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Development of global monthly 
dataset of CMIP6 climate variables 
for estimating evapotranspiration
Young Hoon Song1, Eun-Sung Chung  1 ✉, Shamsuddin Shahid  2, Yeonjoo Kim  3 & 
Dongkyun Kim4

Reliable projection of evapotranspiration (ET) is important for planning sustainable water management 
for the agriculture field in the context of climate change. A global dataset of monthly climate variables 
was generated to estimate potential ET (PET) using 14 General Circulation Models (GCMs) for four main 
shared socioeconomic pathways (SSPs). The generated dataset has a spatial resolution of 0.5° × 0.5° 
and a period ranging from 1950 to 2100 and can estimate historical and future PET using the Penman-
Monteith method. Furthermore, this dataset can be applied to various PET estimation methods based 
on climate variables. This paper presents that the dataset generated to estimate future PET could 
reflect the greenhouse gas concentration level of the SSP scenarios in latitude bands. Therefore, this 
dataset can provide vital information for users to select appropriate GCMs for estimating reasonable 
PETs and help determine bias correction methods to reduce between observation and model based on 
the scale of climate variables in each GCM.

Background & Summary
Evapotranspiration (ET) is an important component of the water cycle and plays a major role in agriculture and 
water management1. Earth systems have shown robust change signals of climate variables since the 20th cen-
tury2. Recently, the climate crisis facing humanity has been mainly due to the changes in the water cycle caused 
by changing patterns of precipitation, temperature, and surface runoff3. Furthermore, the changes in the hydro-
logical cycle due to an increase in the atmospheric water vapor content are related to extreme changes in the var-
ious factors involved in the general circulation4. Numerous studies have been conducted to characterize regional 
and continental scale surface water losses to the atmosphere by estimating potential ET (PET). The Food and 
Agriculture Organization (FAO) of the United Nations has recommended using the Penman-Monteith (PM) 
method to estimate potential evapotranspiration5, and some studies are used as reference models for other 
methods with less input data6–9. However, PM requires many climate variables to estimate PET. Therefore, cli-
mate models that simulate sufficient climate variables can only be used to estimate PET.

General circulation models (GCMs) have been widely used to estimate PET because many models simulate 
several climate variables for historical and future periods10–17. GCMs are continuously being updated, with the 
incorporation of new physical processes and biochemical cycles and simulations at higher spatial resolutions. 
However, CMIP6 GCMs have issues with Equilibrium Climate Sensitivity (ECS)18. Currently, some studies have 
provided scientific evidence for the reason for the high ECS of CMIP6, claiming that CMIP6 GCMs were more 
sensitive to greenhouse gases and exhibited stronger temperature increases than previous models during the 
21st century due to enhanced cloud feedback19. Many studies compared the performance of past reproducibility 
of CMIP6 GCMs with their previous versions in terms of various evaluation metrics and showed their better 
performance than the earlier versions20–26. The advance in these model performances has made strides in pro-
viding scenarios for better future climate projection. Furthermore, Shared Socioeconomic Pathways (SSPs) rep-
resenting the future greenhouse gas concentration of CMIP6 include future mitigation, adaptation, and efforts 
on climate change future social and economic changes based on the radiative forcing levels of Representative 
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Concentration Pathways (RCPs)27. Therefore, SSP scenarios are an excellent source for exploring climate change 
by estimating realistic climates.

Climate impact assessment using newly presented SSPs is documented in IPCC’s assessment report 6. These 
concepts were provided in ScenarioMIP, an improved version of the integrated assessment models (IAM) based 
on change by anthropogenic causes, such as land use, greenhouse gas, and aerosol27,28. Furthermore, these con-
cepts of scenarios would also reduce the knowledge gap of radiative forcing and temperature overshoots in the 
future.

