
IMPLICIT THINKING KNOWLEDGE INJECTION FRAMEWORK FOR

SOFTWARE REQUIREMENTS DOCUMENTATION IN AGILE

METHODOLOGY

KAISS ALI ABD ELGHARIANI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy

Razak Faculty of Technology and Informatics

Universiti Teknologi Malaysia

JUNE 2019

iv

DEDICATION

To my beloved Mother, Father, Brothers, Sisters, Friends and my country Libya.

v

ACKNOWLEDGEMENT

All thanks and prayers are due to Allah who has assisted me to complete this

whole project.

First of all, I would like to express my sincerest appreciations to my beloved

Supervisors, Assoc. Prof. Dr. Nazri Kama, Dr. Nurulhuda Firdaus and Dr. Nur

Azaliah Binti Abu bakar for their greatest support, recommendations and advices

throughout working on this project. I would like to thank all Razak Faculty lecturers

who have taught me the best practices of Software Engineering and their guidance

and acknowledgement, which they have provided and shred with me.

I would like to express my fully gratitude to Mr. Naser Abunaama and Mr.

Osama Alhoush for their encouragement to proceed with my PhD study, also, Dr.

Abdulmajid Hussain for his ideas, advices, guidance and encouragement in

completing this research. My sincere appreciation also extends to, Mr. Ismaiel, Dr.

Ibrahim and Dr. Mohammed Taha who have provided assistance at various

occasions.

Last but not least, special thanks to my beloved parents and brothers and

sisters and friends for their moral and spiritual support. May Allah bless them.

vi

ABSTRACT

Software engineering is knowledge-intensive work, and how to manage

software engineering knowledge has received much attention. Agile is a common

software development methodology among software developers. Requirements

documentation (RD) is a challenging task for agile software developers. The existing

agile RD does not incorporate the implicit thinking knowledge with the values it

intends to achieve in the software project. Moreover, there is no clear framework that

incorporates the implicit thinking knowledge of software developers. Therefore, this

study developed a framework for Injecting the Implicit Thinking Knowledge in Agile

Requirements Documentation (IITKARD). In doing so, a systematic literature review

was conducted to identify the challenges of agile requirements engineering from 28

primary studies. A survey administered to 25 software engineering experts was

conducted to ascertain the identified challenges of agile requirements engineering.

Responses from the experts highlighted that implicit thinking knowledge in agile

requirements documentation as one of the challenges. An evaluation was conducted

to validate and verify the proposed IITKARD framework using an experiment based

on focus group of 10 experts. The feedback from the experts indicated that the

injecting of the implicit thinking knowledge in agile RD is important. The

experiment with the experts in agile software engineering was carried out to validate

and verify the IITKARD and its prototype tool by using two measurement aspects,

which were efficiency and usability. The results obtained from the experiment

showed that IITKARD was able to assist the experts to inject the implicit knowledge

in agile RD measured in efficiency and usability. In addition, the results showed that

the IITKARD framework achieved the highest level of experts’ satisfaction. In

conclusion, this research contributes to developing the IITKARD, which assists the

software developers in injecting their implicit thinking knowledge in agile

requirements documentation.

vii

ABSTRAK

Kejuruteraan perisian adalah pengetahuan intensif, dan bagaimana untuk

mengurus pengetahuan berkaitan kejuruteraan perisian telah mendapat banyak

perhatian. Kaedah Agile adalah salah satu metodologi perisian yang biasa dalam

kalangan para pembangun perisian. Dokumentasi keperluan (RD) adalah tugas yang

mencabar untuk pembangunan perisian Agile. Agile RD yang sedia ada tidak

menggabungkan pengetahuan pemikiran tersirat dengan nilai-nilai yang ingin dicapai

dalam sesuatu projek perisian. Lebih-lebih lagi, tidak ada kerangka yang jelas yang

menggabungkan pengetahuan pemikiran tersirat terhadap pembangunan perisian.

Oleh itu, kajian ini telah membangunkan satu rangka kerja untuk Menyuntik

Pengetahuan Pemikiran Tersirat dalam Dokumentasi Keperluan Agile (IITKARD).

Dengan berbuat demikian, Systematic Literature Review (SLR) dijalankan untuk

mengenal pasti cabaran-cabaran dalam kejuruteraan keperluan Agile daripada 28

kajian utama. Tinjauan turut dilakukan kepada 25 pakar kejuruteraan perisian yang

dijalakan untuk menentukan cabaran kejuruteraan keperluan Agile. Maklum balas

daripada pakar menekankan bahawa pengetahuan pemikiran yang tersirat dalam

Agile RD sebagai salah satu cabaran. Penilaian telah dijalankan untuk mendapatkan

keesahan kerangka kerja IITKARD yang dicadangkan dengan menggunakan

eksperimen berdasarkan 10 pakar dari kumpulan berfokus. Maklum balas daripada

pakar menunjukkan bahawa penyuntingan pengetahuan pemikiran tersirat dalam

dokumentasi keperluan Agile adalah penting. Eksperimen dengan pakar kejuruteraan

perisian Agile dilakukan untuk mendapatkan keesahan ke atas IITKARD dan alat

prototaipnya dengan menggunakan dua aspek pengukuran, iaitu yang terdiri daripada

kecekapan dan kebolehgunaan. Hasil daripada eksperimen ini menunjukkan bahawa

IITKARD dapat membantu para pakar untuk menyuntik pengetahuan tersirat dalam

RD Agile yang diukur berdasarkan kecekapan dan kebolehgunaan, di samping itu,

keputusan menunjukkan bahawa rangka kerja IITKARD berjaya mencapai tahap

tertinggi kepuasan dalam kalangan pakar. Sebagai kesimpulan, penyelidikan ini

dapat memberi sumbangan kepada pembangunan IITKARD yang membantu

pembangun perisian dalam menyuntik pengetahuan pemikiran tersirat dalam

kalangan pembangun perisian bagi dokumentasi keperluan Agile.

viii

TABLE OF CONTENTS

 TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xiv

LIST OF FIGURES xvi

LIST OF ABBREVIATIONS xviii

LIST OF APPENDICES xix

CHAPTER 1 INTRODUCTION 1

.1 Overview 1 1

1.2 Background of the Research 5

1.3 Motivation of the Research 6

1.4 Statement of the Problem 6

1.5 Research Questions 7

1.6 Research Objectives 8

1.7 Scopes of Research 8

1.8 Significance of the Research 9

1.9 Organization of the Thesis 10

CHAPTER 2 LITERATURE REVIEW 13

2.1 Introduction 13

2.2 Knowledge Management 14

ix

2.2.1 Knowledge Management Activities 15

2.3 Knowledge Management in Software Engineering 17

2.3.1 KM activities in SE 19

2.3.2 Knowledge Management Issues and

Challenges 21

 Software Development Methodologies 22 2.4

2.4.1 Waterfall 23

2.4.2 Rational Unified Process (RUP) 24

2.4.3 Agile Methodology 27

2.4.4 Summary of Software Development

Methodologies 32

 Agile Requirements Engineering 34 2.5

2.5.1 Agile Requirements Engineering Practices 40

2.5.2 The Limitation of Traditional RE that are

Resolved by Agile RE 46

2.5.3 The Practical Challenges of Agile

Requirements Engineering 51

2.5.4 Tools Support Agile Requirements

Engineering 57

2.5.5 Agile Requirements Documentation 64

 2.6 Implicit Thinking Knowledge in Agile Methodology 65

2.7 Analysis on the Need of Implicit Thinking

Knowledge in Agile RE 71

2.7.1 Demographic Analysis (Q1 – Q6) 71

2.7.2 Respondent Views on Agile Methodology

(Q7– Q13) 71

x

 2.8 Research Gap in Agile Implicit Thinking Knowledge

Frameworks and Models 76

79 2.9 Summary

CHAPTER 3 RESEARCH METHODOLOGY 81

3.1 Introduction 81

3.2 Conceptual Framework 81

3.3 Research Roadmap 84

 86 3.4 Operational Framework

3.4.1 Phase 1: Systematic Literature Review 88

3.4.1.1 Review Process 88

3.4.1.2 Planning the review 88

3.4.1.3 Conducting the review 92

3.4.1.4 Writing the review 95

3.4.2 Phase 2: Research Design and Procedure 96

3.4.3 Phase 3: Data Collection 97

3.4.3.1 Primary Data 97

3.4.3.2 Secondary data 98

3.4.3.3 Research Instrument 98

3.4.3.4 Questionnaire 98

3.4.3.5 Questionnaire Design 100

3.4.3.6 Survey Validity 101

3.4.3.7 Pilot study and Reliability Test 102

3.4.3.8 Data Analysis 103

xi

3.4.4 Phase 4: Framework and Prototype Tool

Development 103

3.4.4.1 Framework Construction 104

3.4.4.2 IITKARD Prototype Tool Development 105

3.4.5 Phase 5: Findings and Evaluation 105

3.4.5.1 Experts’ Evaluation Objectives 106

3.4.5.2 Evaluation Procedures 106

3.4.5.3 Focus Group Experiment 107

3.4.5.4 Evaluation Methodology and Principles 109

3.4.5.5 Evaluation Metric 110

3.4.5.6 Evaluation Design 110

3.4.5.7 Experimental Setting 111

3.4.5.8 First Experiment: Efficiency of IITKARD 112

3.4.5.9 Second Experiment: Usability of IITKARD 113

3.4.5.10 Experiment’s Data Analysis process 114

3.4.6 Phase 6: Reporting 115

 115 3.5 Summary

CHAPTER 4 IITKARD FRAMEWORK AND ITS PROTOTYPE

TOOL 117

4.1 Introduction 117

 117 4.2 IITKARD Framework

4.2.1 Step 1: Create User Story Card 122

4.2.2 Step 2: Admin First Argument 125

4.2.3 Step 3: Injecting the Implicit thinking of

Software Engineers 127

xii

4.2.4 Step 4: Documenting the Implicit Thinking of

Software Engineers 130

 IITKARD Framework Prototype Tool Development 132 4.3

4.3.1 Step 1: Create User Story 133

4.3.2 Step 2: Set Admin First Argument 134

4.3.3 Step 3: Set Team Members Arguments 135

4.3.4 Step 4: Documenting the Arguments of Each

User Story 136

 137 4.4 Summary

CHAPTER 5 IITKARD FRAMEWORK EVALUATION AND

RESULTS 139

5.1 Introduction 139

5.2 The Experiment Findings on the Execution of the

IITKARD Tool 139

5.3 Experiment Results 141

5.3.1 Reliability Analysis 141

5.3.2 Demographic of the Experiments’ Participants 142

5.3.3 Efficiency Experiment Results 142

5.3.3.1 Descriptive Statistics Analysis on the

Efficiency of IITKARD 142

5.3.3.2 Qualitative Analysis of the Feedback on

the Efficiency of IITKARD 146

5.3.4 Usability Experiment Results 155

5.3.4.1 Descriptive Statistics Analysis on the

Usability of IITKARD 156

xiii

5.3.4.2 Qualitative Analysis of the Feedback on

the Usability of IITKARD 158

 Discussion 164 5.4

5.4.1 The Efficiency of IITKARD Framework 164

5.4.2 The Usability of IITKARD Framework and

Prototype Tool 166

 Threats to Validity 166 5.5

5.5.1 Conclusion Validity 167

5.5.2 Internal Validity 167

5.5.3 Construct Validity 167

5.5.4 External Validity 168

 Summary 169 5.6

CHAPTER 6 CONCLUSION 171

6.1 Introduction 171

6.2 Research Summary 171

6.3 Achievement of Research Objectives 173

6.4 Contribution and Significance of Study 177

6.5 Limitations of the Research 178

 179 6.6 Future Work

REFERENCES 181

LIST OF PUBLICATIONS 254

xiv

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1 RUP’s phases description 26

