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Abstract: High organic materials in palm oil mill effluent (POME) can result in serious water pollution.
To date, biological treatment has been used to reduce the environmental risks of these effluents prior
of their discharge into water streams. However, the effluents’ dark brownish colour remains as a
significant issue that must be addressed, as it affects the overall quality of water. Although membrane
technology has been frequently used to address these difficulties, membrane fouling has become a
serious limitation in POME treatment. On the other hand, zwitterions with balanced charge groups have
received growing interest in the fabrication of antifouling membranes due to their hydrated nature. The
development of a simple and efficient covalent bonding technique to improve the stability of zwitterions
on membrane surfaces remains a challenge. By grafting and co-depositing polyethylenimine (PEI)-
based zwitterion (Z-PEI) with super hydrophilic polydopamine (PDA) on the surface of a commercial
polysulfone (PSf) ultrafiltration membrane at ambient temperature, a new zwitterionic surface with a
neutral surface charge was created (PDA/Z-PEI). This study aims to investigate the effect of different
loading ratios of PDA/Z-PEI (1:1, 1:2, and 1:3) and evaluate their performance on treating brownish
coloured anaerobically treated POME (AT-POME). SEM and FTIR analysis showed the successful
incorporation of the PDA/Z-PEI membrane while the zwitterionic feature is indicated by zeta potential
analysis. Water flux analysis demonstrated that a lower water flux was achieved for M-ZPEI membranes
as compared to the PSf and PSf-MDPA membranes, attributed by the tight skin layer of PDA-ZPEI.
In the development of a tight hydration layer on the membrane surface by zwitterions, zwitterionic
membranes demonstrated excellent antifouling capabilities, particularly PDA/Z-PEI with a loading ratio
of (1:2) with a flux recovery ratio of around 84% and colour rejection of 81.75%. Overall, this research
contributes to the development of a unique coating with improved stability and antifouling properties
by altering the membrane surface in a simple and reliable manner.

Keywords: palm oil mill effluent (POME); ultrafiltration; zwitterion; membrane fouling; polyethylen-
imine (PEI)

1. Introduction

During the production of palm oil, 50% of the water consumed during the processing
of fresh fruit bunches will end up as palm oil mill effluent (POME) [1]. POME contains
95–96% of water, 0.6–0.7% oil, about 4–5% total solid compound and high organic content
in which improper disposal of these effluents results in severe pollution to water sources
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due to oxygen depletion [2]. For POME treatment, conventional methods mainly focused
on the reduction of chemical oxidation demand (COD) and biological oxidative demand
(BOD) of the effluent. Nevertheless, treated POME still displays the insignificant removal of
colour, which results from the degraded lignin of fruit brunches. Hence, proper treatment
is required to ensure that the brownish colour can be filtered and treated.

In general, as compared to other conventional techniques, membrane technology
has been widely used for the treatment of wastewater and it has showed an excellent
performance in terms of colour removal [3]. However, due to the very high organic content
and oil effluent of POME, membranes are prone to bio-fouling and organic fouling caused
by non-specific interaction between foulants and membrane surfaces [4–6]. Briefly, fouling
is a result of complex physical and chemical interactions between constituents, which
are present in feed water with membrane surface [7]. In addition, for post-treating palm
mill oil effluent, the impact of fouling may be aggravated due the content of degraded
lignin, which is mostly composed of humic acid, a type of organic foulant [8]. Due to that,
novel strategies for controlling the impact of fouling on membrane surfaces are required.
Over time, fouling seriously affects permeation and rejection, and substantially increases
operational and maintenance costs.