This study generates a raw types dataset of monthly climate variables (average temperature, minimum tem-
perature, maximum temperature, wind speed, relative humidity, solar radiation) to estimate the global PET of 
14 CMIP6 GCMs for the four main SSPs (Fig. 1 presents six climate variables represented by ACCESS-CM2 
model as an example). Global climate data were re-gridded to 0.5° spatial resolution using linear interpolation.  
The re-gridded dataset of the CMIP6 GCM is freely available online in NetCDF format29. The generated cli-
mate variables can also be used to estimate global PET using Python code available in the ‘pyeto’ package30.  
The PET code is also provided in a ‘py’ file format29. The Penman-Monteith (PM) used in this study requires 

Fig. 1 Example of ACCESS-CM2 dataset over the global scale (0°E-360°E in latitude and 0°N-90°N in 
longitude) in the historical period (1950–2014).
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location (latitude and longitude), temperature, humidity, radiation, and windspeed for estimating evapotranspi-
ration. Especially this dataset is needed to adjust some weather parameters for the local average value of atmos-
pheric pressure, and it was used to compute extraterrestrial radiation and daylight hours. Latitude is directly 
involved in the calculation process of extraterrestrial radiation and daylight hours. The detailed description 
of the computational process in Penman-Monteith (PM) can be found under ‘pyeto’ in the Python archive.  
The projection period was divided into the near (2031–2065) and far (2066–2100) futures, and PET changes for 
both futures compared to the base period (1985–2014) were calculated. The projected future evapotranspiration 
using Python code and dataset increased in most scenarios. These results mean that the thermal energy for the 
future water cycle increases as the greenhouse gas concentration increases.

Methods
Data. The dataset generated in this study provides six climate variables (Relative humidity: Hurs; Maximum 
temperature: tasmax; Minimum temperature: tasmin; Average temperature: tas; Solar radiation: rsds; Windspeed: 
sfcWind) of 14 CMIP6 GCM to estimate PET over the globe, as shown in Table 1. The raw data for CMIP6 GCMs 
used in this study were collected from the CMIP6 archive31. The future climate variables for four SSPs (SSP1-2.6, 
SSP2-4.5, SSP3-7.0, and SSP5-8.5) were used. GCM simulation for the historical and future periods was re-grid-
ded to 0.5° × 0.5° resolution using linear interpolation. The users can confirm a metadata summary in xlsx file 
format27. The variant label of the dataset was the r1i1pif1.

Potential evapotranspiration estimation method. The projected historical and future ET can be esti-
mated using a Python code developed by us, and we developed it based on the Penman-Monteith (PM) method. 
PM method proposed by Allen et al.5, to estimate monthly global PET using six climate variables of CMIP6 
GCMs. PM represents a standard value of PET. It can be calculated using Eq. (1), as below:
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where PET is the monthly PM, Rn is the net radiation at the crop surface, Tav is the monthly mean temperature at 
a 2 m height (°C), u2 is the average monthly wind speed at a 2-m height (m/s), es is the saturation vapor pressure 
(kPa), ea is the actual vapor pressure (kPa), Δ is the slope of the saturation vapor pressure versus temperature 
curve, G presents the soil heat flux density (MJ/m2month−1), and γ is the psychrometric constant.

Data Records
The six climate variables of the CMIP6 GCM dataset for estimating potential evapotranspiration are available 
in NC-formatted files and can be freely downloaded from the repository29. Furthermore, a metadata summary 
of the available CMIP6 GCM dataset is provided as an xlxs formatted file from the repository29. Table 2 presents 
the information depending on each latitude in CMIP6 GCMs. The resolution of climate variables in the data 
archive was re-gridded as 0.5°× 0.5°. The global latitudes were separated into the six (e.g. L1: 0° to 29.5° and 0° to 
−29.5°, L2: 30° to 59.5° and 30° to −59.5°, L3: 60° to 90°). The six climate variables for the historical period span 
from 1950 to 2014. The projected climate variables were divided into the near (2031–2065) and the far (2066–
2100) futures. The projected PM ETP for historical and future periods was estimated using six climate variables.

