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Abstract: Human action recognition (HAR) is one of the most active research topics in the field of
computer vision. Even though this area is well-researched, HAR algorithms such as 3D Convolution
Neural Networks (CNN), Two-stream Networks, and CNN-LSTM (Long Short-Term Memory) suffer
from highly complex models. These algorithms involve a huge number of weights adjustments dur-
ing the training phase, and as a consequence, require high-end configuration machines for real-time
HAR applications. Therefore, this paper presents an extraneous frame scrapping technique that
employs 2D skeleton features with a Fine-KNN classifier-based HAR system to overcome the dimen-
sionality problems.To illustrate the efficacy of our proposed method, two contemporary datasets i.e.,
Multi-Camera Action Dataset (MCAD) and INRIA Xmas Motion Acquisition Sequences (IXMAS)
dataset was used in experiment. We used the OpenPose technique to extract the 2D information,
The proposed method was compared with CNN-LSTM, and other State of the art methods. Results
obtained confirm the potential of our technique. The proposed OpenPose-FineKNN with Extraneous
Frame Scrapping Technique achieved an accuracy of 89.75% on MCAD dataset and 90.97% on IXMAS
dataset better than existing technique.

Keywords: HAR; skeleton; OpenPose; ML; FineKNN; EFS

1. Introduction

Generally, images and videos contain useful information that can be capitalized to
recognize embedded activities, actions or events. Human action recognition (HAR) is a
branch of computer vision that involves identifying human actions in various scenarios.
Traditionally, this process involves detecting local interest points or regions across time
and space [1]. Conspicuously to its growing needs, HAR has recently gained significant of
interest among researchers from various disciplines. Some of the key applications of HAR
are in the field of security, surveillance, video retrieval, entertainment, assisted living, and
human-computer interaction [1–3]. To ensure an effective and reliable HAR system, the
following essential concerns are commonly considered:

1. High performance—performance of the action recognition technique is what deter-
mines the success of the human action system in terms of recognising actions.

2. Region of interest—essential parts of the image or video sequences that can be
extracted or selected for action recognition.

3. Computation complexity—the time consumed by the system or algorithm to recog-
nize the action.

Typically, any actions performed by a human possess an intrinsic vertical structure
consisting of multiple levels and are thus divided into three levels; low-level, action-level,

Sensors 2023, 23, 2745. https://doi.org/10.3390/s23052745 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052745
https://doi.org/10.3390/s23052745
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9938-1282
https://orcid.org/0000-0002-6728-2458
https://doi.org/10.3390/s23052745
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052745?type=check_update&version=2


Sensors 2023, 23, 2745 2 of 16

and interactions-level as shown in Figure 1. The low level is also known as the atomic level
i.e., hands waving, head shaking and facial expression. A composition of these atomic
levels forms highly complex actions. The second level deals with the activities (actions)
performed by a human i.e., walking, running and jogging. The third level deals with the
actions that interact with other human(s) or object(s) [3] i.e., hand-shaking, hugging each
other and drinking water.

Figure 1. Intrinsic structure of human actions.

The efficiency of any HAR system is based on its capability in extracting, modelling,
and representing sailent, meaningful features [4]. Apparently, in the field of machine learn-
ing (ML) and computer vision, issues related to the extraction and representation of features
are still being widely investigated [5]. Feature extraction is a process for converting arbitrary
input data, such as images, videos, and text, into a set of features that describe patterns
crucial during the recognition process [6]. In achieving the desired results, numerous
feature extraction techniques take advantage of both the low and high level approaches.
Cues obtained at these levels are further fused during the recognition process in obtaining
qualitative results [7].

Meanwhile, for a real-time HAR system, model complexity is an important consider-
ation for practical applications [8]. The overall complexity of the model greatly relies on
the number of features. For instance, the higher the number of features, the greater the
computational complexity [9]. one plausible approach to reduce the number of features
is to use skeleton data as an alternative. Currently, the HAR system using skeleton data
extracts the skeleton using OpenPose. For each detected body, a 2D skeleton with 25 joints is
extracted. After that, the 2D skeletal features are transformed to RGB pictures. Finally, deep
learning based classifiers are trained with the obtained RGB images for the HAR system [10].