Table 2.2 Comparison of software development methodologies comparisons 33

Table 2.3 Summary of the related reviews on agile requirements engineering 37

Table 2.4 Summary of practices and studies analyzed them 40

Table 2.5 Summary of the limitations of traditional RE resolved by agile

methodology 47

Table 2.6 Summary of RE practical challenges in agile 52

Table 2.7 Comparison between RE tools in AM 62

Table 2.8 Gaps analysis of existing works on agile implicit thinking knowledge 78

Table 3.1 PICO Framework 88

Table 3.2 Research Strategy 90

Table 3.3 Summary of study research selection 93

Table 3.4 Quality Assessment 94

Table 3.5 Reliability test for the pilot study 103

Table 3.6 The mapping between research objectives and research processes

and procedures details of operational framework 104

Table 3.7 Expirements Evaluation 111

Table 3.8 Structure of question for the first experiment 113

Table 3.9 Structure of questions for the second experiment 114

Table 4.1 Agile techniques for identifying Requirements 123

Table 4.2 User story attributes 123

Table 4.3 User Story Card 124

Table 4.4 Type of arguments 126

Table 4.5 Example of user story card 134

Table 4.6 Example of set argument 135

Table 5.1 Experiment Procedure 140

Table 5.2 Reliability test results 142

Table 5.3 Feedback of the fastness of converting the implicit thinking

knowledge to documentation 147

xv

Table 5.4 Feedback on the fastness of IITKARD in displaying the

implicit thinking knowledge of software engineers 148

Table 5.5 Feedback of the overall results of cost effort of the using

IITKARD framework 150

Table 5.6 Feedback on coordinating agile RE 151

Table 5.7 Feedback on mentoring agile RE 153

Table 5.8 Feedback on supporting the software developers 154

Table 5.9 Feedback on the difficulties of IITKARD prototype tool 159

Table 5.10 Feedback on completing the tasks successfully 160

Table 5.11 Feedback on the overall usability of IITKARD framework 161

Table 5.12 Feedback on the limitation of IITKARD 163

xvi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 Literature Review Structure 13

Figure 2.2 Waterfall Model (Royce, 1970) 24

Figure 2.3 Disciplines and phases of RUP model (Kruchten, 2004) 25

Figure 2.4 Delivery process in agile methodology (Tran, 2012) 28

Figure 2.5 Redmine project dashboard (Sarkan et al., 2011) 58

Figure 2.6 Redmine user story screen (Sarkan et al., 2011) 59

Figure 2.7 JIRA task board view (JIRA Website) 60

Figure 2.8 JIRA user story description (JIRA Website) 61

Figure 2.9 Tacit Knowledge Enablers (Kavitha and Irfan, 2011) 68

Figure 2.10 Proposed framework for capturing tacit knowledge in agile

methodology (Kavitha and IRfan, 2011) 69

Figure 2.11 The bar chart of the overall results of the respondents

not applying agile methodology 72

Figure 2.12 The bar chart of the overall results of the respondents applying

agile methodology 72

Figure 2.13 The bar chart of the overall results of the challenges of agile RE 73

Figure 2.14 The bar chart of the overall results of the influence of agile RE 74

Figure 2.15 The bar chart of the overall results of user story best practice in

agile RE 74

Figure 2.16 The bar chart of the overall results of the implicit thinking

 knowledge in agile methodology. 75

Figure 2.17 The bar chart of the overall results of the effect of the implicit

thinking knowledge in the maintenance phase 76

Figure 3.1 Conceptual Framework 83

Figure 3.2 Research Roadmap 85

Figure 3.3 Operational Framework 87

Figure 4.1 The novelty in agile methodology life cycle (Tran, 2012) 119

Figure 4.2 Conceptual view of the IITKARD framework 120

Figure 4.3 IITKARD Framework Steps 121

xvii

Figure 4.4 Step 1: Create user story 122

Figure 4.5 Step 2: Set Admin First Argument 126

Figure 4.6 Step 3: Implicit Thinking Injecting 128

Figure 4.7 Step 4: Document Implicit Thinking 130

Figure 4.8 Dashboard of the prototype tool 132

Figure 4.9 Form of user story information 133

Figure 4.10 First argument of user story 134

Figure 4.11 Add new argument 135

Figure 4.12 User story arguments 136

Figure 5.1 The bar chart of the overall results of the fastness of IITKARD 143

Figure 5.2 The bar chart of the overall results of converting the implicit

thinking knowledge using IITKARD 143

Figure 5.3 The bar chart of the overall results of cost effort of the using

IITKARD framework 144

Figure 5.4 The bar chart of the overall results of the acceptance level of

coordinating agile RD 145

Figure 5.5 The bar chart of the overall results of the acceptance level of

monitoring agile RD 145

Figure 5.6 The bar chart of the overall results of IITKARD framework

Support 146

Figure 5.7 The bar chart of the overall result of the easiness of IITKARD

 and its tool 156

Figure 5.8 The bar chart of the overall results of IITKARD completed

tasks successfully 157

Figure 5.9 The bar chart of the results of IITKARD overall usability

satisfactory 157

Figure 5.10 The bar chart of the overall results of IIKARD usability

limitations 158

xviii

LIST OF ABBREVIATIONS

AM - Agile Methodology

ARE - Agile Requirements Engineering

ARD - Agile Requirements Documentation

CRC - Class Responsibility Collaboration

GSD - Global Software Development

IITKARD - Injecting of Implicit Thinking Knowledge in Agile Requirements

Documentation

JAD - Joint Application Development

LD - Lean Development

RAD - Rapid Application Development

RE - Requirements Engineering

RUP - Rational Unified Process

SDLC - Software Development Life Cycle

SLR - Systematic Literature Review

SPM - Software Project Manager

TC - Task Card

UML - Unified Modeling Language

US - User Stories

UTM - Universiti Teknologi Malaysia

XP - Extreme Programming

xix

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Survey Validation Content Form 198

Appendix B Summary of Validation Content Form 201

Appendix C Guideline of Using IITKARD Framework 202

Appendix D Experimentation Briefing 213

Appendix E SGIS Data Used for Implementing the IITKARD 219

Appendix F The Outcome of IITKARD Framework 230

Appendix G The Experiment Instrument 235

Appendix H Initial Data Demographic Analysis 241

Appendix I Focus Group Demographic Analysis 246

Appendix J List of Publication 254

1

CHAPTER 1

INTRODUCTION

 Overview 1.1

The most significant value in an organization is the knowledge, which

affecting its competitiveness (Amin et al., 2017). Adopting knowledge management

system is assists organizations to capture knowledge and share it to all their

members. In fact, software development is highly requested. To achieve delivering

the software product requiring to concentrate on better quality and better productivity

(Martin-de Castro, 2015). To meet these achievement, software organizations have

tried to use one of its most significant resource, which is the structured software

engineering knowledge (Sandra et al., 2017). Previously, this knowledge was

recorded on paper or kept in people’s mind. This makes it difficult to be accessible.

Moreover, the knowledge that kept in peoples' brains is immediately lost when

individual leave (Jurado et al., 2018). Furthermore, it is hardly to capture knowledge

about some matter in large organizations. However, knowledge has to be

systematically captured and stored in a corporate repository, and then can be easily

shared among the organization members (Chugh et al., 2019). To make knowledge

sharing in practice, knowledge should be acquired knowledge from organizations'

members and formalize it to be available on structured level. In this context,

knowledge management systems can be very beneficial (Shim and Lee, 2017).

KM incorporates human resource, structural organization, and the

information technology (Nonaka and von Krogh, 2009). Moreover, KM also includes

methods and tools, which support its process (Ahmad, 2018). KM systems facilitate

processes of knowledge creation and retrieving. KM systems aim to increase

knowledge development and sharing. In software engineering, KM can be

implemented to capture the knowledge and experience created during the software

development lifecycle (Wang and Noe, 2010). Though there is a variety among

2

software projects, but experiences might be similar and assist software developers to

practice their activities. Reusing knowledge might also help to avoid past failures

repetition and provide the solution of frequent problems. The integration of software

process and knowledge management systems make it more effective. Basically,

Software Engineering Environments incorporate many tools supporting software

engineering activities during software development lifecycle (Amritesh and Misra,

2014), so KM can be easily integrated in a SEE.

Agile is a software development methodology, which provides a teamwork

support, face-to-face communication, customer collaboration and quick delivery

(Rizvi, 2013). Agile development derived from the agile manifesto stated on 2001

by designers of agile approaches, such as Extreme Programming (XP), Scrum,

Crystal and Dynamic Systems Development Method (DSDM), and other experts in

software industry (Harris, 2006; Kapuruge et al., 2010). Agile manifesto started by

including a common set of significant standards and features for all of agile

methodology approaches (Jin-Hua et al., 2008). The manifesto includes four main

standards to improve the effectiveness of teamwork, such as the interactions among

team members, a quick software deliver, managing any unexpected changes, and

customer involvement (Karlsen, Hagman and Pedersen, 2011). These features are

included in each agile methodology approaches with a slightly different of each one,

but all of agile approaches have its own process (Sandra et al., 2017).

Agile Methodology has gradually improved in software engineering best

practices. Recently, developers are looking for more flexibility to develop software

systems, which can provide efficient services to their customers (Ernst et al, 2013).

However, agile approaches are mostly having the same practices such as user story

cards, face-to-face communication, iteration and user collaboration. Indeed, many

software development models are designed to assist developers to build their

software effectively (Kettunen, 2010). Agile methodology has its own features with

regard to the concentration of productionizing the software system, starting from the

first phase to the end phase. This includes the considering of iterations of each phase,

and the small releases of the product that can make early product releases (Asghar et

al., 2017).

3

According to Martakis et al. (2013) Software Development Methodologies

(SDM) have dissimilarities with agile methodology; agile methodology emphasizes

the influence of software developers and clients who are playing significant roles in

agile software development process. Using traditional software development

methodologies, users mostly do not largely contribute in software development

practices (Nerur et al., 2005). However, customers in agile contribute with software

developers as effective team members. For example, clients and developers together

outline the system structures for software development lifecycle implementation.

Boehm and Turner (2004) stated that agile methodology has changed the role of

users who are supposed to be collaborated, represented, committed, and well-

informed.

The aim of adopting agile methodology is to avoid common heaviness

software development practices used in traditional software development

methodologies, and to support software requirements changes management and fast

product delivery (Erickson, Lyytinen and Siau, 2005). The philosophy of agile

methodology approaches is to deliver software working editions in short iterations,

then upgrade the edition of the software based on customers’ feedback (Karlsen,

2011). By accepting requirements changes, quicker development, and clients will

get the system they need (Hannay et al., 2003). Therefore, agile methodology

includes several common approaches such as Extreme Programming, SCRUM,

Crystal methodologies family, Feature-Driven Development and Adaptive Software

Development.

Software requirements engineering (RE) is the early practice of software

development lifecycle (Karlsson, 2007; Panian, 2009). This practice identifies the

user’s requirements, which involves customer and developers’ deliberations

(Hurtado, 2013). The requirements engineering goal is to provide complete,

unambiguous software project requirements (Talbot and Connor, 2011). An

individual software requirement can be defined as a capability or a condition needed

by customer to achieve software-facilitated tasks (Ghani et al., 2014). Meanwhile,

the requirements engineering process concerns about the identification, modeling and

verification of the functionalities of a software product (V and Donn, 2009).

Requirements engineering includes four main tasks, requirements elicitation,

4

negotiation, specification, and validation/verification (Carlson and Matuzic, 2010).

There are many requirements elicitation techniques available, such as Joint

Application Development (JAD) (Hughes and Cotterell, 2006), Storyboarding and

Rapid Application Development (RAD) (Beynon-Davies, 2000). The objective of

these techniques was to provide requirement engineers or system analysts a platform

to conclude final list of requirements collaboratively. However, none of these

techniques support capturing tacit knowledge and documenting the collaborative

arguments held during the RE process (Inayat et al., 2014).

RE is a traditional software engineering process, which includes identifying,

analyzing, documenting and validating requirements for the developed software

system (Liu et al., 2010). In fact, more than one issue has been raised during the

software development, such as requirements specification, software design,

implementation and software testing (Martakis and Daneva, 2013). Scholars agree

that it is difficult to manage and model unstructured elicited requirements from

operational domain (Bano, 2014). Requirements need to be summarized and well-

designed based on any standard requirement specification template (Donn, 2009).

