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ABSTRACT 

Requirements of high speed and vast data transmission capacity in fiber optic 

communication have led to the tunability enhancement of multiwavelength fiber laser 

(MWFL).  Comparisons of MWFL performance based on different types of 

semiconductor optical amplifiers (SOAs) as the gain medium are rarely investigated. 

The achievement of channel spacing tunability by using a multi-segment Lyot filter 

based on SOA is also limited. This research focused on the generation of tunable 

channel spacing MWFL incorporating an SOA and advanced multi-segment Lyot 

filter. SOA offers several advantages such as lower mode competition and a wider 

wavelength bandwidth as compared to erbium-doped fiber amplifier. The 

unpredictable behavior of MWFL at different SOA, nonlinearity, and gain in the ring 

cavity leads to the investigation of multiwavelength spectra's performance based on 

linear SOA (LSOA), nonlinear SOA and booster optical amplifier utilizing a single 

Lyot filter. LSOA exhibits a flat and stable spectrum with 14 lasing lines within 3 dB 

bandwidth, extinction ratio (ER) of 42 dB, and peak power at -14.1 dBm. Later, a 

polarization-dependent isolator is added into the laser cavity, and the result showed an 

improvement in the overall laser performance for all SOAs. This is due to the intensity-

dependent loss mechanism induced by the combination of SOA and polarizer. The 

LSOA is used for multiwavelength generation at different Lyot filter configurations as 

it outperforms other SOAs in terms of the number of lasing lines, ER, and the highest 

peak power. To achieve channel spacing tunability, the single Lyot filter is replaced 

with a parallel Lyot filter. A stable and tunable multiwavelength spectrum of up to 

three channels spacings is demonstrated for all the sets within the 10 dB bandwidth. 

The main novelty of this study is an advancement of the Lyot filter by adding another 

Lyot filter serially to the parallel Lyot filter to improve channel spacing tunability. 

Through polarization controllers’ adjustments, the channel spacing tunability has 

significantly improved and generated up to eight different channel spacings compared 

to only three used by previous researchers. The enhanced configuration of the Lyot 

filter with LSOA as the gain medium has a high potential in improving the 

performance of MWFL in channel spacing tunability for the wavelength division 

multiplexing system. 
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ABSTRAK 

Keperluan kapasiti penghantaran data berkelajuan tinggi dan luas dalam 

komunikasi gentian optik telah mendorong peningkatan kemampuan laser gentian 

pelbagai gelombang (MWFL). Perbandingan prestasi MWFL berdasarkan jenis 

penguat optik semikonduktor (SOA) berbeza sebagai medium penguatan jarang dikaji. 

Pencapaian penalaan jarak saluran menggunakan penapis Lyot berbilang segmen 

berdasarkan SOA juga terhad. Penyelidikan ini memfokuskan pada penjanaan MWFL 

pada jarak saluran yang dapat ditala menggabungkan SOA dan penapis Lyot berbilang 

segmen termaju. SOA menawarkan kelebihan seperti persaingan mod lebih rendah dan 

lebar jalur panjang gelombang lebih luas berbanding penguat gentian terdop erbium. 

Kelakuan MWFL tidak dapat diramalkan pada SOA yang berbeza, tidak linear, dan 

perolehan dalam rongga cincin membawa kepada penyelidikan prestasi spektrum 

panjang gelombang berdasarkan SOA linear (LSOA), SOA tidak linear dan penguat 

optik penggalak menggunakan penapis Lyot tunggal. LSOA mempamerkan spektrum 

rata dan stabil dengan 14 garis lasing dalam lebar jalur 3 dB, nisbah kepupusan (ER) 

42 dB, dan daya puncak pada -14.1 dBm. Kemudian, isolator yang bergantung pada 

polarisasi ditambahkan ke dalam rongga laser dan hasilnya menunjukkan peningkatan 

dalam prestasi laser keseluruhan untuk semua SOA. Ini disebabkan oleh mekanisme 

kehilangan bergantung kepada intensiti yang disebabkan oleh kombinasi SOA dan 

pengutub. LSOA digunakan untuk penjanaan pelbagai panjang gelombang pada 

konfigurasi penapis Lyot berbeza kerana ia mengatasi SOA lain dalam jumlah garis 

lasing, ER, dan daya puncak tertinggi. Untuk mencapai penalaan jarak saluran, penapis 

Lyot tunggal digantikan dengan penapis Lyot selari. Spektrum panjang gelombang 

yang stabil dan boleh ditala hingga tiga jarak saluran dihasilkan oleh semua set dalam 

lebar jalur 10 dB. Pembaharuan utama kajian ini adalah kemajuan penapis Lyot 

termaju dengan menambahkan penapis Lyot secara bersiri ke penapis Lyot selari untuk 

meningkatkan penalaan jarak saluran. Melalui penyesuaian pengawal kekutuban, 

penalaan jarak saluran telah ditingkatkan dengan ketara dan menjana hingga lapan 

jarak saluran berbeza berbanding hanya tiga yang dicapai oleh penyelidik sebelumnya. 