To alleviate membrane fouling, the common strategy is to introduce hydrophilic poly-
mers such as poly(ethylene glycol) [9,10], oligosaccharide moieties [11,12], and zwitterionic
peptides or polymers [13,14] via blending, surface initiating and grafting, layer-by-layer
(LbL), self-assembly and sol gel. Previously, polyethylene glycol (PEG) has been broadly
employed in the membrane for elevating the antifouling properties; however, it has been
demonstrated that PEG is susceptible to oxidative damage in the presence of oxygen [15].
In recent years, many strategies have been developed to fabricate the membrane with zwit-
terions. Zwitterionic polymers have attracted a wide interest due to their unique properties
of containing both cationic and anionic groups while maintaining electroneutrality and
high hydrophilicity [16,17]. As zwitterions are mainly composed of amino acids, the polar
solubility of these compound does not have good compatibility with organic solvents, thus
blending zwitterions into a polymer matrix seems unpractical [15]. Other strategies include
grafting, chemical activation and atomic radical polymerization [15]. Nevertheless, these
multi-step strategies are tedious and time consuming. The co-deposition of zwitterions
with a self-polymerized material such as dopamine may provide a good anchor of between
zwitterions and membrane surface via covalent bond anchoring [17]. The monomer which
will be polymerized to polydopamine (PDA) has the unique feature to adhere onto almost
all types of surfaces including membrane surfaces, metals and ceramics, attributed to the
catechol moieties in its monomeric building blocks [18].

The surface modification of a UF porous membrane by depositing zwitterions is a
promising approach to enhance fouling resistibility. The non-fouling behaviour of zwitte-
rions is attributed to their special chemical structure, which bears an equimolar number
of anions and cations, to form a tight hydration layer by electrostatic interaction to inhibit
the contact between the foulants and membrane surfaces [14,19,20]. To date, numerous
studies have been using multi-step preparation for incorporating zwitterions on poly-
meric membrane. Therefore, herein we attempt to introduce zwitterion via single step
co-deposition with self-polymerize dopamine on a UF porous membrane for enhanced
fouling-resistant properties. Thus, the influence of the loading ratio and co-deposition time
will be thoroughly elucidated, in addition to the overall performance of this developed
membrane for colour removal.

2. Methodology
2.1. Materials

Commercial Polysulfone UF membrane ([C6H4-4-C(CH3)2C6H4-4-OC6H4-4-SO2C6H4-
4-O]n 20 kDa MWCO). Polyethyleneimine (linear PEI, (C2H5N)n,Mw 60,000, 50%, Acros
Organics, Geel, Belgium),1,3-propanesultone (98%, Sigma-Aldrich, St. Louis, MO, USA),
Dimethyl sulfoxide (DMSO, 99.9%, Fisher Scientific, Portsmouth, NH, USA) and acetone
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were purchased from HmbG Chemicals. Cellulose acetate dialysis tube 32 kDa was pur-
chased from Sigma-Aldrich. Phosphate buffer solution (PBS, pH 8 ± 0.2, Ultra-Pure Grade)
was purchased from Vivantis Technologies, Selangor, Malaysia. Dopamine (DA, C8H11NO2,
99%) was purchased from Sigma-Aldrich. Real anaerobically treated POME (AT-POME)
wastewater was collected at the final discharge area from FGV Palm Industries Berhad,
Kulai, Johor, Malaysia. The collected AT-POME was then filtered using vacuum pump
before the experiment. Properties of collected AT-POME are presented in Table 1.

Table 1. Characteristics of AT-POME collected at final discharge.

Parameter Unit Value

pH - 8.20
BOD mg/L 23
COD mg/L 19

Suspended Solid (SS) mg/L 101
Oil & Grease (O&G) mg/L 29
Total Nitrogen (TN) mg/L 20

Ammonia Nitrogen (AN) mg/L 0

2.2. Preparation and Characterization of Zwitterionic Polyethyleneimine (Z-PEI)

Overall, 5.0 g of PEI and 15.5 g of 1,3-propanesultone were weighed and separately
dissolved in 250 mL and 50 mL DMSO, respectively. The reaction started when the 1,3-
propanesultone solution was added in dropwise manner into the stirring PEI solution. The
suspension was left stirred and heated at 40 ◦C for 12 h and then precipitated with 500 mL of
acetone. The whole product was dialysed subsequently with distilled water for at least 3 days.
The water bath was changed daily to ensure the complete exchange of water and solvent. Lastly,
the dialysed product was dehydrated on the hot plate at 60 ◦C until brown concentrated gel
was obtained. The concentrate was finally poured into the Petri dishes and stored in a 60 ◦C
overnight. The final brownish product that was collected was the zwitterionic PEI (Z-PEI).