Besides, this assist stakeholders and maintenance team to understand requirements

because it is a significant practice to be validated by stakeholders. Poor requirements

specifications lead to ambiguity requirements and become difficult to understand and

might be the cause of failure of software application (Ivari, 2010). Therefore, the

issue of implicit thinking mismanagement forms a major threat for organizations.

Though experts' know-how should be considered as part of the organizational

memory, the organizations have no control on the experience knowledge kept in

experts' minds (Hussain et al., 20117). This is especially applicable to knowledge-

intensive organizations such as software organizations. According to Hoffman et al.,

(2008), such organizations are subjected to lose their ability to conduct business as

their workforce ages and their knowledge will be lost once they leave the

organization (Kang et al., 2008).

A significant knowledge is usually exist during the software team

deliberations. Generally, a part of shared knowledge is explicitly documented as a

meeting minutes form, diagrams, test cases and other software documentations

(Neves et al., 2011). The explicitly documented knowledge is easy to be organized

5

and also can be shared easily among software team members (Jafarinezhad and

Ramish, 2012). However, significant experience knowledge is still undocumented

and tacitly kept in software engineers' brains (Nonaka and Krogh, 2009). This

experience knowledge is categorized as an implicit thinking knowledge, which is

usually observed from an orally communication. Capturing the implicit thinking

knowledge has two main challenges. Firstly, it is unnoticed and secondly experts’

knowledge is usually unconsciously exploit it. In other words, implicit thinking

knowledge is not easy to be explained. This feature is reflected by personal

knowledge of Polanyi’s theory “we know more than we can tell” (Sandra et al.,

2017).

 Background of the Research 1.2

Software development is a knowledge-intensive activity in which its success

depends fundamentally on the developers’ experience and skills (Kavitha and Irfan,

2011). According to Standish Group Report, one of project failure factors relate with

requirements, which is simple requirements documentation (Inayat et al., 2014).

Agile software development has put a new focus on how to share knowledge among

members of software development teams (Saini, Arif and Kulonda, 2018). In

contrast to heavyweight, document-centric approaches, agile approaches rely on

face-to-face communication for capturing implicit thinking of software engineers

(Ahmed, 2018).

Several researches have figured out that the realization of ignoring implicit

thinking documentation has led to increased interest in observing the ways in which

knowledge of software engineers could be effectively determined, identified,

organized and documented (Elghariani and Kama, 2016). The field of implicit

thinking injection in agile requirements documentation has emerged to address this

need (Shim and Lee, 2017). Therefore, this research aims to provide a framework to

inject implicit thinking knowledge in agile methodology. This framework is

supported by a prototype tool to assist software developers to understand and analyze

the requirements.

6

 Motivation of the Research 1.3

Given the range and variety of software methodologies, it is becoming

increasingly to adopt one of agile approaches. This adoption has shown the

significance of involving the client while developing the software. Moreover, agile

has mentioned clearly that it could accept any addition features to its practices

without losing the term of agility (Srifastava, Bhardwaj and Sarswat, 2017).

This work on dimension and smoothness yields a variety of new

understandings, which this study suggests a framework to capture and document the

implicit thinking knowledge of software engineers during requirements engineering

phase. These understandings have also allowed to derive the framework which can

self-tune optimally to both dimension and smoothness, simultaneously at all points in

the requirements engineering in agile methodology. The new framework can help

and assist software developers to manage and track the implicit thinking knowledge

during developing the software.

Since agile approaches have been commonly used, scholars have increased

their focus on challenges of agile requirements engineering. Researchers aim to

provide a framework that allows software developers to manage agile requirements

documentation and helps to resolve the issue of minimal documentation in agile

approaches, by providing a unified documentation including implicit thinking

knowledge of agile software developers.

 Statement of the Problem 1.4

The success of software development projects depends critically on

knowledge quality, which software organizations apply to their development

processes (Andriyani, Hoda and Amor, 2017). The significant challenge is how to

capture and share this knowledge. Agile methodology implies that software

developers have focused on delivering software products (Ahmed, 2018). The

simplicity of agile documentation has been considered as one of agile methodology

7

issues (Fannoun and Kerins, 2017). However, agile requirements are usually

documented in the form of user story cards and task description. Implicit rationale of

software developers is almost ignored by many software methodologies including

agile approaches (Kavitha and Irfan, 2011).

Explicit documentation is commonly captured in most software development

methodologies (Shim and Lee, 2017). Unlike explicit, implicit thinking knowledge

is always hidden and not clearly stated. It is all about software engineers thinking

knowledge such as their assumptions, views, suggestions and opinions, and explicit

coded documenting governed the software engineer’s decisions in the software

engineering process (Saini, Arif and Kulonda, 2018). The lack of such implicit

knowledge experience could lead to more difficulty during the software maintenance

phase (Sandra et al., 2017).

A framework for injecting implicit thinking knowledge of software engineers

in agile requirements documentation is proposed. The aim of this framework is to

assist software engineers to manage requirements and provide unified requirements

documentation including implicit thinking knowledge of each team member.

Requirements engineering practices are activities that assist developers to manage

requirements with recording the implicit thinking of team members by giving views,

assumptions, and observations during requirements engineering practices.

 Research Questions 1.5

This study aims to answer the following questions:

(a) RQ1: What are the issues and challenges in agile requirements

documentation?

(b) RQ2: How to develop a framework that injects implicit thinking

knowledge in agile requirements documentation?

(c) RQ3: How to develop a prototype tool that can support the injection of

implicit thinking knowledge in agile requirements engineering?

8

(d) RQ4: How to evaluate the efficiency of the developed framework?

(e) RQ5: How to evaluate the usability of the developed framework?

 Research Objectives 1.6

The objective of this research is to explore and investigate issues and

challenges of RE in Agile Methodology and to provide a solution to minimize these

challenges. Overall, the objective has five parts:

(a) RO1: To analyze issues and challenges in agile requirements

documentation.

(b) RO2: To develop a framework that injects implicit thinking knowledge in

agile requirements documentation.

(c) RO3: To develop a prototype tool to support the framework of injecting the

implicit thinking of requirement engineering in agile methodology.

(d) RO4: To evaluate the efficiency of the developed framework.

(e) RO5: To evaluate the usability of the developed framework.

 Scopes of Research 1.7

Focusing on the research area is the significance need to emphasize the

boundaries and constraints of the study. The scope in this study is limited to the

following:

9

i. The study limited to agile software development methodology. The study

only focused on Extreme programming approach (XP) as it is commonly used

among agile approaches.

ii. Since, the purpose of this study is to develop a framework for injecting the

implicit thinking knowledge of software developers during agile requirements

engineering, this study focused only on agile requirements documentation.

iii. A prototype tool is developed using Microsoft Visual Studio. Net (C#) and

SQL Server as programming platform to support the framework process of

injecting the implicit thinking knowledge in agile requirements

documentation.

 Significance of the Research 1.8

This research aims to develop a framework that injects the implicit thinking

knowledge in agile requirements documentation to enable software developers to

manage agile requirements documentation as part of an agile software development

methodology. The proposed framework helps to resolve the issue of minimal

documentation by providing a unified documentation, which incorporates implicit

thinking knowledge of agile software developers.

Therefore, the importance of capturing the implicit thinking knowledge of

software developers during requirements engineering phase, assists to understand

how software project is built up (Saini, Arif and Kulonda, 2018). In addition, the

proposed framework provides the ability of software developer’s community during

software maintenance phase. Based on researches made by (Sandra et al., 2017), few

models and tools are designed and developed to support software project

management phases, but there is no attention paid for the implicit thinking

knowledge documentation, and that is clearly mean that providing a framework to

solve this problem is needed.

10

 Organization of the Thesis 1.9

This thesis is structured into six chapters. Chapter 1 gives an overview of the

research. It begins with introducing the overview of the research, research

background, which briefly introducing the agile software development methodology,

agile requirements engineering and implicit thinking knowledge. Then, it describes

the statement of the problem, motivation of the research, research questions, and

research objectives. Then, it continues with describing the research scope and the

significance of the research.

Chapter 2 discusses the literature review of the research and highlights the

knowledge gaps in extant research to justify the novelty of this research. The chapter

starts with a discussion of the related works in the common software development

methodologies. Subsequently, the chapter describes a systematic literature review

(SLR) that have been conducted in identifying related theories of Agile requirements

engineering practices and the practical challenges of Agile RE. Then, the chapter

discusses the tools support agile RE and the implicit thinking knowledge in agile

methodology. The review mainly focuses on identifying the strength and weaknesses

of the previous studies that drive to the identification of gaps to be explored.

Chapter 3 discusses the research methodology, which refers to the overall

process involved in the research in fulfilling the research objectives and obtaining the

expected deliverables. It starts with a discussion of conceptual framework, research,

research roadmap design, and operational framework phases.

Chapter 4 discussed the results on the steps to formulate IITKARD. In

addition, the IITKARD together with the prototype tool development are explained

and discussed.

Chapter 5 presents the evaluation procedures and processes of IITKARD

framework and its prototype tool. Also, presents the discussion of empirical findings

of the evaluation process

11

Chapter 6 consists of the thesis summary, contribution and significance of the

study, limitations of the research and the works that can be extended from the

proposed IITKARD.

181

REFERENCES

Achimugu, P., Selamat, A., Ibrahim, R., and Mahrin, M. N. (2014). A systematic

literature review of software requirements prioritization research.

Information and Software Technology. 2014. 56(6), 568-585.

Agile Manifesto. http://agilemanifesto.org/principles.html.

Ahmed, U. (2018). A review on knowledge management in

requirements engineering. in 2018 International Conference on

Engineering and Emerging Technologies (ICEET), Lahore, Pakistan,

PP 1-5.

Alenljung, B., Person, A. (2008). Portraying the Practice of Decision-making in

Requirements Engineering: a Case Study of large Scale Bespoke

Development. Requirements Engineering Journal. 2008. 13, 257–279.

Ambler, S.W. (2002). Agile Modeling - Effective Practices for eXtreme

Programming and the Unified Process. Wiley, New York.

Amin, A., Basri, S., Hassan, M. F., & Rehman, M. (2017, June). A snapshot of

26 years of research on creativity in software engineering-A systematic

literature review. In International Conference on Mobile and Wireless

Technology(pp. 430-438). Springer, Singapore.

Amritesh, & Misra, S. (2014). Conceptual modeling for knowledge management

to support agile software development. The Knowledge Engineering

Review, 29(4), 496-511. doi:10.1017/S0269888914000198.

Andriyani, Y., Hoda, R., & Amor, R. (2017, August). Understanding Knowledge

Management in Agile Software Development Practice. In International

Conference on Knowledge Science, Engineering and Management (pp.

195-207). Springer, Cham.

http://agilemanifesto.org/principles.html

182

Aniche, M. and Silveira, G. (2011). Increasing learning in an agile environment:

Lessons learned in an agile team. In Proceedings of the Agile

Conference, Salt Lake City, UT, pp 289–295.

Arsanjani, A., Zhang, .J, Ellis, .M, Allam, .A, and Channabasavaiah, K. (2007).

S3: A service-oriented reference architecture. IT professional. 2007. vol.

9, no. 3, pp. 10-17.

Asghar, A., Bhatti, S., Tabassum, A. and Shah, S. (2017). The Impact of

Analytical Assessment of Requirements Prioritization Models: An

Empirical Study. International Journal of Advnced Computer Science

and Applications. 2017. Vol. 8, No. 2.

Augustine, S. (2005). Managing Agile Projects. Prentice-Hall, Englewood Cliffs.

Azham, Z.,Ghani I. and Ithnin, N. (2011). Security backlog in Scrum

security practices. Software Engineering (MySEC). 2011 5th Malaysian

Conference in, 414-417.

Bano, M. (2014). Aligning Services and Requirements with User Feedback.

Requirements Engineering Conference (RE), 2014 IEEE 22nd

International.