Methods that exploit skeleton data have high performance in the field of HAR, but
there are two major concerns when it comes to implementing this in real-world applications:
Firstly, most CCTV cameras in the market are 2D RGB-based as they are inexpensive. on
the other hand, the cost of installing or even replacing them with 3D cameras can be
prohibitively expensive. Thus, enhancement based on the existing 2D sensors has become
the best viable option. Secondly, 3D cameras involve additional depth information besides
the normal RGB data which leads to an increase in storage requirement and computational
time. Consequently, such requirements are unsuitable in the real-time image recognition
problem. Moreover, 3D cameras typically have a limited working range which is unsuitable
for surveillance purposes.

With the recent advancements in HAR techniques, several datasets based on multiple
attributes such as single actor, multi-camera, open-view, and uncontrolled have been made
available for use. These datasets are extensively utilized for comparing the accuracy of the
newly proposed HAR systems with the previously developed HAR systems [11]. Some
of the datasets found in previous studies by various researchers consist of more than
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one attribute, which make them more accurate. KTH [12] and Weizmann [13] datasets
are based on only one attribute, which is a single actor, but they lack the multi-camera,
open-view, and uncontrolled characteristics. Furthermore, IXMAS [14], i3D Post [15], and
MuHAVI datasets [16] are based on two attributes, which are multi-camera and single
actor. Hence, they are comparatively better than KTH and Weizmann. However, they also
lack open-view and uncontrolled characteristics. Similarly, Hollywood, Olympic Sports,
UCF11, and MSR datasets are also single attribute based datasets as they are only based
on uncontrolled characteristic only. A better dataset based on three characteristics which
includes multi-camera, single actor, and uncontrolled characteristics, is the MMA dataset.
However, it lacks the open view attribute. Lastly, MCAD is the only dataset that contains
all the said attributes, including multi-camera, single actor, open view, and uncontrolled,
making it the most versatile dataset compared to all the other datasets. Therefore, this
research utilizes the MCAD dataset for the development of skeleton based HAR system.

One unique feature about the MCAD dataset is that each action is always proceeded
and ended with walking move. This may lead to confusion during the processing. This
research proposes an Extraneous Frame Scrapping Technique for removing irrelevant
walking frames so that the training phase could concentrate on the intended action. To sum
up, this work offers the following contributions:

• A novel Extraneous Frame Scrapping Technique was proposed that addresses the
problem of labeling walk as a different action.

• The methodology directly classifies skeleton data using a machine learning algorithm
instead of converting it to RGB image, as discussed above and shown in Figure 2.

Figure 2. Skeleton-based approaches in HAR. (a) Existing method (b) Proposed method.

The remaining of this article is organized as follows. Section 2 discusses relevant liter-
ature, Section 3 describes the proposed method in depth. Section 4 covers the experimental
setup. To demonstrate the efficiency of the proposed technique, the results and discussion
are highlighted in Section 5, and finally followed by a brief conclusion in Section 6.

2. Related Work

Unsurprisingly, there have been a growing number of HAR approaches suggested in
the related literature [17], and among these techniques that focused on feature extraction
from depth data such as that of [18] are getting more attraction. The primary aim of such
an approach is to assess the spatiotemporal depth sub-volume descriptors. According to
Slama et al. [19], depth images are perceived as sequential features modeled temporally
similar to subspaces positioned on the Grassmann manifold. In similar works, holistic
descriptors such as the HON4D [20] and HOPC [21] were suggested, which rely on the
orientations of normal surfaces in 4D, and are capable of representing the geometric
attributes of a sequence of 3D points. Intensive 3D shape descriptor analysis has been
performed in [22,23] order to determine the feasibility of 3D shape descriptors in object
recognition or classification based on Kinect-like depth images. Wu et al. [11] developed
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a KNN classifier based on action descriptors such as the angular velocity and angular
acceleration, as well as joint positions, to exploit human kinematic similarities in real-time.
Munaro et al. [17] presented an autonomous framework that utilizes 3D motion flow
for the real-time recognition of online human actions. This was accomplished with the
application of the Microsoft Kinect sensor, which connects multi-point clouds to form an
identifiable image by determining the RGB values of the current scenario on a grid-based
description. After that, they classified the stored action using a KNN classifier [24]. In
another development, Cao et al. [25] proposed a two-flow CNN architecture that leveraged
on the OpenPose algorithm to extract the skeleton from RGB videos. Another work on
skeleton based HAR system was proposed in [26]. An updated survey on handcrafted
HAR can be found in [27]. Currently, the use of DL and the Kinect sensor in HAR systems
is garnering a lot of interest due to the excellent outcomes they produce. The amount of
computing required by such systems, on the other hand, is relatively large. Furthermore,
when it comes to real-world scenarios, the RGB camera is the most typically available
source of video input, which is incompatible with the models developed using Kinect data.

