
ENHANCED HYPERTEXT TRANSFER PROTOCOL DISTRIBUTED DENIAL 

OF SERVICE DETECTION SCHEME WITH GET HEADERS ADOPTION  

ABDUL GHAFAR JAAFAR 

UNIVERSITI TEKNOLOGI MALAYSIA 



ENHANCED HYPERTEXT TRANSFER PROTOCOL DISTRIBUTED DENIAL 

OF SERVICE DETECTION SCHEME WITH GET HEADERS ADOPTION 

ABDUL GHAFAR JAAFAR 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy 

Razak Faculty of Technology and Informatics 

Universiti Teknologi Malaysia 

OCTOBER 2020 



iv 

DEDICATION 

This thesis is dedicated to my father, who taught me that the best kind of 

knowledge to have is that which is learned for its own sake. It is also dedicated to my 

mother, who taught me that even the largest task can be accomplished if it is done 

one step at a time. 



v 

ACKNOWLEDGEMENT 

First of all, I would like to express my profound gratitude to my main 

supervisor, Associate Professor Dr. Mohd Shahidan Abdullah, for encouragement, 

guidance, critics and friendship. I am also very thankful to my co-supervisor Dr Saiful 

Adli Ismail for their guidance, advices and motivation. Without their continued 

support and interest, this thesis would not have been the same as presented here. 

I especially express all the gratitude to my beloved mother, Azizah Othman 

and grateful to my adored wife, Hasliana for her patience, understanding, support and 

many sacrifices to keep me on track and helped me survive during this adventure. My 

aunty Sariyah Ismail and mother in law Mejar Aini which provided me funding 

throughout my PhD journey. I dedicate my work to my little hero son, Amsyar 

Iskandar for giving me smiles, hope and endless joyfulness. I wish as your curiosity 

grows, so will your passion for science and the majestic life. 

Finally, greatly appreciated the opportunity from UTM to purse my PhD, I 

thank very much to every UTM community, including each person at (faculties, 

library, staff, employees, students and laborer’s). 



vi 

ABSTRACT 

A transaction between a user and a web server involves several layers that are known 

as Open Systems Interconnection (OSI) layers. The application layer is the highest 

layer which is vulnerable to manipulation by attackers that execute Hypertext Transfer 

Protocol Distributed Denial of Service (HTTP DDoS) attacks. In the event of attack 

traffic, this manipulation causes the HTTP DDoS traffic to appear legitimate and is 

therefore complex to be recognized due to the forged request headers. The attack 

produces various patterns which lead to the inability of the current detection to 

recognize HTTP DDoS attacks. The approaches that have been adopted by prior 

studies thus far were unable to accurately detect malicious GET request resulting the 

attack traffic to be predicted as genuine. Besides, the current approach is unable to 

detect HTTP DDoS attacks through proxies and forged request query. The purpose of 

this research is to enhance the detection schemes in detecting HTTP DDoS attacks. To 

achieve this purpose, a three-phased research methodology has been structured. The 

first phase is literature and problem analysis, the second phase is design and 

implementation while the third phase is verification and validation. The research 

objectives outlined in this research are parallel with the research methodology. The 

first objective is to improve the HTTP DDoS detection framework by adopting new 

components and appending new attributes in the existing component. The next 

objective is to enhance and develop detection algorithms by the adoption of GET 

headers and web browser attributes. The third objective is to improve the True Positive 

rate and True Negative rate and to decrease the False Positive rate and False Negative 

rate to detect HTTP DDoS attack. The enhanced detection scheme comprised a 

detection framework made up of several components to indicate the detection flow and 

algorithms involved in recognizing HTTP DDoS attacks. The detection framework 

was constructed to have a sequential inspection to detect different attack patterns 

produced by HTTP DDoS attacks. The source inspection algorithm was developed to 

improve the identification of the source initiator by adopting web browser attributes. 

The request headers inspection was devised to improve the detection of the authenticity 

of HTTP request traffic by checking the existence of GET headers. The request query 

inspection was designed to detect any forged query using the query attached during 

GET requests transaction and comparing the query with the detection rules and 

database. The proxy inspection was fabricated to detect HTTP DDoS attacks executed 

through a proxy by utilizing the proxy GET headers that were involved during GET 

requests. Experimental results show that an improvement of 19.72% for True Positive 

rate and 1.00% for True Negative rate with a reduction of 19.72% for False Negative 

rate and 1.00% for False Positive rate have been recorded using the detection 

algorithms. As a conclusion, this research has made an enhancement with regards to 

the proposed detection framework and has introduced three new detection algorithms 

as well as has modified one detection algorithm that contributes to the body of 

knowledge in network and security in detecting DDoS attacks executed at the 

application layer. 



vii 

ABSTRAK 

Transaksi antara pengguna dan pelayan web melibatkan beberapa lapisan yang 
dikenali sebagai lapisan Sambungan Sistem Terbuka (SST). Lapisan aplikasi 
adalah lapisan tertinggi yang terdedah terhadap manipulasi oleh penyerang yang 
melaksanakan serangan HTTP Distributed Denial of Service (DDoS). Sekiranya 
berlaku trafik serangan, manipulasi ini menyebabkan trafik HTTP DDoS 
kelihatan sebagai sah dan rumit untuk dikenali kerana adanya permintaan tajuk 
dalam. Serangan tersebut menghasilkan pelbagai corak yang menyebabkan 
ketidakupayaan pengesanan semasa mengenali serangan HTTP DDoS. 
Pendekatan yang telah digunakan oleh kajian sebelum ini tidak dapat mengesan 
permintaan GET yang mencurigakan sehingga lalu lintas serangan dapat 
dianggap sebagai asli. Selain itu, pendekatan semasa tidak dapat mengesan 
serangan HTTP DDoS melalui proksi dan permintaan palsu. Tujuan penyelidikan 
ini adalah untuk meningkatkan skema pengesanan dalam mengesan serangan 
HTTP DDoS. Untuk mencapai tujuan ini, tiga fasa metodologi penyelidikan telah 
dirangka. Fasa pertama adalah literatur dan analisis masalah, fasa kedua adalah 
reka bentuk dan pelaksanaan sementara fasa ketiga adalah penentusahan dan 
pengesahan. Objektif kajian yang digariskan dalam penyelidikan ini adalah selari 
dengan metodologi kajian. Objektif pertama adalah untuk memperbaiki kerangka 
pengesanan HTTP DDoS dengan menggunakan komponen baru dan 
menambahkan atribut baru dalam komponen yang ada. Objektif seterusnya 
adalah untuk meningkatkan dan membangunkan algoritma pengesanan dengan 
penggunaan tajuk GET dan atribut penyemak imbas web. Objektif ketiga adalah 
untuk meningkatkan kadar Positif Benar dan kadar Negatif Benar dan 
menurunkan kadar Positif Palsu dan kadar Negatif Palsu untuk mengesan 
serangan HTTP DDoS. Skema pengesanan yang dipertingkatkan merangkumi 
kerangka pengesanan yang terdiri dari beberapa komponen untuk menunjukkan 
aliran pengesanan dan algoritma yang terlibat dalam mengesan serangan HTTP 
DDoS. Rangka kerja pengesanan direka bentuk untuk melakukan pemeriksaan 
berturutan untuk mengesan corak serangan yang berbeza yang dihasilkan oleh 
serangan HTTP DDoS. Algoritma pemeriksaan sumber dibentuk untuk 
meningkatkan pengenalpastian pemula sumber dengan menggunakan atribut 
penyemak imbas web. Pemeriksaan tajuk permintaan dibuat untuk meningkatkan 
pengesanan keaslian lalu lintas permintaan HTTP dengan memeriksa keberadaan 
tajuk GET. Pemeriksaan permintaan dibuat untuk mengesan permintaan palsu 
menggunakan pertanyaan yang dilampirkan semasa transaksi permintaan GET 
dan membandingkan permintaan dengan peraturan dan pangkalan data 
pengesanan. Pemeriksaan proksi diwujudkan untuk mengesan serangan HTTP 
DDoS yang dilakukan melalui proksi dengan menggunakan tajuk GET proksi 
yang terlibat semasa permintaan GET. Hasil penyelidikan menunjukkan bahawa 
peningkatan 19.72% untuk kadar Positif Benar dan 1.00% untuk kadar Negatif 
Benar dengan penurunan 19.72% untuk kadar Negatif Salah dan 1.00% untuk 
kadar Positif Palsu telah dicatat menggunakan algoritma pengesanan. Sebagai 
kesimpulan, penyelidikan ini telah membuat peningkatan berkaitan dengan 
kerangka pengesanan yang dicadangkan dan memperkenalkan tiga algoritma 
pengesanan baru serta mengubahsuai satu algoritma pengesanan yang 
menyumbang kepada pengetahuan tentang rangkaian dan keselamatan ketika 
mengesan serangan DDoS yang dilakukan di lapisan aplikasi. 



viii 

TABLE OF CONTENTS 

 TITLE PAGE 

DECLARATION iii 

DEDICATION iv 

ACKNOWLEDGEMENT v 

ABSTRACT vi 

ABSTRAK vii 

TABLE OF CONTENTS viii 

LIST OF TABLES xi 

LIST OF FIGURES xii 

LIST OF ABBREVIATIONS xiv 

LIST OF APPENDICES xv 

CHAPTER 1 INTRODUCTION 1 

1.1 Overview 1 

1.2 Background of the Problem 2 

1.3 Problem Statement 15 

1.4 Research Questions 15 

1.5 Research Aim 16 

1.6 Research Objectives 16 

1.7 Research Scope and Assumption 16 

1.8 Significant of the Research 17 

1.9 Thesis Outline 18 

CHAPTER 2 LITERATURE REVIEW 21 

2.1 Introduction 21 

2.2 An Overview of Cyber Attacks 22 

2.3 HTTP DDoS Taxonomy 24 

2.4 HTTP DDoS Attack Categories and Strategies 26 

2.5 Defense Life Cycles and Strategies 30 

2.6 HTTP Protocol 34 

2.7 HTTP Headers Security 37 



ix 

2.8 Web Application Firewall 37 

2.9 HTTP DDoS GET Headers 40 

2.10 Existing Approach based on Signature Based Detection 41 

2.11 Existing Approach based on Anomaly Detection 49 

2.12 Summary of Existing Approaches 56 

2.13 Overview of General Analysis 60 

2.13.1 Research Dataset 60 

2.13.2 Evaluation Method 64 

2.13.3 DDoS Defense Strategy 65 

2.13.4 Results 66 

2.14 Overview of Critical Analysis 68 

2.14.1 Detection Strategy 69 

2.15 Analysis Outcome and Research Direction 73 

2.16 Summary 77 

CHAPTER 3 RESEARCH METHODOLOGY 79 

3.1 Introduction 79 

3.2 Operational Framework 79 

3.2.1 Implementation Theories 81 

3.2.2 Attack Characteristic 81 

3.2.3 Problem Analysis 82 

3.2.4 Design and Implementation 87 

3.2.5 Verification and Validation 92 

3.3 Testbed  96 

3.3.1 Software and Hardware Configuration 99 

3.4 Summary 99 

CHAPTER 4 DESIGN AND IMPLEMENTATION 101 

4.1 Introduction 101 

4.2 Enhanced Process for Detection HTTP DDoS 101 

4.3 Feature Extraction of GET Headers Attributes 105 

4.4 Source Inspection Algorithm 106 

4.5 GET Headers Inspection Algorithm 109 

4.6 Request Query Inspection Algorithm 112 

4.7 Proxy Inspection Algorithm 115 



x 

4.8 Quadrable Inspection 118 

4.9 Summary 120 

CHAPTER 5 RESULTS AND DISCUSSION 121 

5.1 Introduction 121 

5.2 Overview of Experimental Environment 121 

5.3 Detection Rule 125 

5.4 Overview of Comparison 126 

5.5 Comparison with Signaling 128 

5.6 Comparison with Logistic Regression 129 

5.7 Comparison with HADM 132 

5.7.1 Test Case 1 133 

5.7.2 Test Case 2 136 

5.7.3 Test Case 3 139 

5.8 Comparison with Information Entropy 142 

5.9 General Discussion 144 

5.10 Comparison Discussion with Signaling Technique 149 

5.11 Comparison Discussion with Logistic Regression 150 

5.12 Comparison Discussion with HADM 151 

5.12.1 Source Inspection 153 

5.12.2 GET Headers Inspection 155 

5.12.3 Request Query Inspection 156 

5.13 Comparison Discussion with Information Entropy 158 

5.14 Summary 160 

CHAPTER 6 CONCLUSION 161 

6.1 Achievements and Contributions 161 

6.1.1 Enhance Detection Framework 161 

6.1.2 Enhance and Develop Detection Algorithms 163 

6.1.3 Improve Detection Performance 164 

6.1.4 Additional Contributions 165 

6.2 Advantages of Enhanced Detection Scheme 166 

6.3 Limitation and Recommendation of Future Works 166 

 REFERENCES 169 



xi 

LIST OF TABLES 

TABLE NO. TITLE               PAGE 

Table 2.1 List of HTTP Request Headers 36 

Table 2.2 Detection Performance  46 

Table 2.3 Detection Rates  47 

Table 2.4 Detection Rules 52 

Table 2.5 Summary of Related Works 56 

Table 2.6 Old Datasets 61 

Table 2.7 Equipment’s Employ by Past Studies 64 

Table 2.8 Summary of Detection by Prior Studies 72 

Table 3.1 Filtering Commands 86 

Table 3.2 Problem Situations and Solutions 88 

Table 3.3 Confusion Matrix 94 

Table 3.4 Research Software’s 96 

Table 4.1 Components of Enhanced Detection Scheme 105 

Table 5.1 Algorithms to Capture True Positive and True Negative 123 

Table 5.2 Detection Rules 125 

Table 5.3 Comparison of Test Cases 133 

Table 5.4 HTTP 2 GET Headers 148 

Table 5.5 Result for Test Case 1 152 

Table 5.6 Result for Test Case 2 152 

Table 5.7 Result for Test Case 3 153 

Table 6.1 Outline of Phase 1 to Achieve Objective 1 161 

Table 6.2 Outline of Phase 2 to Achieve Objective 2 163 

Table 6.3 Outline of Phase 3 to Achieve Objective 3 164 



xii 

LIST OF FIGURES 

FIGURE NO. TITLE      PAGE 

Figure 1.1 Scenario Leading to The Problem 4 

Figure 2.1 Cyber-attack Categories  23 

Figure 2.2 Taxonomy of HTTP DDoS 25 

Figure 2.3 GET Requests and Response  34 

Figure 2.4 Request Headers  35 

Figure 2.5 Response Headers  35 

Figure 2.6 Genuine and Forged GET Headers  40 

Figure 2.7 Forged ASCII Code  40 

Figure 2.8 HTTP DDoS GET Headers  41 

Figure 2.9 Detection Architecture  43 

Figure 2.10 Detector Module  43 

Figure 2.11 Mass Value for IP Address  45 

Figure 2.12 Detection Framework  48 

Figure 2.13 Information Entropy Formula 50 

Figure 2.14 Detection Framework for Flooding Attack 51 

Figure 2.15 Detection Flow Chart  55 

Figure 2.16 Detection Performance by Past Studies 67 

Figure 3.1 Operational Framework 80 

Figure 3.2 Architecture for Simulation of Real Attack 97 

Figure 4.1 Enhanced Framework for HTTP DDoS Detection 104 

Figure 4.2 Architecture for Source Inspection 106 

Figure 4.3 Traffic Flow for Source Inspection 107 

Figure 4.4 Architecture for GET Headers Inspection 110 

Figure 4.5 Traffic flow for GET Headers Inspection 111 

Figure 4.6 Architecture for Request Query Inspection 113 

Figure 4.7 Traffic Flow for Request Query Inspection 113 

Figure 4.8 Architecture for Proxy Inspection 116 

Figure 4.9 Traffic Flow for Proxy Inspection 116 

Figure 4.10 Quadrable Inspection Architecture 119 



xiii 

Figure 5.1 Graphically View to Capture True Positive and True Negative 124 

Figure 5.2 Evaluation Architecture 124 

Figure 5.3 Comparison Architecture with Prior Studies 127 

Figure 5.4 Source Inspection and Signaling Technique 128 

Figure 5.5 Source Inspection and Logistic Regression 130 

Figure 5.6 GET Headers Inspection and Logistic Regression 131 

Figure 5.7 Request Query Inspection and Logistic Regression 132 

Figure 5.8 Test Case 1: Source Inspection and HADM 134 

Figure 5.9 Test Case 1: GET Headers Inspection and HADM 135 

Figure 5.10 Test Case 1: Request Query Inspection and HADM 136 

Figure 5.11 Test Case 2: Source Inspection and HADM 137 

Figure 5.12 Test Case 2: GET Headers Inspection and HADM 138 

Figure 5.13 Test Case 2: Request Query Inspection and HADM 139 

Figure 5.14 Test Case 3: Source Inspection and HADM 140 

Figure 5.15 Test Case 3: GET Headers Inspection and HADM 141 

Figure 5.16 Test Case 3: Request Query Inspection and HADM 142 

Figure 5.17 Source Inspection and Information Entropy 143 

Figure 5.18 GET Headers Inspection and Information Entropy 143 



xiv 

LIST OF ABBREVIATIONS 

CPU - Central Processing Unit

CRLF - Carriage Return Line Feed

DoS - Denial of Services

DDoS - Distributed Denial of Services

DNS - Domain Name System

FTP - File Transfer Protocol

HTTP - Hyper Text Transfer Protocol

IP - Internet Protocol

ISP - Internet Services Provider

MIME - Multiple Purpose Internet Mail Extensions

OSI - Open Systems Interconnection

RFC - Request for Comments

SVD-RM - Sparse Vector Decomposition and Rhythm Matching

TCP/IP - Transmission Control Protocol/Internet Protocol

URL - Uniform Resource Locator



xv 

LIST OF APPENDICES 

  APPENDIX     TITLE PAGE 

Appendix A List of Publication 181 

Appendix B Configuration and Connectivity Test 183 - 192 

Appendix C Investigation 193 - 231 

Appendix D Preliminary Test 233 - 254 

Appendix E Source Inspection 255 - 258 

Appendix F GET Headers Inspection 259 - 261 

Appendix G Request Query Inspection 263 - 267 

Appendix H Public Proxy Inspection 269 - 272 



1 

CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Web servers use Hypertext Transfer Protocol (HTTP) to allow users to browse 

content. The structure of the protocol is fragile since most GET headers in GET 

requests transactions need not be compulsorily attached. Hence, the protocol is unable 

to force GET headers to appear in request transactions. This drawback that exists in 

GET requests allows for Hypertext Transfer Protocol Distributed Denial of Services 

(HTTP DDoS) capable of emulating legitimate access. Furthermore, the absence of 

security headers for HTTP DDoS to examine GET headers whether genuine or 

malicious has further increased the frequency of attacks. The second quarter security 

report produced by Kaspersky (https://securelist.com/ddos-attacks-in-q2-2017/79241) 

revealed that HTTP DDoS attacks have increased from 8.43% in the 1st quarter of 2017 

to 9.38% in the 2nd quarter of the same year. Singh et al. (2018a) stated that in 2016 

DDoS attacks generated about 50,000 GET requests against websites of jewelry shops. 

The current detection schemes to recognize HTTP DDoS attacks have various 

limitations. These attacks are varied and forged GET headers often look genuine. This 

is caused by weak HTTP protocol structure that allows GET headers to be emulated to 

appear as legitimate and making it more difficult to detect the attacks. 



 

2 
 

1.2 Background of the Problem 

HTTP DDoS needs to establish valid Transmission Control Protocol (TCP) 

connection and this attack is unrecognizable in network layers (Singh et al., 2018a; 

Singh and De, 2017a). Yi and Shun-Zheng (2009) stated that when DDoS attacks fails 

at network layers, attackers switched to a more sophisticated approach known as 

application layer attack. There are various defense strategies in use to protect networks 

at layer three and layer four against DDoS attackers as they tend to target the 

application layer located at layer seven of the networks (Rahman et al., 2017).  

DDoS attacks can be categorized into two: Denial of Service (DoS) and 

Distributed Denial of Service (DDoS). DoS attacks often come from one location 

while DDoS attacks are more sophisticated originating from multiple resources. 

McGregory (2013) stated that DDoS attacks occur when vast number of systems 

located in different geographical locations works together on similar objectives. 

Iyengar and Ganapathy (2015) mentioned that DDoS attacks are initiated by large 

groups of attackers that are globally distributed causing high volumes of invalid traffic 

to grab resources such as networks and memory. Masdari and Jalali (2016) highlighted 

that DDoS are formed from DOS applied to multiple hosts and networks. The 

execution of DDoS attacks requires a lot of botnets forming massive Internet traffic 

causing services on web servers to become unavailable (Zeb et al., 2015). 

Ramanauskaite et al. (2015) stated that botnets are used to cause DDoS attacks to 

generate plenty of traffic to consume victims’ resources. Meanwhile, DDoS attacks 

can paralyze targets quicker compared to DoS (Singh and De, 2017b). 

DDoS attacks are massive and time-driven where huge simultaneous 

connections are required to force network bandwidth and victims' resources to their 

limits. Hence, the use of botnets to generate huge traffic since botnet traffic is difficult 

to distinguish and looks similar to authentic traffic. Attackers usually launch attacks at 

the application layers by manipulating HTTP protocol to send enormous GET requests 

to drain servers' resources such as request queues, servers’ memory and processors. 

This results in the servers reaching their limits and hinders servers from handling 

legitimate requests (Singh et al., 2015).  



3 

HTTP DDoS is difficult to detect since request packets may appear similar to 

normal request packets (Choi et al., 2010). Differentiating normal and attack traffic is 

very complex if it is not properly handled (Sree and Bhanu, 2016). Other studies also 

noted the difficulties of detecting the attack (Idhammad et al., 2018; Yuan et al., 2017; 

Subramanian et al., 2015; Beitollahi and Deconinck, 2012). Singh et al. (2017b) found 

that HTTP DDoS are related to application functions and configurations. Meng et al. 

(2017) stated that HTTP DDoS occurred due to difficulties in recognizing attack 

patterns. Rahman et al. (2017) noted that poor coding structure in the application layer 

protocol causes HTTP DDoS. Meanwhile, Jin et al. (2015) opined that HTTP DDoS 

attacks occur when massive numbers of legitimate GET requests are received by 

servers.  

Choi et al. (2014) stated that security devices are having difficulties to 

distinguish between genuine HTTP traffic and fake HTTP traffic. The traffic must be 

handled correctly as it can introduce higher number of false positives.  Furthermore, 

the existence of DDoS as services such as booters makes the execution of the attacks 

simpler (Hameed and Ali, 2018). Rahman et al. (2017) explained that HTTP DDoS 

attacks require only  minimal botnet army and a single machine with the help of 

efficient attack scripts can be sufficient to devastate targets (Rahman et al., 2017; 

Beitollahi and Deconinck, 2013). Figure 1.1 shows the various scenarios in graphical 

form and the problems addressed in this research. 



 

4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Scenario Leading to The Problem 

Web servers use HTTP and HTTPS protocols to process requests from users. 