Konfigurasi dipertingkatkan penapis Lyot dengan LSOA sebagai medium penguatan 

berpotensi tinggi dalam meningkatkan prestasi MWFL dalam penalaan jarak saluran 

untuk sistem pemultiplek pembahagi panjang gelombang. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Background of the Study 

 

 

This chapter serves as an introduction to this research work on generation of 

multiwavelength fiber laser (MWFL) based on semiconductor optical amplifier 

(SOA). The main novelty is an advanced Lyot filter with three segments of Lyot filter 

arranged in parallel and another segment put in serial in respect to the first group, along 

with nonlinear polarization rotation (NPR) effect which exist within the configuration. 

In Section 1.1, a brief discussion on introduction of MWFL is presented. Next is the 

problem statement relevant to the research scope prior to motivation behind the work. 

Subsequently is the elaboration of the objectives of the research followed by the scope 

of research. Then the description of research motivation follows. Before the summary 

at the end of the chapter, a detail of the thesis organization is presented. Overall, this 

chapter has covered the first step of the research as it is essential to understand the 

flow of the research starting from the problem statement, the motivation of research, 

the objective of research, the scope of research and the thesis organization before going 

further to the extensive theories and reviews as well as the experimental discussion 

later on in the following chapters.  

 

 

Research on MWFL has been a major attraction to researchers in the photonics 

area due to its potential application in such fields as optical telecommunications [1]. 

With the higher requirements for Internet transmission speed, as well as capacity, the 

dense wavelength division multiplexing (DWDM) technology has been developed 

rapidly. MWFL is an ideal light source for multiple channels of DWDM, which greatly 

reduces the cost of building the system. This component is used to divide and combine 

different wavelength channels, each carrying an optical data signal. Channel of 
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MWFLs have the advantages of generating multiple lasing wavelengths 

simultaneously from a single fiber laser [2]. In addition, MWFLs are also widely used 

in optical fiber sensor and microwave photonics [3-6]. There have been a great number 

of articles on MWFL published contributing to the various significant discoveries in 

multiwavelength characteristics [2,7-9]. Those publications focus mostly on the 

performance and improvements on number of lasing lines, channel spacing tunability, 

wavelength tunability, peak power values, extinction ratio (ER), multiwavelength 

flatness and multiwavelength bandwidth.  

Generation of MWFL involves two main components namely comb filters and 

gain medium in the laser system. A comb filter within laser structure plays a role in 

producing MWFL by slicing the amplified spontaneous emission (ASE) of the laser 

for wavelength selectivity. This can be achieved by several types of comb filter such 

as Fiber Bragg Grating (FBG) [10-12], Mach Zehnder Interferometer (MZI) [9,13] 

Fabry-Perot (FP) [14], Sagnac Loop Mirror (SLM) [15] and Lyot filter [16-19]. Lyot 

filter offers simple structure and output variability.  This can be done simply by 

varying the parameter of polarization maintaining fiber (PMF) which is the main 

component of a Lyot filter [20]. There is also research done by combining two basic 

comb filters in a MWFL system. They demonstrated the combination of SLM with 

Lyot filter [21,22].  

In recent years, based on the number of reported papers, one of the mechanisms 

to generate gain in MWFL is by scattering effects such as Raman [23,24], Brillouin 

[25] and random distributed feedback (RDF) [26] laser. They are particularly attractive

due to low noise and ability to be generated at any wavelength without the need for a 

specialized gain medium. Another mechanism is the use of rare earth doped amplifiers 

such as erbium doped fiber amplifier (EDFA) [27,28], thulium doped fiber amplifier 

(TDFA) [14,29] and Ytterbium doped fiber amplifier (YbDFA) [30,31].  Prominent 

among these methods is the use of EDFA as a gain medium [32-35].This is mainly due 

to its advantages of low polarization sensitivity and high saturation power which will 

not affect the overall multiwavelength laser system [36]. SOA is another choice of gain 

medium which also attracts researchers for the advantages it offers [37-40]. 
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NPR effect is an interesting method which should be highly considered in 

generating MWFL due to its advantages of having changeable operating regimes of 

multiwavelength lasing as well as passively mode locked at adjustment of polarization 

state [32,39,41,42]. Due to the NPR effect, intensity dependant loss (IDL) or intensity 

dependant transmission (IDT) is induced, that will suppress the mode competition in 

order to achieve stable multiwavelength output with narrow wavelength spacing 

[38,43,44]. The degree of IDL can be controlled by adjusting polarization controller 

(PC) in order to change the polarization state [45]. The combination of SOA and 

polarization devices in a ring cavity causes NPR effect [39,46].  