HAR interaction is a difficult task, as there are an assortment of human activities
in day-to-day life. To handle this challenge, many DL models have been implemented.
The accuracy of these DL models relies on the number of the training samples used. In
the HAR tasks, a few datasets are openly accessible. These datasets incorporate a several
activities like strolling, running, leaving a vehicle, waving, kicking, boxing, tossing, falling,
twisting down, etc. Although a number of studies have used the DL architecture for
HAR using 3D datasets as illustrated in Table 1, these datasets are unsuitable in currently
installed systems, i.e., 2D camera-based surveillance system. Alternatively, several stud-
ies have focused on 2D datasets with enhanced accuracy. For instance, Baccouche and
Mamalet [28] proposed an HAR System based on Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs). They achieved an accuracy of 94.39% us-
ing the KTH Dataset. In another research by Ji et al. [29], instead of using CNN and
RNN, they proposed s 3D-CNN and achieved a 90.02% accuracy using the KTH Dataset.
Grushin et al. [30] used Long-Short-Term Memory (LSTM) architecture on the same KTH
dataset and achieved an accuracy of 90.7%. Notwithstanding this relatively good accuracy,
these methods are limited to only a single viewpoint dataset. In using a more challenging
HMDB-51 dataset, Sun et al. [31] achieved an accuracy of 59.1%. In their work, a Factorized
Spatio-Temporal CNN was employed. A similar attempt was made by Simonyan and
Zisserman [32] using a two-stream CNN. They managed to achieve an accuracy of 59.4%.
Wang and Qiao [29] succeeded in improving the accuracy performance of HAR to 65.9%
using only the CNN architecture. Another deep CNN-based HAR system was proposed
by Park et al. [33] based on the HMDB-51 dataset, achieving a relatively low accuracy of
54.9% accuracy.

Table 1. Review on techniques for Human Action Recognition.

Authors Methods Datasets Accuracy (%) Limitations

Baccouche and Mamalet
2011 [28] CNN and RNN KTH 94.39 Single viewpoint-based dataset

Ji et al., 2013 [29] DCNN KTH 90.02 Single viewpoint-based dataset

Grushin et al., 2013 [30] LSTM KTH 90.70 Single viewpoint-based dataset

Sun et al., 2015 [31] Factorized spatio-temporal
CNN HMDB-51 59.10 Lower Accuracy

Simonyan and Zisserman,
2014 [32] Two stream CNN HMDB-51 59.40 Lower Accuracy
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Table 1. Cont.

Authors Methods Datasets Accuracy (%) Limitations

Wang and Schmid, 2013 [34] Dense trajectory HMDB-51 57.2 Lower Accuracy

Peng et al., 2014 [35] Fisher vector and Stacked
Fisher Vector HMDB-51 66.79 Lower Accuracy

Wang and Qiao, 2015 [36] CNN HMDB-51 65.90 Lower Accuracy

Ahsan et al., 2018 [37] GAN UCF101
HMDB51

47.20
14.40 Lower Accuracy

Shi et al., 2019 [38] AGCNLSTM

NTU-RGBD
(CV)
NTU-RGBD
(CS)

95.00
89.20 Depth data

Li et al., 2019 [39] CNN
UTD-MHAD
NTU-RGBD
(CS)

88.10
76.20 Depth data

Zhou et al., 2018 [40] Two-stream MiCT HMDB51 70.50 Lower Accuracy

Feichtenhofer et al., 2016 [41] CNN HMDB51 65.20 Lower Accuracy

Akilan et al., 2017 [42] ConvNets CIFAR100 75.87 Lower Accuracy

Fogia et al., 2014 [43] DBN MHAD
MIVIA

85.80
84.70 Depth Data

Chun and Lee, 2016 [44] Motion Features IXMAS 83.03 Sensitivity to viewpoint changes