These protocols are widely used by companies to manage their online presence such 

as banks, credit card payment gateways, government web servers, online shopping 

server, social media servers and broadcasting servers. DDoS attacks against web 

servers may result in monetary loss and loss of public trust (Beitollahi and Deconinck, 

2012). Najafabadi et al. (2017) stated that HTTP protocol was designed to process 

requests and responses to allow communication between clients and web servers. Two 

methods known as GET and POST are used to accommodate the interactions between 

clients and web servers. The protocol works when clients start browsing through the 

content of web servers and this operation is known as GET requests. Once the web 

servers received GET requests from clients, the servers reply to the requests and this 

is known as HTTP response. HTTP DDoS attacks happen when attackers exploit these 

weaknesses. 

 



 

5 
 

The weaknesses at the application layer is found at GET requests as it accept 

minimal GET headers, no restriction for GET headers, no GET headers data 

inspection, open platforms, weak markings and tendency to accept any data type. 

Forged request headers make it difficult to detect HTTP DDoS since they can be 

similar to legitimate GET requests. HTTP DDoS can be generated without complete 

GET headers. However, the attacks can be simply tagged as genuine users trying to 

access web browsers to obtain web server contents with complete GET headers. Thus, 

in order to mask their malicious activities, attackers use GET headers as dummy to 

forge GET requests making them look authentic. The large number of GET requests 

may overload web servers.  GET requests as part of HTTP operation accept minimal 

GET headers and these requests are still processed by web servers even if many GET 

headers are absent such as user-agent, accept, accept-language, accept charset. GET 

requests accept any headers attached during GET request operations and these requests 

are not rejected by web servers. Besides accepting any header, the values associated 

to the headers are not scrutinized to verify the accuracy of the values attached to the 

headers.  

Genuine users usually use web browsers to browse web server contents, 

however generating GET requests through web browsers is not the only approach that 

can be used as HTTP is an open platform that allows GET requests to be generated 

from other platforms such as automated tools. Furthermore, GET headers suffer from 

connection identity as every GET request made is not identifiable in terms of the 

source whether through proxies, address translations and direct connections. Singh and 

Kumar (2016) noted that HTTP protocol version 1.1 is an unconnected protocol, 

accepting any data type and HTTP is a stateless protocol meaning clients and the 

servers are in touch with each other only during current requests. Most of the GET 

headers need not be attached to GET requests (Fielding and Reschke, 2014a; Fielding 

and Reschke, 2014b; Petersson and Nilsson, 2014; Reid, 2004). Hence, GET requests 

can be easily emulated, making them look as authentic requests.  

 



6 

Hoque et al. (2015) stated that protocol weaknesses that exist at the application 

layers provide opportunities for cyber intruders to exploit vulnerabilities and to initiate 

malicious activities at the application layers such as HTTP, FTP and telnet. Parziale et 

al. (2006) noted that the use of cookies in HTTP also allows information retrieval. 

Calzarossa and Massari (2014) analyzed 315,000 GET requests and found that some 

genuine GET requests do not contain any headers. However, other GET requests are 

found to have as many as fourteen headers. The studies also mentioned that GET 

headers and its value can be easily forged. Attackers can take advantage of existing 

vulnerabilities to disguise attack traffic to appear as genuine. Idhammad et al. (2018) 

explained that HTTP vulnerabilities have a direct impact on user services. HTTP 

DDoS exploits HTTP protocol employing it in a legitimate way (Nithyanandam and 

Dhanapal, 2019). The use of web robots like web crawlers to generate GET requests 

usually delivers three headers known as Host, Connection and User-Agent compared 

to GET requests generated by web browsers that tend to include as many GET headers 

as possible (Calzarossa and Massari, 2014). To overcome the vulnerability of HTTP 

1.1, security headers are used to secure clients’ access to web server contents. 

The are many security headers such as Strict-Transport-Security Header, 

Content-Security-Policy Header, X-XSS-Protection Header, X-Frame-Options Header 

and X-Content-Type-Options discussed by several past studies (Lavrenovs and Melon, 

2018; Dolnak and Litvik, 2017). However, the use of security headers is limited to 

securing users from cross-site scripting, click jacking attacks and Multiple Purpose 

Internet Mail Extensions (MIME) sniffing. Furthermore, the headers above are 

designed for HTTP POST protocol, thus the need to make them secure to detect forged 

GET headers produced by HTTP DDoS. 

GET headers need not necessarily be attached to GET requests as 

communication between clients and web servers can still be established without 

headers. Furthermore, the use of web browsers is not the only way to create GET 

requests as it can be generated using software known as automated tools. Security 

headers also have limited functionalities. Due to these shortfalls, attackers execute 

HTTP DDoS and exploit these vulnerabilities by generating substantial GET requests 

via automated tools to overload web servers resulting in resource depletion. The 



 

7 
 

vulnerabilities at the application layers lead to formation of HTTP DDoS (Idhammad 

et al., 2018; Bawany et al., 2017; Rahman et al., 2017; Osanaiye et al., 2016; Hoque 

et al., 2015; Choi et al., 2014) capable of making forged genuine GET headers look 

authentic.  

During GET requests, connection headers indicate the status of TCP 

connections established by GET headers as either Keep-Alive or close. Parziale et al. 

(2006) stated that once servers reply to GET requests with HTTP response the TCP 

connections are marked as closed. However, in circumstance of a web server is under 

HTTP DDoS attack the status of the connection header mark as close with repeatable 

GET requests received by the web server. Attackers need to send continuously large 

numbers of GET requests to incapacitate web servers. To do this, attackers use 

automated tools needing only a small number of machines and short duration of time 

to generate substantial GET requests. The automated tools give tremendous advantage 

to attackers in executing HTTP DDoS attacks as only a few machines are needed to 

create substantial GET requests (Rahman et al., 2017; Beitollahi and Deconinck, 

2013).  

Minimal GET headers with continuous high GET requests received by web 

servers are signs of HTTP DDoS. GET requests generated by genuine users contain 

more GET headers compared to the ones generated through web browsers (Gou et al., 

2017) and their request patterns are not excessive like HTTP DDoS as in many online 

portals, and authentic users provide ratings and reviews of other users and items (Khan 

and Lee, 2019). Furthermore, GET headers created by HTTP DDoS appear as 

authentic. However, in certain circumstances GET headers like user-agent generated 

by the attacks contain irrelevant info, a clear indicator that these GET requests are from 

malicious sources. Meanwhile, genuine user-agent usually contains information about 

web browsers name, version and operating system name. Zhang et al. (2015) stated 

that network administrators and security analysts facing difficulties in identifying 

malicious user-agent. 

 



8 

Request queries in GET requests show that users need to search for web server 

contents. However, in case of HTTP DDoS, attackers utilize American Standard Code 

for Information Interchange (ASCII) to generate massive request queries to mimic 

genuine search requests. These queries appear longer compared to genuine queries 

searching for content. Fielding and Reschke (2014b) stated that the limit for GET 

requests to process headers and its value is not set thus the length of GET requests can 

be hard to determine. Aside from request queries, GET requests also contain headers 

known as referrer to indicate web server contents previously access from URLs (Reid, 

2004). Hence, HTTP DDoS can take advantage of this by creating headers that 

contains valid URLs to mask malicious access as genuine access by users. Although 

the URLs attached to the referrer headers are valid the URLs are irrelevant since the 

current contents refer to previously access source like URLs of the search engines. 

Furthermore, the URLs connected to the referrers are randomly generated making 

these requests look as if they originated from various users.  

HTTP DDoS are difficult to detect when public proxies are used together with 

attackers and genuine users. Public proxies allow attackers to adopt services for free 

to execute HTTP DDoS. It is difficult to distinguish GET requests generated by user 

and HTTP DDoS through proxies. This occurs since proxy providers used various 

names for proxy headers to indicate GET requests originated from proxies. 

Furthermore, the appearance of the proxy headers is also inconsistent makes it look 

originated from direct connection. Genuine GET requests through proxies have 

different names as the headers are not updated by proxy providers and the appearances 

of the headers are optional displays (Petersson and Nilsson, 2014). 

Yadav and Selvakumar (2015) stated that HTTP DDoS deliver random URLs 

and contain headers known as user-agent and referrer. Sree and Bhanu (2016) noted 

that HTTP DDoS have equal syntax and are sent in different HTTP formats through 

multiple GET requests. Sreeram and Vuppala (2017) remarked that excessive login 

and search requests are among the patterns produced by HTTP DDoS. Dhanapal and 

Nithyanandam (2019) observed that GET headers created by HTTP DDoS have 

genuine user-agent, inaccurate URLs and repeated requests toward the same URLs.  



 

9 
 

GET requests and security headers vulnerabilities have led to various solutions 

being proposed to detect forged headers from HTTP DDoS. Saleh and Abdul Manaf 

(2015) proposed a signature-based detection framework to detect HTTP DDoS. The 

framework is split into three layers that contain components with specific operations. 

The second layer components used GET headers known as a user-agent, accept, and 

host as detection attributes. It uses an algorithm to check the existence of GET headers 

in GET requests to ascertain whether the requestors are using web browsers or 

automated tools. Yadav and Selvakumar (2015) applied anomaly-based detection with 

Block Schematic Diagram that adopted two components to detect HTTP DDoS known 

as training and testing. The training component uses training algorithms to recognize 

HTTP DDoS while the testing algorithm uses testing algorithms to evaluate the 

authenticity of HTTP requests. Both studies used similar GET headers detection 

attributes namely user-agent, Uniform Resource Locator (URLs) and referrer. Liao et 

al. (2015) designed a detection algorithm using attributes called request interval 

sequence and request frequency sequence to detect HTTP DDoS. The algorithm 

measures the time spent by users on specific web pages and observes the sequence of 

request frequency. The study stated that genuine users spend longer time on specific 

pages implying longer time intervals compared to shorter time intervals recorded for 

HTTP DDoS. 

The number of GET headers used in both studies (Saleh and Abdul Manaf, 

2015; Yadav and Selvakumar, 2015) makes it difficult to detect HTTP DDoS. Both 

studies used minimal GET headers as detection attributes to check GET requests 

transactions leading to inaccurate classifications and increased false positive and false 

negative rates. This is caused by vulnerabilities at the application layers that allow 

GET requests to be initiated from various platforms such as automated tools allowing 

attackers to use such tools to execute HTTP DDoS and attached genuine GET headers 

in GET requests to mask attack traffic to look genuine. Many prior studies have cited 

the use of automated tool to execute HTTP DDoS (Dhanapal and Nithyanandam, 2019; 

Sharma and Bhasin, 2018; Wang et al., 2017; Sree and Bhanu, 2016; Yadav and 

Selvakumar, 2015).  



10 

Meanwhile, Yadav and Selvakumar (2015) use of the referrer header is 

impractical in determining the authenticity of GET requests since inconsistent of the 

header to be available in each GET requests besides privacy concerns as it has potential 

to reveal users browsing history (Fielding and Reschke, 2014a). Besides using GET 

headers, Saleh and Abdul Manaf (2015) utilized JavaScript as the detection attribute 

to ensure that the requests are from browsers. However, the adoption of JavaScript can 

be misused and contribute to HTTP DDoS (Kamikubo and Saito, 2017). Saleh and 

Abdul Manaf (2015) and Yadav and Selvakumar (2015) solutions only assessed GET 

headers to detect HTTP DDoS and the data associated with the headers are not 

inspected. Although GET headers data delivered by attacks are real, it is not relevant 

to processed by web servers. It is important to scrutinize GET headers data for GET 

requests transactions. HTTP DDoS can emulate GET headers and its value 

(Nithyanandam and Dhanapal, 2019; Suroto, 2017).  

Furthermore, Gulisano et al. (2015) noted that in terms of framework structure 

the defense frameworks for DDoS show how the source traffic are treated, whether to 

forward or reject the traffic after inspections. The framework designed by Saleh and 

Abdul Manaf (2015) adopted single network interface to allow GET requests to reach 

web servers which also remarked by Bhatia et al. (2014). The framework adopted the 

concept used by Zargar et al. (2013) where each component inside the framework 

collaborates with subsequent components to minimize false positive events. However, 

the framework component designed by Saleh and Abdul Manaf (2015) used less GET 

headers as the detection attributes in identifying HTTP DDoS through source 

inspection. Furthermore, the source inspection is located at the second layer near to 

web servers. The last layer is the last line of defense to protect web servers which 

exposes web servers to higher attack traffic. Attacks close to web servers are more 

difficult to deal with since these attacks can more easily overwhelm upstream routers 

(Gulisano et al., 2015). 

Sree and Bhanu (2016) introduced a block diagram using signature-based 

detection comprising of two components called preprocessor and detector. The 

attributes used in detection are retrieved from the servers’ logs extracted by the 

preprocessor. The attributes are GET requests per Second (GRPS), Packet Size (PS), 



11 

and Response Time (RT). Meanwhile, the detector authenticates GET requests traffic 

whether they are legitimate or HTTP DDoS. It uses an algorithm called Analytical 

Hierarchical Process (AHP) to calculate mass values from IP addresses that constitute 

GET requests, the capacity of GET requests and responses handled by a web server, 

highest GET request can be received and the maximum time for web server to perform 

GET request and response. The study also utilized MapReduce to speedup processing 

since server logs contains a lot of information.  

Sree and Bhanu (2016) proposed design has certain drawbacks as the detection 

needs to extract detection attributes from web server logs. During HTTP DDoS, web 

servers can be overloaded by large numbers of  GET requests continuously generated 

by HTTP DDoS (Singh et al., 2017b). Continuous attack traffic directed at web servers 

causes higher false negative rate making web servers unresponsive. Hence, the 

detector is unable to calculate the mass value to identify the authenticity of GET 

requests. Meanwhile, the AHP algorithm calculates the mass value for IP addresses 

that generate GET requests however the calculations can be inaccurate when GET 

requests originate from proxies. HTTP DDoS can be generated through proxies (Singh 

et al., 2017b) leading to false positives since the same proxies are utilized by both 

genuine users and attackers. Furthermore, locating detection inside web servers allow 

attack traffic to reach web servers although they have been filtered. This minimizes 

web servers’ performance in meeting genuine clients’ requests since the servers are 

handling both genuine and attack traffic.  

Wang et al. (2017) introduced a detection framework using anomaly detection. 

It contains two components called user identification and session identification using 

user request frequency as detection attributes. The study’s detection algorithm 

measures user request frequency based on information entropy. Sreeram and Vuppala 

(2017) used machine learning metrics and adopted anomaly detection to differentiate 

legitimate GET requests and HTTP DDoS based on absolute time interval when users 

access web servers’ contents. The matrix works together with absolute time interval 

and bat algorithm to achieve fast and early detection. Absolute time interval is the core 

attribute used to detect HTTP DDoS.  



12 

Proposed detection approaches by prior studies (Sreeram and Vuppala, 2017; 

Wang et al., 2017; Liao et al., 2015) overlooked aggressive user access patterns when 

accessing web server content. GET requests from aggressive users are tagged as HTTP 

DDoS having shorter request rates compared to regular users who spend more time 

moving between pages. Furthermore, user request frequency is also not segregated 

based on user categories. The absence of user categories may lead to incorrect 

classifications and contribute to false positive and false negative rates. Legitimate 

users usually browse web server contents based on interest hence the access patterns 

are multifarious (Liao et al., 2015). Users behavior in accessing web pages is dynamic 

due to their habits, needs and their past access behavior may influence their future 

access behavior (Xiao et al., 2018). Apart from recognizing access patterns for HTTP 

DDoS Wang et al. (2017) designed a detection framework to detect attacks. However, 

the framework requires fifteen  minutes to recognize HTTP DDoS while Gulisano et 

al. (2015) opined that defense frameworks need to be able to detect threats 

immediately. 

Bravo and Mauricio (2018) introduced signature-based detection with an 

interaction detector, a component used to detect is mouse and keyboard attributes in 

GET requests transactions. The detector contains a classifier algorithm to evaluate the 

activity of the attributes. The use of the mouse as a detection attribute creates massive 

web logs (Liao et al., 2015). The study’s algorithm is also unable to detect HTTP 

DDoS executed via online services as attacks through this approach are equal to 

pressing f5 button on the keyboard repeatability. Furthermore, the classifier algorithm 

only inspects mouse and keyboard characteristics. It excludes modern devices such as 

touch screen devices as replacements for the physical mouse and keyboards. This may 

lead to incorrect classifications with higher false positive and false negative rates. 

HTTP DDoS attacks can be generated via web browsers by constantly refreshing web 

pages (Aborujilah and Musa, 2017). Hameed and Ali (2018) stated that DDoS attacks 

are simple to execute due to its existence as online services to execute the attack.  



13 

HTTP DDoS contain forged GET headers, thus detection of these headers leads 

to detection of HTTP DDoS. HTTP DDoS can occur at communication protocols 

(Wang et al., 2017). Currently the proposed solutions from past studies unable to 

addressed forged GET requests due to weak inspection of GET headers. Saleh and 

Abdul Manaf (2015) dealing with GET headers to differentiate the source requestor 

originated from the web browser of automated tools. Meanwhile, Yadav and 

Selvakumar (2015) opined that the use of GET headers can improve detection of HTTP 

DDoS and adopted GET headers to detect the existence during the GET requests 

transaction. Although both studies inspected the GET headers, they were unable to 

distinguish forged GET headers used by attackers from genuine headers. Betarte et al. 

(2018) noted that information contained in GET headers are specific to GET requests 

and cannot be identified as application behavior. Web application attacks can be 

detected by constructing features from HTTP logs with queries and headers (Moradi 

Vartouni et al., 2019) while Sree and Bhanu (2019) remarked that the logs of GET 

requests can be adopted to determine HTTP DDoS. 

Meanwhile, various other proposed detection designs by prior studies (Bravo 

and Mauricio, 2018; Sreeram and Vuppala, 2017; Wang et al., 2017; Sree and Bhanu, 

2016; Liao et al., 2015) were also unable to detect forged GET headers originated from 

HTTP DDoS using user access patterns in trying to differentiate GET requests sent to 

web server. Even though scrutinizing user access pattern able to detect HTTP DDoS 

attack the proposed solution provided by prior studies has specific limitations. Earlier 

studies focused on user access pattern to detect HTTP DDoS due to complexity to 

differentiate characteristics of communication for GET requests created by HTTP 

DDoS and legitimate user (Aburada et al., 2019). 

The main challenge faced by many prior studies is to differentiate forged GET 

headers attached in GET requests from authentic ones. This makes HTTP DDoS 

detection complicated since genuine GET requests are almost similar to HTTP DDoS. 

HTTP DDoS tends to supply false GET headers and data. Thus, the previous research 

gaps that need to be resolved are forged GET headers and checking for data supplied 

during GET request transactions. Aceto and Pescape (2015) proposed a solution to 

detect HTTP manipulation using HTTP response code as detection attributes however 



14 

unable to deal with HTTP DDoS. Niakanlahiji et al. (2018) studied the use of headers 

at the application layers however their study focused on detecting phishing web sites 

by using response headers. Niu et al. (2019) adopted GET headers such as URI, Host, 

User-Agent, Request-Method, Request-Version, Accept, Accept-Encoding, 

Connection, Content-type, Cache-Control, and Content-length to detect malware. 

Currently no attempt has been made to enhance the use of GET headers to deal with 

HTTP DDoS. 

It is important to ensure the source of GET requests originate from web 

browsers to web servers as HTTP DDoS often utilize automated tools to generate 

substantial GET requests. Here, it is crucial to identify source requests to avoid HTTP 

DDoS. Many prior studies have proposed source request inspections (Wang et al., 

2012; Yang et al., 2012; Subbulakshmi et al., 2011; Darapureddi et al., 2010; N et al., 

2008) however these studies unable to identify source requestor information whether 

originating from web browsers or automated tools. There are a number of studies (Lin 

et al., 2019; Murugesan et al., 2018; Suresh and Sankar Ram, 2018; Singh et al., 2016) 

proposing a similar approach known as IP traceback to trace source IP addresses that 

initiated the attacks. However, it can only be used to detect DDoS at network layers. 

IP traceback is unable to detect HTTP DDoS as the attacks rely on the genuine two 

way TCP connections (Singh et al., 2016). Saleh and Abdul Manaf (2015) tried to 

address the issue of source requestors; however, their study utilized minimal GET 

headers leading to incorrect classifications of GET headers in malicious GET requests. 

Currently, most solutions are focused on using user access patterns to detect HTTP 

DDoS instead of scrutinizing GET headers authenticity and source of GET requests. 



15 

1.3 Problem Statement 

Vulnerabilities that exist at the application layer allow GET headers to be 

manipulated and made to appear genuine. Furthermore, security headers to secure 

client communication are also not able to detect HTTP DDoS. Diverse attack patterns 

making HTTP DDoS attacks look similar to original GET requests are currently being 

missed by current solutions. Recent studies have proposed various solutions to detect 

attacks however these solutions have several drawbacks. One such weakness is poor 

inspection of source traffic whether generated by web browsers or automated tools. 

Meanwhile, minimal inspection of GET headers during GET requests makes it difficult 

to differentiate genuine and forged GET headers produced by HTTP DDoS. 

Furthermore, web server resources are also being overworked trying to process 

legitimate and illegitimate requests due to absence of request query and data inspection 

attached to GET headers. 

1.4 Research Questions 

The following are the research questions that guide the study: 

i) How to improve the structure of detection framework to append new

components with adoption of new attributes in dealing with forged GET

headers and automated tools from HTTP DDoS?

ii) How the increase of GET headers use and adoption of web browsers’ attributes

can improve inspection of the authenticity of GET requests to detect HTTP

DDoS?

iii) How identification of forged GET headers, source requestors and inspection of

relevant GET headers data can improve accurate identification and reduce

misclassifications in handling genuine and forged GET requests from HTTP

DDoS?



16 

1.5 Research Aim 

The aim of this research is to detect HTTP DDoS by adopting web browser and 

GET headers as the detection attributes in enhancing existing detection schemes. 

1.6 Research Objectives 

The research objectives of this study are: 

i) To improve HTTP DDoS detection framework by adoption of new components

and append new attributes in the existing component.

ii) To enhance and develop detection algorithms by adoption of GET headers and

web browser attributes.

iii) To improve true positive rate and true negative rate and decrease false positive

rate and false negative rate.

1.7 Research Scope and Assumption 

In order to achieve the objectives, the scope of the study is restrictive and 

limited to the following conditions: 

i) This research focused on detection of DDoS attacks at the application layer that

are categorized as request flooding and session flooding and will be referred to

as HTTP DDoS throughout this thesis.

ii) The source of the attacks comes from computers and proxies and not from the

compromised machines such as botnets or Internet of Things devices (IoT).

Recent studies used machines such as computers and laptops to simulate HTTP



17 

DDoS rather than using IoT. Furthermore, the available attack scripts to mimic 

the attacks are designed to be executed from machines, public proxies and 

spoofed IP addresses. Since this factor, IoT devices have been excluded from 

this research. 

iii) This research adopted defense strategy known as the victim border.

iv) This research used actual attack scripts to self-generate datasets for

investigation of GET headers employed by HTTP DDoS. The actual attack

scripts are also employed during evaluation.

v) HTTP 1.1 is used as the protocol in this research as it is widely used by web

servers to surf client requests compared to HTTP 2.0 that has not fully

implemented worldwide. Furthermore, attackers are currently using HTTP 1.1

to execute HTTP DDoS.

