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a b s t r a c t

The production of UV-resistant films from biomaterials is currently an active field of

research. ZnO nanoparticle polymer fillers have been found to improve UV-light opacity.

However, using ZnO as a filler is relatively expensive and time-consuming for film prep-

aration. Substituting some of the ZnO nanoparticles with Uncaria gambir extract has been

suggested to reduce the cost of film production, as the phenolic hydroxyl group present in

Uncaria gambir provides excellent UV resistance. This study characterized dry bacterial

cellulose (BC) powder-based films immersed without and with polyvinyl alcohol/Uncaria

gambir extract/ZnO (M) solution for 2 and 5 min. It was found that BC/M biocomposites

blocked 100% of the UV light while remaining transparent to visible wavelengths. These

bendable biocomposite films also presented high tensile and thermal resistance properties.

Immersion for 5 min increased significantly tensile strength, elongation at break, and

toughness of the biocomposite to 77.2 MPa, 12.3%, and 5.8 MJ/m3, an increase of 130%,

748%, and 2409%, respectively, compared to uncoated BC film. These results suggest the
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immersion method could provide more efficient, environmentally friendly biocomposite

films with significant UV resistance.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Cellulose, a remarkable and abundant structural carbohydrate

found in the cell walls of plants and certain algae, has long

been a subject of scientific research [1]. Its unique properties,

such as exceptional mechanical strength, biodegradability,

and biocompatibility, have made it a valuable resource in

various fields [2e5]. However, beyond the traditional plant-

derived cellulose, an intriguing and biologically distinct form

of this polymer has captured the attention of researchers and

innovators - bacterial cellulose pellicle. Bacterial cellulose (BC)

pellicle is a convenient, economical source of highly purified

nanofibers. BC pellicle is comprises of long cellulose nano-

fibers interconnected to form a 3-D dimensional structure [6].

It can be used for various applications, including food pack-

aging, lubricant additive, and sensor [7e11]. However, BC wet

pellicle degrades quickly without supplementary treatment

and requires a larger storage area than dried pellicle. Recently,

a previous study successfully prepared dry microsized-BC

powder from wet pellicle BC and used it as a base material

for developing biocomposite films [12]. The biocomposites had

good tensile and thermal properties, but their UV resistance

has not yet been explored.

Exposure to ultraviolet (UV) radiation can cause the

destruction of vitamins in food [13,14]. This harm can be

prevented by minimizing direct contact with UV rays [15].

Several researchers have developed UV-absorbing bio-

composite films through the incorporation of Zinc oxide

(ZnO) nanoparticles [16e18]. In addition, UV light can also be

blocked using lignin [19,20], melanin [21], and tannins [22,23].

As a phenolic compound, Uncaria gambir (UG) provides good

protection from UV rays and also corrosion [24,25]. UG is

environmentally friendly, cheap, and naturally available

naturally in Siguntur, West Sumatra, Indonesia, where it is

extracted from U. gambir Roxb. Leaves [26e29]. It is

composed predominantly of catechin (a type of phenolic

compound). Previous research has demonstrated thatmixing

UG with polyvinyl alcohol (PVA) improved the resulting bio-

composite's UV shielding, which also had good transparency,

tensile and thermal properties [24].

Pure PVA is a biodegradable polymer with excellent

stretchability, water solubility, and biocompatibility [30e35].

This highly transparent, tough, and nontoxic synthetic ma-

terial can form strong interactions with cellulose nanofibers

through hydrogen bonding [36]. After the incorporation of the

nanofibers, the tensile and thermal properties of PVA-based

biocomposites improve further [37]. Unfortunately, even

with nanofibres, PVA-based biocomposites with conventional

preparation method has drawbacks. UG does not disperse as

well through BC film as through PVA. ZnO, a nanoparticle with

good transparency, has been proven to improve UV-light
opacity [38e40]. However, using ZnO as a filler is relatively

expensive and time-consuming for film preparation [41].

Substituting some of the ZnO nanoparticles with UG has been

suggested to reduce the cost of film production because of the

phenolic hydroxyl group present in UG. According to our

previous study, UG alone provides superior UV resistance;

hence, it is possible to replace the use of ZnO completely [24].

Therefore, thiswork investigateswhether combining a BC film

with PVA/UG/ZnO through the immersion method provides

effective UV shielding.