Baumann et al., 2016 [45] LBP IXMAS 80.55 Sensitivity to viewpoint changes

Lin et al., 2009 [46] Shape-motion IXMAS 88.89 Sensitivity to viewpoint changes

In view of the limited performance of the methods discussed above, this work proposes
a simpler strategy on a 2D dataset that can be used to cope with existing real-time systems.
To avoid the time-consuming process of converting skeletal joints data to image sequences,
and then training them using an image-based classifier that extracts the features again,
the skeletal joints data be used directly for training and testing the HAR system. The
discrepancy between prior approaches and the proposed approach can be best illustrated
in Figure 2. We propose that a 1D feature vector be used as an input to the FineKNN
classifier, which represents a simplification of the work that has been given.

3. Methodology

This section presents the proposed methodology for HAR in complex video sequences.
The proposed design involves reading frames, extracting skeleton features, preprocessing
and training the FineKNN classifier. The workflow of the proposed system is depicted
in Figure 3. Initially, the video is loaded into the system. The system then read each frame
while extracting the skeleton feature simultaneously. Next, the proposed Extraneous Frame
Scrapping (EFS) Technique was applied to the extracted skeleton features. Finally, the
output from EFS is fed into the FineKNN classifier for the classification process. The details
of each step are provided below.
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Figure 3. Proposed Methodology for HAR system based on skeleton data using EFS technique.

3.1. Extraneous Frame Scrapping Technique

In the MCAD dataset, most actions are proceeded and ended with the actor walking
before performing the intended action. This makes walking frames redundant for HAR,
and has potentional to contribute errors. To address such a problem, this work proposed
an Extraneous Frame Scrapping Technique.

The proposed approach, although data-driven, can be generalized to any data set,
irrespective of the frames under study. A middle frame is considered a reference frame,
given as V fmid as expressed in Equation (1). Next, a threshold α is chosen, which is
calculated by taking the difference of different frames in video, i.e., the difference of
action from an action frame, whereas the α value is calculated through experiments, as
expressed in Equation (2). The frames resulting in >α are considered irrelevant, as those
frames reduce the efficacy, resulting in inaccurate solutions. The threshold value α is
calculated by taking the difference of various frames in the video, i.e., the difference of
action from to action frame is less than α, whereas the difference of a particular action from
walking is greater than α. Therefore, consideration of only a limited number of frames
whose difference lies below the threshold value will lead to better action recognition and
hence, increased accuracy.

V fmid ≡ f loor(
N
2
) (1)

V fmid − V fi ≤ α (2)

however, α is ≤ 99, where V fmid is the mid frame and V fi is the current frame.
The threshold value α is a parameter that helps to determine whether two frames

belong to the same action. The threshold is employed to calculate the difference between
various frames in a video, and to decide whether to consider them as part of the same action.
The value of α is typically set by comparing the difference between various actions. For
example, the difference between two frames of the same action (e.g., walking) is typically
less than α, whereas the difference between that action and a different action (e.g., waving)
is typically greater than α. This allows the algorithm to distinguish between different
actions based on the degree of similarity between the frames. The threshold value alpha is
set by comparing the difference between the skeleton joints of the middle frame of an action,
with the other frames in the sequence. The middle frame is chosen as a reference frame
because it typically represents the optimal representation of the action, and it captures the
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essential elements of the action. Next, the difference between the skeleton joints of the
middle frame and the other frames is calculated. By taking the difference from the skeleton
joints of other frames from the sequence and mid frame, it was observed that value of alpha
was greater than 99 when the frames were taken from different actions, while it was less
than 99 when both frames belongs to same action.

As shown in Figure 3, the proposed technique first obtains the features extracted using
OpenPose. Next, the mid-frame of each video is then compared to all other frames in the
video, and their differences are calculated. If the difference is greater than the threshold
value, the frame is removed, as such a frame is considered irrelevant in that particular
action. Otherwise, the frame is stored as a useful frame, thus contributing to enhanced
efficiency. We only collect the specific frames for a particular action that is intended for
training purposes. It is worthy to mention that this data preprocessing technique is only
required during the training phase, while during the testing phase, the EFS technique is
not required.