1.8 Significant of the Research 

HTTP DDoS attacks are difficult to recognize since it has the ability to generate 

fake traffic to mimic authentic traffic. Thus, an enhanced detection scheme is needed 

to recognize the attacks in order to protect web servers. The detection framework and 

the algorithms introduced in this research can be used by any entities as reference to 

improve HTTP DDoS detection in light of various attack strategies employed by 

attackers. The investigation of HTTP DDoS and GET headers vulnerabilities in this 

research can be used by future researchers to further understand attack patterns and 

ways to manipulate GET headers to make GET requests look authentic. The results 

here can be used by others for analysis to reveal the vulnerabilities of current detection 

schemes. The impact of DDoS attacks would inevitably lead to financial and non-

financial loss. This research is expected to provide the way forward in detecting HTTP 

DDoS.  



18 

The research findings are expected to deliver better detection performance to 

recognize HTTP DDoS compared to existing detection schemes. This research 

provides a better method to construct an effective detection scheme. It is hoped that 

the results of the research would benefit both researchers and practitioners working in 

this area. 

1.9 Thesis Outline 

This thesis comprises of six chapters as follows: 

Chapter 1: Highlights important sections of the research such as background of the 

problem, problem statement, the research questions and research objectives, research 

aim, significance of the research, scope and assumptions. The remaining of the thesis 

is structured as follows. 

Chapter 2: Discusses the literature review on HTTP DDoS attacks. It includes a general 

analysis and critical analysis, and the outcomes help this research to plan the direction 

of this research in enhancing detection of HTTP DDoS attacks.  

Chapter 3: Explain the operations used in this research. The operational framework 

comprises of three phases and each phase is designed to be in line with the research 

objectives of this research. Each phase and stages involved in this research are 

discussed to achieve the research objectives. 

Chapter 4: The design of the enhanced detection scheme is explained in this chapter. 

This involves three new detection algorithms and one modified detection algorithm. 

The detection algorithms are comprised of several elements such as detection 

architecture, flowcharts, and programming codes. 

Chapter 5: The enhanced detection scheme is evaluated using the confusion matrix. 

The detection performance for each algorithm is assessed individually by using test 



19 

case scenarios. The test case scenarios are designed based on the investigation results 

in Appendix C. The evaluation of the algorithms is conducted through the Internet 

while comparisons with prior studies are done in the LAN environment. The results 

are compared with past studies using similar test case scenarios and attack scripts used 

by past research. 

Chapter 6: This chapter discusses the achievements of the research, contributions, and 

conclusions. These are followed by the limitations and suggestions for future research. 



169 

REFERENCES 

Aborujilah, A., & Musa, S. (2017). Cloud-Based DDoS HTTP Attack Detection Using 

Covariance Matrix Approach. Journal of Computer Networks and 

Communications, 2017, 1-8. 

Aburada, K., Arikawa, Y., Usuzaki, S., Yamaba, H., Katayama, T., Park, M., & 

Okazaki, N. (2019). Use of Access Characteristics To Distinguish Legitimate 

User Traffic from DDoS Attack Traffic. Artificial Life and Robotics, 24(3), 

318-323.

Aceto, G., & Pescape, A. (2015). Internet Censorship Detection: A Survey. Computer 

Networks, 83, 381-421. 

Adi, E., Baig, Z., & Hingston, P. (2017). Stealthy Denial of Service (DoS) Attack 

Modelling and Detection for HTTP/2 services. Journal of Network and 

Computer Applications, 91, 1-13. 

Almutairi, S., Mahfoudh, S., Almutairi, S., & Alowibdi, J. S. (2020). Hybrid Botnet 

Detection Based on Host and Network Analysis. Journal of Computer 

Networks and Communications, 2020, 1-16. 

Appelt, D., Nguyen, C. D., Panichella, A., & Briand, L. C. (2018). A Machine-

Learning-Driven Evolutionary Approach for Testing Web Application 

Firewalls. IEEE Transactions on Reliability, 67(3), 733-757. 

Bawany, N. Z., Shamsi, J. A., & Salah, K. (2017). DDoS Attack Detection and 

Mitigation Using SDN: Methods, Practices, and Solutions. Arabian Journal 

for Science and Engineering, 42(2), 425-441. 

Behal, S., & Kumar, K. (2016). Trends in Validation of DDoS Research. International 

Conference on Computational Modeling and Security (CMS 2016).  

Behal, S., & Kumar, K. (2017a). Detection of DDoS Attacks and Flash Events Using 

Information Theory Metrics–An Empirical Investigation. Computer 

Communications, 103, 18-28. 

Behal, S., & Kumar, K. (2017b). Detection of DDoS Attacks and Flash Events Using 

Novel Information Theory Metrics. Computer Networks, 116, 96-110. 



170 

Behal, S., Kumar, K., & Sachdeva, M. (2017). Characterizing DDoS Attacks and Flash 

Events: Review, Research Gaps and Future Directions. Computer Science 

Review, 25, 101-114. 

Beitollahi, H., & Deconinck, G. (2012). Analyzing Well-Known Countermeasures 

Against Distributed Denial of Service Attacks. Computer Communications, 

35(11), 1312-1332. 

Beitollahi, H., & Deconinck, G. (2013). ConnectionScore: A Statistical Technique To 

Resist Application-Layer DDoS Attacks. Journal of Ambient Intelligence and 

Humanized Computing, 5(3), 425-442. 

Betarte, G., Pardo, A., & Martinez, R. (2018). Web Application Attacks Detection 

Using Machine Learning Techniques. 17th IEEE International Conference on 

Machine Learning and Applications.  

Bhardwaj, A., Subrahmanyam, G., Avasthi, V., Sastry, H., & Goundar, S. (2016). 

DDoS Attacks, New DDoS Taxonomy and Mitigation Solutions–A Survey. 

International conference on Signal Processing, Communication, Power and 

Embedded System (SCOPES).  

Bhatia, S., Schmidt, D., Mohay, G., & Tickle, A. (2014). A Framework for Generating 

Realistic Traffic for Distributed Denial-of-Service Attacks and Flash Events. 

Computers & Security, 40, 95-107. 

Brar, H. S., & Kumar, G. (2018). Cybercrimes: A Proposed Taxonomy and 

Challenges. Journal of Computer Networks and Communications, 2018, 1-11. 

Bravo, S., & Mauricio, D. (2018). DDoS Attack Detection Mechanism in the 

Application Layer Using User Features. International Conference on 

Information and Computer Technologies (ICICT). 

Calzarossa, M. C., & Massari, L. (2014). Analysis of Header Usage Patterns of HTTP 

Request Messages. IEEE International Conference on High Performance 

Computing and Communications (HPCC),  IEEE 6th International Symposium 

on Cyberspace Safety and Security (CSS) and IEEE 11th International 

Conference on Embedded Software and Systems (ICESS).  

Cheng, J., Li, M., Tang, X., Sheng, V. S., Liu, Y., & Guo, W. (2018a). Flow 

Correlation Degree Optimization Driven Random Forest for Detecting DDoS 

Attacks in Cloud Computing. Security and Communication Networks, 1-14. 



171 

Cheng, J., Zhang, C., Tang, X., Sheng, V. S., Dong, Z., & Li, J. (2018b). Adaptive 

DDoS Attack Detection Method Based on Multiple-Kernel Learning. Security 

and Communication Networks, 1-19. 

Choi, J., Choi, C., Ko, B., & Kim, P. (2014). A Method of DDoS Attack Detection 

Using HTTP Packet Pattern and Rule Engine in Cloud Computing 

Environment. Soft Computing, 18(9), 1697-1703. 

Choi, Y. S., Oh, J. T., Jang, J. S., & Ryou, J. C. (2010). Integrated DDoS Attack 

Defense Infrastructure for Effective Attack Prevention. 2010 2nd International 

Conference on Information Technology Convergence and Services. 

Darapureddi, A., Mohandas, R., & Pais, A. R. (2010). Throttling DDoS Attacks Using 

Discrete Logarithm Problem. International Conference on Security and 

Cryptography (SECRYPT). 

Dhanapal, A., & Nithyanandam, P. (2017). An Effective Mechanism to Regenerate 

HTTP Flooding DDoS attack Using Real Time Data Set. International 

Conference on Intelligent Computing, Instrumentation and Control 

Technologies (ICICICT).  

Dhanapal, A., & Nithyanandam, P. (2019). An OpenStack Based Cloud Testbed 

Framework for Evaluating HTTP Flooding Attacks. Wireless Networks. 

Dick, U., & Scheffer, T. (2016). Learning to Control a Structured Prediction Decoder 

for Detection of HTTP-Layer DDoS Attackers. Machine Learning, 104(2-3), 

385-410.

Dolnak, I. (2017). Implementation of Referrer Policy in Order To Control HTTP 

Referer Header Privacy. International Conference on Emerging eLearning 

Technologies and Applications (ICETA).  

Dolnak, I., & Litvik, J. (2017). Introduction to HTTP Security Headers And 

Implementation of HTTP Strict Transport Security (HSTS) Header for HTTPS 

Enforcing. 15th International Conference on Emerging eLearning 

Technologies and Applications (ICETA). 

Dong, Y., Zhang, Y., Ma, H., Wu, Q., Liu, Q., Wang, K., & Wang, W. (2018). An 

Adaptive System for Detecting Malicious Queries in Web Attacks. Science 

China Information Sciences, 61(3). 

Eid, M. S. A., & Aida, H. (2017). Trustworthy DDoS Defense: Design, Proof of 

Concept Implementation and Testing. IEICE Transactions on Information and 

Systems, E100.D(8), 1738-1750. 



172 

Fielding, R., & Reschke, J. (2014a). Hypertext transfer protocol (HTTP/1.1): 

Semantics and content (2070-1721). Retrieved from 

https://tools.ietf.org/html/rfc7231 

Fielding, R. T., & Reschke, J. F. (2014b). Message Syntax and Routing. IETF RFC 

7230, June. 

Gou, G., Bai, Q., Xiong, G., & Li, Z. (2017). Discovering Abnormal Behaviors Via 

HTTP Header Fields Measurement. Concurrency and Computation: Practice 

and Experience, 29(20), e3926. 

Gu, Y., Wang, Y., Yang, Z., Xiong, F., & Gao, Y. (2017). Multiple-Features-Based 

Semisupervised Clustering DDoS Detection Method. Mathematical Problems 

in Engineering, 2017, 1-10. 

Gulisano, V., Callau-Zori, M., Fu, Z., Jiménez-Peris, R., Papatriantafilou, M., & 

Patiño-Martínez, M. (2015). STONE: A Streaming DDoS Defense 

Framework. Expert Systems with Applications, 42(24), 9620-9633. 

Hameed, S., & Ali, U. (2018). HADEC: Hadoop-Based Live DDoS Detection 

Framework. EURASIP Journal on Information Security, 2018(1), 2-19. 

Hoque, N., Bhattacharyya, D. K., & Kalita, J. K. (2015). Botnet in DDoS Attacks: 

Trends and Challenges. IEEE Communications Surveys & Tutorials, 17(4), 

2242-2270. 

Hosseini, S., & Azizi, M. (2019). The Hybrid Technique for DDoS Detection with 

Supervised Learning Algorithms. Computer Networks, 158, 35-45. 

Idhammad, M., Afdel, K., & Belouch, M. (2018). Detection System of HTTP DDoS 

Attacks in a Cloud Environment Based on Information Theoretic Entropy and 

Random Forest. Security and Communication Networks, 1-13. 

Idris, I., Fabian, O. B., M. Abdulhamid, S. i., Olalere, M., & Meshach, B. (2017). 

Distributed Denial of Service Detection using Multi Layered Feed Forward 

Artificial Neural Network. International Journal of Computer Network and 

Information Security, 9(12), 29-35. 

Iyengar, N. C. S. N., & Ganapathy, G. (2015). An Effective Layered Load Balance 

Defensive Mechanism against DDoS Attacks in Cloud Computing 

Environment. International Journal of Security and Its Applications, 9(7), 17-

36.



173 

Jazi, H. H., Gonzalez, H., Stakhanova, N., & Ghorbani, A. A. (2017). Detecting HTTP-

Based Application Layer DoS Attacks on Web Servers in the Presence of 

Sampling. Computer Networks, 121, 25-36. 

Jia, B., Huang, X., Liu, R., & Ma, Y. (2017). A DDoS Attack Detection Method Based 

on Hybrid Heterogeneous Multiclassifier Ensemble Learning. Journal of 

Electrical and Computer Engineering, 1-9. 

Jin, W., Min, Z., Xiaolong, Y., Keping, L., & Jie, X. (2015). HTTP-sCAN: Detecting 

HTTP-Flooding Attack by Modeling Multi-Features of Web Browsing 

Behavior from Noisy Web-Logs. China Communications, 12(2), 118-128. 

Johnson Singh, K., Thongam, K., & De, T. (2016). Entropy-Based Application Layer 

DDoS Attack Detection Using Artificial Neural Networks. Entropy, 18(10), 2-

17. 

Kamikubo, R., & Saito, T. (2017). Browser-Based DDoS Attacks Without Javascript. 

International Journal of Advanced Computer Science and Applications, 8(12), 

276-280.

Karoui, K. (2016). Security Novel Risk Assessment Framework Based on Reversible 

Metrics: A Case Study of DDoS Attacks on an E-Commerce Web Server. 

International Journal of Network Management, 26(6), 553-578. 

Khan, J., & Lee, S. (2019). Implicit User Trust Modeling Based on User Attributes 

and Behavior in Online Social Networks. IEEE Access, 7, 142826-142842. 

Kumar, V., & Kumar, K. (2016a). Classification of DDoS Attack Tools and Its 

Handling Techniques and Strategy At Application Layer. International 

Conference on Advances in Computing, Communication, & Automation 

(ICACCA) (Fall). 

Kumar, V., & Kumar, K. (2016b). Classification of DDoS Attack Tools and Its 

Handling Techniques and Strategy At Application Layer. 2nd International 

Conference on Advances in Computing, Communication, & Automation 

(ICACCA)(Fall) (pp. 1-6). IEEE. 

Lavrenovs, A., & Melon, F. J. R. (2018). HTTP Security Headers Analysis of Top One 

Million Websites. 10th International Conference on Cyber Conflict (CyCon). 

Liao, Q., Li, H., Kang, S., & Liu, C. (2015). Application Layer DDoS Attack Detection 

Using Cluster with Label Based on Sparse Vector Decomposition and Rhythm 

Matching. Security and Communication Networks, 8(17), 3111-3120. 



 

174 
 

Lin, H.-C., Wang, P., & Lin, W.-H. (2019). Implementation of a PSO-Based Security 

Defense Mechanism for Tracing the Sources of DDoS Attacks. Computers, 

8(4), 88. 

Liu, C., Yang, J., & Wu, J. (2020). Web Intrusion Detection System Combined with 

Feature Analysis and SVM Optimization. EURASIP Journal on Wireless 

Communications and Networking(1). 

Ludin, S., & Garza, J. (2017). Learning HTTP/2: A Practical Guide for Beginners: 

O'Reilly Media, Inc. 

Masdari, M., & Jalali, M. (2016). A Survey and Taxonomy of DoS Attacks in Cloud 

Computing. Security and Communication Networks, 9(16), 3724-3751. 

McGregory, S. (2013). Preparing for The Next DDoS Attack. Network Security, 

2013(5), 5-6. 

Meng, B., Andi, W., Jian, X., & Fucai, Z. (2017). DDOS Attack Detection System 

Based on Analysis of Users' Behaviors for Application Layer. International 

Conference on Computational Science and Engineering (CSE) and IEEE 

International Conference on Embedded and Ubiquitous Computing (EUC).  

Mirvaziri, H. (2017). A New Method to Reduce the Effects of HTTP-Get Flood 

Attack. Future Computing and Informatics Journal, 2(2), 87-93. 

Moradi Vartouni, A., Teshnehlab, M., & Sedighian Kashi, S. (2019). Leveraging Deep 

Neural Networks for Anomaly-Based Web Application Firewall. IET 

Information Security, 13(4), 352-361. 

Munivara Prasad, K., Rama Mohan Reddy, A., & Venugopal Rao, K. (2017). BIFAD: 

Bio-Inspired Anomaly Based HTTP-Flood Attack Detection. Wireless 

Personal Communications, 97(1), 281-308. 

Murugesan, V., Selvaraj, M. S., & Yang, M.-H. (2018). HPSIPT: A High-Precision 

Single-Packet IP Traceback Scheme. Computer Networks, 143, 275-288. 

Myint Oo, M., Kamolphiwong, S., Kamolphiwong, T., & Vasupongayya, S. (2019). 

Advanced Support Vector Machine- (ASVM-) Based Detection for Distributed 

Denial of Service (DDoS) Attack on Software Defined Networking (SDN). 

Journal of Computer Networks and Communications, 1-12. 

N, V., V, D. C., & D, S. (2008). An Effective Defense Against Distributed Denial of 

Service in GRID. International Conference on Emerging Trends in 

Engineering and Technology.  



175 

Najafabadi, M. M., Khoshgoftaar, T. M., Calvert, C., & Kemp, C. (2017). User 

Behavior Anomaly Detection for Application Layer DDoS Attacks. 

International Conference on Information Reuse and Integration (IRI).  

Nam, S. Y., & Djuraev, S. (2014). Defending HTTP Web Servers Against DDoS 

Attacks Through Busy Period-Based Attack Flow Detection. KSII 

Transactions on Internet and Information Systems, 8(7), 2512-2531. 

Ni, T., Gu, X., Wang, H., & Li, Y. (2013). Real-Time Detection of Application-Layer 

DDoS Attack Using Time Series Analysis. Journal of Control Science and 

Engineering, 1-6. 

Niakanlahiji, A., Chu, B.-T., & Al-Shaer, E. (2018). PhishMon: A Machine Learning 

Framework for Detecting Phishing Webpages. International Conference on 

Intelligence and Security Informatics (ISI). 

Nithyanandam, P., & Dhanapal, A. (2019). The Slow HTTP Distributed Denial of 

Service Attack Detection in Cloud. Scalable Computing: Practice and 

Experience, 20(2), 285-298. 

Niu, W., Li, T., Zhang, X., Hu, T., Jiang, T., & Wu, H. (2019). Using XGBoost to 

Discover Infected Hosts Based on HTTP Traffic. Security and Communication 

Networks, 1-11. 

Osanaiye, O., Choo, K.-K. R., & Dlodlo, M. (2016). Distributed Denial of Service 

(DDoS) Resilience in Cloud: Review and Conceptual Cloud DDoS Mitigation 

Framework. Journal of Network and Computer Applications, 67, 147-165. 

Pandiaraja, P., & Manikandan, J. (2015). Web Proxy Based Detection and Protection 

Mechanisms Against Client Based HTTP Attacks. International Conference on 

Circuits, Power and Computing Technologies  

Parziale, L., Liu, W., Matthews, C., Rosselot, N., Davis, C., Forrester, J., & Britt, D. 

T. (2006). TCP/IP Tutorial and Technical Overview: IBM Redbooks.

Petersson, A., & Nilsson, M. (2014). Forwarded HTTP Extension. 

Prasad, K. M., Reddy, A. R. M., & Rao, K. V. (2017). BARTD: Bio-Inspired Anomaly 

Based Real Time Detection of Under Rated App-DDoS Attack on Web. 

Journal of King Saud University - Computer and Information Sciences, 32(1), 

73-87.

Procopiou, A., Komninos, N., & Douligeris, C. (2019). ForChaos: Real Time 

Application DDoS Detection Using Forecasting and Chaos Theory in Smart 

Home IoT Network. Wireless Communications and Mobile Computing, 1-14. 



 

176 
 

Rahman, R. u., Tomar, D. S., & A.V, J. (2017). Application Layer DDOS Attack 

Detection Using Hybrid Machine Learning Approach. International Journal of 

Security and Its Applications, 11(4), 85-96. 

Rai, A., & Challa, R. K. (2016). Survey on Recent DDoS Mitigation Techniques and 

Comparative Analysis. Second International Conference on Computational 

Intelligence & Communication Technology.  

Ramanauskaite, S., Goranin, N., Cenys, A., & Juknius, J. (2015). Modelling Influence 

of Botnet Features on Effectiveness of DDoS Attacks. Security and 

Communication Networks, 8(12), 2090-2101. 

Rao, U. H., & Nayak, U. (2014). Understanding Networks and Network Security. In 

U. H. Rao & U. Nayak (Eds.), The InfoSec Handbook: An Introduction to 

Information Security (pp. 187-204). Berkeley, CA: Apress. 

Rashidi, B., Fung, C., & Bertino, E. (2017). A Collaborative DDoS Defence 

Framework using Network Function Virtualization. IEEE Transactions on 

Information Forensics and Security, 12(10), 2483-2497. 

Reid, F. (2004). 4 - HTTP: Communicating with Web Servers. In F. Reid (Ed.), 

Network programming in .NET (pp. 87-130). Burlington: Digital Press. 

Saleh, M. A., & Abdul Manaf, A. (2015). A Novel Protective Framework for Defeating 

HTTP-Based Denial of Service and Distributed Denial of Service Attacks. 

Scientific World Journal, 2-19. 

Shah, M., Khattak, S., Farooq, M., Jan, S., Qureshi, M., Jan, N., & Ahmed, S. (2019). 

A Secured and Enhanced Mitigation Framework for DDoS Attacks. Journal of 

Mechanics of Continua and Mathematical Sciences, 14(6), 985-1004. 

Shameli-Sendi, A., Pourzandi, M., Fekih-Ahmed, M., & Cheriet, M. (2015). 

Taxonomy of Distributed Denial of Service mitigation approaches for cloud 

computing. Journal of Network and Computer Applications, 58, 165-179. 

Sharma, A., & Bhasin, A. (2018). Critical Investigation of Denial of Service and 

Distributed Denial of Service Models and Tools. International Conference on 

Advances in Computing, Communication Control and Networking 

(ICACCCN). 

Shen, Y., Yang, W., & Huang, L. (2018). Concealed in Web Surfing: Behavior-Based 

Covert Channels in HTTP. Journal of Network and Computer Applications, 

101, 83-95. 



177 

Shiaeles, S. N., & Papadaki, M. (2014). FHSD: An Improved IP Spoof Detection 

Method for Web DDoS Attacks. The Computer Journal, 58(4), 892-903. 

Singh, B., Kumar, K., & Bhandari, A. (2015). Simulation Study of Application Layer 

DDoS Attack. International Conference on Green Computing and Internet of 

Things (ICGCIoT). 

Singh, K., Dhindsa, K. S., & Bhushan, B. (2017a). Distributed Defense: An Edge over 

Centralized Defense against DDos Attacks. International Journal of Computer 

Network & Information Security, 9(3), 36-44. 

Singh, K., Singh, P., & Kumar, K. (2016). A Systematic Review of IP Traceback 

Schemes for Denial of Service Attacks. Computers & Security, 56, 111-139. 

Singh, K., Singh, P., & Kumar, K. (2017b). Application layer HTTP-GET flood DDoS 

attacks: Research landscape and challenges. Computers & Security, 65, 344-

372. 

Singh, K., Singh, P., & Kumar, K. (2018a). Fuzzy-Based User Behavior 

Characterization to Detect HTTP-GET Flood Attacks. International Journal of 

Intelligent Systems and Applications, 10(4), 29-40. 