Bano, M., Ikram, N., and, Niazi, M. (2013). Requirements Engineering

Challenges in Service Oriented Software Engineering: an exploratory

online survey. International Journal of Software Engineering 07/2013;

6(2).

Bano, M., Zowghi, D. (2013). Users’ Involvement in Requirements Engineering

and System Success. Empirical Requirements Engineering (EmpiRE),

2013 IEEE Third International Workshop on Empirical Requirements

Engineering (EmpiRE). DOI: 10.1007/s10664-016-9465-1.

Barney, S., Aurum, A., Wohlin, C. (2008). A Product Management Challenge:

Creating Software Product Value through Requirements Selection.

Journal of Software Architecture. 2008. 54, 576–593.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6903646
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6903646

183

Bartlett, J. E., Kotrlik, J. W., and Higgins, C. C. (2001). Organizational research:

Determining appropriate sample size in survey research appropriate

sample size in survey research. Information technology, learning, and

performance journal, 19(1), 43.

Beck, K. (2000). eXtreme Programming Explained: Embrace Change. Addison-

Wesley, Reading.

Bettis, R. A., Ethiraj, S., Gambardella, A., Helfat, C., & Mitchell, W. (2016).

Creating repeatable cumulative knowledge in strategic management: A

call for a broad and deep conversation among authors, referees, and

editors. Strategic Management Journal, 37(2), 257-261.

Bjarnason, E., Wnuk, K. and Regnell, B. (2011b). Requirements are slipping

through the gaps—A case study on causes & effects of communication

gaps in large-scale software development. In 2011 IEEE 19th

international requirements engineering conference (pp. 37–46).

Bjørnson, FO. (2008). Knowledge management in software engineering: a

systematic review of studied concepts, findings and research methods

used. Inform Softw Technol. 2008. 50:1055–1068.

Boden, A., Avram G., Bannon L., Wulf V. (2009). Knowledge management in

distributed software development teams does culture matter? In: Global

Software Engineering. Fourth IEEE International Conference on, IEEE,

pp 18–27.

Boehm, T. (2004). Balancing Agility and Discipline: A Guide for the Perplexed.

Addison-Wesley, Boston, MA.

Bourque, P., and Fairley, R. E. (2014). Guide to the software engineering body

of knowledge (SWEBOK (R)): Version 3.0. Los Alamitos, CA, USA:

IEEE Computer Society Press.

Brereton, P. (2004). The software customer/supplier relationship.

Communications of the ACM, vol. 47, no. 2, p. 81.

184

Brodie, L., and Woodman, M. (2011). Prioritization of Stakeholder Value Using

Metrics. In L. A. Maciaszek & P. Loucopoulos (Eds.), Evaluation of

Novel Approaches to Software Engineering (pp. 74-88). Berlin

Heidelberg: Springer.

Cabral, AY., Ribeiro, MB., Lemke, AP., Silva, MT., Cristal, M., Franco, C.

(2009). A case study of knowledge management usage in agile software

projects. International Conference on Enterprise Information Systems

(ICEIS), pp 627–638.

Campanelli, S., and Parreiras, S. (2015). Agile methods tailoring–A systematic

literature review. Journal of Systems and Software, 110, 85-100.

Cao, L., Mohan, K., Xu, P., and Ramesh, B. (2009). A framework for adapting

agile development methodologies. European Journal of Information

Systems 18, 332-343 (August 2009) | doi:10.1057/ejis.2009.26.

Carlson, D. and Matuzic, P. (2010). Practical agile requirements engineering.

In 13th Annual systems engineering conference.

Chau, T., Maurer, F. (2010) Knowledge sharing in agile software teams. Logic

Approx 3075:173–183.

Choo, CW., Alvarenga RCD (2010) Beyond the ba: managing enabling contexts

in knowledge organizations. J Knowl Manage 14(4):592–610.

Chugh, M., Chanderwal, N., Upadhyay, R., & Punia, D. K. (2019). Effect of

knowledge management on software product experience with mediating

effect of perceived software process improvement: An empirical study

for Indian software industry. Journal of Information Science,

0165551519833610.

Cockburn, J. H. (2001). Agile software development: the people factor: IEEE

Computer. 34 (11), 131–133.

185

Conboy, K. (2009). Agility from first principles: reconstructing the concept of

agility in information systems development. Inform Syst Res.

20(3):329–354.

Conboy, K., Fitzgerald, B. (2010). Method and developer characteristics for

effective agile method tailoring: a study of xp expert opinion. ACM

Trans Softw Eng Methodol 20(1).

Corbucci, H., Goldman, A., Katayama, E., Kon, F., Melo, CO., Santos, V.

(2011) .Genesis and evolution of the agile movement in brazil - a

perspective from the academia and the industry. In: Proc. of 25th

Brazilian Symposium on Software Engineering (Track: SBES is 25), pp

98–107.

Creswell, J.W. (2002). Research Design, Qualitative, Quantitative, and Mixed

Methods Approaches. Sage Publications, 2002.

Dayan, R., Heisig, P., & Matos, F. (2017). Knowledge management as a factor

for the formulation and implementation of organization

strategy. Journal of Knowledge Management, 21(2), 308-329.

De Lucia, A. and Qusef, A. (2003) Requirements Engineering in Agile Software

Development. Journal of Emerging Technologies in Web

Intelligence 01/2003; 2(3). DOI: 10.4304/jetwi.2.3.212-220.

Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N. (2012). A decade of agile

methodologies: towards explaining agile software development. J Syst

Softw 85(6):1213–1221.

Donate, MJ., Canales, JI. (2012). A new approach to the concept of knowledge

strategy. J Knowl Manage.16(1):22–44.

Donate, MJ., Guadamillas, F. (2011). Organizational factors to support

knowledge management and innovation. J Knowl Manage 15(6):803–

814.

186

Du, M. (2007). Knowledge management: what makes complex implementations

successful Knowledge Management. 11(2):91–101.

Dybå, T., Kampenes, V. B., and Sjøberg, D. I. (2006). A systematic review of

statistical power in software engineering experiments. Information and

Software Technology, 48(8), 745-755.

Easterby-Smith, M., Lyles, MA. (2011). Handbook of organizational learning

and knowledge management, 2nd edn. Wiley.

Elghariani, K., and Kama. (2016). Review on Agile requirements engineering

challenges,in 3rd International Conference on Computer and

Information Siences, Kuala Lumpur, Malaysia, pp. 507-512.

Erickson, J., K. Lyytinen and K. Siau, Agile Modeling, Agile Software

Development, and Extreme Programming: The State of Research. In

Journal of Database Management, 16(4), 2005, 88-100.

Ernst, N. a., Borgida, A., Jureta, I. J., & Mylopoulos, J. (2013). Agile

requirements engineering via paraconsistent reasoning. Information

Systems (June), 1–17.

Fannoun, S., & Kerins, J. (2017). Evaluating current practice and proposing a

system to enhance knowledge assets within a small software

development unit. in 2018 4th International Conference on Information

Management (ICIM). Oxford, UK.

Firdaus, A., Ghani, I., and Jeong, SR. (2014). Secure Feature Driven

Development (SFDD) Model for Secure Software Development

Procedia-Social and Behavioral Sciences. 2014. 129, 546-553.

Firdaus, A.,Ghani, I., and Yasin, NIM. (2013). Developing Secure Websites

Using Feature Driven Development (FDD): A Case Study. Journal of

Clean Energy Technologies Issue. 2013. 1 vol(4).

Fraser, S., Rising, L., Ambler, S., Cockburn, A., Eckstein, J., Hussman, D.,

Miller, R., Striebeck, M., Thomas, D. (2006). A fishbowl with piranhas

187

coalescence, convergence or divergence: The future of agile software

development practices some assembly required. Proceedings of the

Conference on Object Oriented Programming Systems Languages and

Applications OOPSLA. pp 937–939.

Fuggetta, A., and Di Nitto, E. (2014). Software process. Paper presented at the

Proceedings on the Future of Software Engineering 2014 (FOSE'14),

May 31 - June 7, Hyderabad, India.

Gerald, M., Weinberg, L., Basili, C., Victor, R. (2003). Iterative and

Incremental Development: A Brief History.. Computer 36.

Ghani, I., and Yasin, NIM. (2013). Software Security Engineering in Extreme

Programming Methodology: A Systematic Literature.

Sci.Int.(Lahore),25(2),215-221.

Ghani, I., Azham, Z., and Jeong, SR. (2014). Integrating Software Security into

Agile-Scrum Method. KSII Transactions on Internet an Information

Systems. 2014. (TIIS) 8 (2), 646-663.

Gottesdiener, E. (2009). AView To Agile Requirements. E EBG Consulting,

Inc. www.ebgconsulting.com, http://ebgconsulting.com/Pubs/Articles/A

ViewToAgileRequirements-gottesdiener.pdf.

Hannay, J., Dyba, T., Arisholm, E., Sjberg, D. (2009). The effectiveness of pair

programming: a meta-analysis. Inform Softw Technol 51(7):1110–1122.

Harris, R.S., Cohn, M. (2006). Incorporating Learning and Expected Cost of

Change in Prioritizing Features on Agile Projects. In: Abrahamsson, P.,

Marchesi, M., Succi, G. (eds.) XP 2006. LNCS, vol. 4044, pp. 175–180.

Springer, Heidelberg.

Hissen, A. (2008). Capturing Software-Engineering Tacit Knowledge. 2nd

Eroupean Computing Conference.

http://en.wikipedia.org/wiki/Gerald_M._Weinberg
http://www.ebgconsulting.com/
http://ebgconsulting.com/Pubs/Articles/AViewToAgileRequirements-gottesdiener.pdf
http://ebgconsulting.com/Pubs/Articles/AViewToAgileRequirements-gottesdiener.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6065244
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6065244

188

Hurtado, J. A., Bastarrica, M. C., Ochoa, S. F., and Simmonds, J. (2013). MDE

software process lines in small companies. Journal of Systems and

Software, 86(5), 1153-1171.

Hussain, S. J., Rashid, K., Ahmad, H. F., & Hussain, S. F. (2007). Effective

software management: where do we falter?. In Proceedings of the 6th

WSEAS International Conference on Software Engineering, Parallel

and Distributed Systems (pp. 13–18).

IEEE Standard for Information Technology--System and Software Life Cycle

Processes--Reuse Processes. (2010). IEEE Std 1517-2010 (Revision of

IEEE Std 1517-1999), 1-51. doi: 10.1109/ieeestd.2010.5551093.

Iivari, J., Iivari, N. (2010). Organizational culture and the deployment of agile

methods: the competing values model view. Springer, pp 203–222.

Inayat, I., Salim, S., Marczak, B., Daneva, M., & Shamshirband, S. (2014). A

systematic literature review on agile requirements engineering practices

and challenges. Computers in Human Behavior.

http://dx.doi.org/10.1016/j.chb.2014.10.046.

ISO/IEC-25010. (2011). ISO/IEC 25010: 2011 Systems and software

engineering– Systems and software Quality Requirements and

Evaluation (SQuaRE) System and software quality models.

Jafarinezhad, O., & Ramsin, R. (2012). Development of Situational

Requirements Engineering Processes: A Process Factory Approach. In

Computer Software and Applications Conference (COMPSAC), 2012

IEEE 36th Annual (pp. 279–288). IEEE.

Jeners, S., Clarke, P., O’Connor, R. V., Buglione, L., and Lepmets, M. (2013).

Harmonizing Software Development Processes with Software

Development Settings–A Systematic Approach. In F. McCaffery, R. V.

O’Connor & R. Messnarz (Eds.), Systems, Software and Services

Process Improvement (Vol. 364, pp. 167-178). Springer Berlin

Heidelberg: Springer.

http://dx.doi.org/10.1016/j.chb.2014.10.046

189

Jin-Hua, L., Chang-Jiang, W., Jing, L., and Qiong, L. (2008). Earned Value

Project Management of Model-Centric Software Development. Paper

presented at the 4th International Conference on Wireless

Communications, Networking and Mobile Computing, 2008.

WiCOM'08. , October 12-14, Dalian, China.