1.2 Problem Statement 

In recent years, the increasing demands for bandwidth have seen more attention 

being given to the development of fiber laser sources capable of producing a 

simultaneous multiwavelength output. Fiber laser system involves two main elements 

namely the comb filter and the gain medium. MWFL based on Lyot filter as the comb 

filter offer a variety of advantages such as simple and compact structure, cost effective 

and low optical loss in multiwavelength operation. Most of researches on Lyot based 

MWFL use EDFA as the gain medium for some advantages it offers [47,48]. However, 

EDFA produces high mode competition as it is a homogeneous broadening gain 

medium at room temperature, which leads to instability and limitation of the number 

of lasing lines produced by the system [43]. Other than that, the MWFL setup for 

EDFA is complex as it requires WDM coupler, optical pump and nonlinearity device 

as it does not have nonlinearity. EDFA also has limited bandwidth for the generation 

of MWFL. SOA is the best option to replace EDFA as it has its advantages [49] of 

having an inhomogeneous gain broadening to suppress the strong mode competition, 

allowing the generation of stable and flat lasing lines [37,38,46,50]. Besides that, SOA 

has a simpler setup than EDFA since it does not require optical pumping. SOA also 

offer selection of low or high nonlinearity. Hitherto, within author’s knowledge, only 

studies on single type of SOA were carried out by other researchers [38,39,44,46]. 

MWFL performance comparison based on different type of SOA has never been done 
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before. A group of researchers used three different SOAs, however, all is under the 

same in line type [44]. The behaviour of multiwavelength laser performance at 

different SOA nonlinearity and gain is unpredictable in the ring cavity, thus an 

interesting aspect to be investigated. Making adjustments to PCs is crucial as the 

operation of a polarization maintaining device relies on the polarization state of the 

incoming light [40,51]. However, there are very limited studies investigated 

simultaneously the PCs adjustments, as they only adjusted one waveplate, either HWP 

or QWP at a time [17]. 

The performance of MWFL is evaluated based on flatness, number of lasing 

lines, extinction ratio, highest peak power, wavelength range and stability. In addition 

to the abovementioned criteria of the multiwavelength output, it is also necessary for 

lasers to have flexible channel spacing tunability that will have great potential 

application in many fields mainly in telecommunication and photonic sensing. Single 

Lyot filter consists of a length of PMF between two polarizers which will determine 

the channel spacing between lasing lines. In order to have tunable channel spacing, it 

is inconvenient to replace the fiber each time [17]. This problem can be resolved by 

adding more segment of Lyot filter into the fiber laser system which would enable 

convenient control of the channel spacing through adjustment of polarization state in 

the filter [52-54].  

Up to present, the limited number of studies reported on channel spacing 

tunability are solely based on the use of multi segment Lyot filter, thus presenting an 

opportunity to explore the potential of Lyot filter in advanced configuration within 

MWFL system.  Furthermore, they reported a limited  channel spacing tunability for 

the use of PMF lower than two segments, where the highest tunability achieved was 

only three [55]. Another conundrum that has yet to be resolved is tunability of the 

wavelength range and number of lasing lines simultaneously, which is a very crucial 

aspect in MWFL for many applications.  
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1.3 Motivation of Research 

Lyot filter based MWFL is an attractive choice for multiple laser generation 

due to its many useful qualities such as low optical loss and simple structure 

[38,45,56]. An approach of using SOA as the gain medium in MWFL based on Lyot 

filter setup is an interesting option as SOA possesses a characteristic of 

inhomogeneous line broadening which allows for stable multiwavelength lasing 

operation and high number of lines at room temperature due to its low mode 

competition. Another advantage of SOA is that it does not require an external optical 

pump, hence no additional device is necessary, resulting in a simpler setup when 

compared to EDFA as the gain medium [55,57]. Different SOA exhibits different 

nonlinearity and gain in the laser system which will affect the MWFL performance. 

Thus, it is crucial to choose SOA with the best performance in the generation of 

multiwavelength.  