Singh, K., Singh, P., & Kumar, K. (2018b). User Behavior Analytics-Based 

Classification of Application Layer HTTP-GET Flood Attacks. Journal of 

Network and Computer Applications, 112, 97-114. 

Singh, K. J., & De, T. (2017a). Analysis of Application Layer DDoS Attack Detection 

Parameters Using Statistical Classifiers. Internetworking Indonesia, 9(2), 23-

31. 

Singh, K. J., & De, T. (2017b). MLP-GA Based Algorithm to Detect Application Layer 

DDoS Attack. Journal of Information Security and Applications, 36, 145-153. 

Singh, S. R., & Kumar, D. S. (2016). An Overview of World Wide Web Protocol 

(Hypertext Transfer Protocol and Hypertext Transfer Protocol Secure). 

International Journal of Advanced Research in Computer Science and 

Software Engineering, 6(5), 396-399. 

Sree, T. R., & Bhanu, S. M. S. (2016). HADM: Detection of HTTP GET Flooding 

Attacks by Using Analytical Hierarchical Process and Dempster-Shafer 

Theory with MapReduce. Security and Communication Networks, 9(17), 4341-

4357. 



178 

Sree, T. R., & Bhanu, S. M. S. (2019). Detection of HTTP Flooding Attacks in Cloud 

Using Fuzzy Bat Clustering. Neural Computing and Applications, 32(13), 

9603-9619. 

Sree, T. R., & Saira Bhanu, S. M. (2018). Investigation of Application Layer DDoS 

Attacks Using Clustering Techniques. International Journal of Wireless and 

Microwave Technologies, 8(3), 1-13. 

Sreeram, I., & Vuppala, V. P. K. (2017). HTTP Flood Attack Detection in Application 

Layer Using Machine Learning Metrics and Bio Inspired Bat Algorithm. 

Applied Computing and Informatics. 

Subbulakshmi, T., Guru, I. A., & Shalinie, S. M. (2011). Attack Source Identification 

at Router Level in Real Time Using Marking Algorithm Deployed in 

Programmable Routers. International Conference on Recent Trends in 

Information Technology (ICRTIT). 

Subramanian, K., Gunasekaran, P., & Selvaraj, M. (2015). Two Layer Defending 

Mechanism against DDoS Attacks. International Arab Journal of Information 

Technology (IAJIT), 12(4), 317-324. 

Suresh, S., & Sankar Ram, N. (2018). Feasible DDoS Attack Source Traceback 

Scheme by Deterministic Multiple Packet Marking Mechanism. The Journal 

of Supercomputing, 76(6), 4232-4246. 

Suroto, S. (2017). A Review of Defense Against Slow HTTP Attack. JOIV: 

International Journal on Informatics Visualization, 1(4), 127-134. 

Tekerek, A., & Bay, O. F. (2019). Design and Implementation of an Artificial 

Intelligence-Based Web Application Firewall Model. Neural Network World, 

29(4), 189-206. 

Tian, Z., Luo, C., Qiu, J., Du, X., & Guizani, M. (2020). A Distributed Deep Learning 

System for Web Attack Detection on Edge Devices. IEEE Transactions on 

Industrial Informatics, 16(3), 1963-1971. 

Tripathi, N., & Hubballi, N. (2018). Slow Rate Denial of Service Attacks Against 

HTTP/2 and Detection. Computers & Security, 72, 255-272. 

Wall, D. (2004). Chapter 3 - HTTP in PHP. In D. Wall (Ed.), Multi-Tier Application 

Programming with PHP (pp. 21-43). San Francisco: Morgan Kaufmann. 

Wang, B., Zheng, Y., Lou, W., & Hou, Y. T. (2015). DDoS Attack Protection in The 

Era of Cloud Computing and Software-Defined Networking. Computer 

Networks, 81, 308-319. 



179 

Wang, F., Huang, L., Miao, H., & Tian, M. (2014a). A Novel Distributed Covert 

Channel in HTTP. Security and Communication Networks, 7(6), 1031-1041. 

Wang, F., Wang, X., Su, J., & Xiao, B. (2012). VicSifter: A Collaborative DDoS 

Detection System with Lightweight Victim Identification. International 

Conference on Trust, Security and Privacy in Computing and 

Communications.  

Wang, J., Yang, X., Zhang, M., Long, K., & Xu, J. (2014b). HTTP-SOLDIER: An 

HTTP-Flooding Attack Detection Scheme with the Large Deviation Principle. 

Science China Information Sciences, 57(10), 1-15. 

Wang, Y., Liu, L., Si, C., & Sun, B. (2017). A Novel Approach for Countering 

Application Layer DDoS Attacks. IEEE 2nd Advanced Information 

Technology, Electronic and Automation Control Conference (IAEAC). 

Wong, C. (2000). Http Pocket Reference: Hypertext Transfer Protocol: O'Reilly 

Media, Inc. 

Xiao, Y., Shi, J., Zheng, W., Wang, H., & Hsu, C.-H. (2018). Enhancing Collaborative 

Filtering by User-User Covariance Matrix. Mathematical Problems in 

Engineering, 2018, 9740402. 

Yadav, S., & Selvakumar, S. (2015). Detection of Application Layer DDoS Attack by 

Modeling User Behavior Using Logistic Regression. 4th International 

Conference on Reliability, Infocom Technologies and Optimization (ICRITO) 

(Trends and Future Directions). 

Yadav, S., & Subramanian, S. (2016). Detection of Application Layer DDoS attack by 

feature learning using Stacked AutoEncoder. International Conference on 

Computational Techniques in Information and Communication Technologies 

(ICCTICT). 

Yang, L., Zhang, T., Song, J., Wang, J. S., & Chen, P. (2012). Defense of DDoS Attack 

for Cloud Computing. International Conference on Computer Science and 

Automation Engineering (CSAE). 

Ye, J., Cheng, X., Zhu, J., Feng, L., & Song, L. (2018). A DDoS Attack Detection 

Method Based on SVM in Software Defined Network. Security and 

Communication Networks, 1-8. 

Yevsieieva, O., & Helalat, S. M. (2017). Analysis of The Impact of the Slow HTTP 

DOS and DDOS Attacks on The Cloud Environment. 4th International 



180 

Scientific-Practical Conference Problems of Infocommunications. Science and 

Technology (PIC S&T). 

Yi, X., & Shun-Zheng, Y. (2009). Monitoring the Application-Layer DDoS Attacks 

for Popular Websites. IEEE/ACM Transactions on Networking, 17(1), 15-25. 

Yuan, X., Li, C., & Li, X. (2017). DeepDefense: Identifying DDoS Attack Via Deep 

Learning. IEEE International Conference on Smart Computing 

(SMARTCOMP). 

Zargar, S. T., Joshi, J., & Tipper, D. (2013). A Survey of Defense Mechanisms Against 

Distributed Denial of Service (DDoS) Flooding Attacks. IEEE 

Communications Surveys & Tutorials, 15(4), 2046-2069. 

Zeb, K., Baig, O., & Asif, M. K. (2015). DDoS Attacks and Countermeasures in 

Cyberspace. 2nd World Symposium on Web Applications and Networking 

(WSWAN). 

Zhang, X., Zhang, Y., Altaf, R., & Feng, X. (2018). A Multi-agent System-based 

Method of Detecting DDoS Attacks. International Journal of Computer 

Network and Information Security, 10(2), 53-64. 

Zhang, Y., Mekky, H., Zhang, Z. L., Torres, R., Lee, S. J., Tongaonkar, A., & Mellia, 

M. (2015). Detecting Malicious Activities With User‐Agent‐Based Profiles.

International Journal of Network Management, 25(5), 306-319. 

Zhou, W., Jia, W., Wen, S., Xiang, Y., & Zhou, W. (2014). Detection and Defense of 

Application-Layer DDoS Attacks in Backbone Web Traffic. Future 

Generation Computer Systems, 38, 36-46. 

Ziyad R. Al Ashhab, Mohammed Anbar, Manmeet Mahinderjit Singh, Kamal Alieyan, 

& Ghazaleh, W. I. A. (2019). Detection of HTTP Flooding DDoS Attack using 

Hadoop with MapReduce : A Survey. International Journal of Advanced 

Trends in Computer Science and Engineering, 8, 1-7. 



181 

APPENDIX A LIST OF PUBLICATIONS 

Journal with Impact Factor 

1) Jaafar, A. G., Ismail, S. A., Abdullah, M. S., Kama, N., Azmi, A., & Yusop,

O. M. (2020). Recent Analysis of Forged Request Headers Constituted by

HTTP DDoS. Sensors (Basel), 20(14). doi:10.3390/s20143820. 

(Q1, IF: 3.275) 

Indexed Journal 

1) Ghafar A. Jaafar, Shahidan M. Abdullah, & Adli, S. (2019). Review of Recent

Detection Methods for HTTP DDoS Attack. Journal of Computer Networks

and Communications, 2019, 1-10. doi:10.1155/2019/1283472.

(Indexed by ISI).

2) Ghafar A. Jaafar, Abdullah, S. M., & Adli, S. (2019). A Review of Technique to

Self-Generate DDoS Dataset. International Journal of Advanced Trends in

Computer Science and Engineering, 8(4). doi:10.30534/ijatcse/2019/88842019.

(Indexed by SCOPUS).

3) Ghafar A. Jaafar, Shahidan M. Abdullah, & Adli, S. (2019). Enhanced Detection

Algorithms to Detect HTTP DDoS. International Journal of Advanced Trends in

Computer Science and Engineering, 8(4), 1609-1520.

doi:10.30534/ijatcse/2019/86842019. (Indexed by SCOPUS).



183 

APPENDIX B CONFIGURATION AND CONNECTIVITY TEST 

B.1 Firewall Configuration 

Formation of lab experiment requires the firewall to be adopted in order to 

mimic the real environment of the network and the attack. Thus, the firewall requires 

a proper configuration to ensure that the device is able to operate as planned. The 

firewall is configured to have three segments to segregate traffic between client and 

server. The network segmentation was used in this research to simulate source of 

malicious traffics which comes from the user segment. Furthermore, in a real 

environment, execution of attack comes from equal segments within the server that is 

perceived to be impossible to happen as the segment is restricted with several rules to 

secure the segment. Aside from that, launching the attack with the same segment will 

result in the connection to be blocked immediately as the source is easy to trace. Due 

to this reason, this research focused on attack which comes from different server 

segments. The IP address utilize in this research comes from class C network with 

fourteen IP address available of each network segment. Table B.1 shows the present 

network segment that was configured at the firewall. 

Table B.1  Present Network Segment Configured at Firewall 

The lab environment required HTTP and DNS protocol to allow 

communication between the client and the server. Besides that, connection between 

the client and the server requires several tests to ensure that a connection can be 

established successfully. Hence, ICMP and Telnet protocol are required to be enabled. 

Table B.2 presents the required protocol. 

Network Interface Name Network Segment Gateway IPs 

Trusted_Zone_1 192.168.2.0/28 192.168.2.1 

Trusted_Zone_2 192.168.3.0/28 192.168.3.1 

DMZ_Zone 192.168.4.0/28 192.168.4.1 



184 

Table B.2 Network Protocol 

Protocol Details 

HTTP Allow client to browse the content of the web server. 

DNS Allow client to browse the content of the web server by using 

URL. 

ICMP To allow ping connection among machines in network, 

specifically used for connection testing. 

Telnet To test network port 

B.2 Firewall Routing Table 

The network segmentation adopted in this research requires network routing to 

allow IP addresses from different classes to communicate to one another. This research 

utilized the static network route which requires the network range to be defined 

manually. Precise configuration of network routing in experimental lab for this 

research is highly necessary to prevent communication failure between network 

segments. To ensure communication between different segments in the internal 

network can be established successfully, the routing gateway was set to all networks 

(0.0.0.0). All networks allow all existing network segment to communicate to one 

another. The routing gateway must be defined with an IP address except for 0.0.0.0 in 

which the internal network is required to refer to outside resources such as the Internet 

access. Table B.3 illustrates the routing table required by the firewall. 

Table B.3 Firewall Routing Table 

Network Gateway 

192.168.2.0/24 0.0.0.0 

192.168.3.0/24 0.0.0.0 

192.168.4.0/24 0.0.0.0 



185 

B.3 Firewall Security Policy 

The formation of firewall security policy required vigilant steps as invalid 

settings will lead to connection failure regardless whether the routing table and DHCP 

are correctly configured. The existence of the firewall security policy is to provide 

action permit or denial when the network traffic is traveling to another segment. The 

firewall security policy was built based on several components such as source and 

destination interface, source and destination network and network protocol to allow 

further action such as to allow or to block. Table B.4 indicates the security policy 

required for the lab experiment. 

Table B.4 Firewall Security Policy 

No. Connection Type: Http Request 

1. Source Interface Trusted_Zone_1 

Source Network 192.168.2.0/28 

Destination Interface Name DMZ_Zone 

Destination Network 192.168.4.0/28 

Service HTTP, DNS, ICMP, Telnet 

Connection Type: Http Request 

2. Source Interface Trusted_Zone_2 

Source Network 192.168.3.0/28 

Destination Interface Name DMZ_Zone 

Destination Network 192.168.4.0/28 

Service HTTP, DNS, ICMP, Telnet 

Connection Type: Web Server 

3. Source Interface DMZ_Zone 

Source Network 192.168.4.0/28 

Destination Interface Name Trusted_Zone_1, Trusted_Zone_2 

Destination Network 192.168.2.0/28, 192.168.3.0/28 

Service HTTP, DNS, ICMP, Telnet 



186 

B.4 DHCP Configuration 

A distribution of IP address is divided into two types known as static and 

dynamic. The static IP address requires a network administrator to key in the IP 

address manually into a machine. In contrast, for dynamic IP address, the IP address 

will automatically be distributed by DHCP. The configuration of lab environment 

utilized a firewall which acted as DHCP to ease the IP address distribution based on 

the scope defined. The DHCP distributes the Internet Protocol Version Four (IPV4) 

which comes from class C network where the first octet of this IP begins with 192.x.x.x 

and the size of the subnet used /28 which will allocate fourteen IP addresses.  

The DHCP will distribute IP addresses to Trusted_Zone_1 and 

Trusted_Zone_2 as these are the segments that belonged to the client. The DMZ_Zone 

also utilized IP address distribute by DHCP this to ease the configuration of static IP 

address which need to manually be configured. Commonly in the real production 

network environment the use of IP Address from DHCP supposed to be prevented as 

it will cause accessibility problems when the DHCP starts renewing the distributed IP 

address. However, for the purposed of this research usage of DHCP IP address for web 

server is applicable to speed up the process of web server obtaining IP address. Table 

B.5 demonstrates the scope of IP addresses utilized by DHCP.

Table B.5 DHCP Scope 

Scope Gateway 

192.168.2.0/28 192.168.2.1 

192.168.3.0/28 192.168.3.1 

192.168.4.0/28 192.168.4.1 



187 

B.5 Web Server Configuration 

A web server running on Windows Server 2016 and operating with Microsoft 

Internet Information Service (IIS) were used in this research to handle HTTP protocol 

request and response. A HTML web was developed using HTML programming 

language to become the target for this experiment. The web server also acts as the 

Domain Name Resolution (DNS) to allow clients to contact a web server by using 

Uniform Resource Locator (URL). The use of DNS will facilitate users to remember 

the URL of the online resources which used HTTP protocol to operate like online 

shopping, web portal and content management. A user will face difficulties without 

DNS implementation as a user needs to remember an IP address of the web server to 

browse the contents of the online resources. Table B.6 illustrates the web server 

configuration. 

Table B.6 Web Server Configuration 

Web Services Name Internet Information Service (IIS) 

DNS Microsoft DNS Server 

Operating System Windows Server 

Connection Type HTTP 

Port 80 

Programming Language HTML 

URL http://lab.com.my 

Memory 8 Gb 

Processor Speed and Cores 3.7 Gbps, 4 Cores 

Network Segment DMZ_Zone 



188 

B.6 Client Configuration 

This research required four clients to be running under a virtual machine and 

physical environment that are segregated into normal and attack machines. The 

machines entail the IP address in order to establish a connection to a web server. In 

order to ease the configuration of manually setting the IP addresses, Dynamic Host 

Configuration Protocol (DHCP) is used. DHCP is an automatic IP address distribution 

that is used to automatically release IP address to a client. A client web browser will 

install ready-made tools to simulate legitimate web browser which repeatedly sends 

GET requests against a web server. Table B.7 shows the client configuration for 

experiment settings used in this research. 

Table B.7 Client Configuration for Experiment Settings 

No. Operating 

System 

Network Segment IP 

Address 

Web 

Browser 

1. Windows 10 

Trusted_Zone_1 

DHCP Google 

Chrome 2. Windows 10 

3. Ubuntu 16.04 

4. Windows 10 

Trusted_Zone_2 DHCP 

5. Windows 10 

B.7 Connectivity Test 

The previous section explains the configuration conducted at client, firewall 

and server. Therefore, to ensure all earlier settings are performed correctly, 

connectivity tests need to be implemented. There were several commands involved in 

executing the connectivity test and will be explained in detail in subsequent sub 

section. Apart from that, the connectivity test must be executed in sequence to ease 

troubleshooting activity to identify the root cause of the failure when facing 

connectivity issue. Each test must complete with a no error as failure to resolve 

existing error will result in the failure to execute the next connectivity test.  



189 

B.8 Connectivity Test – DHCP 

Connection test for DHCP was done to verify whether the machines was able 

to acquire an IP address from the DHCP server. The test requires several commands 

based on the platform utilized. Table B.8 presents the DHCP test command. 

Table B.8 DHCP Test Commands 

Commands Platform Details 

ipconfig /release Windows Release the current IP address held by 

client sudo dhclient -r eth0 Ubuntu 

ipconfig /renew Windows Request IP address to DHCP 

sudo dhclient eth0 Ubuntu 

ipconfig /all Windows Inspection of whether client receive IP 

address from DHCP or vice versa ifconfig Ubuntu 

The result obtained from the command was as expected and the machine was 

able to gain the IP address automatically from DHCP. The expected result gathered 

indicate that DHCP configuration was done correctly. Figure B.1 illustrates the results 

from the machine that used network Trusted_Zone_1 followed by Figure B.2 which 

presents the result from the machine which utilized network Trusted_Zone_2 while 

Figure B.3 shows the result from the web server that adopted network DMZ_Zone. 

Figure B.1 DHCP Test from Network Trusted_Zone_1 

Figure B.2 DHCP Test from Network Trusted_Zone_2 



 

190 
 

 

 

 

 

Figure B.3 DHCP Test from Network DMZ_Zone 

B.9 Connectivity Test - Ping  

The connectivity test from client to a web server was performed by using ping 

command which used the ICMP protocol to operate. The ping command is highly 

useful to test whether the configuration that has been done at the firewall and client is 

correct such as security policy and routing table. The connectivity test will not succeed 

if the configuration was done incorrectly. The results of this connectivity test indicate 

that the client machine had no issues to establish connection against a web server. The 

command to evaluate the connectivity is ping lab.com.my. Figure B.4 shows results of 

the ping from machine that was assigned to adopted Trusted_Zone_1 followed by 

results obtained from the ping command from machine utilize Trusted_zone_2 in 

Figure B.5.  

 

 

 

 

 

 

Figure B.4 Connection test from network Trusted_Zone_1 

 

 



191 

Figure B.5 Connection Test from Network Trusted_Zone_2 

B.10 Connectivity Test – Telnet

A web server utilizes specific port to surf client request such as HTTP. The 

connectivity test in this section was conducted to verify the port number configured at 

the web server and to check whether the firewall is open and ready to accept requests 

from clients. To perform this test, telnet command was employed. The telnet was 

issued from two machines which are located at different network segments. Results 

from telnet provide an output to determine whether the HTTP port is closed at the 

firewall or if the web server is configured incorrectly to accept GET requests which 

used port 80 to operate. Results from this test show that all machines from a different 

subnet were successfully connected to a web server by using port 80 and produce same 

outcomes. The telnet command was executed by using the telnet lab.com.my 80 

formats. Figure B.6 indicates the telnet results.  

Figure B.6 Telnet Result from Network Trusted_Zone_1 and Trusted_Zone_2 



192 

B.11 Connectivity Test - Domain Name System (DNS)

A client will use URL to browse contents of a web server and the operation 

requires DNS to translate the URL into an IP address. As explained in Section 4.4.2, 

this research employs the web server which acted as a DNS. To ensure that the 

configuration was correct, a command nslookup lab.com.my is required to be utilized 

to verify the translation process. The output indicates that the DNS worked as expected 

and the client was able to browse online contents through URL. Figure B.7 presents 

the result from the machine utilized network Trusted_Zone_1 followed by Figure B.8 

illustrates the result from the machine adopted network Trusted_Zone_2. 

Figure B.7 Nslookup Result from Network Trusted_Zone_1 

Figure B.8 Nslookup Result from Network Trusted_Zone_2 



 

193 
 

APPENDIX C INVESTIGATION 

C.1 Research Dataset  

GET headers investigation conducted by using eight self-generated datasets 

created from actual attack scripts. The usage of self-generate dataset due to dataset for 

HTTP DDoS is not publicly available as previously highlighted in Chapter 2 (Section 

2.13.1). Chapter 2 (Section 2.2) explained that the scale of DDoS attack can be 

executed in the internal and external network. Hence to acquire the attack patterns 

executed from both networks self-generate dataset in this research were segregated 

into two categories: internal and external dataset. Both types of datasets help to 

disclose the attack pattern produced by HTTP DDoS.  Wang et al. (2015) explained 

that in order to launch an attack, a cyber intruder can reside in a private network, public 

network or both.  

The first type of dataset was generated from a local network and requires 

several hardware and software to be used to form the architecture. The second type of 

dataset was executed using the Internet and a web server which was located at the 

hosting provider. Attack execution for internal network utilizes address 

http://lab.com.my and use address http://42.1.63.189 for attack launch from outside. 

The collected datasets were labeled as DTS1, DTS2, DTS3, DTS4, DTS5, DTS6, 

DTS7 and DTS8 which consist of dataset for HTTP DDoS attack which occurred at 

both local and external networks.  

The self-generate dataset require actual attack scripts to execute real attack. 

The attack scripts utilize in this research is available on Internet and publicly known 

as HOIC, Golden Eye, Chihulk, BlackHorizon, Wreckuests, Hibernet and UFONet. 

All the attack scripts used in this research were labeled as A1.py, A2.py, A3.py, A4.py, 

A5.py, A6.py, A7.py and A8.py. The usage of  the attack script have been mentioned 

and employed in many previous studies (Dhanapal and Nithyanandam, 2019; Bravo 

and Mauricio, 2018; Idhammad et al., 2018; Jazi et al., 2017; Rahman et al., 2017; 

Johnson Singh et al., 2016; Sree and Bhanu, 2016; Shiaeles and Papadaki, 2014). 