Many studies have also focused on characterizing UV-

resistant cellulose-based biocomposites prepared using

various methods [16,22,42e44]. However, as far as we know,

no previous studies have characterized the biocomposite film

produced from dry BC powder-based film immersed in a so-

lution of PVA/UG/ZnO nanoparticles (M). Immersion is a

simple and efficient technique that improves the film's tensile
and thermal properties [45]. Therefore, the present work

provides valuable information about the characterization of

pure BC film compared to BC/M biocomposites. We hypothe-

sized that immersion of the transparent all-BC film into the

suspension increases the strength, toughness, and thermal

resistance of the BC/M biocomposite. It is hoped that adding

both UG and ZnO should also provide almost complete

shielding from the full range of UV wavelengths.
2. Materials and methods

2.1. Materials

Wet BC pellicle slabs (350 � 250 � 5 mm), were locally pur-

chased from Padang, West Sumatera, Indonesia, and were

previously utilized in our prior work [12]. The UG powder was

obtained from the Sumatran Biota Laboratory, Andalas Uni-

versity, Padang. It was composed of catechins (91.8%), water

(8.1%), and ash (0.1%). Sodium hydroxide (NaOH), sodium

hypochlorite (NaClO), and sodium bromide (NaBr) were

bought from PT. Brataco, Padang, Indonesia. 2,2,6,6-

Tetramethylpiperidine-1-oxyl (TEMPO) was acquired from

Sigma-Aldrich Co, USA. Pure PVA (MW: ~75,000 g/mol, >99%
hydrolysis) and ZnO nanoparticles with particle size less than

100 nm were supplied by Sigma-Aldrich Pte. Ltd. Singapore.

2.2. Sample preparation

Wet BC pellicle slabs (length (35 cm), width (25 cm), and

thickness (0.5 cm)) were soaked in 10%NaOH solution for 48 h.

Then, distilled water was used to neutralize and clean the

pellicle until pH 7. After that, it was crushed using a Maspion

blender at 12000 rpm for 1 h. Next, the wet and refined pellicle

was dried in a drying oven at 70 �C for 24 h. Then, the dried
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pellicle was ground in an electric grinder at 3600 rpm for 1 h.

The crushed BC powderwas filtered through a 200-mesh filter.

The resulting BC powder (1 g) was oxidized using a solution

of 200 g distilled water, 0.018 g TEMPO, 0.2 g NaBr, and 7.4 g

NaClO at 50 �C. The mixture was stirred with a plate stirrer

(Daihan ScientificMSH-200) at 350 rpm for 2 h. The suspension

was cooled for 12 h and then neutralized until pH7 using

distilled water. The pH7 suspension was homogenized at

8000 rpm for 30 min. Next, it was sonicated using a sonicator

at 480W for 20min. The resulting BC suspension was cast in a

Petri dish for drying at 50 �C for 24 h.

The UG (1 g) wasmixed with distilled water (200 g). Then, it

was heated at 70 �C and stirred with a hot plate stirrer (Daihan

Scientific MSH-200) at 500 rpm for 30 min. 10 g PVA, and 0.1 g

ZnO nanoparticles were added to the UG suspension. The

mixture continued to be stirred for 4 h until it gelatinized. The

dry BC film was immersed into the gelatinized PVA/UG/ZnO

solution for 2 or 5 min. The non-immersed film and 2- and 5-

min immersed films were labeled by NB0, NB2 and NB5,

respectively.

2.3. Characterization

2.3.1. Film transparency
UVeVis spectrophotometer (Shimadzu UV 1800, Japan) was

operated to measure the transparency of the rectangular film

(10 mm � 25 mm) in the range of 200e800 nm according to

ASTM D 1003-00 [46].

2.3.2. Field emission scanning electron microscopy (FESEM)
FESEM (JEOL JFIB 4610, USA) with 10 kV, and 8mA, was used to

investigate the fracture surface morphology of the samples.

The sample stub was used to anchor the sample. Minimiza-

tion of static charge was achieved by coating the sample with

carbon followed by gold for 30 s.

2.3.3. Tensile properties
A Com-Ten 95T series was used to investigate mechanical

properties of the films, including tensile strength, tensile

modulus, and elongation at the break according to the ASTM

D638-Type V standard which is a standard test method for

tensile properties of plastic materials [47]. Before testing, the

samples were conditioned in a desiccator for 48 h at 50 ± 5%

relative humidity and 25 �C. the thickness and width of the

film were measured using a dial micrometer with 1 mm ac-

curacy. The tests were repeated five times for each sample to

acquire reliable results. Toughness of film was based on the

area under the stress-strain curve [48]. Software from Ori-

ginPro 2016 was used to calculate it automatically.