Even though there is a small number of studies reported for MWFL based on 

Lyot Filter, however, there exists a potential for research to investigate utilization of 

more than one segment of Lyot filter in different configurations. It is based on the 

characteristic of the generated multiwavelength that can be controlled by manipulating 

the Lyot filter properties. The spacing between the generated lines can be manipulated 

by adjusting the length of the PMF in the filter. Based on the principle operation of the 

Lyot filter, the spacing of the individual line can be controlled by employing more 

Lyot filters in a system. This is a significant advantage over existing fiber lasers, where 

there is minimal control over the spacing between wavelength lines [39,58]. Lyot 

based systems can be potentially used to control multiwavelength properties thus 

allowing room for flexibility of wavelength and interval spacing tuning. 

The proposed configuration in this study is to arrange two segments of Lyot 

filter in parallel within the ring cavity. With such configuration, the generation of 

multiple laser lines can be achieved through the use of the parallel arrangement of Lyot 

filter as a comb filter and NPR as nonlinear effect. The NPR effect induces a 
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mechanism of IDL or IDT which will help in flattening the multiwavelength 

generation [41,44,45,55]. Operating the filter in such configuration could provide 

better filter performance and utilize the device to its maximum potential. With the 

proven achievements of generating multiwavelength SOA fiber laser based on parallel 

Lyot Filter, it raises the opportunity and motivation to explore more the potential of 

Lyot filter based MWFL [38]. Other advantages of Lyot filter for obtaining 

multiwavelength lasing lies in the simplicity of configuration and their stable 

operation. The findings of the research have developed more interest in Lyot filters. 

Other researchers investigate experimentally the multi-stage Lyot filters by using 

EDFA as the gain medium. However, EDFA suffers homogeneous gain broadening 

which will prevent the generation of flat spectrum. 

1.4 Aim and Objective of Research 

The aim of this research is to generate the best performance of MWFL 

experimentally in terms of channel spacing tunability by using an advanced multi-

segment Lyot filter as the comb filter with SOA as the gain medium for prospective 

practical applications such as in telecommunications and optical sensing. To achieve 

this, a few objectives have been outlined to guide the research route: 

Objectives: 

1. To investigate the best multiwavelength spectrum performance based

on three different SOAs utilizing a Lyot filter.

2. To demonstrate channel spacing tunability of MWFL based on SOA by

using a parallel Lyot filter.

3. To improve the channel spacing tunability based on advanced parallel

and cascaded multi segment Lyot filters.
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1.5 Scope of Research 

 

 

MWFL can be generated using linear or ring cavity configuration. For both 

configurations, many articles have been published using several types of 

multiwavelength selective filtering methods with different gain medium and nonlinear 

effects in the generation of MWFL. The methods that have been studied by many 

researchers in the generation of multiwavelength are FP, FBG, SLM, MZI and Lyot 

filter. This study focuses on Lyot filter as it offers advantages such as low complexity 

and good tunability in terms of number of lasing lines and channel spacing based on 

its configuration. On the other hand, the gain media that can be utilized in the 

generation of MWFL can be grouped into two. They are the rare earth doped fibers 

and SOA. The most popular choice for rare earth doped gain medium is EDFA, besides 

TDFA and YbDFA. SOA can be grouped into three which are linear, nonlinear and 

booster. Meanwhile, nonlinear effects such as four wave mixing (FWM), stimulated 

Raman scattering (SRS), stimulated Brillouin scattering (SBS) and NPR effect play an 

important role in generating MWFL. The NPR effect induces IDL which influences 

the flatness and stability of the spectrum. In this work, at the first step, single segment 

Lyot filter is experimentally investigated using three types of SOA (Linear C band 

SOA1013S, nonlinear inline SOA1117S and nonlinear booster BOA1014S, all 

manufactured by Thorlabs). The generated MWFL are analyzed based on the number 

of lasing lines, multiwavelength bandwidth and ER to investigate the performance of 

MWFL for all the SOAs. Then another PC and a polarization dependent isolator (PDI) 

are added to the configuration to study their effects. The combination of SOA and 

polarizer in the laser system induced NPR effect that generates flat and stable 

multiwavelength spectra. The best SOA among the three is then selected based on the 

performance of the generated multiwavelength spectra. Later, the selected SOA is used 

as the gain medium in the generation of MWFL for a setup consisting of two of Lyot 

filters that arranged in parallel to obtain channel spacing tunability. Then, three Lyot 

filters from the combination of parallel and cascaded configurations are further 

explored to achieve higher tunability of the channel spacing. Figure 1.1 illustrates the 

scope of research that will be studied which is narrowed down from three major fields 

of wavelength selective filtering method, gain medium and nonlinear effect in the ring 
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cavity. The specific topics are related to each other and are preferred due to various 

advantages and several gaps that will be filled and explored. 