194 

The HTTP DDoS has generated plenty of GET requests. Due to this, the attack 

duration to generate the dataset at the local network was set to ten minutes for attack 

scripts A1.py, A2.py and A3.py.  Any execution longer than ten minutes will result in 

plenty of logs and filtering of GET headers components during an investigation 

process would require more time. Attack scripts labelled as A4.py, A5.py, A6.py, 

A7.py and A8.py that generated external dataset required a shorter duration and were 

set to five minutes. On the other hand, attack scripts A6.py, A7.py and A8.py required 

an Internet connection and a public proxy as mediator to generate enormous HTTP 

traffics. Due to this, a minimal duration is more appropriate to ensure that the source 

IP address is not blocked by the hosting provider as an actual attack script was utilized 

to attack the web server. Launching the attack for more than five minutes increases the 

possibility of the IP address to be blacklisted or the connection to be blocked which 

would jeopardize the investigation process. Thus, to avoid any circumstance which 

could possibly lead to inaccurate results and failure to meet the objective of this 

research, a five-minute duration was seen to be the most appropriate to be used to self-

generate the dataset.  

The consideration to utilize eight attack scripts in this research was due to 

several factors. Firstly, the use of the minimal attack script to generate dataset will 

make certain attack patterns to be overlooked. In contrast, using multiple attack scripts 

to generate dataset will require more time to be analyzed. Hence, usage of eight attack 

scripts was adequate to investigate the attack patterns. Besides that, a critical analysis 

presented in Chapter 2 (Section 2.13.4) highlighted that the use of more attack scripts 

is recommended to acquire more attack patterns. The self-generate dataset included 

attack patterns from public proxy as well as internal and external networks which are 

not available to be obtained from outside as previously highlighted. Table C.1 presents 

the details regarding the property of the self-generate dataset. 



195 

Table C.1 Table Self Generate Dataset Property 

No. Script 

Name 

Attack 

Scale 

Attack 

Pattern 

Attack 

Duration 

Target URL Dataset 

Name 

1. A1.py 

Internal 

Attack 

High rate 

direct 

attack 

10 

Minutes 

http://lab.com.my 

DTS1 

2. A2.py DTS2 

3. A3.py DTS3 

4. A4.py External 

Attack 

High rate 

direct 

attack 

5 Minutes http://42.1.63.189 DTS4 

5. A5.py DTS5 

6. A6.py 

External 

Attack 

High rate 

through 

proxy 

5 Minutes http://42.1.63.189 

DTS6 

7. A7.py DTS7 

8. A8.py DTS8 

C.2 Genuine GET Headers without Proxy 

This section explicates the genuine GET headers to observe the pattern and 

consistency during the process of GET requests. This section also provides extension 

elaboration done in Chapter 2 (Section 2.6) to illustrate the authentic GET requests by 

using the latest web browsers to observe the current headers utilized along with its 

structure. Besides that, request headers produced in this section will be a benchmark 

to be compared with headers generated by HTTP DDoS. Genuine headers are created 

from the latest web browsers which are commonly used such as Internet Explorer, 

Google Chrome and Mozilla Firefox to gain the patterns when a client utilizes the 

browser to access a content of web server. The headers are captured through normal 

browse of the test page located at the hosting provider by using this address 

http://42.1.63.189. Results indicate that all web browsers deliver equal headers 

consistently without missing headers for subsequent GET requests. Besides that, this 

http://lab.com.my/


196 

research found that the original headers provide different character sizes for 

connection header like keep-alive was generated from Google Chrome and Mozilla 

Firefox while Keep-Alive was created by Internet Explorer. Table C.2 illustrates the 

header generated by different web browsers. 

Table C.2 GET Headers from Different Browsers 

Internet Explorer 

Version 11.239 

Google Chrome Version 

75.0 

Mozilla Firefox Version 

68.0 

1) Accept

2) Accept-Language

3) User-Agent

4) Accept-Encoding

5) Host

6) Connection

1) Host

2) Connection

3) User-Agent

4) Accept

5) Accept-Encoding

6) Accept-Language

1) Host

2) User-Agent

3) Accept

4) Accept-Language

5) Accept-Encoding

6) Connection

C.3 Genuine GET Headers with Proxy 

As explained in Chapter 2 (Section 2.6), prior studies only stated one proxy 

header in the GET requests known as X-Forwarded-For. Therefore, this section will 

provide supplementary evidence of another proxy header in used in GET requests. 

Outcome at this section will act as a guideline when conducting dataset investigation 

for HTTP DDoS launch through external proxy and will contribute to the formation of 

detection HTTP DDoS launch via proxy. A GET requests employs proxy to establish 

HTTP connection against a web server which will assign additional headers named as 

X-Forward and Via. The use of these headers is to inform the connection that utilizes

proxy to browse the contents of a web server. 

A GET requests generated through proxy must be able to establish a connection 

to a web server. Due to this, in order to prevent connection failure during transaction 

of GET requests which involves three parties such as client, proxy and web server, a 

list of healthy public proxies is required in this section to ensure that the proxy is 

capable of establishing a connection to a web server. The healthy proxies help to signal 

that the proxies are still alive and ready to serve a connection received from a client. 

The location of external proxies is scattered. Thus, the collection of public proxies 



197 

requires software named as proxy switcher. This software provides a list of real time 

available proxies which are active around the world. Figure C.1 presents the list of 

available public proxies. 

Figure C.1 List of Public Proxies 

Initial findings against public proxies that establish authentic connection 

against a web server show that all necessary GET headers are provided. However, 

further investigation showed that not all proxies utilize standard proxy headers such 

X-Forwarded-For and Via when establishing a connection to a web server. This

circumstance introduces some complications in determination of proxy as it is used as 

a mediator between a client and a web server. External proxies that append headers X-

Forward-For and Via in GET requests provide a clear sign that a client utilizes proxy 

to obtain contents of a web server. Apart from that, the situation becomes more 

complex when a proxy is used to form HTTP DDoS and when there is no sign in GET 

headers that indicates a request employed the proxy. To support this explanation, a 

genuine GET requests was made via public proxy IP address 110.232.86.52 and the 

results show that no proxy was present for X-Forwarded-For and VIA. Figure C.2 

shows the result for proxy with no X-Forwarded-For and Via. 

Figure C.2 Proxy With No X-Forwarded-For and Via 



198 

Findings in this section also indicate that there were other proxy headers that 

were utilized in the GET requests known as X-Proxy-ID and X-Real-IP. The existence 

of these headers along with X-Forwarded-For and Via provide a strong evidence that 

clients utilize proxy to generate GET requests against a web server. This findings 

support the explanation made by (Petersson and Nilsson, 2014) whereby they lament 

that the proxy headers is updated by the proxy provider and some of it retained the 

existing name which causes the headers name to be not up to date. Figure C.3 presents 

the results for proxy with X-Proxy-ID, X-Forwarded-For and Via.  

Figure C.3 Proxy with X-Proxy-ID, X-Forwarded-For and Via 

C.4 Investigation of GET Headers - DTS1 

Dataset DTS1 contains 680 GET requests that was constituted through HTTP 

DDoS to target a web server. DTS1 was generated by utilizing an attack script labelled 

as A1.py and utilize this command “python A1.py -t 10000 -c 20 http://lab.com.my” 

to execute the attack script. The GET headers generated by this attack script presented 

in Figure C.4.  



199 

Figure C.4 False GET Headers in DTS1 

Investigation against DTS1 found that a random user agent leads to the 

complexity to recognize a genuine GET requests. A value that is attached to a user 

agent is not able to determine whether the authenticity of GET requests is coming from 

valid or bogus resources. Further investigation reveals that HTTP DDoS generated a 

massive same query randomly against the web server to process. A combination of 

capital letters is used to generate the query which does not bring any meaning and 

difficult to be understood by a human.  

DTS1 also contains irrelevant HTTP referrer. The referrer in GET requests 

indicates a source of location where a web server is accessed. DDoS attacks at the 

application layer manipulate the value of HTTP referrer as it contains a valid URL to 

form bogus GET requests to make the request looks genuine. The URL existed in 

DTS1 comes from irrelevant search engines and another website that was assigned to 

be the value of HTTP referrer that were sending in a rotation mode to mimic a human 

access pattern to prevent detection. Besides that, the connection is marked as close and 

the web server still receives continues GET requests. 



 

200 
 

C.5 Investigation of GET Headers - DTS2 

DTS2 contains 88769 lines of GET requests against a web server. DTS2 had 

similarities with DTS1 whereby a fake value of the user agent was employed to 

generate an invalid GET requests via HTTP DDoS. DTS2 was generated by using an 

attack script labelled as A2.py and employed this command “python A2.py 

http://lab.com.my” to operate. The forged user agent produces by this attack script 

presented in Figure C.5.  

 

 

 

 

 

  

 

 

 

Figure C.5 False User Agents in DTS2 

As indicated in Figure C.5 an investigation against DTS2 found that an 

additional user agent was used to produce a variety of forged user agents which look 

authentic comes from mobile devices, web crawler, PlayStation and open source 

operating. The diversity of a used user agent shows that a web server is accessed from 

different platforms. This investigation also managed to reveal that the use of a web 

crawler user agent named as bingbot from MSN and Googlebot from Google shows 

that a website has been indexed by the search engine which makes the GET requests 

to look genuine. The user agent continuously rotates to mimic an authentic GET 

requests.  

Further investigations reveal that DTS2 contained an invalid GET requests 

generated by using numbers separated by backslash and query were continuously and 

repeatedly sent. A thorough inspection against DTS2 found that another GET headers 

was being manipulated known as the HTTP referrer. The value of this header contains 



201 

a false URL and utilizes HTTP and HTTPS protocol to make a request to appear 

originated from valid resources. DTS2 also contains URL that is binded with search 

query which makes the URL to look as genuine. The false request queries show in 

Figure C.6 followed by Figure C.7 indicates the bogus HTTP referrer with query. 

Figure C.6 False Request Query DTS2 

Figure C.7 HTTP Referrer With Request Query DTS2 

C.6 Investigation of GET Headers - DTS3

DTS3 contains 97,332 GET requests. This dataset contains minimal headers 

for each GET requests. DTS4 contains different patterns of GET headers as earlier 

datasets contain false headers which look authentic and the values randomly change 

while this dataset only contains basic headers and the header is not rotated. A 

comparison is made between valid and invalid GET headers to acquire information 

about which GET headers is missing during the transaction of GET requests. The 



 

202 
 

comparison successfully exposes that genuine GET requests will deliver complete 

GET headers when a request against a web server is made such as user-agent, accept-

language, accept-encoding, connection and referrer are completely presented. Table 

C.3 indicates the comparison.    

Table C.3 Complete and Incomplete Request Headers 

 

Complete GET Headers (Genuine) Incomplete GET Headers               

(HTTP DDoS) 

  

 

C.7 Investigation of GET Headers - DTS4 

DTS4 comprised of 21257 GET requests and this dataset was generated from 

an attack script labelled as A4.py. The attack script requires the command “python 

A4.py http://42.1.63.189” to operate. An initial investigation found that this dataset 

contains the fake value of GET headers for user-agent, request query and irrelevant 

value of HTTP referrer. Detailed investigation against DTS4 found that there is no 

consistency with regard to presentation of GET headers as some of the headers were 

missing such as the HTTP referrer. Although the referrer existed for certain GET 

requests, the value is irrelevant as the value of HTTP referrer was supposed to come 

from a related site. Further investigation found that DTS4 contains a much longer 

request query. The query contains a combination of a small letter, capital letter, number 

and symbol. Figure C.8 illustrate the forged GET headers contain in DTS4.  

 

 



203 

Figure C.8 False GET Headers in DTS4 

C.8 Investigation of GET Headers - DTS5 

DTS5 comprised of 23,974 GET requests received by a web server. DTS5 was 

generated by using an attack script labelled as A5.py and it utilize an IP address instead 

of URL as the URL of the target web server is not registered at DNS record hosting 

provider. The attack script operates by using this command “python A5.py 

http://42.1.63.189”. Initial inquiries against DTS5 found that all necessary headers 

were supplied completely. However, the dataset contains false request query created 

from small letter, capital letter, number and symbol. Apart from that, GET headers 

known as accept-language is missing and the value of HTTP referrer is valid. Despite 

the HTTP value presented in a correct format, it comes from irrelevant resource. 

Further inquiries against this dataset found that the dataset also contains irrelevant 

GET headers as the header named Keep-Alive which was supposed to be employed in 

HTTP response was incorrectly placed at GET requests. Figure C.9 illustrates the GET 

headers followed by Table C.4 which shows the existence of Keep-Alive at HTTP 

response. 



 

204 
 

 

 

 

 

 

 

 

 

 

Figure C.9 DTS5 GET Headers 

Table C.4 Valid and Invalid Keep Alive Values 

 

Valid Keep Alive in HTTP Response Invalid Keep Alive in GET Headers 

 

 

 

 

 

 

 

C.9 Investigation of GET Headers - DTS6 (Spoof IP) 

DTS6 contains 9397 forged GET requests that was sent through spoof IP 

address to launch a HTTP DDoS attack. The command requires to execute the attack 

script was “python3 A6.py -v http://42.1.63.189”. Initial findings against DTS6 

disclosed that it contains a requests query that is understood by humans although the 

query was irrelevant for the web server to process. The GET headers for IP address 

62.210.15.199 and 92.222.74.221 appears to be genuine. However, the data included 

in the HTTP referrer does not come from a relevant URL. As explained in Chapter 2 

(Section 2.6) the existence of HTTP referrer in GET requests shows the last page 

visited by user when browsing the current web page. The existence of HTTP referrer 

evidently shows that the GET requests is not valid as the actual URL for the web server 

utilized in this research is not publicly known to be accessible from other resources. 



205 

DTS6 comprised of spoof IP addresses. The source of IP address verification 

was made to determine the owner of the spoof IP address. Firstly, the IP address 

62.210.15.199 was selected and the outcome indicates that the IP address belongs to a 

web server and utilized port 22, 80, 443 and 3306 to operate. Secondly, the IP address 

92.222.74.221 was opted, and result shows that the IP address is owned by the web 

server which adopted port 22 and 80 to be operational. Thirdly, the IP address 

103.234.254.10 was utilized, and it was found that it belongs to the router and utilized 

port number 53 and 1723. Outcome in this section proof that the HTTP DDoS attack 

can be executed from spoof IP address and the source of attack can be originated from 

various machines. Figure C.10,  Figure C.11  and  Figure C.12 illustrates the IP address 

verification.  

Figure C.10 IP Address Source Verification for 62.210.15.199 

Figure C.11 IP Address Source Verification for 92.222.74.221 

Figure C.12 IP Address Source Verification for 103.234.254.10 



206 

C.10 Investigation of GET Headers - DTS7 (Proxy 1)

DTS7 contains 70792 GET requests generated by various public proxies to 

launch an attack over a web server. Formation of this dataset utilized attack script 

A7.py and require a list of proxy IP addresses inside the proxy file in order to launch 

HTTP DDoS through proxy. The command requires by the attack script to operate was 

“python3 A7.py http://42.1.63.189”. 

An initial investigation reveals that all necessary headers were supplied in GET 

requests. However, proxy headers published in GET requests was inconsistent with 

different proxy IP address. DTS7 contains a variety proxy headers pattern. For 

instance, some of the proxy employed a single name to acknowledge the receiver of 

the connection was through proxy by using X-Forwarded-For header. Another form of 

introduction included in DTS7 to inform the source originates from a proxy by making 

use of both headers such as X-Forwarded-For and VIA. The last pattern for proxy 

header is appending X-Proxy-ID with X-Forwarded-For and VIA as identification of 

the source connection came from a proxy. All these patterns indicate that each proxy 

has their own approach to display proxy headers to notify whether the proxy is 

currently used in establishing connection to a web server. Figure C.13 and Figure C.14 

presents the first and second pattern of the proxy headers while Figure C.15 displayed 

the third proxy headers pattern.  

Figure C.13 X-Forward-For in GET Requests 



207 

Figure C.14 X-Forward-For and Via in GET Requests 

Figure C.15 X-Forward-For, Via and X-Proxy-ID in GET Requests 

Further investigation reveals that some of GET requests were missing. The 

missing header is named as referrer which is commonly displayed in a GET requests. 

To confirm that the header was missing due to fake GET requests, the proxy IP address 

utilized in script A7.py is used to launch a genuine GET requests. This is to ensure that 

the missing header was not due to the proxy which intentionally hidden the headers. 

The proxy IP address was 36.66.55.181 and utilized port 8080 for clients to connect. 

As a result, authentic request against a web server using the proxy supplied all the 

common headers. Figure C.16 presents the GET headers with absent referrer followed 

by Figure C.17 which shows the complete headers supplied by the proxy through a 

valid GET requests.  



208 

Figure C.16 Missing referrer in GET headers 

Figure C.17 Complete GET headers with referrer 

C.11 Investigation of GET Headers - DTS8 (Proxy 2)

DTS8 contains 51 GET requests which utilized a proxy to launch an attack 

over a web server.  The dataset was prepared by using attack script labelled as A8.py 

which requires command “./ufonet -a http://42.1.63.189 -r 10 -threads 500” to operate. 

Preliminary investigation of DTS8 found that different names were utilized to provide 

a sign for a connection to a web server through proxy by using header named as X-

Pingback-Forwarded-For. Besides that, there was an absent proxy header named as 

VIA which is commonly used to display the proxy name used by a client. Detailed 

investigation revealed that the dataset contains an odd value of user-agent. Figure C.18 

presented the user agent contain in DTS8. 



209 

Figure C.18 User Agent in DTS8 

Further investigation found that DTS8 also contains query string generated 

from a number, symbol, small and capital letter. HTTP referrer existed at DTS8 

pointed at web server address and appeared inconsistently as the header was missing 

for certain GET requests. Besides that, referrer that existed at DTS8 was attached 

together with the query indicate that the query was issued from the previous page and 

forwarded to another page to be processed. Figure C.19 indicate the forged query and 

referrer. 

Figure C.19 False Query and Referrer in DTS8 



 

210 
 

C.12 Attack Category Associated with Real HTTP DDoS 

The attack script adopted in this research is well-known and has been utilized 

by many prior studies as highlighted at Section C.1. However, none of the past studies 

perform mapping the attack scripts is linked to which attack strategy as explained in 

Chapter 2 (Section 2.4). Thus, based on the attack patterns executed at Section C.4 

until Section C.11, this research suggests that the attack scripts belonged to the 

category web proxies, constant, server load, main page attack and random attack. Table 

C.5 provides the details regarding the dataset mapping with the existing attack strategy. 

Table C.5 Dataset Mapping with Existing Attack Strategy 

 
No Attack Strategies Attack Script Name  

1. Web Proxies Hibernet.py 

UFONet.py 

2. Spoof Wreckuests.py 

3. Server Load Chihulk, HOIC, Golden 

Eye, BlackHorizon 4. Main Page Attack 

5. Random Attack 

C.13 Overview of Dataset Comparison 

This section provides a comparison between datasets to obtain similarities and 

differences between GET headers contained in each dataset which were previously 

formed by various HTTP DDoS attack scripts executed from the Internet and internal 

network. This comparison only takes into account the most manipulated GET headers 

utilized by the attack scripts such as user-agent, query string, referrer, connection, 

accept-language and proxy headers. Investigation that conducted indicates that headers 

as mentioned above is highly manipulated as it contains information adopted by users. 

Although another GET headers existed during the process of GET requests these 

headers appeared to be the most headers manipulated by an attacker as it sufficient to 

be looked as legitimate GET requests. 



 

211 
 

C.14 GET Headers - User-Agent 

Dataset DTS1, DTS2, DTS4, DTS5, DTS7 and DTS8 contain a user-agent 

which delivers information about a client such as the browser type, version, operating 

system ID, name and platform such as 32 or 64 bits. DTS3 provides minimal headers, 

and user-agent was not presented in the GET headers. However, assessment against 

DTS2 indicates that a variety of platforms have been employed to publish information 

about the source request such as from mobile device, web crawler from Googlebot and 

video game devices like Play Station. In contrast, DTS8 provides an odd user-agent as 

the published user-agent which contradicts with an authentic GET requests and is 

found to be unique compared to other datasets. The user-agent existed at DTS8 

contradicted with the genuine user-agent as it contains URL and IP address.  

 Zhang et al. (2015) illustrated a user-agent from a common web browser such 

as Internet Explorer, Firefox, Chrome, Safari and Opera and none of these web 

browsers produce user-agent as seen in DTS8. They further mentioned that malicious 

user-agent was difficult to be differentiated by network administrators and security 

analysts.  

C.15 GET Headers - Query String 

DTS1 contains a query string constituting a capital letter while DTS2 consists 

of query generated from a number with a few combinations with symbols. Query string 

is non-existent in DTS4 and DTS7. DTS4 and DTS5 contain a much longer query 

string and was generated from a combination of small letter, capital letter, number and 

symbol. The existence of symbols in HTTP header is because HTTP employs either a 

common syntax separated by white space or delimits character. Besides that, there is 

no predefined limit for GET requests to process headers and its values. Furthermore, 

an appropriate length for GET requests is difficult to be defined (Fielding and Reschke, 

2014b). 



212 

DTS4 and DTS5 contain query string that is much closer to the query generated 

by a web server to publish items such as a picture. An authentic query string from 

human will write a string that relates to the contents of a web server to find the answer. 

DTS6 consists of query understood by humans even it is irrelevant to a web server to 

process compared to queries existed at DTS1, DTS2, DTS4 and DTS5 in which the 

query is not readable. DTS8 contains query that is identical to DTS4 and DTS5. 

However, the query was not longer than those found in DTS3 and DTS5. A web server 

utilized in this research contains static HTML page which the query processing does 

not permit. Thus, receiving continuous request query provides evidence that the GET 

requests is malicious. In terms of query repetition, only DTS1 provides the same query 

continuously with certain periods of time, the query changed to another structure. 

Other queries were generated randomly with no replication for subsequent GET 

requests. 

C.16 GET Headers - Referrer

All datasets utilized HTTP referrer in repeatable mode and followed the correct 

format equal to a genuine GET requests. According to Reid (2004), HTTP referrer 

refer to previous web page address accessed by a user. Due to this, any web site address 

is allowed to be a referrer in GET requests as there is no restriction or inspection done 

at this section to determine whether the source address is appropriate or inappropriate 

to be attached at the GET headers. This comparison found that all datasets (DTS1 until 

DTS8) except for DTS4 employs valid HTTP referrer. However, the source of the web 

address is unsuitable to be a referrer for the current page. This pattern indicates that 

the value contained in HTTP referrer has been manipulated. 

DTS1, DTS2, DTS4, DTS6, DTS7 and DTS8 utilize referrer which comes 

from HTTP protocol. However, only DTS5 consists of referrer from HTTPS protocol 

which used Facebook address and presence of this referrer indicates that the current 

page is accessible from Facebook. Most of the dataset consist of referrer which come 

from a search engine. Upon further observation, the referrer appears to be genuine and 

accessible for normal browsing. An attacker’s strategy is to utilize valid referrer and 



213 

the existence of referrer will increase the validity of the source connection. In this 

circumstance, the relevance of the source connection is a limitation for an attacker 

even when the referrer appears to be authentic. HTTP referrer commonly comes from 

sources which are related to contents of a web server such as a faculty website which 

is supposed to have a link to the University website.  

HTTP referrer has the potential to disclose browsing history and user 

information which might be found in this header (Fielding and Reschke, 2014a). 

Dolnak (2017) provides solution problem highlighted by Fielding and Reschke 

(2014a) where the study proposed HTTP referrer header policy. The idea behind the 

solution was to control information shows by referrer to minimize information leakage. 