2.3.4. Fourier transform infrared spectroscopy (FTIR)
FTIR spectra were recorded by PerkinElmer Frontier equip-

ment (PerkinElmer, Inc., USA). First, the sample was dried

using an oven at 50 �C until its weight was constant via

checking periodically. Then, the dried sample was scanned at

a frequency range of 4000e600 cm�1.

2.3.5. X-Ray diffraction (XRD) testing
Samples were stored in a closed chamber with RH 50% for 24 h

before XRD characterization. XRD testing was performed
using PANalytical Xpert PRO (Philips Analytical, Netherlands)

at 25 �C, 40 kV, and 30 mA. The samples were scanned from

2q ¼ 7.5� to 90�. The crystallinity index (CI) was measured

using Eq. (1) [49]:

CI ð%Þ ¼ ðImax � IamÞ
Imax

� 100 (1)

where Imax is the peak intensity of a diffraction peak at about

2q of 19.5� to 23�. Iam is the minimum intensity of the peak of

the amorphous fraction.

2.3.6. Thermogravimetry analysis (TGA), and (DTG)
The thermal properties of the samples (TGA and DTG) were

measured using a thermal analysis instrument DTG-60 from

Shimadzu serial number C30565000570 (Kyoto, Japan) equip-

ped with a TA-60WS thermal analyzer, FC-60A flow controller

and TA-60 software. The sample was placed into the instru-

ment set up with a nitrogen flow rate of 50 mL/min and a

heating rate of 20
�
C/min.

2.3.7. Statistical analysis
The significance of tensile properties for all samples was

calculated using variance (ANOVA). Differences were exam-

ined using Duncan's multiple range test and were significant

at p � 0.05.
3. Results and discussions

3.1. Physical film appearance

Fig. 1aec present pure BC and biocomposite film photographs

with various immersion times in the PVA/UG/ZnOmatrix (M).

The pure BC film is themost transparent. After immersing it in

the M solution, however, the transparency decreased as

shown in Fig. 1b and c. As expected, the lowest transparency

was measured on the films immersed for 5 min. Despite this

decreasing transparency, a university logo is still clearly

visible under the BC/M film in Fig. 1b,c and e shows light

transmission across the 200e800 nm wavelength range. BC

film transmitted 70.3% light at 400 nm UV radiation. In

contrast, the BC/M biocomposites absorb almost 100% of UV

light at this wavelength. This result is probably due to the high

UV light absorption of UG and ZnO [18,24]. The phenolic

groups of UG contain unsaturation bonds and function as

chromophores absorbing UV light [42,50]. This finding is

similar to previous work reporting high UV shielding from a

PVA-based film mixed with the polyphenol compounds from

tannins [30].

3.2. Field emission scanning electron microscopy

Fig. 2 presents the FESEMmorphology of the fractured surface

of the tensile specimen. Themorphological fracture surface of

the M sample (Fig. 2a) exhibits highly pulled-out segments

(yellow arrow), confirming significant plastic deformation.

ZnO nanoparticles in PVA/UG matrix also show good disper-

sion, as no agglomeration or clustering is detected (red arrow).

Fig. 2b shows the NB0 fracture surface with a sparse fiber

configuration and non-compacted film structures, indicative
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Fig. 1 e (a) a 21 mm thick and transparent NB0 film, (b) physical appearance for NB2, (c) NB5 films thicknesses of about 84 mm

and 92 mm, respectively, (d) bendable biocomposite films without and with the matrix, and (e) transmittance values for each

sample.
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of defects resulting in a weak NB0 film. However, after im-

mersion, the diffusivity of the PVA/UG/ZnO suspension into

the NB0 film increased, filling the gaps between the fibers.

Fig. 2c presents the fractured surface of the NB2 film, showing

a relatively thin M layer (red arrow) due to the short immer-

sion duration (2 min immersion). Subsequently, with a longer

immersion duration, more suspension penetrated into the NB

film (white arrows), resulting in a thicker M layer. The thick-

ness for 5 min immersion increased to over 600 nm as shown

in Fig. 2d. The increased diffusivity promoted higher hydrogen

bond density between PVA, UG, ZnO and fiber molecules,

leading to enhanced strong crosslinking interactions. This

phenomenon is confirmed by the FTIR curve showing a shift of
the O-H stretching vibration wavenumber from high to low

wavenumber after the immersion (Fig. 3b).

