents' project 

type 

(e) Respondent Software Application Domain

The total of 27.27% of the respondents are in finance/banking/insurance 

systems while 22.73% in education and 4.55% in health systems and human 

resource systems, and 40.91% in another software domain as shown in Figure 

5. 
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Figure 5 The bar chart of the overall results of the software application 

domain of the respondents 

(f) Software Project Duration  

The total of 56.52% of the respondents had experience in software 

project between 6 and 12 months, while 13.04% had less than 6 months and 

17.39% had about 36 to 48 months experience21-, 8.70% between 48 to 60 

months and 4.35% more than 60 months.  Figure 6 summarizes the overall 

results of the software project duration. 
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Figure 6 The bar chart of the overall results of duration of the software 

project 

18 
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APPENDIX I 

FOCUS GROUP DEMOGRAPHIC ANALAYSIS 

 

 

1.    Respondents’ Age 

  The overall experts’ age rates were 50 % between 31-40 years old, 

while 20 % their age was between 41-50 years old, also 20% between 23-30 

years and 10% was for 51-60 years rate as shown in Figure 1. 

 

 

Figure 1 The bar chart of the overall results of the experts’ age  

2.  Respondents’‎Qualification 

Figure 2 shows that 50 % of experts were doctorate degree holders and 

30 % were Master’s degree while 10 % were Bachelor holders and 10 % were 

Diploma holders. 
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Figure 2 The bar chart of the overall results of the experts' qualification 

3.  Experience of Software Development Methodology 

The majority of participants (80 %) had more than 5 years of 

experience in software industry, while 20 % had between 4 – 5 years as 

presented in Figure 3. 

 

 
 

Figure 3 The bar chart of the overall results of the experts' experiemce in 

software development methodology 
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4.   Experience of Agile Methodology 

The total of 50 % of the participants had more than 5 years experience 

in agile methodology, while 30 % had between  4 – 5 years  experience, and 20 

% had between  3 – 4 years experience, as shown Figure 4. 

 

 
 

Figure 4 The bar chart of the overall results of the experts' experience in 

agile methodology 

5.  Scales of the Project 

The total of 50 % of the experts involved in a medium-scale software 

project, while 30 % were involved in a small-scale project, and 20 % were 

involved in a large-scale software project, as shown in Figure 5. 
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Figure 5 The bar chart of the overall results of the scales of software 

project 

6.  Software Type Categories 

The total of 80% of the experts involved in a web-based software 

project, while 10 % were equally involved in a database software type project, 

and mobile application software project, as shown in Figure 6. 

 
 

Figure 6 The bar chart of the overall results of software type categories 
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7.  Requirements Engineering Practices 

The total of 80 % of the experts involved in a software requirements 

analysis practice, while 10 % were equally involved in a software requirements 

specification and software requirements management, as shown in Figure 7. 

 

 

 
 

Figure 7 The bar chart of the overall results of requiremetns engineering 

practices 
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The total of 40% of the experts involved for 1 – 2 years in a software 
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Figure 8 The bar chart of the overall results of software project duration 

9.  Agile Approaches 

The total of 50% of the experts involved in Extreme Programming (XP) 

approach, while 40.00% of them involved in Scrum approach and 10% in 

Dynamic system development method, as shown in Figure 9. 

 
 

Figure 9 The bar chart of the overall results of agile methodology approaches 
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10.  Agile Requirements Engineering Experience 

The total of 50% had more than 5 years’ experience in agile 

requirements engineering, while 40% had experience between 4 to 5 years, and 

10% had experience from 1 year to 2 years, as shown in Figure 10. 

 
 

Figure 10 The bar chart of the overall results of experts’ experience in 

agile RE  

11.  Agile Requirements Engineering Documentation Experience 

The overall participants’ experience in agile RE documentation was 

50%, while 40% was for the rest of experience duration category, and 10% was 

for 3-4 years’ experience as described Figure 11. 
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Figure 11 The bar chart of overall results of agile RE documentation 
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