However, the idea does not address problem manipulation of HTTP referrer generate 

by HTTP DDoS. 

C.17 GET Headers - Connection and Accept Language

The comparison conducted found that only two datasets (DTS1 and DTS2) 

indicate a connection status as close in GET headers compared to other datasets 

connection status which is shown as Keep-Alive. Wall (2004) shows the content of 

HTTP request and HTTP response headers and indicates that Keep-Alive is the header 

of HTTP response and value of the connection header in GET requests. However, 

existence of Keep-Alive as the header in GET requests in DTS1, DTS2, DTS4, DTS5 

and DTS8 illustrate that an attacker accidentally assigns the header in GET requests 

and indicates that HTTP DDoS generate GET headers automatically with the existence 

of false position of headers. Besides that, only DTS6 and DTS7 does not utilize Keep-

Alive as the header. DTS4 consists of minimal GET headers and the status of 

connection is unknown. 

Accept-language in GET headers indicates the web browser language used by 

users and the existence of this header in GET requests can be used to identify the 

geolocation of users (Reid, 2004). This comparison found that five datasets are not 

present accept-language in GET headers during GET requests transaction such as 



214 

DTS1, DTS2, DTS4, DTS5 and DTS6. Two datasets contain the header such as DTS4 

and DTS7 while DTS8 shows an inconsistent behavior as the header is missing for 

certain GET requests. Missing accept-language indicates that the source connection 

utilizes automated tools to generate GET requests as a client will employ a web 

browser to establish a connection to a web server to send GET requests (Parziale et al., 

2006). Besides that, a genuine GET requests regardless of the browser version will 

bring the header in the GET requests. Gou et al. (2017) explained that the connection 

and accept-language are few of the general headers located at GET requests. 

C.18 GET Headers - Proxy

The GET requests will display proxy headers utilized by a client to establish a 

connection to a web server via HTTP protocol. Section A.3 shows the investigation of 

HTTP DDoS launch through proxy found that when a GET requests employs proxy, 

typically a proxy will provide a proxy header to acknowledge the request utilized 

proxy to connect to a web server. DTS7 until DTS8 contains an attack traffic generated 

from plenty of proxies and indicates that proxy headers are not displayed by certain 

proxy provider. Despite the usage of proxy to execute HTTP DDoS an adoption of 

spoof IP address also can be utilized to launch the attack. DTS6 contained a number 

of spoof IP addresses to launch a HTTP DDoS resulted in difficulties to determine 

whether the source was originally generated by genuine client or whether it has been 

misused. The spoof IP address that was attached together with the proxy headers and 

GET headers not only indicate that the request is authentic, it also shows that the 

request comes from a proxy. 

The dataset labeled as DTS7 contains two IP addresses in X-Forwarded-For 

header where the second IP address belongs to this research equipment and the first IP 

are believed to come from another proxy as explained by Petersson and Nilsson (2014)  

if a GET requests from proxy requires an establishment of another proxy to gain the 

contents of a web server the IP address was present at X-Forwarded-For. Another 

proxy header named as X-Pingback-Forwarded-For was only found in DTS8 which 

provides a sign that a different proxy provider has various approaches to utilize a proxy 



 

215 
 

name to indicate a client employs outside resources to access web server resources. 

Output at Section C.10 and Section C.11 supported by Petersson and Nilsson (2014) 

as the existence of distinct proxy headers and the inconsistent appearances were found 

in datasets due to some of the proxy providers are not updated the proxy headers and 

the headers are optional to be displayed in GET the request headers. 

Gou et al. (2017) explained that the use of a keyword CONNECT in GET 

requests which indicates that the client established a connection through a proxy to 

browse the web server’s contents. However, there is no keyword CONNECT that 

existed in DTS7 and DTS8. Although DTS6 contains spoof IP address that utilize a 

proxy header the key word is not presented. A possible explanation that can justify the 

differences observed is that the study may utilize another proxy which makes the 

keyword to exist at their environment during the execution of proxy assessment. 

Although different results were obtained in this research, it is believed that the proxy 

headers is supplied by a proxy provider to acknowledge a connection from a client to 

a web server is established through a proxy and the use of a proxy header’s name is 

dependent on the provider to introduce themselves as a proxy by using an appropriate 

name. The explanations provided above are supported by results highlighted in Section 

C.10 and Section C.11 where dissimilar proxy headers names were found from the 

datasets. 

C.19 Overview of Investigation GET Headers Vulnerabilities 

The GET requests provides several components during the process of client to 

obtain services from a web server. Among the component involved in GET requests 

are accept-language, accept-encoding, accept-charset, connection, content-type and 

content-length to acknowledge the server’s values carried by a client. The forged 

request done by HTTP DDoS mimics a genuine GET requests component and its 

values, which will result in difficulties to differentiate the validity of GET requests. 

Hence, this section investigates the GET headers shortfall that allows attackers to take 

advantage in generating bogus GET requests when launching HTTP DDoS attack. 



216 

C.20 GET Headers Vulnerabilities - User Agent

User agent contains information regarding client information such as the 

operating system, browser name and browser version. Attack script labelled as A1.py 

executed and discussed in Section C.4 reveal that false user agent is made identical to 

the authentic one. A list of user agents must be presented inside attack script to be sent 

randomly to a web server which makes a GET requests to contain a variety of users-

agent and to indicate that various clients are accessing the web server. To increase the 

trust, a GET requests is set to genuine as the value of a user agent can add as many as 

possible and the existence of user agents from mobile devices like smart phone and 

tablet will lead to an understanding that GET requests was generated from those 

devices. Code modification at script A1.py has implemented to adjust the structure of 

value user agent, removed the web browse name, client system information and string 

known as Mozilla/5.0 which includes special characters and contains operating system 

ID which already absolute. Windows NT 5.1 refer to Windows XP Operating system. 

Figure C.20 demonstrates the line of codes to create a fake user agent. 

Figure C.20 Code to Generate Forged User Agent 

Results gathered in this section indicate a clear evidence that user agent in GET 

requests possess vulnerabilities, which allows modification against values of user 

agent and a web server accepts the values without performing any inspection against 

the assigned values. A randomized technique to rotate the usage of the user agent that 

constitutes a false GET requests made the GET requests to appear genuine. It is 

difficult to distinguish between a fake and an authentic user agent if there are no 

queries performed at this header. Figure C.21 illustrates the output when code was 

executed while Figure C.22 presents a genuine user agent. 



217 

Figure C.21 Result of Code Fake User Agents 

Figure C.22 Genuine User Agent (Zhang et al., 2015) 



218 

C.21 GET Headers Vulnerabilities – Referrer

The referrer header in GET requests indicates the web address of which the 

contents of the web server are accessed from.  HTTP DDoS use this header to make 

the GET requests look legitimate. An attacker manipulates this header by assigning 

authentic values to referrer header by using accurate URL format which will result in 

increasing of trust to assume that a GET requests comes from a valid source. In 

addition, An attacker manipulates this header by using correct URL format to make it 

complicated to be distinguished with legitimate request and increase trust a GET 

requests comes from a valid source. 

A forged referrer header requires an address in URL format such as 

http://abc.com to be presented at the GET requests header. In addition, the use of 

plenty genuine referrer such as those coming from valid search engines will lead to 

difficulties in evaluating the originality of the GET requests. A code adjustment 

against an attack script A1.py has been made to include a false URL name which 

contains special character, capital letter and URL that is non-existent. The attack script 

rotates the usage of URL and does not permanently utilize one URL to prevent 

suspicious activity from being detected. Response received from a web server indicates 

that a web server accepts all values assigned at the referrer header. Besides that, there 

was no inspection against the presented referrer whether it is regarded as valid, forged 

or accessible from a relevant source. Figure C.23 presents the code for fake HTTP 

referrer while Figure C.24 indicates the outcome of the code. 

Figure C.23 Code to Generate Forged HTTP Referrer 



219 

1) 2) 

3) 4) 

5) 6) 

Figure C.24 False URL in HTTP Referrer 



220 

C.22 GET Headers Vulnerabilities - Request Query

The request query is one of the attributes presented during the process of GET 

requests. This header provides an indicator that clients request for specific information 

from a web server to be published. This section was executed to scrutinize shortfall for 

request query in transaction of GET requests. The ASCII character was employed to 

simulate a random request query. Table C.6 presents the symbol to generate a false 

query followed by Figure C.25 which presents the code modification for the attack 

script A1.py. 

Table C.6 ACSII Format to Generate String 

Type ASCII Symbol Generate 

Lower Case 97 and 122 a-z

Upper Case 65 and 90 A-Z

Numeric 48 and 57 0-9

Special character 33 and 57 !"#$%&`()*+'-./ 

Figure C.25 Code to Generate Request Query Using ASCII 

The outcome derived from this section indicates that a web server accepts any 

characters sent from client including the request query with a special character. The 

results also show that there was no restriction at the web server to accept any irrelevant 

query, numbers, combination of capital letters and small letters with special character. 

Besides that, the usage of ASCII code makes the false query of GET headers easier to 

be generated randomly. Figure C.26 illustrates the results. 



221 

Figure C.26 Forged Queries Processed by Web Server 

C.23 GET Headers Vulnerabilities - Custom Values of GET Requests

This section performs to further investigate vulnerabilities that existed at GET 

headers. Investigation carried out in this section begins with a custom coding that is 

generated to simulate GET requests by assigning authentic and false values to user-

agent, referrer, connection, language and accept-encoding. The valid value is copied 

from an original GET requests while invalid values utilized string that does not belong 

to the GET headers. Two GET headers known as connection and referrer were attached 

with a bogus value while other GET headers utilize genuine values. The GET headers 

known as connection is assigned to invalid value “Alive” which contradicts with 

genuine values. Furthermore, the referrer also carries an incorrect web address as the 

referrer must be in URL format. Figure C.27 presents the code while Figure C.28 

indicates the format of GET requests once the code is executed. 



222 

Figure C.27 Code for GET Requests with Genuine and False Value 

Figure C.28 GET Headers with Genuine and False Value 

This investigation found that legitimate value for GET headers connection is 

supposed to be Keep-Alive or keep-alive and the capital or small letter at the beginning 

of the word depends on a web browser as proven at Section C.2. Vigilant steps are 

required to be taken when GET headers such as connection is used to be part of the 

detection component as an incorrect inspection against this value will result in false 

positive as the value depends on the web browsers.  

The investigation under this section continued with further exploration of 

vulnerabilities that existed at the HTTP protocol by assigning an incorrect value to all 

GET headers for instance, user-agent, referrer, connection, language, accept-encoding 

and adding another component in the GET requests. Results obtained from this 

scenario provide evidence that any values assigned to the GET headers component are 

accepted. Apart from that assigning new components in the GET headers is also 

allowed. The result in this section also indicates that the HTTP protocol is vulnerable 

to manipulation of fake GET requests as a GET header from clients to a web server is 



223 

not scrutinized to identify the authenticity of the GET requests. Figure C.29 illustrate 

the code followed by the result at Figure C.30. 

Figure C.29 Invalid Values of GET Headers With Additional GET Headers 

Figure C.30 Invalid GET Requests Value Processed by Server 



224 

C.24 Investigation Outcome

Investigation of eight datasets at Section C.4 until Section C.11 successfully 

found that the GET headers component and its values utilized during the occurrence 

of HTTP DDoS is almost similar where the traffic contained bogus GET headers and 

false value to make the traffic look genuine. Dataset comparison was conducted and 

highlighted in Section C.14 until Section C.18 to obtain information on the attack 

patterns, its similarities and differences that were produced by various HTTP DDoS 

attack script which will help in the formation of a correct detection to recognize HTTP 

DDoS. Outcome in this section also found that HTTP DDoS utilize forged GET header 

in executing HTTP DDoS in the internal and external network. Investigation of HTTP 

vulnerabilities discussed in Section C.20 until Section C.23 successfully revealed the 

vulnerabilities that exist at the application layer.  

All datasets in this research provided clear indicators to suggest that HTTP 

DDoS has the capability of generating thousands of GET requests from a minimal 

number of machines with the help of an efficient attack script which directly provides 

further support on the results obtained in previous studies (Rahman et al., 2017; 

Beitollahi and Deconinck, 2013). The attack becomes more distributed when the group 

of attackers who launches the attack are in scattered locations (Iyengar and Ganapathy, 

2015).  According to Hoque et al. (2015), an automatic generation for the application 

DDoS attack is hard to find. However, it is possible to be executed with the help from 

a malicious code. 

The use of public proxy to launch the attack leads to complexity as authentic 

users and attackers may utilize the equal proxy to surf the contents of a web server.  

All datasets investigated indicate that attackers utilized GET headers components in a 

variety of approaches to make a false GET requests to look genuine through HTTP 

DDoS. HTTP is a text-based protocol with no limit defined for the header’s length and 

HTTP is an independent protocol which will accept any data type (Singh and Kumar, 

2016; Fielding and Reschke, 2014b). Aside from that, most of the headers are not 

compulsory to be presented during transaction of GET requests as explained in Chapter 



 

 

225 
 

2 (Section 2.6). Due to weak design of HTTP protocol it poses security issues and 

attacker capable of to execute HTTP DDoS and make the attack look genuine.  

As previously explained in Section C.1, the attack scripts adopted to conduct 

the investigation have been utilized and highlighted in a number of past studies. The 

GET headers produced by the attack scripts contradict with legitimate GET headers 

which have been thoroughly explained in Section C.2 to Section C.3. The investigation 

output also extends the elaboration made in past studies which explain about GET 

headers produced by HTTP DDoS which have previously highlighted in Chapter 2 

(Section 2.9). Apart from that, the existence of security headers as described in Chapter 

2 (Section 2.7) is designed only for HTTP POST protocol which allows an attacker to 

be able to execute HTTP DDoS which has a specific pattern. 

Exploration of this research regards to HTTP DDoS has extended the attack 

patterns discussed in prior studies by revealing seven GET headers patterns constitute 

by the attack. The results obtained from the investigations discussed in Section C.4 

until Section C.11 supported by dataset comparison conducted in Section C.14 until 

Section C.18 with strengthened by several sections involved in Chapter 2 as elaborated 

above, provide confirmatory findings that HTTP DDoS has a specific pattern to 

generate a false GET requests. A summary of the patterns is as follows:  

i) Automated Tools 

An attacker employs automated tools to generate massive GET requests as the 

tools require minimal duration to overload the web server which made the 

server become unresponsive and unable to react to the client request. 

 

ii) Minimal GET Headers 

HTTP DDoS delivers minimal GET headers to gain web server resources. 

Furthermore, the attack does not necessarily require a complete GET header to 

make a request against a web server. Supplying complete components for GET 

headers is only used to mimic user access pattern and to conceal their malicious 

activity. The incomplete GET header and higher GET requests received is a 

sign of HTTP DDoS. 



226 

iii) Incorrect Connection Status

Continuous GET requests received with a connection status marked as close

indicates that HTTP DDoS currently occurs to overload a web server to process

unnecessary request. Genuine GET requests transaction will mark connection

status as keep-alive to show that a TCP connection is open and ready to receive

connection. Apart from that, it is acknowledged that keep-alive is not a header

for GET requests.

iv) Irrelevant GET Headers Attributes

GET headers contains several components which are adopted by clients during

transaction of GET requests. Continuous irrelevant component which appears

in each GET requests indicates that the source of the request does not come

from a genuine client.

v) Irrelevant Request Query and Query Length

A user will utilize human language to search related contents in web servers

and the search will be a query delivered through a GET header. Existence of

request query in HTTP DDoS is likely to illustrate the query generated by

humans. Query generated by humans is readable compared to false query

generated by the attacker which contains special character such as !@#$^ to

mimic the human access pattern when searching for information. The false

query is also much longer than usual.

vi) Irrelevant Value for HTTP Referrer

HTTP referrer shows the previous access page of a client. A referrer must come

from a related source such as a university URL will be a referrer for a faculty’s

web site. HTTP DDoS assigns irrelevant value in HTTP referrer to make it

appear as though it comes from a valid source. Although the format and the

URL are valid, it is irrelevant to be the source of reference.

vii) False Proxy Headers

Availability of public proxy allows the attacker to misuse the free services to

launch a HTTP DDoS. There is no restriction to employ the services which

allows the attacker to utilize single machine to command all the proxies to send



 

 

227 
 

plenty of GET requests into a web server. Inconsistent of the appearance proxy 

header introduce to complexity to in recognizing either the source originated 

from proxy or directly from client. Aside from that, GET headers delivered by 

free proxies poses one of the challenges to recognize whether the source 

request is genuine or if it comes from an attacker due to minimal GET headers 

generated by proxy which contradicts with a GET headers delivery by non-

proxy request. 

The findings presented in Section C.9 successfully uncovered one attack 

strategy known as IP address spoofing capable of launching HTTP DDoS which 

expands the attack strategy listed by Singh et al. (2017b). The study also elaborated 

that multiple proxies were utilized to overwhelm a web server. However, they were 

unable to provide evidence on the use of various proxies to execute HTTP DDoS. To 

support this statement, results gained from Section C.10 and Section C.11 clearly 

indicates that usages of variety proxies to launch the attack. The outcome of this 

chapter also provides a better understanding for HTTP DDoS network architecture, 

especially when the attack engages a public proxy and spoof IP addresses. Figure C.31 

illustrates the attack architecture for HTTP DDoS.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure C.31 HTTP DDoS Attack Architecture 

 



228 

The vulnerabilities investigation for HTTP protocol that specifically focused 

on GET headers has been conducted and reported in Section C.20 until Section C.23 

provide further explanation pertaining to vulnerability that existed at the application 

layer. The outcome for GET requests shortfall reveal in this research successfully 

highlights five major drawbacks; (1) accept incomplete header, (2) no restriction for 

GET headers component, (3) no inspection for GET headers data, (4) open platform 

and (5) weak marking. Past studies (Singh and Kumar, 2016) noted that HTTP is an 

open platform and that there is no restriction of data.  

Besides that, the use of cookie in HTTP allows information be retrieved as 

stated by Parziale et al. (2006). Apart from that,  most of the GET headers involved in 

making request with the web server are not compulsory to be presented (Fielding and 

Reschke, 2014a; Fielding and Reschke, 2014b; Petersson and Nilsson, 2014; Reid, 

2004). The drawback of the HTTP protocol introduced to HTTP DDoS which capable 

of making manipulation that results to GET requests to look authentic. This research 

proposes that the points also contribute to HTTP DDoS as follows. 

i) Accept Minimal Headers

The GET requests does not require complete headers as the request will be

processed by a web server even when a client sends minimal GET headers.

ii) No Restriction for GET Headers Attribute

Non-standard GET headers are acceptable to be processed by a web server as

there was no objection from a web server to reject unrecognized GET headers.

iii) No Inspection for GET Headers Data

The GET headers values from a client to a web server does not go through any

inspection to verify whether a value presented is correct or wrong. This is

where server utilization will increase as it has to process unnecessary GET

requests regardless whether it is valid or otherwise.



229 

iv) Open Platform

HTTP is an open platform as it allows GET requests to execute without a web

browser.

v) Weak Marking

No clear marking to show that the GET requests is generated through proxy,

Network Address Translate (NAT), and direct connection.

Based on the investigation conducted, forged GET headers is the main factor 

that causes HTTP DDoS attack to look legitimate. Existence of GET headers in HTTP 

DDoS is only as a dummy to overload a server through plenty of GET requests. This 

atmosphere demonstrates the importance of recognizing a false GET headers to detect 

HTTP DDoS. Besides that, findings for HTTP DDoS pattern and GET headers 

vulnerabilities are parallel which leads to clearer insights on GET headers 

vulnerabilities resulted to formation of HTTP DDoS. Table C.7 shows vulnerabilities 

lead to HTTP DDoS attack. 

Table C.7 HTTP DDoS Patterns and GET Headers Vulnerabilities 

No HTTP DDoS Patterns GET Headers Vulnerabilities 

1. Automated Tools Open Platform 

2. Incomplete GET headers Accept Incomplete Header 

3. Incorrect Connection Status 

No Inspection for GET headers Data 

No Restriction for GET headers Component 

4. Irrelevant GET headers 

Component 

5. Irrelevant HTTP Query and 

Query Length 

6. Irrelevant Value of HTTP 

Referrer 

7. False Proxy Header Weak Marking 



230 

C.25 Expansion of HTTP DDoS Knowledge Area

The findings in this chapter as explained in Section C.24 provide significant 

impact to the body of knowledge network and security as it delivers knowledge 

expansion about HTTP DDoS. Nine knowledge areas that are related to HTTP DDoS 

have been discussed in Chapter 2 which indicates that minimal prior studies delivered 

excessive experiment and provide detailed explanation with regards to the GET 

headers pattern during the occurrence of HTTP DDoS. Apart from that, the drawback 

of the GET headers that led to the formation of HTTP DDoS have not excessively 

revealed by an HTTP DDoS researcher. The knowledge expansion is illustrated in 

Figure C.32. 



231 

Figure C.32 HTTP DDoS Knowledge Area



 

 

233 
 

APPENDIX D PRELIMINARY TEST  

D.1 Test Case 1: GET Requests Frequency and Source Inspection 

A high rate HTTP DDoS attack delivers plenty of requests to drain a server’s 

resource and an enhanced version of the detection algorithm is able to detect HTTP 

DDoS attack when the GET requests passes the predefine threshold limit. Each request 

against a web server will be counted and has a specific threshold. A GET requests 

below than this threshold will not be detected as HTTP DDoS and a further inspection 

will not be executed. However, further inspection will be made if the connection 

received reaches the threshold.  

The algorithm utilizes 20 GET requests of threshold to trigger and detect plenty 

of requests and inspection of web browser. Hence, to shorten the waiting time of high 

GET requests to reach the threshold, the threshold was set to 20 GET requests to 

simulate detection of high frequency of requests coming from a non-web browser 

while the high request comes from a web browser. This test case was conducted to 

evaluate whether the GET requests is counted correctly and triggered the inspection of 

browser check to detect HTTP DDoS once it reaches the threshold limit. It also 

recognizes the platform used whether it operates through a web browser or automated 

tools to attack a web server. Table D.1 shows the Test Case 1 attack parameter and 

Figure D.1 illustrates the Test Case 1 attack architecture.  

 

 

 

 



234 

Table D.1 Test Case 1 Parameter 

Attributes Values 

Type of Attack Direct Attack 

Traffic Type HTTP DDoS Traffic & Clean Traffic 

Duration 1 Minute 

Inspection Type Threshold and Browser Inspection 

Client 1 (Genuine) 94.242.111.68 

Client 2 (Attacker) 115.164.221.151 

Client 3 (Attacker) 161.139.153.30 

Client 4 (Attacker) 78.30.214.81 

Figure D.1 Test Case 1 Architecture 

This test case received 1042 GET requests which came from a genuine client 

and attacker.  The results obtained from this test case indicate a positive outcome 

where all GET requests are counted individually and that the predefined threshold 

operates as expected. Results from this test case indicate that Client_1-94.242.111.68 

operated below the threshold which only initiated 12 GET requests while clients 

labeled as Client_2-115.164.221.151, Client_3-161.139.153.30 and Client_4-

78.30.214.81 made excessive GET requests against a web server that reached 20 GET 

requests which leads to the graph showing a significant increase starting from the 

predefined threshold. This also provides an indicator that the client sent huge number 

of GET requests against a web server. Besides that, continuous GET requests sent 



235 

against a web server causes the connection to increase gradually. Figure D.2 illustrates 

the detection threshold of GET requests. 