3.3. FTIR spectra

The FTIR curve was utilized to monitor the structural changes

of each film via shifts of peak intensity, broadening of peaks,

and the appearance or disappearance of bands [51]. Fig. 3a

displays the FTIR spectra from 4000 to 250 cm�1 for all sam-

ples. It can be seen that the main peaks for NB0 (BC) were

observed at 3338, 2894, 1604, 1314, and 1054 cm�1. These peaks

are corresponding to stretching vibration of the O-H (hy-

droxyl) bond, C-H (methylene) bond, C]C bond, bending
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Fig. 2 e FESEM fracture surface in the cross-section of tensile samples for the BC film (a), matrix (M) (b), and BC/M film from

an immersion of 2 min (c), and 5 min (d).
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vibration of the C-H (methylene) bond, and stretching vibra-

tion of the C-O (ether) bond, accordingly [52,53]. Another sig-

nificant peak appears in the range of 440e452 cm�1. This peak

represents the stretching vibration of the Zn-O bonds in the

ZnO crystal lattice [54]. After immersion of the NB0 film in the

PVA/UG/ZnO solution, noticeable changes were observed in

the band intensity and the wavenumber of peaks in the FTIR

curves. For instance, a new peak at a wavelength of 800 and

440e452 cm�1 emerged after immersion (NB2 and NB5),

attributed to the presence of PVA and ZnO (M). Moreover, after

a 5-min immersion, the wavenumber of OH stretching shifted

from 3338 cm�1 (NB0 film) to 3243 cm�1 (the NB5 film) (Fig. 3b).

This finding is attributed to an increase in hydrogen bond

density resulting from greater contact between BC nanofiber

surfaces and the matrix [55]. The higher contact ratio led to a

reduction in free hydroxyl groups, as confirmed by weakening
peak intensity (the increased transmittance (T) value) [56]. The

NB0 film exhibited the lowest T value of OH stretching (64%),

indicating the highest fraction of free hydroxyl fraction [57].

After immersion in the matrix, the OH stretching intensity

weakened. For instance, the T value related to OH group for

the NB0 sample is 71%, which shifted to 79% for NB2. The

weakest peak intensity of these OH groups was observed on

the NB5 film (T ¼ 82%), indicating the lowest number of free

OH groups. The decreased numbers of free OH groups result

from the increased interfacial hydrogen bonding between the

BC nanofibers and the matrix [58].

3.4. X-ray diffraction

Fig. 4 displays the XRD curves for NB0, NB2, NB5, and M films.

The biocomposite films exhibit a similar pattern with two
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Table 1 e The crystallinity index (CI) from XRD, d-spacing
of (200) plane from Fig. 4, Tmax, and decomposition rate
from Fig. 5.

Sample 2q
of (200)
plane

CI (%)
of (200)
plane

d-spacing
[�A] of (200)

plane

Tmax (�C)

NB0 22.75 88.58 3.91 317.8

NB2 22.71 70.30 3.92 322.0

NB5 22.43 67.89 3.96 325.5

M 19.58 66.17 4.53 327.1

Fig. 3 e FTIR spectra of all studied films with the spectrum

expanded to present changes in peaks related to specific

functional groups.
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distinct diffraction peaks at approximately 2q ¼ 14.4� and

22.7�, corresponding to the (110) and (200) lattice planes [59].

This pattern confirms the presence of the typical cellulose I

structure [60]. For the NB0 film, the crystal plane position was

recorded at 2q¼ 22.8 initially, shifting to 2q¼ 22.4 after a 5-min

immersion (Table 1). The M sample crystal position was

recorded at 2q ¼ 19.6. According to the literature, this is

correspond to PVA [49,51]. The crystallinity index (CI)

decreased from 89% (NB0) to 68% (NB5) indicating a disruption

of the crystal structure toward amorphous networks. This

reduction in crystallinity index is attributed to the presence of

M sample, which exhibits a low CI (66%). Furthermore, this

finding confirms that the sample with a longer immersion

duration has a CI value close to that of M, indicating that the

longer the immersion duration, the higher the concentration
Fig. 4 e XRD patterns for NB0, NB2, NB5 and M film.
of the PVA/UG/ZnO (M). This is consistent with the SEM

results.