2.3. Preparation of Zwitterionic Membrane via Co-Deposition Method

Prior to the zwitterionic membrane preparation, the commercial UF membrane was cut
(14 cm × 14 cm) and soaked in DI water overnight. For the preparation of the zwitterionic
membrane, a solution of Z-PEI with dopamine (DA) was prepared in a phosphate buffer
solution (PBS) with each having a concentration of 2 mg/mL, respectively. Next, the soaked
membrane was placed on the glass plate and rubber-rolled to remove all the water on the
top surface of the membrane. The membrane was later clamped with frames. Subsequently,
the prepared Z-PEI solution was poured on the clamped membrane and was left for the
co-deposition for 12 h. The remaining solution was removed and the membrane was rinsed
with DI water for at least three times followed by being ambient-dried for 30 min and
lastly stored in DI water for further use. The produced membrane was labelled as n-ZPEI,
where n stands for 1.0, 2.0 and 3.0 ratio of DA to Z-PEI. Meanwhile, PSf and MPDA are the
controls used in this study. Table 2 describes the loading concentration used in this study.

Table 2. DA and Z-PEI loading concentrations with their respective membrane annotations.

Membrane Annotation DA, mg/mL Z-PEI, mg/mL Ratio DA: Z-PEI

MPDA 2 0 Control *
1.0-ZPEI 2 2 1:1
2.0-ZPEI 2 4 1:2
3.0-ZPEI 2 6 1:3

* act as the control membrane.

2.4. Characterization of the Zwitterionic Membranes
2.4.1. Physicochemical Properties

Each membrane was characterized based on its physicochemical properties. The
characterization methods were scanning electron microscopy (SEM), Fourier transform
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infrared (FTIR) spectroscopy, zeta potential and water contact angle goniometry and atomic
force microscopic.

Zeta Potential

Dynamic surface charge of each of the produced membranes was determined using
a Electrokinetic Zeta potential analyser (Model: Anton Paar SurPASS) equipped with a
tuneable gap cell. First, two membrane pieces were cut and attached on the surface of
sample holders. The sample holders were then carefully place in the sample housing in a
manner of the membrane active surface facing each other. Zeta potential measurements
were conducted by using 0.001 M potassium chloride (KCl) solution as dispersant. In the
pre-measurement setting of the zeta potential software, the gap height was set at 0.1 mm
and the pH was manually adjusted to pH 10 using 0.05 M sodium hydroxide solution
(NaOH). During the measurement process, the pH was automatically adjusted to pH 3 by
the instrument using 0.05 M hydrochloric acid (HCl).

Scanning Electron Microscopy (SEM)

The top surface and cross sectional morphologies of the membranes were examined
by using SEM (Model: Hitachi TM3000, Tokyo, Japan). To examine the surface morphology,
a small area of 0.5 cm × 0.5 cm of each membrane cut and observed. For cross-sectional
morphologies, membrane samples were dipped in liquid nitrogen and snapped to obtain
clean cross-section areas [16]. The examination under SEM was carried out with different
magnifications.

Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR)

The surface chemistry of all the membrane including the neat PSf commercial mem-
brane were distinctively analysed using an ATR-FTIR spectrometer (Nicolet iS10, Thermo
Scientific, Waltham, MA, USA). Each sample was scanned at wavenumber 500 cm−1 to
4000 cm−1 and the IR spectra were collected by OMNIC software [21].

Water Contact Angle (WCA)

Hydrophilicity of the produced membranes can be determined by WCA. Contact
Angle Goniometer (OCA 15 Pro, Dataphysics, Filderstadt, Germany) via sessile-drop
method was used to measure the WCA of each membrane. By using automated driven
syringe, 0.50 µL water was drop on the top surface of membrane sample via drop-wise
technique. At least 5 values of the contact angles from a random position on the membrane
were taken for consistent accuracy.