Figure D.2 Detection Threshold of GET Requests 

HTTP DDoS constitute multiple platforms such as through automated tools to 

generate large volumes of HTTP traffics. Results from this test case show that the total 

traffic detected after a threshold is triggered was 970 and successfully detects 565 GET 

requests as true positive that utilized automated tools and 405 GET requests were 

detected as true negative that utilized web browsers to generate GET requests. The 

calculation of confusion matrix was made to obtain the rates of true positive, true 

negative, false positive, false negative, precision and accuracy. Results from this 

calculation indicate that the detection performance for all true positive rate, true 

negative rate, precision and accuracy were recorded to be 100% and 0% for false 

positive rate and false negative rate. Table D.2 presents the results for the detection 

performance for Test Case 1 followed by Figure D.3 which illustrates the performance 

graph for Test Case 1. 



236 

Table D.2 Detection Performance for Test Case 1 

Actual Event  

Normal = 405 

Attack = 565 

Normal Attack 

Normal 405 0 

Attack 0 565 

 True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Precision Accuracy 

100% 100% 0.00% 0.00% 100% 100% 

Figure D.3 Performance Graph for Test Case 1 

The achievement of 100% detection rate is contributed by several factors such 

as forming the correct categorization to identify whether the source platform comes 

from automated tools or web browsers. The selection to adopt browser height and 

width as the detection components provides a significant impact to the higher rate for 

the detection results. HTTP DDoS is generated via automated tools and is therefore 

unable to provide browser height and width. Due to this, untrusted sources with high 

frequency of GET requests and over the predefined threshold are recognized as HTTP 



237 

DDoS. On the other hand, a genuine user will not consistently access the same web 

page with minimal duration. DDoS constitutes irrelevant request compared to 

authentic GET requests and the useless packets immediately consume resources to 

cause the server to become unresponsive (Cheng et al., 2018b). 

Test Case 1 performed the detection of GET requests that was sent in a higher 

rate and initiated browser inspection which directly identifies whether the source 

connection is normal or HTTP DDoS. This test case has confirmed that the enhanced 

detection scheme operates as expected in detecting HTTP DDoS. Besides that, no 

missed calculation and incorrect identification of each GET requests was recorded thus 

allowing the test case to reach its target. 

D.2 Test Case 2: Inspection of Compulsory GET Headers 

This test case executed to scrutinize the existence of GET headers in GET 

requests. The formation of this test case accordance with the investigation result in 

Appendix C (Section C.4 until  Section C.11) revealed that GET headers released by 

HTTP DDoS were inconsistent and contradict with genuine GET headers which 

supplied consistently as explained in Appendix C (Section C.2) and in Chapter 2 

(Section 2.6). Table D.3 shows the Test Case 2 attack parameter while Figure D.4 

illustrates the attack architecture for Test Case 2. 

Table D.3 Test Case 2 Parameter 

Attributes Values 

Type of Attack Direct Attack 

Traffic Type HTTP DDoS Traffic & Clean Traffic 

Duration 1 Minute 

Number of HTTP Traffic Received 13916 GET requests 

Inspection Type GET Headers 



238 

Figure D.4 Attack Architecture for Test Case 2 

A total GET requests received from this test is 13916 which contained 59 

legitimate traffic and 13857 originated from attacks. The genuine GET requests and 

attack traffics recognized precisely that led to 100% detection rate for true positive, 

true negative, precision, accuracy. The achievement of this performance is due to the 

GET headers supplied by the attack is incomplete for each transaction of GET requests. 

The insufficient GET headers pattern delivered by HTTP DDoS is fully recognized, 

which makes a correct classification of whether it is HTTP DDoS or genuine GET 

requests. The incomplete pattern is previously highlighted in Appendix C (Section 

C.6).

A genuine GET requests will deliver complete components and will appear in 

each GET requests. Gou et al. (2017) explained that authentic GET requests will 

supply sufficient components which commonly comprise of Host, Connection, 

Accept-Encoding, User-Agent, Accept-Language, Accept and Content-Type. 

Incomplete GET headers provide a signal that the source request is malicious. Previous 

studies have found that HTTP DDoS supplies an incomplete GET headers to a web 

server (Idhammad et al., 2018; Rahman et al., 2017; Liao et al., 2015).  

Apart from that, based on the investigation results presented in Appendix C 

(Section C.2), genuine GET headers will consistently present a set of headers 

regardless of the browser versions used such as Internet Explorer, Google Chrome and 

Mozilla Firefox. The strategy to inspect common GET headers attached in GET 



239 

requests work perfectly and the performances are indicated in Table D.4 followed by 

the performance graph for Test Case 2 presented in Figure D.5. 

Table D.4 Detection Performance for Test Case 2 

Actual Event  

Normal = 59 

Attack = 13857 

Normal Attack 

Normal 59 0 

Attack 0 13857 

 True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Precision Accuracy 

100% 100% 0.00% 0.00% 100% 100% 

Figure D.5 Performance Graph for Test Case 2 



240 

D.3 Test Case 2.1: Dealing with Complete GET Headers 

The GET requests created by HTTP DDoS capable of deliver complete GET 

headers match with authentic. Hence, execution of this test case to evaluate the 

capabilities of the enhanced detection scheme in handling such situation. Dealing with 

this circumstance requires inspection against value of the HTTP connection header 

where the status of the connection must be Keep-Alive or keep-alive to pass the 

inspection as status other than this will result in detection of HTTP DDoS attack. In 

this situation, the header connection status plays an important role as incorrect 

interpretation will result in false result thus allowing DDoS traffic to pass through the 

detection. This test case was executed in mix types of HTTP traffics whereby DDoS 

and clean HTTP traffics were executed simultaneously. Table D.5 presents details on 

Test Case 2.1 parameter.  

Table D.5 Test Case 2.1 Parameter 

Attributes Values 

Type of Attack Direct Attack 

Traffic Type HTTP DDoS Traffic & Clean Traffic 

Duration 1 Minute 

Number of HTTP Traffic Received 10995 GET requests 

Inspection Type GET headers Value 

Extension of this test case detects 59 GET requests as genuine and 10936 were 

marked as HTTP DDoS from a total of 10995 GET requests received. The enhanced 

detection reach reaches the target by marking HTTP connection which was marked 

with a close status as HTTP DDoS attack. The outcome from this extension indicates 

a 100% of true positive rate, true negative rate, precision and accuracy. No incorrect 

result was obtained which leads to 0% rate for false positive and false negative. Table 

D.6 illustrates the results for the detection performance for Test Case 2.1 followed by

Figure D.6 which presents the performance graph for Test Case 2.1. 



241 

Table D.6 Detection Performance for Test Case 2.1 

Actual Event  

Normal = 59 

Attack = 10936 

Normal Attack 

Normal 59 0 

Attack 0 10936 

 True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Precision Accuracy 

100% 100% 0.00% 0.00% 100% 100% 

Figure D.6 Performance Graph for Test Case 2.1 

This test case provides a clear indication that no unpredictable situation has 

occurred such as in case of normal HTTP traffic to be marked as close in HTTP 

connection header. In addition, inspection against the connection header status is 

designed to be a sub-inspection where a client must provide the required headers 

before this filter is executed. A genuine GET requests will supply keep-alive 

connection status and no GET requests will be received after the status has changed to 

close. 



242 

The status of keep alive illustrates that clients still maintain connection to a 

server and the status will turn to close once client specifies that the connection needs 

to be closed (Wong, 2000). As soon as the connection is marked as close, request will 

no longer be received from the client. However, during the occurrence of HTTP DDoS, 

the connection status is close with continuous GET requests received by a web server 

as elaborated in Appendix C (Section C.4). HTTP DDoS pattern contradicts with 

normal transaction of genuine GET requests which makes the malicious pattern to be 

detected at 100% as HTTP DDoS. 

D.4 Test Case 2.2: Dealing with Irrelevant GET Headers 

The vulnerabilities at the application layer allow irrelevant GET headers to be 

included in GET requests. Thus, further expansion from previous test case (Test Case 

2 and Test Case 2.1) is conducted by predict that attackers are able to emulate genuine 

GET headers and successfully manipulated the value of the HTTP connection header. 

An extension of this test case is in line with the investigation result presented in 

Appendix C (Section C.8) where HTTP DDoS submits a wrong header in GET 

requests where keep alive is supposed to be the value of connection headers which 

were placed incorrectly. Table D.7 presents details on the Test Case 2.2 parameter. 

Table D.7 Test Case 2.2 Parameter 

Attributes Values 

Type of Attack Direct Attack 

Traffic Type HTTP DDoS Traffic & Clean Traffic 

Duration 1 Minute 

Number of HTTP Traffic Received 11277 GET requests 

Inspection Type Irrelevant GET headers 



243 

A total GET requests from this expansion is recorded at 11277 which contained 

59 genuine traffics and 11218 attacks.  Results obtained from this test case show that 

the enhance detection scheme still maintains its performance. All performance 

matrices such as true positive rate, true negative rate, precision and accuracy indicated 

a 100% detection. This means that malicious HTTP traffic which comes from HTTP 

DDoS attack and genuine traffic which originates from users were able to be 

distinguished successfully. A percentage zero was also obtained for false positive rate 

and false negative rate as no misclassification occurred. Table D.8 presents the 

detection performance for Test Case 2.2 followed by Figure D.7 which displays the 

performance result for Test Case 2.2 in graphical view. 

Table D.8 Detection Performance for Test Case 2.2 

Actual Event  

Normal = 59 

Attack = 11218 

Normal Attack 

Normal 59 0 

Attack 0 11218 

 True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Precision Accuracy 

100% 100% 0.00% 0.00% 100% 100% 

Figure D.7 Performance Graph for Test Case 2.2 



244 

This test case illustrates that irrelevant GET headers known as keep-alive was 

misused and is located at GET headers components. The detection inspects the GET 

headers utilized by a client to browse contents of a web server.  An incorrect supply 

of GET headers component will result in detection of HTTP DDoS. This test case 

scenario indicates that attackers accidentally supply incorrect components to be 

inserted in GET headers components which leads to 100% performance result in 

recognizing the attack pattern. The Keep-Alive is the value of connection component 

in GET requests and HTTP Response. The Keep-Alive is also the component for 

HTTP Response. Figure D.8 provides a graphical view of GET requests headers while 

Figure D.9 illustrates the HTTP response headers. 

Figure D.8 HTTP Request Headers (https://developer.mozilla.org/en-

US/docs/Web/HTTP/Messages#) 

Figure D.9 HTTP Response Headers (https://developer.mozilla.org/en-

US/docs/Web/HTTP/Messages#) 



245 

As a conclusion for Test Case 2, 2.1 and 2.2, the test cases performed inquiries 

pertaining to absent GET headers, connection status and value of the connection 

header. Each GET requests will be inspected and failure to adhere to one of the rules 

will result in detection of HTTP DDoS. This test case has successfully gathered a 

positive output where a malicious pattern produced by HTTP DDoS can be fully 

detected. Results in this test case also show that the strategy to inspect the existence of 

four headers such as accept-language, accept-encoding, connection and user-agent to 

detect HTTP DDoS attack has been completed successfully without any false 

classification. Results received from this test case also provide confirmatory findings 

that genuine GET requests will supply correct and complete headers and failure to 

fulfill this rule results in suspicious GET requests and is thereby detected as HTTP 

DDoS. 

D.5 Test Case 3: False Request Query 

This test case is conducted to evaluate the detection performance to recognize 

a delivery of false query that constitutes by HTTP DDoS. The formation of this test 

case is in line with the investigation results presented in Appendix C (Section C.4 

Section C.5, Section C.8, Section C.9 and Section C.11) where the results indicate that 

bogus request queries were sent against a web server. The vulnerabilities result in 

Appendix C (Section C.24) prove that any submitted query accepted by a web server 

allows an attacker to manipulate GET headers to create a false query in GET requests 

to form HTTP DDoS. In this test case, bad and clean traffics were mixed together to 

observe the precision the enhanced detection scheme extracts and compares a present 

string with a string database. A GET requests that is delivered with query must comply 

with certain rules to avoid detection of HTTP DDoS. Table D.9 indicates details on 

Test Case 3 parameter while Figure D.10 illustrates the Test Case 3 architecture. 



246 

Table D.9 Test Case 3 Parameter 

Attributes Values 

Type of Attack Direct Attack 

Traffic Type Bad traffic & clean traffic 

Attack Duration 1 Minutes 

Inspection Type Request query 

Accept Query • Lower case

• String exist at string database

• Accept String (register subject, student

fees, student fees semester 3

semester duration, lecturer name)

Reject Query • Upper case

• Symbol

Figure D.10 Architecture for Test Case 3 

The total GET requests received was 6971 and out of this value, 271 GET 

requests have been detected as true negative which indicate that the GET requests 

contain clean query while 6700 GET requests were recognized as true positive. The 

GET requests detected as forged due to massive queries received and a web server 

content contradicted with the queries. HTTP DDoS creates an excessive search request 

(Prasad et al., 2017). All false queries and authentic queries were recognized precisely 

which lead to zero percentages of false detections such as false positive and false 



247 

negative. The detection rate of true positive, true negative, precision and accuracy 

indicated 100% rate and 0% rate for false positive and false negative.  

Request queries generated by HTTP DDoS through automated tools are much 

longer and meaningless as they contain a combination of capital letters, small letters, 

numbers and symbols. Besides that, although HTTP DDoS is capable of generating 

query understood by humans, the supplied query is irrelevant to be utilized by humans. 

Request queries made by human are more readable and relate to the contents of a web 

server. Taking this into account, examining the query with the string database is seen 

as an appropriate option to be applied to determine the relevance of the query which 

allows the results in this section to yield a 100% performance rate in recognizing 

genuine and bogus queries. Irrelevant queries in GET requests and requests in high 

frequency provides sign HTTP DDoS has occurred. 

The expected outcome obtained from this test case indicates that the flow of 

the detection and algorithm work as coded. Besides that, the results show extraction of 

queries from GET headers and compare the query with the string database in real time 

managed to operate smoothly. The string database plays a vital role as it contains a list 

of key words to determine the relevance of the received query in GET requests. There 

is no barrier for GET requests to carry any data type which allows HTTP DDoS 

generates various strings in GET requests to overwhelm a web server. Singh and 

Kumar (2016) explained that HTTP was an independent protocol and it accepts any 

data type. Table D.10 presents the detection performance results for Test Case 3 while 

Figure D.11 illustrates the performance graph for Test Case 3. 



248 

Table D.10 Detection Performance for Test Case 3 

Actual Event  

Normal = 271 

Attack = 6700 

Normal Attack 

Normal 271 0 

Attack 0 6700 

 True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Precision Accuracy 

100% 100% 0.00% 0.00% 100% 100% 

Figure D.11 Performance Graph for Test Case 3 

Test Case 3 illustrates that the false GET requests delivered by HTTP DDoS is 

capable to be detected. Existence of this detection will not allow an attacker to generate 

bogus and irrelevant queries. Capturing the request query pattern produced by HTTP 

DDoS is essential to be included in the string database. Obsolete string database will 

result in false query generated by HTTP DDoS recognized as genuine. 



249 

D.6 Test Case 4: Source Inspection Proxy or None Proxy 

Proxy utilizations during GET requests present headers known as X-

Forwarded-For and Via. Commonly, both headers are paired together during the 

process of GET requests and the presence of one of these headers is a sign of suspicious 

GET requests. However, in certain circumstances, proxy headers are absent which lead 

to difficulties in identifying whether the source connection comes from a proxy or 

other platforms. Investigation results presented in Appendix C (Section C.9 until 

Section C.11) thoroughly discussed the public proxy functionality and how attackers 

manipulate the usage of the public proxy to launch HTTP DDoS attack.  

HTTP DDoS detection launched through a proxy has to be detected in a 

specific sequence. Firstly, recognizing the source platform is essential whether it 

comes from a proxy or non-proxy as a proxy provides different GET headers. Once 

recognition of the source connection is complete, inspection against the GET requests 

traffic will be done to determine whether the traffic is HTTP DDoS or genuine. This 

test case began with an inspection of source connection to determine the source 

connection whether it comes from a proxy or direct connection to access a web server. 

Detection of malicious GET requests will be done in the subsequent test case. Table 

D.11 shows details on Test Case 4 parameter and Figure D.12 illustrates the

architecture for Test Case 4. 

Table D.11 Test Case 4 Parameter 

No Attributes Values 

1. Type of Attack Attack through proxy 

2. Traffic Type Bad traffic and clean traffic 

3. Attack Duration 1 Minute 

4. Inspection Type Proxy 



250 

Figure D.12 Architecture for Test Case 4 

This test case received 8809 GET requests and successful discovery of GET 

requests not utilizing proxy 38 resulted in a 100% true negative rate and 0% for false 

positive rate. Despite the detection of non-proxy fulfill the detection objective, 

incorrect classification was also recorded as 77 GET requests which employed proxies 

were recognized as normal connection. Apart from that, the detection of GET requests 

which adopted proxy were recorded at 8694 and inclusion of incorrect classification 

leads to a true positive rate of 99.12% and a false negative rate of 0.88%.  Precision 

indicates a 100% rate as there was not any normal connection that was detected as 

proxy while an accuracy of 99.13% was recorded because it is influenced by incorrect 

classification. Table D.12 presents the detection performance results for Test Case 4 

followed by Figure D.13 which illustrates the performance graph for Test Case 4. 



251 

Table D.12 Detection Performance for Test Case 4 

Actual Event 

Normal = 38 

Proxy = 8771 

Normal Proxy 

Normal 38 0 

Proxy 77 8694 

 True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Precision Accuracy 

99.12% 100% 0.00% 0.88% 100% 99.13% 

Figure D.13 Performance Graph for Test Case 4 

Results show that the performance dropped due to imprecise classification as 

GET requests utilizing the proxy was detected as non-proxy. Inspection of this result 

was conducted and indicated that the IP address of the proxy was not included inside 

the proxy database. As explained earlier in Chapter 4 (Section 4.7), proxy detection 

requires a dual layer which performs inquiries against proxy headers and a further 

inspection with a proxy database to confirm whether the source connection comes from 

a proxy. In this case, the proxy IP address is non-existent in the proxy IP database 

which leads to an incorrect categorization. 



252 

 Besides that, the proxy provides absent proxy headers which caused the first 

layer of the enhanced detection scheme to detect proxy unable to mark the source as a 

proxy and only relies on the proxy database to determine whether it is a proxy or a 

normal connection.  The proxy database requires frequent updates to prevent incorrect 

classification of source connection. The existence of new proxy IP which is not 

included in the proxy database provides a higher possibility in the performance drop. 

Furthermore, some of the proxies were not showing proxy headers as explained in 

Appendix C (Section C.9 until Section C.11) which will result in a misclassification 

in detecting whether the source connection is a proxy or a normal connection. 

D.7 Test Case 4.1: Dealing with Attack Through Proxy 

As explained earlier, HTTP DDoS through proxy is required to be detected in 

a particular sequence. The first inspection identifies whether the type of source 

connection comes from a specific platform which has been executed earlier. The 

second stage counts the threshold and the type of platform source used to generate a 

GET requests whether it is constituted from web browsers or automated tools.  Results 

indicate that 892 GET requests have been detected as clean GET requests which 

recorded a true negative rate of 100%. Accurate detection of authentic GET request 

leads to zero attack traffic to be recognized as genuine which results in a false positive 

rate of 0.00%. The amount of inaccurate classification is 350 which indicates that the 

attack traffics were incorrectly marked as genuine and recorded a 95.58% of true 

positive rate in line with a false negative rate of 4.42%. Precision shows a 100% rate 

while accuracy gained a 96.03% rate as imprecise classification provides a significant 

impact that leads to accuracy to obtain such rate (96.03%).  

An inspection of GET request that was launched through proxy was executed 

when the proxy threshold reaches the limit. Results above indicate that the strategy to 

utilize proxy headers and proxy IP database with a combination of threshold to 

constitute the detection operated as expected. However, this test case recorded a slight 

performance drop unlike the previous test case which indicates an efficient detection 

performance and operates as coded. The cause of the performance drop due to a higher 



253 

resource utilization as noted by prior studies and explained in Chapter 2 (Section 2.3) 

in which HTTP DDoS consumes resources which results in the server to become 

unresponsive to process GET requests. On the other hand, proxy IP address that 

launched the attack was not included in the proxy database which allows a malicious 

request to reach a web server and therefore results in the detection performance to 

drop.  

HTTP DDoS through proxy is difficult to be detected as the same proxy can be 

used by attackers and authentic users. Besides that, to differentiate whether both parties 

make a genuine request or an attack is challenging as they utilize equal resources to 

access a web server. Pandiaraja and Manikandan (2015) noted that proxy only able to 

identify the identity of the client system as IP address and the client GET headers are 

received by the proxy. However, the identity of the initiator whether attacker or 

genuine users are difficult to discover. The detection of HTTP DDoS attack launched 

through proxy requires a double inspection to identify whether the source connection 

comes from a proxy or vice versa. Although complete GET headers presented by proxy 

to attack a web server, higher GET requests generated from proxy and automated tools 

utilized by the source connection provide a clear sign that HTTP DDoS has occurred. 

Table D.13 indicates the result on the detection of HTTP DDoS followed by a 

graphical view of the results presented in Figure D.14. 



254 

Table D.13 Detection Performance for Test Case 4.1 

Actual Event  

Normal = 892 

Attack = 7567 

Normal Attack 

Normal 892 0 

Attack 350 7567 

 True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Precision Accuracy 

95.58% 100% 0.00% 4.42% 100% 96.03% 

Figure D.14 Performance Graph for Test Case 4.1 

Test Case 4.1 focused on the detection of HTTP DDoS that is launched through 

proxies. This test case is completed with a slight performance drop. Proxy detection 

requires two stages and these stages operated as expected to recognize proxies that 

launched the attack. A proxy requires frequent updates as different proxy providers 

utilized different names to inform a web server the source of the GET requests is 

originated from proxy. Apart from that, the proxy IP addresses also requires constant 

updates to facilitate detection of HTTP DDoS through proxy. 