Models Resolution Variant label Climate variables

ACCESS-CM2

0.5° × 0.5° r1i1p1f1

Relativue humidity 
(Hurs); Maximum 
temperature (tasmax); 
Minimum temperature 
(tasmin); Average 
temperature (tas); 
Solar radiation (rsds); 
Windspeed (sfcWind)

ACCESS-ESM1-5

CanESM5

CAS-ESM2-0

CMCC-ESM2

FGOALS-g3

GFDL-ESM4

INM-CM4-8

INM-CM5-0

IPSL-CM6A-LR

MIROC6

MPI-ESM1-2-HR

MPI-ESM1-2-LR

MRI-ESM2-0

Table 1. Information on the GCMs used in this study.
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Technical Validation
The PM ETP dataset generated in this study was validated for similarity with Earth’s climate variables in lati-
tude bands depending on the radiative forcing levels of SSPs. First, this study confirms the similarity in climate 
variables between 14 CMIP6 GCMs and Earth using statistical metrics. It validates the estimated historical 
evapotranspiration using the PM method based on the climate variables. Second, the projected climate variables 
for the future period were compared to confirm the projection model’s performance technology, and we verified 
that the projected future climate variables adequately reflected the greenhouse gas concentration levels of the 
SSP scenarios. Finally, we estimate the future evapotranspiration using PM based on the climate variables of 

Hemispheres Latitude band Range Number of total grids

Northern (NH)

NL3 60° to 90° 14,641

NL2 30° to 59.5° 22,004

NL1 0° to 29.5° 14,918

Southern (SH)
SL1 0° to −29.5° 10,081

SL2 −30° to −59.5° 2,118

Table 2. Information of each latitude constructed in CMIP6 GCMs dataset.

Fig. 2 Statistical performance of six climate variables of 14 CMIP6 GCMs for the historical period (1950–2014) 
based on five metrics.
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Models

Maximum temperature (°C) Minimum temperature (°C) Average temperature (°C)

Upper Lower Median Upper Lower Median Upper Lower Median

ACCESS-CM2 35.2 −23.4 13.3 20.7 −20.3 7.7 27.7 −24.2 11.5

ACCESS-ESM1-5 34.5 −21.7 14.6 21.1 −16.5 8.7 27.8 −20.7 12.7

CAS-EMS2-0 34.9 −19.5 13.8 20.7 −19.2 7.0 26.7 −20.8 11.6

CMCC-ESM2 33.8 −18.6 13.7 21.5 −17.4 7.4 27.2 −19.2 12.6

CanESM5 36.8 −21.0 13.7 21.0 −19.4 6.9 28.0 −22.2 11.1

FGOALS-g3 35.3 −25.7 13.4 20.1 −22.6 7.3 26.5 −22.8 11.1

GFDL-ESM4 32.1 −19.4 13.0 19.5 −18.1 6.3 25.1 −22.7 11.0

INM-CM4-8 34.5 −22.9 15.4 18.7 −20.0 8.0 25.2 −24.0 12.5

INM-CM5-0 34.7 −21.7 14.8 18.7 −19.0 7.8 25.2 −23.0 12.1

IPSL-CM6A-LR 32.0 −19.5 11.5 19.8 −18.9 6.6 25.5 −21.2 10.1

MIROC6 41.5 −16.0 16.7 22.4 −15.4 9.9 28.6 −17.5 15.2

MPI-ESM1-2-HR 33.9 −20.7 12.4 21.6 −16.9 6.6 26.9 −20.3 12.1

MPI-ESM1-2-LR 33.0 −19.7 12.5 21.3 −17.3 7.4 26.4 −20.2 12.2

MRI-ESM2-0 35.1 −18.0 12.3 21.2 −15.9 7.0 26.7 −18.8 11.6

Models
Solar radiation (W/m2) Relative humidity (%) Windspeed (m/s)