Membrane Surface Roughness

Atomic force microscope (SPA-300HV, Seiko, Marsiling Ln, Singapore) was used to
characterize the surface morphologies of membranes. For this analysis, observation was
carried out by scanning the image of samples with an area of 5 µm × 5 µm through
non-contact tapping mode.

2.5. Performance Evaluation of the Zwitterionic Membrane
2.5.1. Water Flux

Each membrane was cut to an effective area of 14.6 cm2. The membrane piece was
then inserted into a pressure vessel of the dead-end ultrafiltration system as shown in
Figure 1. The membrane was firstly compressed at 3 bar for 30 min. The experiment started
with 15 min stabilization at the operating pressure and then the pressure was changed
to 2 bar. During the permeation process, the time taken for the permeate to be collected
was recorded. Pure water flux is calculated based on the formula Equation (1). Triplicate
readings were obtained from 3 coupons of the same membrane.

J =
Q

A∆t
(1)
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where J is water flux (L/m2h), Q is the volume of permeate (L), A is the effective area of the
membrane (m2) and t is the permeate time (h).
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2.5.2. Rejection of Real Colored POME Wastewater

Real POME wastewater was obtained from the nearby Palm Oil Mill FGV in Kulai,
Johor, Malaysia. The collected wastewater was from the final discharge pond right before
the release to the water body. The wastewater was non-oily, but highly brownish in colour
due to the presence of organic and inorganic matter. Similarly, the steps of the previous
experiment were repeated by replacing the feed water with real POME wastewater. Water
flux was assessed via Equation (1) and the rejection performance was determined by
measuring the reduction total organic carbon (TOC) content in the permeate relative to the
feed. Thus, the initial TOC concentration (ppm) in the feed and the final TOC concentration
(ppm) in the permeate were analysed by using TOC analyser (Shimadzu, Kyoto, Japan)
and the percent rejection was computed by Equation (1).

2.6. Antifouling Performances

The antifouling test was performed by using cross flow filtration membrane system as
shown in Figure 1 to simulate the actual membrane processes to reduce fouling propensity.
When a flow is applied tangentially across the membrane surface, it is called cross flow
filtration. Filtrate passes through the membrane surface when feed flows across it, while the
concentrate collects at the opposite end. The membrane’s tangential flow causes a shearing
effect on the membrane’s surface, which lowers fouling [21]. For testing, membrane samples
were firstly cut into an effective area of 15.21 cm2. The membrane was then placed properly
into the membrane cell module and DI water was used to fill the feed tank.

Similar to the previous testing, the membrane sample was firstly compressed at 3 bar.
Then, the feed was replaced with real POME and operated at 2 bar starting with 15 min
stabilization. The antifouling test was carried out for 4 cycles, with 4 h per cycle. For
every 20 min, the permeate was collected and water flux was computed. For the POME
rejection assessment, the permeate volume was recorded for the first 20 min and the end
of the 4th hour for every cycle. The samples were analysed by TOC analyser and the
rejection percentages were evaluated. After each 4 h cycle, the membrane was taken out
and then went through washing by overnight immersion in DI water. On the next day, the
membrane was agitated in the same water for 15 min before starting the next cycle. The
cycles continued until achieving 16 h completion. All these steps were then repeated using
M-ZPEI 1.0, M-ZPEI 2.0 and M-ZPEI 3.0 membranes.
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3. Results and Discussion
3.1. Membrane Characterization
3.1.1. Surface Morphology