Jun, L., Qiuzhen, W. (2010). Application of Agile Requirement Engineering in

Modest-sized Information Systems Development. Software Engineering

(WCSE), 2010 Second World Congress on (Volume: 2).

Jurado, J. L., Garces, D. F., Paredes, L. M., Segovia, E. R., & Alavarez, F. J.

(2018, October). Model for the improvement of knowledge

management processes based on the use of gamification principles in

companies in the software sector. In International Conference on

Software Process Improvement(pp. 142-151). Springer, Cham.

Kang, D., Song, I.-G., Park, S., Bae, D.-H., Kim, H.-K., and Lee, N. (2008). A

case retrieval method for knowledge-based software process tailoring

using structural similarity. Paper presented at the 15th Asia-Pacific

Software Engineering Conference, 2008. APSEC'08. , December 3-5,

Beijing, China.

Kapuruge, M., Han, J., & Colman, A. (2010). Support for business process

flexibility in service compositions: An evaluative survey. In 21st

Australian Software Engineering Conference (pp. 97–106).

Karlsen, JT., Hagman, L., Pedersen, T. (2011). Intra-project transfer of

knowledge in information systems development firms. J Syst Inform

Technol 13(1):66–80.

Karlsson, C. (2016). Research Methods for Operations Management. New York:

Routledge.

Karlsson, L., Dahlstedt, AA. G, Regnell, B., Natt och Dag, J., & Persson, A.

(2007). Requirements engineering challenges in market-driven software

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5716644
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5716644

190

development-An interview study with practitioners. Information and

Software Technology, 49(6), 588–604.

Kasunic, M. (2005). Designing an effective survey. Pittsburgh: Carnegie Mellon

Software Engineering Institute,CMU/SEI-2005-HB-004.

Kavitha, R. and Irfan, R., Ahmed. (2011).

A Knowledge Management Framework for Agile Software Developme

nt Teams, in 2011 International Conference on Process Automation,

Control and Computing. Coimbatore, India, PP 1-5.

Kettunen, O. (2010). Agile product development and strategic agility in

technology firms. Master thesis, Helsinki University of Technology,

Finland.

Kitchenham, B. A. (2004). Procedures for performing systematic reviews

NICTA Technical Report 0400011T.1 Keele, UK: Keele University.

Kitchenham, B. A., and Pfleeger, S. L. (2008). Personal opinion surveys. In F.

Shull, J. Singer & D. I. K. Sjøberg (Eds.), Guide to Advanced Empirical

Software Engineering (pp. 63-92). London: Springer.

Kitzinger, J. (2005). Focus group research: using group dynamics to explore

perceptions, experiences and understandings. In I. Holloway (Ed.),

Qualitative research in health care (Vol. 56). Maidenhead: Open

University Press.

Komar, M., Shukla, M., and Agarwal, S. (2013). A hybrid Approach of

Requirement Engineering in Agile Methodology, Machine Intelligence

and Research Advancement (ICMIRA), 2013 International Conference

on.

Kontio, J., Lehtola, L., and Bragge, J. (2004). Using the focus group method in

software engineering: obtaining practitioner and user experiences. Paper

presented at the International Symposium on Empirical Software

Engineering, 2004. ISESE'04.

191

Krueger, R. A., and Casey, M. A. (2014). Focus groups: A practical guide for

applied research. Thousand Oaks, California: Sage publications.

Lakulu, M., Abdullah, R., Selamat, M., Ibrahim, H., Mohd Nor, M. (2010). A

Framework of Collaborative Knowledge Management System in Open

Source Software Development Environment. Computer and

Information Science. 3(1):81-90.

Lee, W., Park, S., Lee, K., Lee, C., Lee, B., Jung, W., Kim, T., Kim, H., and Wu,

C. (2005). Agile Development of Web Application by Supporting

Process Execution and Extended UML Model. Software Engineering

Conference, 2005. APSEC '05. 12th Asia-Pacific.

Lee, W., Park, S., Lee, K., Lee, C., Lee, B., Jung, W., Kim, T., Kim, H., and Wu,

C. (2013). Adoption of Agile Methodology in Software Development.,

Information & Communication Technology Electronics &

Microelectronics (MIPRO), 2013 36th International Convention Ye

Wang, Liping Zhao, Xinyu Wang , Xiaohu Yang , Sam Supakkul "

PLANT: A pattern language for transforming scenarios into

requirements models” International Journal of Human-Computer

Studies.

Lichtenstein, S., Nguyen, L., and Hunter, A. (2005). Issues in IT service-

oriented requirements engineering. Australasian Journal of Information

Systems, vol. 13, no. 1, p. 176, 2005.

Liu, K., Valerdi, R., & Laplante, P. A. (2010). Better requirements

decomposition guidelines can improve cost estimation of systems

engineering and human systems integration. 8th Annual Conference on

Systems Engineering Research. Hoboken, NJ.

Liu, L. L. (2006). Software Maintenance and CMMI for Development: A

Practitioner‘s Point of View. Journal of Software Engineering, 1(2), 68–

77.

192

Maranzato, RP., Neubert, M., Herculano, P. (2011). Moving back to scrum and

scaling to scrum of scrums in less than one year. In: The ACM

international conference companion on Object oriented programming

systems languages and applications companion (SPLASH), pp 125–130

Martakis, A., & Daneva, M. (2013). Handling Requirements Dependencies in

Agile Projects: A Focus Group with Agile.

Martín-de Castro, G. (2015). Knowledge management and innovation in

knowledge-based and high-tech industrial markets: The role of

openness and absorptive capacity. Industrial Marketing

Management, 47, 143-146.

Mikulenas, G., and Kapocius, K. (2011a). An approach for prioritizing agile

practices for adaptation. In W. W. Song, S. Xu, C. Wan, Y. Zhong, W.

Wojtkowski, G. Wojtkowski & H. Linger (Eds.), Information Systems

Development (pp. 485-498). New York: Springer.

Mikulenas, G., and Kapocius, K. (2011b). A Framework for Decomposition and

Analysis of Agile Methodologies during their Adaptation. In W. W.

Song, S. Xu, C. Wan, Y. Zhong, W. Wojtkowski, G. Wojtkowski & H.

Linger (Eds.), Information Systems Development (pp. 547-560). New

York: Springer.

Morisio, M., Seaman, C. B., Basili, V. R., Parra, A. T., Kraft, S. E., and.

Condon S. E. (2004). COTS-based software development: Processes

and open issues. The Journal of Systems & Software. 2004. vol. 61, no.

3, pp. 189-199, 2002. S. Crew, Service Centric System Engineering—

EU/IST Integrated Project.

Nerur, R., M., and Mangalaraj. (2005). Challenges of migrating to agile

methodologies. Communications of the ACM 48 (5) (2005) 73–78.

Neves, FT., Correia, AMR., Rosa, VN., Neto, MC. (2011). Knowledge creation

and sharing in software development teams using agile methodologies:

193

key insights affecting their adoption. In: 6th Conferência Ibérica de

Sistemas e Tecnologias de Informação.

Nonaka, I., von Krogh, G. (2009). Tacit knowledge and knowledge conversion:

controversy and advancement in organizational knowledge creation

theory. Organ Sci 20(3):635–652Pais, S., Talbot, A. & Connor, A.M.

(2009) "Bridging the research-practice gap in requirements

engineering", Bulletin of Applied Computing and Information

Technology, 7.

Ouriques, R., Wnuk, K., Svensson, R. B., & Gorschek, T. (2018, November).

Thinking Strategically About Knowledge Management in Agile

Software Development. In International Conference on Product-

Focused Software Process Improvement (pp. 389-395). Springer, Cham.

Pandey, D., Suman, U., & Ramani, A. (2010). An Effective Requirement

Engineering Process Model for Software Development and

Requirements Management. In Advances in Recent Technologies in

Communication and Computing (ARTCom), 2010 International

Conference on (pp. 287–291).

Pandey, D., Suman, U., & Ramani, A. K. (2010). Performance Measurement of

Different Requirements Engineering Process Models: A Case Study.

International Journal of Computer Engineering & Technology (IJCET),

1(2), 1–15.

Pandey, U. S., & Ramani, A. K. (2009). Social-Organizational Participation

difficulties in Requirement Engineering Process-A Study. In National

Conference on Emerging Trends in Software Engineering and

Information Technology, Gwalior Engineering College, Gwalior.

Panian, Z. (2009). User Requirements Engineering and Management in Software

Development. In Proceedings of the European Computing Conference

(pp. 609–620).

194

Petersen, K., Wohlin, C. (2009). A Comparison of Issues and Advantages in

Agile and Incremental development between State of the Art and an

Industrial Case. Journal of Systems and Software 82, 1479–1490.

Pettersen, R., Michael, M., Monfils, FF., Dingsøyr, T., Saadaoui, S., Bjørnson,

FO., Neophytou, K., Hadjioannou, A. (2012). Practical knowledge

management - Techniques for small and medium sized companies, 1st

edn. EXTRA ConsortiumPolanyi, M. (1997). "The Tacit Dimension,"

in Knowledge in Organizations, L. Prusak, Ed. Boston, MA:

Butterworth-Heinemann, 1997, pp. 135-146.

Pinto, D., Bortolozzi, F., Sartori, R., & Tenório, N. (2017). Investigating

Knowledge Management within Software Industry: A Systematic

Literature Review. International Journal of Development

Research, 7(12), 17672-17679.

Racheva, Z., Daneva, M., Herrmann, A. (2010). A Conceptual Model of Client-

driven Agile Requirements Prioritization: Results of a Case Study. In:

IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM), Bolzanao, Italy.

Racheva, Z., Daneva, M., Sikkel, K. (2009). Value creation by agile projects:

Methodology or mystery? In: Bomarius, F., Oivo, M., Jaring, P.,

Abrahamsson, P. (eds.) PROFES 2009. LNBIP, vol. 32, pp. 141–155.

Springer, Heidelberg.

Racheva, Z., Daneva, M., Sikkel, K., Herrmann, A., Wieringa, R. (2010). Do we

Know Enough about Requirements Prioritization in Agile Projects:

Insights from a Case Study. In: The Proceedings of Requirements

Engeneering 2010, Australia (2010).

Ramesh, B., Baskerville, R., & Cao, L. (2010). Agile requirements engineering

practices and challenges: An empirical study. Information Systems

Journal, 20(5), 449–480.

195

Ruy, F. B., de Almeida Falbo, R., Barcellos, M. P., Costa, S. D., & Guizzardi, G.

(2016, November). SEON: A software engineering ontology network.

In European Knowledge Acquisition Workshop (pp. 527-542). Springer,

Cham.

Ryan, S. and O'Connor, R. (2013). Acquiring and Sharing Tacit Knowledge in

Software Development Teams An Empirical Study. Information and

Software Technology. Vol. 55, No. 9, pp. 1614 1624, 2013.

Rehman, T., Khan, M. N. A., & Riaz, N. (2013). Analysis of Requirement

Engineering Processes, Tools/Techniques and Methodologies.

International Journal of Information Technology and Computer Science

(IJITCS), 5(3), 40.

Rizvi, B. (2013). A systematic review of distributed agile software engineering.

Alberta: Athabasca University.

Roger, A. E., Marcel, F. N., & Lopez, A. C. (2010). Business Process

Requirement Engineering. International Journal on Computer Science

and Engineering, 2(9).

Sandra L., Buitrun Francisco J., Pino, Brenda L., Flores-Rios, Jorge E., Ibarra-

Esquer, Astorga-Vargas. (2017). “A Model for Enhancing Tacit

Knowledge Flow in Non-functional Requirements Elicitatio”, in 2017

5th International Conference in Software Engineering Research and

Innovation (CONISOFT). Mérida, Mexico.

Saini, M., Arif, M., Kulonda, D. (2018). Critical factors for transferring and

sharing tacit knowledge within lean and agile construction

processes. Construction Innovation, Vol. 18 Issue: 1, pp.64-

89, https://doi.org/10.1108/CI-06-2016-0036.