255 

APPENDIX E SOURCE INSPECTION 

Sub InspectionHighRate() 

Dim HTTPRequestPrevious = DateTime.Today.AddDays(-

1).ToString("dd:MM:yyyy") 

Dim CheckHTTPRequestDate As Integer = 0 

For Each line As String In 

File.ReadLines("C:\HTTPLogs\HighRequest\CountGETRequest.txt") 

If line.Contains(HTTPRequestPrevious) Then 

CheckHTTPRequestDate = CheckHTTPRequestDate + 1 

End If 

Next line 

If CheckHTTPRequestDate > 0 Then 

File.WriteAllText("C:\HTTPLogs\HighRequest\CountGETRequest.txt", 

String.Empty.Trim) 

End If 

Dim HTTPRequestdate = DateTime.Now.ToString("dd:MM:yyyy") 

Dim ClientIP As Object = Request.ServerVariables("REMOTE_ADDR") 

Dim StrPath = Request.Path 

Dim StrPathReplace As String 

StrPathReplace = StrPath.Replace("/", "") 

Dim combine = HTTPRequestdate + "-" + ClientIP + "-" + StrPathReplace 

Dim path As String = "C:\HTTPLogs\HighRequest\CountGETRequest.txt" 

Using sw As StreamWriter = File.AppendText(path) 

sw.WriteLine(combine) 

End Using 

Dim input = File.ReadAllText("C:\HTTPLogs\HighRequest\CountGETRequest.txt") 

Dim pattern1 = ClientIP  

Dim pattern2 = Request.Path  



256 

Dim pattern3 = HTTPRequestdate 

Response.Write(combine) 

Dim matches = Regex.Matches(input, combine) 

Dim count = matches.Count  

Response.Write("<br>" & count) 

If count > 20 Then 

CheckBrowser() 

Else 

BelowThreshold.BelowThresholdCount(combine) 

End If 

End Sub 

Imports System.IO 

Public Class BelowThreshold 

Shared Sub BelowThresholdCount(ByVal BelowThresholdCount As Object) 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\HighRequest\BelowThresholdCount.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine("Below Threshold: " & BelowThresholdCount) 

End Using 

End Sub 

Shared Sub Proxy_BelowThresholdCount(ByVal Proxy_BelowThresholdCount As 

Object) 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\Proxy\ProxyIP\Proxy_BelowThreshold.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine("Proxy Below Threshold: " & Proxy_BelowThresholdCount) 

End Using 

End Sub 

End Class 

Sub CheckBrowser() 



257 

Dim width = hidwidth.Value 

Dim heigh = hidheight.Value 

Dim input = File.ReadAllText("C:\HTTPLogs\HighRequest\CountGETRequest.txt") 

Dim ClientIP As Object = Request.ServerVariables("REMOTE_ADDR") 

Dim HTTPRequestdate = DateTime.Now.ToString("dd:MM:yyyy") 

Dim combine = HTTPRequestdate + "-" + ClientIP + "-" + Request.Path 

If Not IsPostBack Then 

Dim script As String = "window.onload = function() { SetHidValue(); 

};"Page.ClientScript.RegisterClientScriptBlock(Me.GetType(), "setvalues", script, 

True) 

If hidheight.Value = String.Empty And hidwidth.Value = String.Empty Then 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\HighRequest\NoBrowser.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine("No Browser Detected:" & ClientIP) 

End Using 

End If 

Else 

If Not (hidheight.Value = String.Empty) And Not (hidwidth.Value = String.Empty) 

Then 

Response.Write("Width: " + hidwidth.Value + " Height: " + hidheight.Value) 

Dim UA As String = Request.UserAgent 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\HighRequest\Browser.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine("Browser Detect :" & UA & "-" & ClientIP) 

End Using 

End If 

End If 

GetHeader_Inspection() 

End Sub 



258 

<script type="text/javascript"> 

var width = screen.width; 

var height = screen.height; 

function SetHidValue() 

{ 

  document.getElementById("hidwidth").value = width; 

  document.getElementById("hidheight").value = height; 

  document.getElementById("default").submit();

}; 

</script> 



259 

APPENDIX F GET HEADERS INSPECTION 

Sub GetHeader_Inspection() 

Dim ClientIP As Object = Request.ServerVariables("REMOTE_ADDR") 

CountGETRequest.CountGETRequest("HTTP GET Request", ClientIP) 

Dim AcceptLanguange As Object = 

Context.Request.ServerVariables.AllKeys.Contains("HTTP_ACCEPT_LANGUAG

E") 

Dim UserAgent As Object = 

Context.Request.ServerVariables.AllKeys.Contains("HTTP_USER_AGENT") 

Dim Connection As Object = 

Context.Request.ServerVariables.AllKeys.Contains("HTTP_CONNECTION") 

Dim AcceptEncoding As Object = 

Context.Request.ServerVariables.AllKeys.Contains("HTTP_ACCEPT_ENCODING

") 

Dim UAgent As Object = 

Context.Request.ServerVariables("HTTP_USER_AGENT") 

Dim ConnectionStatus As Object = 

Context.Request.ServerVariables("HTTP_CONNECTION") 

Dim HTTPVersion As Object = 

Context.Request.ServerVariables("HTTP_VERSION") 

Dim header() As String = Context.Request.Headers.AllKeys 

If (AcceptLanguange And UserAgent And Connection And AcceptEncoding) Then 

Dim countheader As Integer = 0 

For Each line As String In 

File.ReadLines("C:\HTTPLogs\GetHeader\IrreleventHeader.txt") 

If header.Contains(line) Then 

countheader = countheader + 1 

End If 



260 

Next line 

If countheader > 0 Then 

'Detect HTTP DDoS 

GetHeaderInspection.MaliciousHeaders("Detect Malicious Headers") 

ElseIf ConnectionStatus.Equals("Keep-Alive") Or ConnectionStatus.Equals("keep-

alive") Then 

'Clean HTTP Request | 'Forward Next Layer / Main Page 

GetHeaderInspection.CleanHeaders("Clean HTTP Traffic : Complete HTTP 

Headers", ClientIP) 

ElseIf ConnectionStatus.Equals("close") Then 

'Detect HTTP DDoS 

GetHeaderInspection.ConnectionStatus("Connection Close") 

End If 

Else 

'Detect HTTP DDoS 

GetHeaderInspection.IncompleteHeaders("Incomplete HTTP Headers", ClientIP) 

End If 

QStringInspection() 

End Sub 

Imports Microsoft.VisualBasic 

Imports System.IO 

Public Class GetHeaderInspection 

Shared Sub MaliciousHeaders (ByVal MaliciousHeaders As Object) 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\GetHeader\MaliciousHeader.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine(MaliciousHeaders) 

End Using 

End Sub 



261 

Shared Sub CleanHeaders(ByVal CleanHeader As Object, ByVal ClientIP As 

Object) 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\GetHeader\CleanHeader.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine(CleanHeader + "-" + ClientIP) 

End Using 

End Sub 

Shared Sub ConnectionStatus(ByVal ConnectionStatus As Object) 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\GetHeader\ConnectionStatus.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine(ConnectionStatus) 

End Using 

End Sub 

Shared Sub IncompleteHeaders(ByVal IncompleteHeader As Object, ByVal ClientIP 

As Object) 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\GetHeader\IncompleteHeader.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine(IncompleteHeader + "-" + ClientIP) 

End Using 

End Sub 

End Class 



263 

APPENDIX G REQUEST QUERY INSPECTION 

Sub QStringInspection() 

Dim ClientIP As Object = Request.ServerVariables("REMOTE_ADDR") 

Dim PresentString As String = Request.QueryString.ToString() 

Dim Qlength As Int32 = Request.QueryString.Count.ToString 

Dim NewString As String 

Dim Stringcheck As Boolean 

QString.QStringCountGETRequest(PresentString, ClientIP) 

If PresentString.Equals("") Then  

'No Query | 'Forward Next Layer / Main Page 

QString.QStringNoQuery(ClientIP) 

Else 

If PresentString.Contains("+") Then  

NewString = PresentString.Replace("+", " ") 

If Stringcheck = Regex.IsMatch(NewString, "[`~!@#\$%\^\*\(\)_\-

\+\{\}\[\]\\\|:;""'<>,\.\/A-Z]") Then 

If Qlength >= 4 Then    

'Detect HTTP DDoS 

QString.QStringExceedLength(ClientIP, NewString, Qlength) 

Else 

Dim CheckPresentString As Integer = 0 

For Each line As String In 

File.ReadLines("C:\HTTPLogs\QueryString\Refer\QStringRelevantCheck.txt") 

If line.Equals(NewString) Then 

CheckPresentString = CheckPresentString + 1 

End If 



264 

Next line 

If CheckPresentString > 0 Then 

'Clean HTTP Request | 'Forward Next Layer / Main Page 

QString.QStringDetectRelevant(ClientIP, NewString) 

Else 

'Detect HTTP DDoS 

QString.QStringDetectNotRelevant(ClientIP, NewString) 

End If 

End If 

Else 

'Detect HTTP DDoS 

QString.QStringDetectSpecialCharacter(ClientIP, NewString) 

End If 

ElseIf Stringcheck = Regex.IsMatch(PresentString, "[`~!@#\$%\^\*\(\)_\-

\+\{\}\[\]\\\|:;""'<>,\.\/A-Z]") Then 

If Qlength >= 4 Then   

'Detect HTTP DDoS 

QString.QStringExceedLength(ClientIP, PresentString, Qlength) 

Else 

Dim CheckPresentString As Integer = 0 

For Each line As String In 

File.ReadLines("C:\HTTPLogs\QueryString\Refer\QStringRelevantCheck.txt") 

If line.Equals(PresentString) Then 

CheckPresentString = CheckPresentString + 1 

End If 

Next line 

If CheckPresentString > 0 Then 

'Clean HTTP Request | 'Forward Next Layer / Main Page 

QString.QStringDetectRelevant(ClientIP, PresentString) 



265 

Else 

'Detect HTTP DDoS 

QString.QStringDetectNotRelevant(ClientIP, PresentString) 

End If 

End If 

Else 

'Detect HTTP DDoS 

QString.QStringDetectSpecialCharacter(ClientIP, PresentString) 

End If 

End If 

End Sub 

Imports System.IO 

Public Class QString 

Shared Sub QStringCountGETRequest(ByVal QStringCountGETRequest As Object, 

ByVal ClientIP As Object) 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\QueryString\QStringCountGETRequest.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine("Query String GET Request : " & QStringCountGETRequest 

& "-" & ClientIP) 

End Using 

End Sub 

Shared Sub QStringNoQuery(ByVal ClientIP As Object) 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\QueryString\QStringNoQuery.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine("No Query : " & "-" & ClientIP) 

End Using 

End Sub 



266 

Shared Sub QStringExceedLength(ByVal ClientIP As Object, ByVal NewString As 

Object, ByVal QStringExceedLength As Object) 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\QueryString\QStringExceedLength.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine("Query String Exceed Length : " & NewString & " Length : " 

& QStringExceedLength & "-" & ClientIP) 

End Using 

End Sub 

Shared Sub QStringDetectRelevant(ByVal ClientIP As Object, ByVal 

QStringDetectRelevant As Object) 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\QueryString\QStringDetectRelevant.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine("Detect IP : " & ClientIP & " Query Detect Relevant : " & 

QStringDetectRelevant) 

End Using 

End Sub 

Shared Sub QStringDetectNotRelevant(ByVal ClientIP As Object, ByVal 

QStringDetectNotRelevant As Object) 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\QueryString\QStringDetectNotRelevant.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine("Detect IP : " & ClientIP & " Query Detect Not Relevant : " & 

QStringDetectNotRelevant) 

End Using 

End Sub 



267 

Shared Sub QStringDetectSpecialCharacter(ByVal QStringDetectSpecialCharacter 

As Object, ByVal ClientIP As Object) 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = 

"C:\HTTPLogs\QueryString\QStringDetectSpecialCharacter.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine("Detect Query String Special Character : " & 

QStringDetectSpecialCharacter & "-" & ClientIP) 

End Using 

End Sub 

End Class 



269 

APPENDIX H PROXY INSPECTION 

Sub Proxy_Inspection() 

Dim XF, XVIA As Object 

Dim count As Integer = 0 

Dim SourceConnection As Object = Request.ServerVariables("REMOTE_ADDR") 

Dim ClientIPProxy As Object = Request.ServerVariables("REMOTE_ADDR") 

XF = Context.Request.ServerVariables("HTTP_X_FORWARDED_FOR") 

XVIA = Context.Request.ServerVariables("HTTP_VIA") 

If 

(Context.Request.ServerVariables.AllKeys.Contains("HTTP_X_FORWARDED_FO

R")) Or 

(Context.Request.ServerVariables.AllKeys.Contains("HTTP_VIA")) Or 

(Context.Request.ServerVariables.AllKeys.Contains("HTTP_X_PROXY_ID")) Or 

(Context.Request.ServerVariables.AllKeys.Contains("HTTP_X_REAL_IP")) Or 

(Context.Request.ServerVariables.AllKeys.Contains("HTTP_X_PINGBACK_FOR

WARDED_FOR")) Then 

Dim Path_ProxyHeader As String = 

"C:\HTTPLogs\Proxy\ProxyIP\ProxyWith_Header.txt" 

Using sw As StreamWriter = File.AppendText(Path_ProxyHeader) 

sw.WriteLine("Detect Proxy With Proxy Headers: " & ClientIPProxy) 

End Using 

InspectionHighRate_Proxy() 

Else 

Dim CheckProxy As Integer = 0 

For Each line As String In 

File.ReadLines("C:\HTTPLogs\Proxy\ProxyIP\ProxyIP_Database.txt") 

If line.Equals(ClientIPProxy) Then 

CheckProxy = CheckProxy + 1 



270 

End If 

Next line 

If CheckProxy > 0 Then 

Dim Path_ProxyAbsent_Header As String = 

"C:\HTTPLogs\Proxy\ProxyIP\ProxyWith_No_Header.txt" 

Using sw As StreamWriter = File.AppendText(Path_ProxyAbsent_Header) 

sw.WriteLine("Detect Proxy With Absent Proxy Headers: " & ClientIPProxy) 

End Using 

InspectionHighRate_Proxy() 

Else 

Dim Path_NoProxy As String = "C:\HTTPLogs\Proxy\ProxyIP\DetectNotProxy.txt" 

Using sw As StreamWriter = File.AppendText(Path_NoProxy) 

sw.WriteLine("Detect No Proxy: " & ClientIPProxy) 

'No Proxy Detected 

'Forward to Next Layer 

End Using 

End If 

End If 

End Sub 

Sub InspectionHighRate_Proxy() 

Dim HTTPRequestPrevious = DateTime.Today.AddDays(-

1).ToString("dd:MM:yyyy") 

Dim CheckHTTPRequestDate As Integer = 0 

For Each line As String In 

File.ReadLines("C:\HTTPLogs\Proxy\ProxyIP\CountGetRequest_Proxy.txt")  

If line.Contains(HTTPRequestPrevious) Then 

CheckHTTPRequestDate = CheckHTTPRequestDate + 1 

End If 

Next line 

If CheckHTTPRequestDate > 0 Then 

File.WriteAllText("C:\HTTPLogs\Proxy\ProxyIP\CountGetRequest_Proxy.txt", 

String.Empty.Trim) 



271 

End If 

Dim HTTPRequestdate = DateTime.Now.ToString("dd:MM:yyyy") 

Dim ProxyIP As Object = Request.ServerVariables("REMOTE_ADDR") 

Dim StrPath = Request.Path 

Dim StrPathReplace As String 

StrPathReplace = StrPath.Replace("/", "") 

Dim combine = HTTPRequestdate + "-" + ProxyIP + "-" + StrPathReplace 

Dim Path_CountProxyRequest As String = 

"C:\HTTPLogs\Proxy\ProxyIP\CountGetRequest_Proxy.txt" 

Using sw As StreamWriter = File.AppendText(Path_CountProxyRequest) 

sw.WriteLine(combine) 

End Using 

Dim input = 

File.ReadAllText("C:\HTTPLogs\Proxy\ProxyIP\CountGetRequest_Proxy.txt") 

Dim pattern1 = ProxyIP  

Dim pattern2 = Request.Path  

Dim pattern3 = HTTPRequestdate 

Response.Write(combine) 

Dim matches = Regex.Matches(input, combine)  

Dim count = matches.Count  

Response.Write("<br>" & count) 

If count > 25 Then 

CheckBrowser_Proxy() 

Else 

BelowThreshold.Proxy_BelowThresholdCount(combine) 

End If 

End Sub 

Sub CheckBrowser_Proxy() 

Dim width = hidwidth.Value 

Dim heigh = hidheight.Value 

Dim input = File.ReadAllText("C:\HTTPLogs\HighRequest\CountGETRequest.txt") 



 

 

272 
 

Dim ClientIP As Object = Request.ServerVariables("REMOTE_ADDR") 

Dim HTTPRequestdate = DateTime.Now.ToString("dd:MM:yyyy") 

Dim combine = HTTPRequestdate + "-" + ClientIP + "-" + Request.Path 

 

If Not IsPostBack Then 

Dim script As String = "window.onload = function() { SetHidValue(); };" 

Page.ClientScript.RegisterClientScriptBlock(Me.GetType(), "setvalues", script, 

True) 

If hidheight.Value = String.Empty And hidwidth.Value = String.Empty Then 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\Proxy\ProxyIP\NoBrowser_Proxy.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine("Proxy : No Browser Detected:" & ClientIP) 

End Using 

End If 

Else 

If Not (hidheight.Value = String.Empty) And Not (hidwidth.Value = String.Empty) 

Then 

Response.Write("Width: " + hidwidth.Value + " Height: " + hidheight.Value) 

Dim UA As String = Request.UserAgent 

Dim text As String = "First line" & Environment.NewLine 

Dim path As String = "C:\HTTPLogs\Proxy\ProxyIP\Browser_Proxy.txt" 

Using WQAttack As StreamWriter = File.AppendText(path) 

WQAttack.WriteLine("Proxy : Browser Detect :" & UA & "-" & ClientIP) 

End Using 

End If 

End If 

End Sub 

 


	DECLARATION
	DEDICATION
	ACKNOWLEDGEMENT
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF APPENDICES
	Chapter 1    INTRODUCTION
	1.1 Overview
	1.2 Background of the Problem
	1.3 Problem Statement
	1.4 Research Questions
	1.5 Research Aim
	1.6 Research Objectives
	1.7 Research Scope and Assumption
	1.8 Significant of the Research
	1.9 Thesis Outline

	Chapter 2    LITERATURE REVIEW
	2.1 Introduction
	2.2 An Overview of Cyber Attacks
	2.3 HTTP DDoS Taxonomy
	2.4 HTTP DDoS Attack Categories and Strategies
	2.5 Defense Life Cycles and Strategies
	2.6 HTTP Protocol
	2.7 HTTP Headers Security
	2.8 Web Application Firewall
	2.9 HTTP DDoS GET Headers
	2.10 Existing Approach based on Signature Based Detection
	2.11 Existing Approach based on Anomaly Detection
	2.12 Summary of Existing Approaches
	2.13 Overview of General Analysis
	2.13.1 Research Dataset
	2.13.2 Evaluation Method
	2.13.3 DDoS Defense Strategy
	2.13.4 Results
	2.14 Overview of Critical Analysis
	2.14.1 Detection Strategy
	2.15 Analysis Outcome and Research Direction
	2.16 Summary

	Chapter 3    RESEARCH METHODOLOGY
	3.1 Introduction
	3.2 Operational Framework
	3.2.1 Implementation Theories
	3.2.2 Attack Characteristic
	3.2.3 Problem Analysis
	3.2.4 Design and Implementation
	3.2.5 Verification and Validation
	3.3 Testbed
	3.3.1 Software and Hardware Configuration
	3.4 Summary

	Chapter 4    DESIGN AND IMPLEMENTATION
	4.1 Introduction
	4.2 Enhanced Process for Detection HTTP DDoS
	4.3 Feature Extraction of GET Headers Attributes
	4.4 Source Inspection Algorithm
	4.5 GET Headers Inspection Algorithm
	4.6 Request Query Inspection Algorithm
	4.7 Proxy Inspection Algorithm
	4.8 Quadrable Inspection
	4.9 Summary

	Chapter 5    RESULTS AND DISCUSSION
	5.1 Introduction
	5.2 Overview of Experimental Environment
	5.3 Detection Rule
	5.4 Overview of Comparison
	5.5 Comparison with Signaling
	5.6 Comparison with Logistic Regression
	5.7 Comparison with HADM
	5.7.1 Test Case 1
	5.7.2 Test Case 2
	5.7.3 Test Case 3
	5.8 Comparison with Information Entropy
	5.9 General Discussion
	5.10 Comparison Discussion with Signaling Technique
	5.11 Comparison Discussion with Logistic Regression
	5.12 Comparison Discussion with HADM
	5.12.1 Source Inspection
	5.12.2 GET Headers Inspection
	5.12.3 Request Query Inspection
	5.13 Comparison Discussion with Information Entropy
	5.14 Summary

	Chapter 6    CONCLUSION
	6.1 Achievements and Contributions
	6.1.1 Enhance Detection Framework
	6.1.2 Enhance and Develop Detection Algorithms
	6.1.3 Improve Detection Performance
	6.1.4 Additional Contributions
	6.2 Advantages of Enhanced Detection Scheme
	6.3 Limitation and Recommendation of Future Works

	REFERENCES
	APPENDIX A  LIST OF PUBLICATIONS
	Journal with Impact Factor
	Indexed Journal

	APPENDIX B CONFIGURATION AND CONNECTIVITY TEST
	B.1 Firewall Configuration
	B.2 Firewall Routing Table
	B.3 Firewall Security Policy
	B.4 DHCP Configuration
	B.5 Web Server Configuration
	B.6 Client Configuration
	B.7 Connectivity Test
	B.8 Connectivity Test – DHCP
	B.9 Connectivity Test - Ping
	B.10 Connectivity Test – Telnet
	B.11 Connectivity Test - Domain Name System (DNS)

	APPENDIX C INVESTIGATION
	C.1 Research Dataset
	C.2 Genuine GET Headers without Proxy
	C.3 Genuine GET Headers with Proxy
	C.4 Investigation of GET Headers - DTS1
	C.5 Investigation of GET Headers - DTS2
	C.6 Investigation of GET Headers - DTS3
	C.7 Investigation of GET Headers - DTS4
	C.8 Investigation of GET Headers - DTS5
	C.9 Investigation of GET Headers - DTS6 (Spoof IP)
	C.10 Investigation of GET Headers - DTS7 (Proxy 1)
	C.11 Investigation of GET Headers - DTS8 (Proxy 2)
	C.12 Attack Category Associated with Real HTTP DDoS
	C.13 Overview of Dataset Comparison
	C.14 GET Headers - User-Agent
	C.15 GET Headers - Query String
	C.16 GET Headers - Referrer
	C.17 GET Headers - Connection and Accept Language
	C.18 GET Headers - Proxy
	C.19 Overview of Investigation GET Headers Vulnerabilities
	C.20 GET Headers Vulnerabilities - User Agent
	C.21 GET Headers Vulnerabilities – Referrer
	C.22 GET Headers Vulnerabilities - Request Query
	C.23 GET Headers Vulnerabilities - Custom Values of GET Requests
	C.24 Investigation Outcome
	C.25 Expansion of HTTP DDoS Knowledge Area

	APPENDIX D PRELIMINARY TEST
	D.1 Test Case 1: GET Requests Frequency and Source Inspection
	D.2 Test Case 2: Inspection of Compulsory GET Headers
	D.3 Test Case 2.1: Dealing with Complete GET Headers
	D.4 Test Case 2.2: Dealing with Irrelevant GET Headers
	D.5 Test Case 3: False Request Query
	D.6 Test Case 4: Source Inspection Proxy or None Proxy
	D.7 Test Case 4.1: Dealing with Attack Through Proxy

	APPENDIX E SOURCE INSPECTION
	APPENDIX F GET HEADERS INSPECTION
	APPENDIX G REQUEST QUERY INSPECTION
	APPENDIX H PROXY INSPECTION