The SEM micrograph analysis was used to evaluate the structural morphologies of
the control membranes (PSf and PSf-PDA) and PDA/Z-PEI with varied loading ratios (1:1,
1:2 and 1:3). As shown in Figure 2, PSf showed a common morphologies of membrane
with finger-like and sponge-like structures. After being coated with PDA, formation of
aggregates was observed on the membrane surface. This observation is similar to the
studies reported by Xie et al. [17] and Chen et al. [19]. Upon incorporation of Z-PEI, tiny
micro gaps are still visible, however, the aggregations decreased when the concentration
of PEI increased. In this case, the surface of PDA/Z-PEI with various loading ratios (1:1,
1:2 and 1:3) was significantly smoother and no recognisable aggregates were formed. Such
phenomenon can be explained due to non-covalent bonding between PDA molecules, such
as π-π stacking and hydrogen bonds, causing the PSf-PDA membrane to aggregate and
deposit on top of the membrane surface, whereas covalent cross linking between Z-PEI and
PDA via Schiff-base reaction and Michael-addition weakened those weak interactions on
the PDA/Z-PEI membrane (π-π stacking and hydrogen bonds) and eventually reduced the
appearance of aggregates [20].
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These aggregates appeared to have a negative impact on the membrane surface rough-
ness, indicating that the surface morphologies of the PDA/Z-PEI membrane were con-
siderably different from those of the PSf-PDA membrane. As the loading of PDA/Z-PEI
increased, the finger-like structures were progressively extended and connected to the
porous layer in cross-sectional scans of Figure 2(C1,D1,E1). Figure 2(A1,B1) indicate the
development of macro-voids; however, macro-voids are less visible in the membrane
where Z-PEI was injected (C1 to E1). This might be due to the inclusion of PDA/Z-PEI,
which raises the viscosity of the dope solution. As a result, macro-void formation was
decreased [20].

3.1.2. Surface Functional Group

As shown in Figure 3, FTIR was utilised to characterise the presence of functional
groups on membrane surfaces. Except for PSf-PDA, the spectra of all PDA/ZPEI mem-
branes displayed a distinct absorption peak at 1039 cm−1, which is attributed to the
existence of the SO3 groups of zwitterionic structure [20]. In comparison, the PSf-PDA
spectra does not show this peak, indicating that PDA does not contain any zwitterionic
features. On the other hand, the peaks at 1570 and 1650 cm−1 refer to the N−H and C−N
vibrations of PDA/PEI, indicating that the membrane has been successfully coated with
PDA/Z-PEI. Similarly, the absorption peak at 832 cm−1 (C–Cl stretching vibration) is more
intense in the PSf-PDA membrane, but when Z-PEI loading rises, the depth of the spectrum
diminished [22]. These results demonstrated that the quaternary amination process has
successfully occurred [15].
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Figure 3. Surface functional group analysis by FTIR of prepared membranes.

3.1.3. Surface Charge

The effect of zwitterionic polymer (Z-PEI) on the surface charge of membranes was
characterized by using zeta potential analysis as shown in Figure 4. Based on this figure, at
a pH below 5 and 6, all ZPEI membranes are have positive charges. At a pH around 5.0,
PSf-PDA membrane and M-ZPEI 1.0 showed iso-electric point (IEP) of 0 mV. The potential
values started to turn negative at pH 7.0 (neutral pH), −5 mV for 1.0 Z-PEI, −9 mV for
2.0 Z-PEI, and −22 mV for 3.0 Z-PEI. The zeta potential of the membrane becomes more
negative as the loading ratio of Z-PEI increases. This finding indicates that the Z-PEI was
hydrated when it was mixed with PDA in a PBS solution [23]. The negatively charged
hydrated Z-PEI in the membrane does not dissociate in water [20] due to hydroxide ion
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adsorption from water self-ionization [24]. The surface charge should be able to repel the
charged solute in the AT-POME to increase colour pigment rejection. As the membrane
surface charge became more negative, the colour pigment rejection increased [23].
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Figure 4. Surface charge of prepared membranes.