Upper Lower Median Upper Lower Median Upper Lower Median

ACCESS-CM2 264.1 98.9 216.4 184.3 5.8 112.9 14.5 0.5 8.6

ACCESS-ESM1-5 258.5 98.7 227.1 124.3 10.5 78.8 15.7 0.5 8.6

CAS-EMS2-0 232.8 95.4 196.5 2628.1 11.6 130.0 14.7 0.0 6.8

CMCC-ESM2 250.6 98.1 208.4 154.1 10.6 96.7 16.2 0.6 8.2

CanESM5 261.2 101.8 219.0 99.7 8.6 63.3 15.2 0.6 7.2

FGOALS-g3 259.8 108.2 213.8 105.0 7.0 65.8 14.5 0.6 8.0

GFDL-ESM4 250.7 92.6 208.3 202.7 5.6 123.9 16.2 0.6 7.4

INM-CM4-8 260.9 94.6 228.2 98.4 6.5 61.7 15.4 0.1 7.2

INM-CM5-0 260.2 96.6 225.6 98.7 5.9 61.6 15.4 0.1 7.2

IPSL-CM6A-LR 258.5 102.1 212.0 108.6 9.6 69.0 15.1 0.2 8.1

MIROC6 255.1 100.3 207.4 146.2 7.7 90.8 17.3 0.0 8.1

MPI-ESM1-2-HR 256.6 92.9 218.7 133.2 8.2 83.2 15.4 0.4 7.2

MPI-ESM1-2-LR 254.2 88.6 215.8 132.9 10.5 84.0 16.1 0.5 8.2

MRI-ESM2-0 259.3 103.7 224.4 142.6 4.7 87.4 17.3 0.9 9.6

Table 3. Monthly climate variables ranges (Upper, Lower, and Median value) of 14 CMIP6 GCMs in the 
historical period (1950–2014).

Fig. 3 Spatial patterns and temporal changes in annual PM ETP of ACCESS-CM2 in the historical period 
(1950–2014).
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SSPs, and the changes in PM ETP were calculated for the near and far futures compared to the historical period 
to confirm the relative changes based on the greenhouse gas concentration of SSPs.

Validation of global climate variables and PM in the historical period. This study used five statis-
tical metrics (Maximum, Minimum, Median, Standard deviation, and Interquartile range) to compare the range 
of climate variables in GCMs depending on the latitude bands. Figure 2 presents the statistical performance 
of the climate variables of 14 CMIP6 GCMs in simulating the historical climate for the five ranges of latitudes.  
The relative humidity in SL1 and NL1 (low latitudes in both hemispheres) was low compared to the other lat-
itudes, whereas the relative humidity in NL3 was the highest. The maximum, minimum, and median relative 
humidity at NL1 was the lowest compared to the other latitudes, whereas the relative humidity in NL2 and NL3 
showed the opposite results. The standard deviation and Interquartile range (IQR) were the highest at SL1, 
whereas those were lower at NL3 compared to the other latitudes. On the other hand, the maximum, minimum, 
and median wind speed was the lowest at SL1, whereas the wind speed in SL2 was higher than in other latitudes. 
The variability of wind speed was the highest in SL2. The solar radiation’s maximum, minimum, and median 
were the highest at low latitudes (SL1 and NL1) of both hemispheres and  the values in NL3 were the lowest than 
in other latitudes. Furthermore, solar radiation’s standard deviation and IQR were larger at low latitudes than at 
mid-latitudes of both hemispheres. The maximum, minimum, and average temperatures for the 14 CMIP6 GCMs 
were similar, with no significant differences between the GCMs. These results showed that the temperatures in 
low latitudes (SL1 and NL1) of both hemispheres were the highest, whereas the NL3 was the lowest. The standard 
deviation and IQR of temperatures at NH were also the largest compared to the other latitudes.