Santoro, G., Vrontis, D., Thrassou, A., & Dezi, L. (2018). The Internet of Things:

Building a knowledge management system for open innovation and

knowledge management capacity. Technological Forecasting and Social

Change, 136, 347-354.

https://www.emeraldinsight.com/author/Saini%2C+Mandeep
https://www.emeraldinsight.com/author/Arif%2C+Mohammed
https://www.emeraldinsight.com/author/Kulonda%2C+Dennis+J
https://doi.org/10.1108/CI-06-2016-0036

196

Santos, V., Goldman, A., Santos, C. (2012). Uncovering steady advances for an

extreme programming course. CLEI Electron J 15(1):1–20.

Shim, W. & Lee, S. (2017). An Agile Approach for Managing Requirements to

Improve Learning and Adaptability. in 2017 IEEE 25th

International Requirements Engineering Conference Workshops (REW).

Lisbon, Portuga, PP 435-438.

Stettina, CJ., Heijstek, W., Fægri, TE. (2012). Documentation work in agile

teams: the role of documentation formalism in achieving a sustainable

practice. In: Agile Conference (AGILE), pp 31–40.

Talbot, A. & Connor, A.M. (2011). Requirements engineering current practice

and capability in small and medium software development enterprises

in New Zealand. Proceedings of the 9th ACIS Conference on Software

Engineering Research, Management & Applications. 2011.

Topouzidou, S. (2012). SODIUM, Service-Oriented Development In a Unified

framework. Final report ISTFP6-004559. http://www. atc. gr/sodium.

Tran, M. (2012). Strengths and weaknesses of moving to a more agile approach:

CIO’s perspective.

V, L., Donn, J. (2009). Writing Software Requirements Specifications.

Website:http://www.techwrl.com/techwhirl/magazine/writing/softwarer

equirementspecs.html Access date: January 2009.

Vinay, S., Aithal, S., and Sudhakara, G. (2013). A quantitative approach using

goal- oriented requirements engineering methodology and analytic

hierarchy process in selecting the best alternative. In A. K. M., S. R. &

T. V. S. Kumar (Eds.), Proceedings of International Conference on

Advances in Computing. India: Springer.

von Meyer-Höfer, M., Nitzko, S., and Spiller, A. (2015). Is there an expectation

gap? Consumers’ expectations towards organic: An exploratory survey

in mature and emerging European organic food markets. British Food

Journal, 117(5), 1527-1546.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8053951
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8053951

197

Wang, S., Noe, RA. (2010). Knowledge sharing: a review and directions for

future research. Human Resour Manage Rev 20:115–131.

Wang, X., Maurer, F., Morgan, R. (2010). Tools for supporting distributed agile

project planning. Agility Across Time and Space, pp 183–200.

Warburton, R. D. (2011). A time-dependent earned value model for software

projects. International Journal of Project Management, 29(8), 1082-

1090.

Whitworth, E., Biddle, R. (2007). The social nature of agile teams. Agile

Conference (AGILE), Washington, DC, pp 26–36.

Wirsing, M, & Hölzl, M. (2010). Rigorous Software Engineering for Service-

Oriented Systems—Results of the Sensoria project on Software

Engineering for Service-Oriented Computing. Springer.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A.

(2012). Experimentation in software engineering. Heidelberg: Springer

Science & Business Media.

Yong, A. G., and Pearce, S. (2013). A beginner’s guide to factor analysis:

Focusing on exploratory factor analysis. Tutorials in Quantitative

Methods for Psychology, 9(2), 79-94.

Zhang, Z., and Awasthi, A. (2014). Modelling customer and technical

requirements for sustainable supply chain planning. International

Journal of Production Research, 52(17), 51315154.

198

7 APPENDIX A

SURVEY VALEDATION CONTENT FORM

CONTENT VALIDITY SURVEY FORM

Research Title : Injecting Implicit Thinking in Agile Requirements

Documentation

Author : Kaiss Ali Elghariani

Supervisors : Dr. Mohd Nazri Kama and Dr. Nurulhuda Firdaus Mohd

Azmi

Introduction

The research is about to inject implicit thinking of software engineers as

part of agile requirements documentation. Implementing the injection of the

implicit thinking shall be carried out in two real software projects consists

of few practices, which will lead to explore the challenges of agile

requirements engineering documentation.

Procedures to be followed

We have classified the research questions and grouped into 4 sections,

which should be answered by the participants of the software projects. The

questions are divided into four (4) sections based on research requirements,

which are Demographic Profile of Respondents, Agile methodology, Agile

Requirements Engineering and Framework effectiveness evaluation. The

experts are requested to rate the relevancy of each group of questions by

rating from 1-5. The experts can also add any comments or suggestions can

be added to the group of questions.

Relevancy Rates:

Strongly Not Relevant Relevant (but not important) Relevant Strongly Relevant

 1 2 3 4 5

199

Thank You

Section Rate Scale
Comment

Questions 1 2 3 4 5

A. Demographic Profile of Respondents

A.1 Respondent Profile

Q1 What is your age?

Q2 What is the highest degree or

level of school you have

completed?

A.2 Software Project Profile

Q3 Which of the following best

describes your position while

engaged in this project?

Q4 How many years have you

worked with an outsourcing

company?

Q5 Which of the following

categories best describes the

type of software developed for

this project?

Q6 Which of the following

application domains does/did

the project apply to?

Q7 What is/was the duration of the

project (from inception to

delivery)?

Q8 How would you estimate the

size of the project in terms of

lines of code?

B. Agile Methodology

B.1 Not applying Agile Methodology

Q9 Which of the following software

development methodology best

describes the one you are

using/did use in the project?

B.2 Applying Agile Methodology

Q10 If you are using agile

methodology, which of the

following agile approaches

describes the one you are

using/did use in the project?

C. Agile Requirements Engineering

200

Section Rate Scale
Comment

Questions 1 2 3 4 5

Q11 The following statements are the

challenges of requirements

engineering in agile

methodology. (Please rate these

statements by clicking one box

with the following scales)?

Q12 Are the requirements

engineering practices affects

analysis and design phases in

agile software methodology?

(Please rate these statements by

clicking one box with the

following scales)?

Q13 Do the user stories and task

cards have provided the basic

practice of requirement

engineering?

Q14 Is Implicit thinking of software

engineers included in agile

requirements engineering?

Q15 Does the Implicit thinking of

software engineer’s affects

software maintenance phase?

201

8 APPENDIX B

9

SUMMARY OF SURVEY VALEDATION CONTENT FORM

Expert’s‎Name University/ORG

Overall Evaluation

Comments
Not

Relevant
Relevant

Strongly

Relevant

Faizura Haneem UTM √
Last section’s questions are mostly depends on

Q14

Dr. Mazidah UUM √ Outsourcing company shouldn’t be specified

Dr. Mazni UUM √

Outsourcing company shouldn’t be specified

Sections B1&2 are confused, so better simplify

them

Dr. Abdulmajid IIUM √ Project scale not necessary

Dr. Akram IIUM √ Questions in section B need further explanation

Dr. Elammari Apple Company √

Question shouldn’t be stated

Need further explanation to the participant about

implicit thinking of software developers

202

APPENDIX C

10

GUIDELINE OF INJECTING THE IMPLICIT THINKING

KNOWLEDGE IN AGILE REQUIREMENTS

DOCUMENTATION FRAMEWORK

User Guideline for Implicit Thinking Knowledge

Injection for Software System Requirements

Documentation in Agile Methodology (IITKARD)

203

TABLE OF CONTENTS

1 INTRODUCTION 204

1.1 Intended Readership 204

1.2 Purpose 204

1.3 Conventions 205

2 OVERVIEW 205

3 INSTRUCTIONS 205

3.1 Signning in 205

3.2 System Menu and Dashboard 206

3.3. Add User Story 206

3.4 Add First Argument 208

4.5 Add Team Members Arguments 209

4.6 Search for documented user story/Argument. 210

4.7 Exit System 211

4 DOCUMENT CONTROL 212

5 DOCUMENT SIGNOFF 212

204

1 Introduction

1.1 Intended Readership

The users of the tool that supports IITKARD framework are classified

as follow.

 Team Leader (Admin)

 Expert, accessing the tool for a significant to manage software project

requirements (User Stories)

 Team member, create and interact with the requirements arguments.

 Team members, including

 Experts, accessing the tool to interact with the arguments.

 The level of experience of agile methodology needed is minimum

1 year.

 Please follow section 3 for using the tool.

Then language used for the tool is understandable for non-speaker

English.

1.2 Purpose

The purpose of IITKARD framework tool is to inject implicit thinking

knowledge of software engineers in agile requirements engineering, and

this user guide describing how to use the tool.

The processes supported by the tool of IITKARD framework as follow:

1- Create User Story

2- Set Admin First Argument

3- Inject implicit hiking knowledge of software engineers

4- Document implicit thinking knowledge

205

1.3 Conventions

As is the purpose of this tool is to support the implantation of

IITKARD framework, the implicit thinking knowledge has been

categorized into 4 types as follow:

1- Issue

2- Assumption

3- Opinion

4- Question

2 Overview

IITKARD is an extension of JIRA software framework of issue and

project tracking for agile team provided by Atlassian Company, which

is an enterprise software company that builds software products for

software engineers, project management. IITKARD includes the

existing practices in agile requirements engineering and the novelty

feature of adding the software engineers’ implicit thinking in agile

software development methodology.

3 Instructions

3.1 Signing in

A user ID and password is required to log onto web interface.

1- Key in username

2- Key in password

3- Choose software project (dropdown list)

4- Click sign button

http://www.atlassian.com/

206

3.2 System Menu and Dashboard

3.3. Add User Story

This function assists user to create a user story as a software

requirement, the team leader should fill up the form based on user story

attributes.

207

1- Key in user story title

2- Choose task engineer (Developer) (dropdown list)

3- Choose Requirement Priority

4- Click Next

5- Key in user story description

For example: a user story called user login. This is considered as a

requirement, so following is a user story details:

Title: Delete Student Record.

Developer: TAUFEEQ

Priority: High.

Description: As a user, I want to delete student record any time I need.

208

3.4 Add First Argument

Before finishing adding the user story admin shall

1- Choose one of the argument types such as issues,

assumption, suggestion, question and opinion.

2- Choose effort (High, Normal or low)

3- Choose one of the argument type (Issue, Assumption,

Suggestion, Question)

4- Insert argument’s text.

5- Click next

6- Click confirmed

Based on the example given in the previous section (Delete Student

Record), the admin or the team member shall set the following info:

Effort: The expected effort is normal.

Argument: in this example the team leader will ask a question “Student

record should be physically deleted or we better set a flag as a

deactivated student?”

209

3.5 Add Team Members Arguments

Team members can interact with arguments such as Issues,

Assumptions, Suggestions, Questions and Opinions related to user

story.

1- click on the icon shown on the user story list

2- choose one of the arguments type and then pop-up windows

appeared

3- Key in the argument text.

The following figure shows the form of adding argument.

Following the previous example (Delete student record), one of the

team members given a suggestion: “better you set a flag to show

student status is active or inactive!”. Another team member gave an

210

assumption: “if you physically delete student record, student data will

be lost”.

3.6 Search for documented user story/Argument.

All user stories and arguments are documented in IITKARD tool.

From the dashboard page user can follow the below step:

4- In the search form, key in in keywords related to what are you

looking for

5- List of user stories contain the specific keywords will be displayed.

6- Click on the user story argument

7- Arguments will be displayed includes all arguments details.

A list of stories contains any of the key word will be displayed in sort

of storyline. Also, to display in stories contains any key word will be

displayed It contains the title and its arguments member’s photo, name,

text and icon of the argument type whether it is an issue, assumption or

suggestion, the following shows implicit thinking knowledge

documentation. The following figure shows the list of user stories.