3.1.4. Membrane Hydrophilicity

Surface hydrophilicity analysed by the water contact angle (WCA) measurement
serves as a good indicator to define the movement of water across the membrane. The
composition of membranes and its corresponding surface chemistry has eminent effects,
especially in terms of the water interaction which is related to its wettability. In brief,
for membranes used for water/wastewater treatment, the hydrophilic surface is often
favourable. Membranes with hydrophilic surface typically contain water-loving active
functional groups that are able to form “hydrogen-bonds” with water molecules [15].
Based on Figure 5a below, the WCA of the PSf membrane was 54.05◦. When PDA was
incorporated on the PSf membrane, the WCA increased to 58.83◦. Although PDA consists
of many amine functional groups that can attract water molecules, their ability is possibly
hindered by the stacked aggregates, which caused resistance for water molecules being
transported via membrane pores. The stacked aggregates can be further confirmed by AFM
images, as shown in Figure 5b. Based on Figure 5b, it can be seen that coating with PDA led
to a rougher membrane surface. After that, when Z-PEI was introduced, a slightly lower
water contact angle was achieved, due to the interaction of amine groups from PEI and
PDA that attracts water molecules to the surface of the membrane.
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Figure 5. (a) Surface hydrophilicity of prepared membranes; and (b) membrane surface roughness
images as indicated by AFM.

3.2. Membrane Performance
3.2.1. Water Flux

In brief, pure water permeability (PWP) is defined as the volume of water that passes
via membrane per unit time per bar [25]. Briefly, it shows the ability of membranes to
generate permeates at a given time. Figure 6 shows the PWP of PSf, PSf-PDA and MZPEI
membranes fabricated in this study. From the figure, it can be seen that the water flux of
M-ZPEI membranes are lower, ranging from 19.47, 16.44 and 6.1 L/m2·h for M-ZPEI 1.0,
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M-ZPEI 2.0 and M-ZPEI 3.0 as compared to PSf (25.2 L/m2·h) and PSf-PDA (22.5 L/m2·h)
Initially, it is hypothesized that the water flux will be improved due to the presence of
hydrophilic functional groups on PDA and PEI, which attract more water molecules to
form a water layer on the surface membrane. However, in this study, we achieved lower
water flux for M-ZPEI. We suspected that such aggregates, which initially formed during
PDA coating as shown in our previous data, cause an increase in terms of water resistivity.
In addition, as the loading of PEI increased, the membrane will have a thicker coating
that resulted in water transport resistance, and eventually resulted in a lower water flux.
Nevertheless, the thickness of PDA-PEI may assist in a better rejection of colour from
AT-POME.
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Figure 6. Water flux of all prepared membranes.

3.2.2. Flux Stability and Antifouling Performance

The antifouling property of the membranes was investigated in which the flux of the
membranes and their flux recovery ratio (FRR) were evaluated using AT-POME in a cross-
flow filtration membrane system. Previous research has shown that water molecules may
rearrange and firmly attach on zwitterionic groups via electrostatic interaction, forming
a hydration layer that can prevent foulant contact with the membrane surface [26,27].
As a result, the accumulated foulants may be eliminated using water washing, thereby
preventing irreversible fouling as shown in Figure 7. Figure 8a shows results of antifouling
evaluation after four cycles by PSf, PSf-PDA, and Z-PEI membranes. Even though the
initial fluxes of controlled membranes (25.2 L/m2·h for PSf and 22.5 L/m2·h for PSf-PDA)
were higher than modified PDA/Z-PEI membranes (19.47 L/m2·h, 16.44 L/m2·h for ZPEI
1.0, ZPEI2.0 PDA/Z-PEI and 5.92 L/m2·h for 3.0 PDA/Z-PEI), but the control membranes
experienced severe fouling, hence the flux drop was very significant in every cycle. On the
other hand, ZPEI membranes have shown excellent antifouling property by managing the
better stability of the membranes. This is attributed to the covalent connection established
between the Z-PEI and PDA membranes, which then provide a stable antifouling feature
to the PDA/Z-PEI membrane [20].
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of all prepared membrane after four cycles.