3.5. Thermal properties

Fig. 5 displays the TGA (a) and DTG (b) curves for all measured

films. Initially, slight weight loss of the samples was observed

due to the evaporation of absorbed water (60e150 �C) (Fig. 5a).
A sudden second weight loss at 300e420 �C corresponds to

cellulose and matrix decomposition. At this stage, tempera-

tures of the maximum decomposition rate (Tmax) for films are

recorded, and their values are listed in Table 1. The matrix (M

sample) exhibited the highest Tmax at 327.1 �C. Notably, after

immersion with M, biocomposite films displayed enhanced

thermal resistance. Immersion of 2 and 5 min increased the

Tmax from 317.8 �C (NB0) to 322.0 �C (NB2) and 325.5 �C (NB5),

respectively. This shift in temperature is attributed to

increased crosslinked BC nanofiber density with the matrix

and a reduction in voids within the BC film [61]. These findings

were confirmed by FESEM morphologies (Fig. 2a and b),

revealing a lower number of defects in the immersed film than

the non-immersed one. Consequently, the densely packed

cellulose nanofibers, resulting from strong crosslinked

hydrogen bonding, lead to a higher activation energy [62]. As a

result, the decomposition of the NB5 film requires muchmore

thermal energy compared to the NB0 film. This finding aligns

with previous works [63].

3.6. Tensile properties

Fig. 6a shows uniaxial stress-strain curves for all samples. The

NB0 displays low elastic and plastic regions (Fig. 6b), con-

firming low toughness. This result is due to the low

compactness of BC nanofiber structures, as shown in Fig. 2a.

After immersion of the NB0 with PVA/UG/ZnO solution, some

tensile properties of the BC/M biocomposite increased (Fig. 6c,

e, and f), however, tensile modulus reduced (Fig. 6d). Immer-

sion time of 5 min results in maximum value for tensile

strength (77.2 MPa), elongation at break (12.3%), and tough-

ness (5.8 MJ/m3). These increased by 130%, 748%, and 2409%

respectively; compared to the NB0 film. A possible reason for

dramatically improved tensile properties was a reduction in

defects in biocomposite films. The micro- and nanosized po-

rosities decreased and interlinked-hydrogen bonding between

fibers andmatrix increased. The density of the structure in the

BC/M film became higher, as shown by FESEM images in

Fig. 2c. These results improve the compatibility of chain

structures, consequently increasing tensile properties [61].
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Fig. 5 e TGA (a) and DTG (b) for NB0, NB2, NB5 and M film.

Fig. 6 e Stress-strain curve for all films (a), and without M sample (b). Average values of TS (c), TM (d), EB (e), and TN (f) for

films. Different lower-case letters indicate a significant difference in mean values (p ≤ 0.05). The same letter shows values

are not significantly different.
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This is also suggested by the stress-strain curve which has an

extensive plastic region for NB5 (Fig. 6b) and the hydrogen-

hydrogen interaction which can be implied from wave-

number shifting of O-H groups for immersed films (Fig. 3).

Moreover, the remarkable toughness observed in the NB5 film

can likely be attributed to increased plasticization and inter-

fibrillar slippage, resulting in a large strain-to-failure [48]. The

extended immersion duration provides the polymer with

more time to penetrate deeper into the paper fibers, fostering

enhanced adhesion and bonding between PVA molecules and

the BC film, consequently leading to improved tensile

strength. As the duration of immersion increases, the con-

centration of PVA also rises. Notably, PVA exhibits superior

strength compared to BC. The flexibility in PVA's molecular

chains allows it to absorb more energy during deformation,

leading to higher toughness and tensile strength.
4. Conclusions

We have successfully developed strong, tough, and UV light-

resistant biocomposite films by immersing sonicated BC

powder-based film in a PVA/UG/ZnO (M) suspension. The BC/

M biocomposite film exhibited exceptional UV light absorp-

tion and had high thermal resistance. Interestingly, a 5-min

immersion duration resulted in a significant increase in ten-

sile strength, elongation at break, and toughness of the bio-

composite by 130%, 748%, and 2409%, respectively, compared

to the BC film. Therefore, this simple, relatively inexpensive,

and environmentally friendly method holds promise for pro-

ducing UV shielding food packaging and other applications

requiring a visibly transparent, yet UV-resistant film.
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