211

3.7 Exit System

Click Logout

212

#1 Document Control

Title: User Guideline of IITKARD framework

Date: 28/3/2018

Author: Kais Ali Elghariani

Distribution: Project Sponsor

Project Team

DOCUMENT SIGN OFF

Nature of

Signoff

Person Signature Date Role

Author

Kaiss Elghariani 24th March

2018

PhD

Candidate

Reviewer

Reviewer

Reviewer

Prof Madya. Dr. Nazri

Kama

Dr. NurZalaiah Binti

AbuBaker

Dr. NurulHuda Ferdaous

 28th March

2018

28th March

2018

Reviewer

Reviewer

Reviewer

213

11 APPENDIX D

EXPERIMENTATION BRIEFING

Kaiss Elghariani

	

	

Injecting Implicit Thinking Knowledge in Agile Requirements Documentation

(IITKARD)

Experiment of

214

Experiment Goals

Implementing a real traditional
project requirements in Agile
requirements engineering by using
IITKARD framework and its tool

Assists software engineers to inject
implicit thinking knowledge in agile
R E d o c u m e n t a t i o n b y u s i n g
IITKARD tool.

Assists software engineers experts to
unders tand the usefulness o f
IITKARD framework.

Evaluate the over all process of the
IITKARD framework and the tool. 	

Goals

215

216

217

Implicit Thinking Knowledge

Implicit Thinking knowledge categorizations:

User	Story	(REQ)	

Issue	 Assumption	 Suggestion	 Question	

Argument	

Opinion	

Experiment Process

Software Project

Team	

Create User Story
5 requirements of each team	

Start Argument

Interact	
with	the	
argument	

Implicit Thinking Knowledge
Documentation

Framework Evaluation

Team Member II	Team Member I	

Team Leader	

218

219

12 APPENDIX E

SGIS DATA USED FOR IMPLIMINTING THE

EXPERIMENT EVALUATION

GROUP 1

Module: User Administration

#UM_2

Maintain

user

roles
Date 16/10/2017

Task

Engineer

Developer

1

Task estimate: 34 hours

As a User, I would like to Add, Edit and Delete roles for each created user, so I can

manage the user roles.

Acceptance criteria, done

Effort: Medium

Priority: Very High

220

#UM_3

Managing

main

administrator

roles

Date 16/10/2017
Task

Engineer

Developer

1

Task estimate: 34 hours

As a user, I would like the main administrator to interpret have full access to the CMS

module and its sub modules as follow:

 User Management

 User Administration

 Role Configuration

 Knowledge Management

 Post Management

 Management of Forms and Links

 File Management

 Content Management of Religious Questions

 Portal Life Event Management

 Reports

 Settings & Configuration

 Audit Trail Activity

Acceptance criteria, done

Effort: Medium

Priority: Very High

#UM_4
Managing

user roles
Date 16/10/2017

Task

Engineer

Developer

1

Task estimate: 34 hours

As a User, I would like the user has a specific role in a system, so I only be able to see the parts

marked as 'viewable'.

Acceptance criteria, done

Effort: Medium

Priority: Very High

221

#UM_7
Send

Email
Date 16/10/2017

Task

Engineer
Developer 1

Task estimate: 34 hours

As a User, I would like, users created in the system receive an email that aims to tell them how to

create their own username and change the user's password (if necessary). The user can then log in to

CMS by using the username and password that was previously created.

Acceptance criteria, done

Effort: Medium

Priority: Very High

#UM_5

Managing

primary

administrator

roles

Date 16/10/2017
Task

Engineer

Developer

1

Task estimate: 34 hours

As a User, I would like, the primary administrator can do the actions below:

8- Add Administrator User (webmasters)

9- Delete User

10- Assign / Convert user role

Acceptance criteria, done

Effort: Medium

Priority: Very High

222

GROUP 2

Module Title: Knowledge Management

#KM_1
Acquire data

from agencies
Date 16/10/2017

Task

Engineer
Developer 2

Task estimate: 1 week

As a User, I would like this module to acquire and collect various types of data from different

agency portals, all into CMS. Data collected in the Knowledge Management module will be

published to the Life Portal.

Acceptance criteria, done

Effort: Medium

Priority: Very High

#KM_2

Types of

agencies’

data
Date 16/10/2017

Task

Engineer

Developer

2

Task estimate: 34 hours

As a user, I would like data from other agencies include information content from their

website, forms and downloads and direct links to the agency's website.

Acceptance criteria, done

Effort: Medium

Priority: Very High

223

#KM_3
Obtaining

Method
Date 16/10/2017

Task

Engineer
Developer 2

Task estimate: 1 week

As a User, I would like the data from different agencies can be obtained and updated through

the following methods:

11- Content manager manually entering content other users include content that has

been provided by agencies

 Content that has been found in the template file (excel) will be uploaded, which

files have been filled out by webmaster SGIS or content manager from agencies.

 Extracting content from the website specific agencies and content submissions

to SGIS CMS

 Extract data for agencies' website via feeds, using JSON endpoints

Through the method of uploading content, the excel template file will be uploaded, and once

processed, the contents will be available in relevant sections / sections

Acceptance criteria, done

Effort: Medium

Priority: Very High

#KM_4
Display latest

content
Date 5/6/2013

Task

Engineer
Developer 2

Task estimate: 48 hours

As a User, I would like, the list of agencies that are now integrated with the latest content,

will appear. Administrators can click on any agency to go to the agency's website within the

CMS link.

Acceptance criteria, done

Effort: Medium

Priority: Very High

224

#KM_5

Add

Agency’s

page tabs
Date 16/10/2017

Task

Engineer
Developer 2

Task estimate: 34 hours

As a User, I would like, agency page contains 3 tabs, namely: 1) Content / Information 2)

Download 3) Link

Acceptance criteria, done

Effort: Medium

Priority: Normal

GROUP 3

Module Title: Religious Questions and Answers

SJ_01

Religious

Questions and

Answer sub

module

Date 16/10/2017
Task

Engineer

Developer

3

Task estimate: 34 hours

As a User, I would like to have sub module under Knowledge Management module called the

Religious Questions and Answer. This module enables relevant users to add and organize content

in the Religious Questions and Answer section of Portal Life Event.

Effort: Medium

Priority: Very High

225

SJ_04

Religious

Questions and

Answer bulk

search

Date 16/10/2017
Task

Engineer

Developer

3

Task estimate: 34 hours

As a User, I would like to have more than one choice, so I can do bulk research on Religious

Questions and Answers

Effort: Medium

Priority: Very High

SJ_05

Add

Questions and

Answers
Date 16/10/2017

Task

Engineer

Developer

3

Task estimate: 34 hours

As a User, I would like to add a Q & A entry, so the user will be taken to the form where they

will be asked to provide the following information:

o Questions

o Answers

o Categories, Tags & Keywords

When clicking on Submit, this new Question and Answer entry will appear in the full list of

entries in the Religious Questions page

Effort: Medium

Priority: Very High

226

SJ_06

Delete

Questions

and

Answers

Date 16/10/2017
Task

Engineer
Developer 3

Task estimate: 34 hours

As a User, I would like to post entries, and also delete them

Effort: Medium

Priority: Very High

SJ_07

Publish /

un publish

questions

&

Answers

Date 16/10/2017 Task Engineer
Developer

3

Task estimate: 34 hours

As a User, I would like to The Religious Questions and Answer entry will have publish/un

publish options. This will control the appearance of question-answer entries on the portal.

Effort: Medium

Priority: Very High

227

GROUP 4

Module Title: Portal Life Event management

#LP_01

Control

visual

elements
Date 16/10/2017

Task

Engineer
Developer 3

Task estimate: 34 hours

As a User, I would like, administrators be able to control some visual elements of the Life Event

portal that will be visible to the public.

Visual element settings depend on their presence on the Portal (For example, if a theme is

selected without a "slider", the settings are based on "Slider" will not be here)

Effort: Medium

Priority: Very High

#LP_02

Include

upload and

settings
Date 16/10/2017

Task

Engineer
Developer 3

Task estimate: 34 hours

As a User, I would like this module includes sections for uploading and setting banners / images

"sliders" for portals. Upon entering the module, the administrator will be able to upload / remove the

"slider" image.

Effort: Medium

Priority: Very High

228

#LP_03

Show

current

slider
Date 16/10/2017

Task

Engineer
Developer 3

Task estimate: 34 hours

As a User, I would like the page will display a table showing the current "slider" image that has been

uploaded. On the side of the image there will be a button to delete, un publish.

Effort: Medium

Priority: Very High

#LP_04
delete

slider
Date 16/10/2017

Task

Engineer
Developer 3

Task estimate: 34 hours

As a User, I would like click delete button, the "slider" image will be deleted from the system. When

clicking on un publish, users can control whether the "slider" image is visible on the Life Event portal

or not.

Effort: Medium

Priority: Very High

229

#LP_05

Upload

slider

image
Date 16/10/2017

Task

Engineer
Developer 3

Task estimate: 34 hours

As a User, I would like to have upload options. Here, users will be able to click the upload

button, and add a "slider" image from their computer. When images are uploaded, the system

will present the function of the size in which the user should measure the image to a certain

dimension suitable for "slider".

Effort: Medium

Priority: Very High

230

13 APPENDIX F

THE OUTCOME OF IITKARD FRAMEWORK

231

232

233

234

235

14 APPENDIX G

THE EXPERIMENT INSTRUMENT

Implicit Thinking Knowledge Injection Framework for Software

System Requirements Documentation in Agile Methodology

PhD Candidate: Kaiss Elghariani, kais.gh@hotmail.com, +60178805576

Supervisors:

Assoc. Prof. Dr. Mohd

Nazri Kama

Main Supervisor

mdnazri@utm.my

Dr. Nurulhuda Firdaus

Mohd Azmi

Co-supervisor I

huda@utm.my

Dr. Nur Azaliah Bt Abu

Bakar

Co-supervisor II

azaliah@utm.my

Advanced Informatics School, Level 5, Menara Razak, Jalan Sultan Yahya

Petra, 54100 Kuala Lumpur.

Purpose of the Study

We are conducting a research on integrating implicit thinking knowledge in

agile software requirements documentation. Also, we are collecting experts’

satisfaction level by using IITKARD framework and prototype tool, which

supports the implementation of the framework. The information required is for

evaluation purpose.

Procedures to be followed

The questionnaire is divided into 4 sections, 1) Demographic profile of

respondents, which divided into 2 subsections 1.1) Respondent Profile and 2.2)

Project profile. Followed by section 3) Agile Methodology and Section 4)

IITKARD framework and its prototype tool evaluation.

Statement of Confidentiality

Your participation in this research is confidential. In the event of any

publication or presentation resulting from the research, no personally

identifiable information will be shared because your name is in no way linked

to your responses. Your confidentiality will be kept to the degree permitted by

the technology used.

236

A. Demographic Profile of Respondents

A.1 Respondent Profile

1. What is your age?

Under 22 years old

23-30 years old

31-40 years old

41-50 years old

51-60 years old

61 years or older

2. What is the highest qualification you have completed?
Doctorate degree

Master’s degree

Bachelor’s degree

Diploma and Advanced Diploma

Academic and Vocational and Technical Certificates

Skills Certificates

3. What is your experience duration in Software Development Methodology?

Less than 6 months

6 months - 12 months

1 year – 2 years

2 years - 3 years

3 years - 4 years

4 years - 5 years

More than 5 years

4. What is your experience duration in Agile Software Development

Methodology?

Less than 6 months

6 months - 12 months

1 year – 2 years

2 years - 3 years

3 years - 4 years

4 years - 5 years

More than 5 years

A.2 Software Project Profile

5. Which of the following scales is the project involved in?

Small-scale software project

Medium-scale software project

0

0

237

Large-scale software project

6. Which of the following categories best describes the type of software

developed for this project?

Desktop

Web-based (not Web services)

2-Tier client/server

Database

Mobile Application

Other

If other please specify

7. Which of the following requirements engineering practices you involved in

while engaged in this project?

Software Requirements analysis

Software Requirements Specification

Software Requirements Management

Software Requirements Validation

Software Requirements Documentation

Other

If other please specify

8. What is/was the duration of the project (from inception to delivery)?

Less than 6 months

6 months - 12 months

1 year – 2 years

2 years - 3 years

3 years - 4 years

4 years - 5 years

More than 5 years

B. Agile Methodology

1. If you are using agile methodology, which of the following agile approaches

describes the one you are using/did use in the project?