3.2. Features Extraction Using OpenPose

For the skeleton extraction part, we used the existing OpenPose algorithm [19] since
it has reliable performance in producing the skeleton features from the conventional 2D
RGB images. Thus, there is no requirement to replace the existing systems with 3D imaging
or depth sensor devices. The OpenPose algorithm is capable of detecting the 2D poses
of several people in a given image. Realtime multi-person 2D pose estimation is a key
component in enabling machines to have an understanding of people in images and videos.
It uses a bottom-up approach to detect these 2D poses by capturing and locating body
parts associated with people in the image. By default, OpenPose returns the position of the
25 joints (customizable) of each detected body as a vector of pairwise coordinates (x, y),
along with the confidence score C, for each detected joint. The skeleton detection of several
parts is shown in Figure 4.

Figure 4. Skeleton detection of few actions from MCAD dataset. (a) Wave (b) Jump (c) SitDown.

3.3. Training Using FineKNN Classifier

The k-nearest neighbors (KNN) algorithm is a simple, supervised machine learn-
ing algorithm that can be employed to solve both classification and regression prob-
lems. The KNN classifier has been widely used in the fields of pattern classification
and machine learning. For example, the KNN classifier has been applied for feature
selection [47] and dimensionality reduction [48]. The conventional KNN classifier simply
uses the K training samples that are nearest to the test sample to classify it. As pointed out by
Weinberger et al. [49] the accuracy of KNN classification significantly depends on the met-
ric used to compute the distances between different samples. KNN works by tracking
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down the distances between a query and every samplesin the dataset, choosing the pre-
defined number models (K) nearest to the query, then, at that point, votes in favor of the
most frequent label (on account of characterization), or averages the labels in the case
of regression.

4. Experimental Setup

This study used the MCAD [50] and IXMAS [51] dataset, which are well-known
for their uncontrolled and multi-view motions, to demonstrate the performance of the
proposed technique. They include 14,298 action examples, performed by 20 individuals
and recorded by five cameras [50]. There are 18 actions involved in this experiment, as
mentioned in Table 2. Class one to nine belong to the single person action category, whereas
class ten to eighteen belongs to interaction level actions. The dataset is divided into two
parts; 80% data was used for training the model, while the remaining 20% was used for
testing purposes.

Table 2. List of actions from MCAD Dataset.

Class Action

1 Point

2 Wave

3 Jump

4 Crouch

5 Sneeze

6 SitDown

7 StandUp

8 Walk

9 PersonRun

10 CellToEar

11 UseCellPhone

12 DrinkingWater

13 TakePicture

14 ObjectGet

15 ObjectPut

16 ObjectLeft

17 ObjectCarry

18 ObjectThrow

For further evaluation of the proposed system, all experiments were performed on
the IXMAS dataset. IXMAS has 12 action categories and 1800 action samples performed
by 12 actors, and five cameras recorded them. There are 12 actions involved in this experi-
ment, as mentioned in Table 3. The IXMAS dataset was also divided into 80% for training
and 20% for testing.
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Table 3. List of actions from IXMAS Dataset.

Class Action

1 check-watch

2 Cross-arms

3 Get-up

4 kick

5 Pick-up

6 Point

7 Punch

8 Scratch-head

9 Sit-Down

10 Turn-Around

11 Walk

12 Wave

For the proposed method from all the RGB videos in the database, the subject’s
skeleton was first extracted using the OpenPose algorithm. We followed the process flow
presented in Figure 5 for the testing phase, which is similar to the training phase. once
trained, we can feed either the pre-recorded or the live video into the system as input. once
the features were extracted, the proposed method would then classify the actions in the
video. For analysis, we then compared the accuracy of these results against the actual given
labels of the particular video.

Figure 5. Testing phase of the proposed system.

The evaluation metrics used in this paper are a confusion matrix and Area Under the
Curve (AUC). A confusion matrix usually allows performance visualization of a supervised
algorithm. The positive and negative labels refer to the outcome of the classifier, while
true/false shows the actual label as shown in Table 4.

Table 4. Confusion Matrix Example.