Figure 1.1 The scope of the research 
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1.6 Significance of Research 

This research contributes to the development of dense wavelength division 

multiplexing (DWDM) technology that have been extremely important for modern 

wireless communications as there are great demands for Internet transmission speed 

and capacity. The investigation aims to achieve the best performance of MWFL as it 

is the ideal light source for multiple channels of DWDM. Other than in 

communications, MWFLs also have promising potential in optical sensing and 

detection technology. SOA which possesses unique attributes such as wide bandwidth, 

low power consumption and compactness is used as the gain medium in the generation 

of MWFL. Another interesting advantage of SOA is the ability for integration with 

any system. All the advantages offered by SOA contributes to the requirement of cost-

effectiveness. The tunability of wavelength spacing is of prime significance in this 

study which meets the requirement of multifunctional devices as well as the 

operational flexibility and capabilities that are necessary for the ever-changing 

requirements. Overall, the proposed SOA based MWFL with flexible wavelength 

interval tunability mechanisms and simple structure potentially meet the application 

requirements of various occasions.  

1.7 Thesis Organization 

This thesis is categorized into seven chapters including this chapter, which 

serves as an introduction to the thesis. In each chapter, there will be a brief enclosed 

summary that states the accomplishments and findings according to the respective 

chapter. This current chapter describes an overview of the research background and 

identifies the problems involved. The objectives and scopes of the research are also 

presented accordingly. The research methodology that indicates the matters considered 

in accomplishing the work is briefly provided.  
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Chapter 2 widens the discussion on the theoretical background and the 

description of the involved devices and mechanisms in the proposed experimental 

setup that will be carried out. Different types of gain medium involved in the MWFL 

system are mentioned and discussed. SOA is explained in detail regarding its structure, 

principle of operation, parameters and type of configuration. Then, previous findings 

from literature on different types of wavelength filtering methods are presented. Brief 

introduction is provided for FBG, MZI, FP, SLM and LF in order to have some 

knowledge on different types of filter mechanisms that have been used in the MWFL 

research. Here, the possible areas of improvement for the multiwavelength generation 

are identified. Following is a detailed discussion as well as several reviews on LF as 

the chosen filter for this research work. Subsequently, the PMF as a birefringence 

device is explained. This chapter also explores the NPR effect, which introduces the 

IDT and the IDL mechanisms. The theory of polarization device namely the PC and 

polarizer is also included. Next, measurement parameters that will be used in analyzing 

MWFL spectrum are described. Last but not least is the critical reviews on MWFL 

based on SOA as the gain medium, multi segment Lyot filter as well as reviews on 

channel spacing.  

Chapter 3 mainly demonstrates in detail the methodology of this research. A 

flowchart of the works to be carried out experimentally is presented. Three types of 

SOAs that will be used in the experiment are fully detailed. Four Lyot filter 

configurations are presented based on schematic diagrams and principle of operations. 

In Chapter 4, experimental works for a single Lyot filter in fiber laser 

configuration are carried out. Two different configurations are utilized in order to 

study the effect of PDI in the setup. All the three SOAs are used as the gain medium 

for both setups. All the collected spectra are analyzed. The findings in this chapter are 

used to determine SOA with the best performance.  

Chapter 5 reports the experimental results for parallel Lyot filter. There are two 

PMFs in this configuration addressed as PMF1 and PMF2 with L1 and L2 as the 
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lengths respectively. Experimental investigation is divided into 3 groups based on 

PMF length. In the first group, both PMFs have short lengths. While in the second 

group, both have long PMF lengths. For the third group, it is a mix of long and short 

PMF lengths.  

Chapter 6 contains the novelty of this research work. The laser system 

discussed in the previous chapter is improved as another segment of Lyot filter is 

inserted into the ring cavity. The new design now consists of two segments of Lyot 

filter arranged in parallel and another segment of Lyot filter positioned in series with 

the two. Overview of the different set of PMF lengths is provided.  

Finally, the overall conclusions of the thesis are highlighted in Chapter 7. In 

the first sub chapter, detailed explanations on the achievements of all the objectives 

are presented.  Then, the main contributions of this study are discussed in terms of 

SOA, advanced Lyot filter configuration and channel spacing tunability.  The 

recommendations on the future works for further advancements to this research are 

fundamentally identified before the end of this chapter.
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