SCRUM approach

Extreme Programming (XP) approach

Feature-Driven Development approach

Dynamic Systems Development Method

Lean and Kanban Software Development

Crystal

Other

If other please specify

0

238

2. What is your experience duration in Agile Requirements Engineering?

Less than 6 months

6 months - 12 months

1 year – 2 years

2 years - 3 years

3 years - 4 years

4 years - 5 years

More than 5 years

3. What is your experience duration in Agile Requirements Documentation?

Less than 6 months

6 months - 12 months

1 year – 2 years

2 years - 3 years

3 years - 4 years

4 years - 5 years

More than 5 years

*Note: Please answer this section after using the framework tool.

C. IITKARD Framework Evaluation
1

For this section please refer to the following footnote

Please answer the following three questions with regards to this framework:

C.1 Efficiency

Efficiency of IITKARD relates to the use of all inputs in producing any given

output, including personal time and energy. Also, efficiency minimizes the

waste of resources such as physical materials, energy and time, while

successfully achieving the desired output of IITKARD framework and its

prototype tool.

1. Can you indicate how fast to convert the input of implicit thinking

knowledge to output as a documentation after adopting the IITIKARD

framework?

 Very slow Slow Normal Fast Very fast

1 The proposed framework shall be an extension JIRA framework & tool with additional following
features:
i- The ability of adding and managing software developers’ issues, assumptions, suggestions,
questions and opinions while detecting analyzing the requirements.
ii- A formal documentation of the above feature to be tracked in the later software developing
phases.

0

0

239

2. How fast is IITKARD displaying the implicit thinking knowledge of

software engineers?

 Very slow Slow Normal Fast Very fast

3. IITKARD inputs of implicit user stories and implicit thinking knowledge

converted to outputs without cost of a user effort?

Strongly Disagree Disagree Neither agree and disagree Agree Strongly agree

4. IITKARD framework was coordinating agile requirements documentation in

an efficient and appropriate way?

Strongly Disagree Disagree Neither agree and disagree Agree Strongly agree

5. IITKARD framework was monitoring agile requirements documentation in

an efficient and appropriate way?

Strongly Disagree Disagree Neither agree and disagree Agree Strongly agree

 6. IITKARD framework and the tool assist software engineers who are newly

involved in the software project to understand how the requirement was

developed?

Strongly Disagree Disagree Neither agree and disagree Agree Strongly agree

C.2 Usability

Usability is the degree of ease with which IITKARD framework tool can be

used to achieve required goals effectively and efficiently. Usability assesses the

level of difficulty involved in using IITKARD tool.

7. In a range of 1 to 5, what can you rate in terms of the difficulties of the

usage of the IITKARD tool?

Very difficult Difficult Normal Easy to use Very easy to use

For answer 1, please specify your comment:

240

8. IITKARD framework and the tool completed the task successfully?

 Strongly Disagree Disagree Neither agree and disagree Agree Strongly agree

9. The overall usability of the IITKARD framework and its prototype tool is

satisfactory?

 Not satisfied Moderately Satisfied Neutral Satisfied Very Satisfied

10. There are still many limitations to make the IITKARD framework and its

tool usable?

Strongly Disagree Disagree Neither agree and disagree Agree Strongly agree

If you are agree or strongly agree, can you please specify your comment:

End of the questions & Thank you for your cooperation.

241

15

16 APPENDIX H

17 DEMOGRAPHIC RESULTS

(a) Respondent Age Rate

The overall age of respondents involved in this survey shows the

highest of 76% age rate between 31-40 years old. While 16 % of respondents’

age ranged between 41-50 years old and 4% equally between 23-30 and 51-60

years old. The following table shows the total of respondents to this research

questionnaire. Figure 1 summarizes the over result of respondents’ age.

Figure 1 The bar chart of the over all results of the respondents' age rate

(b) Respondent Education Level

From Figure 2, it can be summarized that the majority of respondents

were Master degree holders at 52%, followed by Doctorate at 36 % and

Bachelor Degree at 12%.

4%

76%

16%

4%

0%

10%

20%

30%

40%

50%

60%

70%

80%

23 - 30 31 - 40 41-50 51 - 60

P
e

rc
e

n
ta

g
e

Respondents' Age Rate

242

Figure 2 The bar chart of the overall results of the respondents' degree

level

(c) Respondents’‎Position‎as‎a‎Software‎Engineer

Figure 3 shows that of the majority of the respondent hold a position of

software engineers, some other were software architects, programmers and

software testers.

Figure 3 The bar chart of the overall results of the respondents' project

position

12%

52%

36%

0%

10%

20%

30%

40%

50%

60%

Bachelor’s degree Master’s degree Doctorate degree

P
er

ce
n

ta
g

e

Respondents' Education Level

4.35%

13.04%

8.70%

30.43%

4.35% 4.35%

26.09%

8.70%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

P
er

ce
n

ta
g

e

Position

243

(d) Respondents Software Project Type

The majority of the respondents in this survey previously participated in

the software project of Web-Based (not Web services) at 47.83%. The detail of

the findings on software project type is presented in Figure 4.

Figure 4 The bar chart of the overall results of the respondents' project

type

(e) Respondent Software Application Domain

The total of 27.27% of the respondents are in finance/banking/insurance

systems while 22.73% in education and 4.55% in health systems and human

resource systems, and 40.91% in another software domain as shown in Figure

5.

4.35%

47.83%

8.70%

21.74%

17.39%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Desktop Web-based (not

Web services)

Database Mobile

Application

Other

P
er

ce
n

ta
g

e

Software Project Type

244

Figure 5 The bar chart of the overall results of the software application

domain of the respondents

(f) Software Project Duration

The total of 56.52% of the respondents had experience in software

project between 6 and 12 months, while 13.04% had less than 6 months and

17.39% had about 36 to 48 months experience21-, 8.70% between 48 to 60

months and 4.35% more than 60 months. Figure 6 summarizes the overall

results of the software project duration.

22.73%

4.55%

27.27%

4.55%

40.91%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

P
er

ce
n

ta
g

e

Software Project Domain

245

Figure 6 The bar chart of the overall results of duration of the software

project

18

13.04%

56.52%

17.39%

8.70%
4.35%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Less than 6

months

6 months - 12

months

36 months - 48

months

48 months - 60

months

More than 60

months

P
er

ce
n

ta
g

e

Software Project Duration

246

APPENDIX I

FOCUS GROUP DEMOGRAPHIC ANALAYSIS

1. Respondents’ Age

 The overall experts’ age rates were 50 % between 31-40 years old,

while 20 % their age was between 41-50 years old, also 20% between 23-30

years and 10% was for 51-60 years rate as shown in Figure 1.

Figure 1 The bar chart of the overall results of the experts’ age

2. Respondents’‎Qualification

Figure 2 shows that 50 % of experts were doctorate degree holders and

30 % were Master’s degree while 10 % were Bachelor holders and 10 % were

Diploma holders.

20%

50%

20%

10%

0%

10%

20%

30%

40%

50%

60%

23-30 years

old

31-40 years

old

41-50 years

old

51-60 years

old

P
er

ce
n

ta
g

e

Agre Rate

247

Figure 2 The bar chart of the overall results of the experts' qualification

3. Experience of Software Development Methodology

The majority of participants (80 %) had more than 5 years of

experience in software industry, while 20 % had between 4 – 5 years as

presented in Figure 3.

Figure 3 The bar chart of the overall results of the experts' experiemce in

software development methodology

50%

30%

10% 10%

0%

10%

20%

30%

40%

50%

60%

Doctorate Degree Master's Degree Bachelor's Degree Diploma and

Advanced Diploma

P
er

ce
n

ta
g

e

Qualification

20%

80%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

4 years - 5 years More than 5 years

P
re

ce
n

ta
g

e

Years of Experience

248

4. Experience of Agile Methodology

The total of 50 % of the participants had more than 5 years experience

in agile methodology, while 30 % had between 4 – 5 years experience, and 20

% had between 3 – 4 years experience, as shown Figure 4.

Figure 4 The bar chart of the overall results of the experts' experience in

agile methodology

5. Scales of the Project

The total of 50 % of the experts involved in a medium-scale software

project, while 30 % were involved in a small-scale project, and 20 % were

involved in a large-scale software project, as shown in Figure 5.

20%

30%

50%

0%

10%

20%

30%

40%

50%

60%

3 years - 4 years 4 years - 5 years More than 5 years

P
er

ce
n

ta
g

e

Years of Experience

249

Figure 5 The bar chart of the overall results of the scales of software

project

6. Software Type Categories

The total of 80% of the experts involved in a web-based software

project, while 10 % were equally involved in a database software type project,

and mobile application software project, as shown in Figure 6.

Figure 6 The bar chart of the overall results of software type categories

30%

50%

20%

0%

10%

20%

30%

40%

50%

60%

Small-scale software

project

Medium-scale software

project

Large-scale software

project

P
e
r
c
e
n

ta
g

e

Project Scale

80%

10% 10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Web-based (not web

services)

Database Mobile Application

P
er

ce
n

ta
g

e

Software Project Type

250

7. Requirements Engineering Practices

The total of 80 % of the experts involved in a software requirements

analysis practice, while 10 % were equally involved in a software requirements

specification and software requirements management, as shown in Figure 7.

Figure 7 The bar chart of the overall results of requiremetns engineering

practices

8. Software Project Duration

The total of 40% of the experts involved for 1 – 2 years in a software

project, while 30% were involved for 6 -12 months in a software project and

30% involved for less than 6 months in a software project, as shown in Figure

8.

80%

10% 10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Software Requirements

Analysis

Software Requirements

Specification

Software Requirements

Management

P
re

ce
n

ta
g

e

RE Practices

251

Figure 8 The bar chart of the overall results of software project duration

9. Agile Approaches

The total of 50% of the experts involved in Extreme Programming (XP)

approach, while 40.00% of them involved in Scrum approach and 10% in

Dynamic system development method, as shown in Figure 9.

Figure 9 The bar chart of the overall results of agile methodology approaches

30% 30%

40%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Less than 6 months 6 months - 12 months 1 year - 2 years

P
re

ce
n

ta
g

e

Project Duration

40%

50%

10%

0%

10%

20%

30%

40%

50%

60%

Scrum approach Extreme Programming

(XP) approach

Dynamic System

Development Method

P
er

ce
n

ta
g

e

Agile Approaches

252

10. Agile Requirements Engineering Experience

The total of 50% had more than 5 years’ experience in agile

requirements engineering, while 40% had experience between 4 to 5 years, and

10% had experience from 1 year to 2 years, as shown in Figure 10.

Figure 10 The bar chart of the overall results of experts’ experience in

agile RE

11. Agile Requirements Engineering Documentation Experience

The overall participants’ experience in agile RE documentation was

50%, while 40% was for the rest of experience duration category, and 10% was

for 3-4 years’ experience as described Figure 11.

10%

40%

50%

0%

10%

20%

30%

40%

50%

60%

3 years - 4 years 4 years - 5 years More than 5 years

P
er

ce
n

ta
g

e

Experience Years

253

Figure 11 The bar chart of overall results of agile RE documentation

experience

10%

40%

50%

0%

10%

20%

30%

40%

50%

60%

3 years - 4 years 4 years - 5 years More than 5 years

P
er

ce
n

ta
g

e

Experience Years

254

19 APPENDIX J

LIST OF PUBLICATIONS

20

Indexed Journal

1. Elghariani, K., Kama, M. N., Firdous, N., Abubakar, N. A. 2018.

Implicit Thinking Knowledge Injection Framework for Agile

Requirements Engineering. International Journal of Advanced

Computer Science and Applications. (Indexed by Scopus)

Indexed Conference Proceeding

2. Elghariani, K., and Kama, M. N., 2016. Review on Agile requirements

engineering challenges, in 3rd International Conference on Computer

and Information Sciences, Kuala Lumpur, Malaysia, pp. 507-512.

(Indexed by Scopus)