True False

Positive True Positive False Positive
Negative True Negative False Negative

The AUC of a classifier is a metric that assesses its ability to distinguish between
distinct classes. This metric assesses how well the model distinguishes between the positive
and negative categories. The higher the value, the better the performance of the system.
If the value of AUC is 0, the performance of the classifier is poor. A value of 1, indicates
that the performance of the classifier is optimal. The True Positive Rate (TPR), Specificity,
and False Positive Rate (FPR) can be calculated as shown in Equations (3)–(5) respectively.
To measure AUC, the ROC curve is first constructed by plotting the TPR against the FPR
for a range of different classification thresholds. The TPR is calculated as the number of
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true positive predictions divided by the total number of positive instances, while the FPR
is calculated as the number of false positive predictions divided by the total number of
negative instances.

Once the ROC curve has been constructed, the AUC is calculated as the area under
the curve. This can be done by numerically integrating the ROC curve, or by counting the
number of points above and below the curve and calculating the fraction that are below
the curve. AUC values range from 0.5 to 1, with a value of 1 indicating perfect classifier
performance, and a value of 0.5 indicating random performance.

TPR =
TP

TP + FN
(3)

Speci f icity =
TN

TN + FP
(4)

FPR = 1 − Speci f icity (5)

5. Results and Discussions

To illustrate the efficacy of the proposed method, we demonstrated the performance of
the proposed approach in several forms. First, we explored several KNN-based classifiers
along with SVMs and Fine Tree classifiers. At the classification stage, we proposed the
use of the FineKNN classifier. We implemented the different ML algorithms such as
Medium KNN, Coarse KNN, Fine KNN, Cosine KNN, Weighted KNN, SVM, and Fine
KNN. The Fine KNN outperformed every other algorithm in terms of accuracy. As shown
in Table 5, Fine KNN achieves the highest performance. The results we achieved with the
EFS technique demonstrate that we managed to obtain near 89.75% accuracy.

Table 5. Classifiers testing on Skeleton Data.

Algorithm Accuracy

Medium KNN 73.00%
Coarse KNN 48.00%
Cosine KNN 72.70%
Weighted KNN 82.20%
SVM 81.50%
Fine Tree 71.00%
Fine KNN 89.75%

Next, to demonstrate the efficacy of the proposed method with respect to each in-
dividual class, we implemented Fine KNN with and without the EFS technique. This
experimentation was used to compare with our previous work, whereby no preprocessing
stage was considered [22]. The confusion matrix for the MCAD dataset without the EFS
technique is shown in Figure 6. The overall performance accuracy obtained was 86.99%.
The last two columns show the average accuracy and average error per individual true class.
Since no preprocessing stage was initiated, all frames, including the irrelevant frames were
used. By accumulating only the useful frames (i.e., those that have lower than α difference
from the reference mid frame V fmid), the performance accuracy increases by 3% to 89.75%.
The proposed methods accuracy improves due to the proposed EFS technique, which
eliminates the frames from the training data that does not belong to a particular action.
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Figure 6. Confusion matrix without EFS technique.

The receiver operating characteristic (ROC) curve was used to further demonstrate the
performance of the suggested approach. This is a classification problem evaluation metric
that compares the true positive rate (TPR) against the false positive rate (FPR) at various
threshold values on a probability curve. The ROC curve is a representation of a classifier’s
ability to differentiate across different discrete classes. The AUC values for all 18 actions
are shown in Table 6. For example, Class 1 has an AUC of 0.97, indicating that the classifier
can differentiate Class 1 from the other 17 classes with a 97% accuracy. We further tested
our proposed system with the Extraneous Frame Scrapping Technique with the IXMAS
dataset. Table 7 shows the AUC values for all the 12 action classes.

Table 6. The area under the curve as per class on MCAD dataset with EFS technique.

Action Class AUC

1 Point 0.97
2 Wave 0.98
3 Jump 0.93
4 Crouch 0.96
5 Sneeze 0.96
6 SitDown 0.94
7 StandUp 0.91
8 Walk 0.89
9 PersonRun 0.82
10 CellToEar 0.97
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Table 6. Cont.

Action Class AUC

11 UseCellPhone 0.98
12 Drinking Water 0.98
13 TakePicture 0.98
14 ObjectGet 0.91
15 ObjectPut 0.90
16 ObjectLeft 0.88
17 ObjectCarry 0.88
18 ObjectThrow 0.97

Table 7. The area under the curve as per class on IXMAS dataset with EFS technique.