Based on FRR %, ZPEI membranes exhibited higher FRR than the controlled mem-
branes. The FRR in values for four cycles for PSf membrane and PSf-PDA membrane is
between 60.8% to 81%, showing poor antifouling property. Meanwhile, the FRR values
for M-ZPEI 2.0 and M-ZPEI 3.0 for four cycles of operation (84% above), proving better
antifouling performances for both membranes. From this result, it is clear that M-ZPEI 2.0
and M-Z-PEI 3.0 have superior stability and antifouling properties after a long filtration
duration. Among M-ZPEI 2.0 and M-ZPEI 3.0, it is advantageous to choose M-ZPEI 2.0
over M-ZPEI 3.0 due to the optimal performance of M-ZPEI 2.0 in maintaining membrane
integrity in both flux and FRR. Based on this, it can be concluded that one of the best
ways to combat fouling on membrane surfaces is to use a membrane with a negatively
charged surface that repels and prevents foulant deposition. Fouling of the membrane can
be reduced in this way.

3.2.3. Rejection of Real POME Wastewater

Figure 9 reveals the colour rejection exhibited by the membranes for four cycles of
operation. As M-ZPEI 2.0 possesses a more practical flux against AT-POME and also
optimal FRR compared with M Z-PEI 3.0, M-ZPEI 2.0 was chosen for the colour removal
test. The PSf membrane showed an unstable trend where the colour rejection rises in the
2nd cycle to (78.1%), drops drastically in the 3rd cycle to (37.96%) and then jump back to
(74.45%) in the 4th cycle. Based on this finding, the PSf membrane shows the instability of
the membrane in holding its integrity on maintaining its colour rejection performance. In
addition, such inconsistent colour rejection can also be attributed to fouling, whereby that
higher rejection at the last cycle is due to the deposition of foulants from POME water on
the membrane surface. It is acknowledged that deposition of foulants will result in better
molecules resistance, in scarification of the water flux [28].

On the other hand, for the PSf-PDA membrane, the trend was clearly shown in a
descending order, which projects a poor colour rejection ability by the PSf-PDA membrane.
Although the membranes were endowed with superhydrophilicity as a result of the hierar-
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chical structure created by the PDA nanocluster, their lack of flexibility and stretch ability
would severely limit their long-term usage in practical applications [29]. In this case, it is
possible that delamination of PDA coating occurs, and eventually results in open pores
that allow the movement of colour molecules across the membrane layer. On the other
hand, it was evident that M-ZPEI 2.0 showed an excellent colour rejection performance
over AT-POME. For the four cycles it has maintained the highest and the most stable colour
rejections of 78.10%, 81.75%, 78.10%, and 81.75%. This proves that M-ZPEI 2.0 worked very
well in rejecting the colour particles from the AT-POME and also managed to maintain
its performance by not declining in colour rejection (%) significantly. In addition, a very
stable water flux was obtained when M-ZPEI 2.0 was tested. Therefore, it is proved that the
M-ZPEI 2.0 membrane has great potential to be used to tackle severe colour issues coming
from POME.
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Figure 9. Rejection of coloured POME water by using PSf, PSf-PDA and M-ZPEI 2.0.

4. Conclusions and Future Direction

In this study, we prepared a stable antifouling coating on the material surface via a
one-step co-deposition of PDA and zwitterionic polymer (Z-PEI). SEM analysis showed that
a membrane with PDA having aggregates and the formation of aggregates was reduced
when PEI was incorporated. Z-PEI added to PSf membranes might dramatically increase
antifouling performance. FTIR analysis has shown major peaks related to the zwitterionic
properties of these materials. The surface charge demonstrated that ZPEI membranes
attained their zwitterionic properties at pH 6.0. A stability test demonstrated that this
membrane is able to be used and the ZPEI membrane has better water flux stability after
four filtration cycles. Colour rejection showed M-ZPEI 2.0 can maintain its performance by
not declining in colour rejection.

In this study, the future direction should be linked to a deeper understanding in terms
of stability over a longer period of time so that any effect of delamination of zwitterionic
PEI can be thoroughly observed. Other aspects such as long-term antifouling effect, per-
formance of water flux and permeation over continuous operating systems should also be
studied. As this method is viable due to a simple chemical and synthesis period, all of the
above aspects should be thoroughly studied prior to commercialization.
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