Action Class AUC

1 Check-watch 1.0
2 Cross-arms 0.93
3 Get-up 0.94
4 Kick 0.95
5 Pick-up 0.91
6 Point 0.88
7 Punch 0.86
8 Scratch-head 0.91
9 Sit-down 0.94
10 Turn-around 0.82
11 Walk 0.84
12 Wave 0.83

Finally, we compared our proposed method (both with and without EFS technique)
with the state-of-the-art methods using overall accuracy, as shown in Table 8. Compara-
tively, our model improved by 32.9% accuracy from that achieved previously by Cuboid
features [50], 25.3% from the Covariance matrices [52], 15.1% from the CNN-LSTM, 8.5%
from the STIP features [50], 5.5% from the IDT [34] and 2.8% from the Conflux LSTM
network [53]. These results confirmed the superior performance of our method.

Table 8. Multi-view HAR on MCAD dataset.

Algorithm Accuracy

Cuboids [50] 56.8
Covariance matrices [52] 64.3

LSTM-CNN 74.6
STIP [50] 81.7
IDT [34] 84.2

Conflux LSTM network [53] 86.9
C3D + T-VLAD [54] 78.6

OpenPose+FineKNN (without EFS Technique) [55] 86.9
OpenPose+FineKNN (with EFS Technique) 89.7

For further validation with the state-of-the-art we executed our proposed method on
the IXMAS dataset using overall accuracy, as shown in Table 9. Comparatively, our model
improved by a 1.22% accuracy from that achieved previously by Shape
Features [56], 10.42% from LBP [45], 7.94% from Motion Features [44], 5.17% from Shape
features [57] and 0.06% from Shape Features(3D) [58]. These results confirmed that the
proposed method is suitable for performing multi-view human action recognition.
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Table 9. Multi-view HAR on IXMAS dataset.

Algorithm Accuracy

LBP [45] 80.55
Motion Features [44] 83.03

H-VLBP [59] 84.5
T-VLAD [54] 84.8

Shape features [57] 85.80
MLDL [60] 89.6

Shape Features [56] 89.75
Shape Features (3D) [58] 90.91

OpenPose+FineKNN (with EFS Technique) 90.97

We also performed complexity analysis between our proposed method and other
existing methods by leveraging the size of the features dimension. Table 10 lists the
comparison results with both the handcrafted and DL methods. The table clearly indicates
that by far, the proposed method outperformed other existing methods in terms of feature
dimensions. Our approach uses 75 features in total which is significantly small compared
to other DL approaches.

Table 10. Comparison of feature dimension.

Algorithm Year Method Data Used Feature Dimension

HON4D [20] CVPR 2013 Handcrafted (global descriptor) Depth [17,880, 15,1200]
HDG [21] WACV 2014 Handcrafted (local + global descriptor) Depth + skeleton [1662, 1819]

P-LSTM [61] CVPR 2016 Deep learning (LSTM) Skeleton No. of joints × 3 × 8
HPM + TM [62] CVPR 2016 Deep learning (CNN) Depth 4096

Clips + CNN + MTLN [63] CVPR 2017 Deep learning (pre-trained VGG19, MTLN) Skeleton 7168
RNN [64] CVPR 2018 Deep learning (RNN) Skeleton 512

ST-GCN [65] AAAI 2018 Deep learning (Graph ConvNet) Skeleton 256
Proposed 2022 OpenPose + FineKNN RGB 75

6. Conclusions

Human Action Recognition has been a topic of active research in recent years. one of
the primary goals of this research has been to address the complexity challenges involved
in recognizing human actions from video data. This can be seen in the great effort made
by previous works to simplify the process of action recognition. In the current study, we
proposed a method for human action recognition that addresses the complexity issue by
using a lower number of input features. The method starts by extracting 2D skeleton data
from the 2D RGB data using the OpenPose technique. This 2D skeleton data provides a
compact representation of human poses and reduces the complexity of the data that needs
to be processed. The next step involves removing irrelevant information from the skeleton
data using the Extraneous Frame Scrapping Technique. This further simplifies the data and
reduces the complexity of the recognition process. Finally, the processed data was classified
using a Fine-KNN classifier. The Fine-KNN classifier was chosen for its ability to perform
classification based on a small number of features. Consequently, our proposed method
significantly decreases the complexity of computation by reducing the feature dimensions.
In this context, the proposed method was compared with other existing methods, and the
results obtained confirm the potential of our proposed technique.
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