Table 3 shows the range of climate variables for the 14 CMIP6 GCMs in the historical period. Overall, the 
variability of  historical maximum temperature was the largest for FGOALS-g3, while IPSL-CM6A-LR had the 
lowest variability. In contrast, the variability of minimum temperature was the smallest in MRI-ESM2-0, while 

Models

Northern Hemisphere

NL1 NL2 NL3

Upper Lower Median Upper Lower Median Upper Lower Median

ACCESS-CM2 121.4 116.6 119.4 54.4 49.5 51.5 17.4 15.3 16.1

ACCESS-ESM1-5 118.9 114.0 116.5 58.7 53.0 54.9 17.4 15.2 16.1

CAS-EMS2-0 18.9 17.0 17.7 4.6 3.9 4.2 3.4 2.1 2.7

CMCC-ESM2 88.7 83.0 86.5 43.2 37.8 40.3 15.5 10.6 12.7

CanESM5 117.7 111.2 113.7 55.9 50.4 52.8 19.3 17.1 18.1

FGOALS-g3 111.3 106.9 109.1 53.0 48.6 51.0 17.2 14.5 15.7

GFDL-ESM4 107.3 101.2 103.8 49.4 45.5 47.2 16.7 14.7 15.8

INM-CM4-8 119.3 115.1 116.9 64.5 57.5 62.3 20.4 17.5 19.6

INM-CM5-0 118.5 114.4 116.7 62.9 56.0 61.0 21.4 19.0 19.9

IPSL-CM6A-LR 118.9 113.6 116.3 58.2 51.9 54.1 20.0 17.4 18.8

MIROC6 122.8 116.6 120.2 67.0 62.1 64.3 24.2 21.9 22.8

MPI-ESM1-2-HR 122.4 117.5 119.6 57.8 52.0 54.4 17.7 15.5 16.6

MPI-ESM1-2-LR 118.2 113.2 115.8 54.0 48.8 51.3 16.5 14.0 15.0

MRI-ESM2-0 114.4 108.9 110.8 55.6 50.7 52.3 18.7 16.4 17.6

Models

Southern Hemisphere

SL1 SL2

Upper Lower Median Upper Lower Median

ACCESS-CM2 115.0 109.1 112.2 53.0 50.1 51.7

ACCESS-ESM1-5 121.0 113.0 116.7 54.3 52.3 54.3

CAS-EMS2-0 13.5 12.0 12.7 1.2 0.4 0.6

CMCC-ESM2 80.3 74.3 76.8 30.2 26.5 27.9

CanESM5 115.5 103.4 109.1 49.3 45.9 47.7

FGOALS-g3 104.7 99.0 102.5 47.7 44.3 46.0

GFDL-ESM4 101.7 93.6 98.6 46.0 42.0 44.0

INM-CM4-8 113.2 107.0 110.4 62.3 58.1 60.3

INM-CM5-0 111.1 106.4 108.5 61.3 56.7 59.3

IPSL-CM6A-LR 114.7 107.6 111.1 51.2 46.9 48.8

MIROC6 114.8 105.0 109.6 59.5 55.3 58.0

MPI-ESM1-2-HR 115.0 109.5 112.0 52.6 47.1 49.1

MPI-ESM1-2-LR 112.5 105.7 109.4 49.5 46.4 48.2

MRI-ESM2-0 113.9 109.0 110.7 47.6 44.6 46.5

Table 4. Annual PM ETPs (mm) ranges (Upper, Lower, and Median value) of CMIP6 GCMs in the historical 
period (1950–2014).

https://doi.org/10.1038/s41597-023-02475-7


7Scientific Data |          (2023) 10:568  | https://doi.org/10.1038/s41597-023-02475-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

FGOALS-g3 had the highest variability. For average temperature, ACCESS-CM2 had the highest variability, 
while MRI-ESM2-0 had the lowest variability. Significantly, the relative humidity of CAS-ESM2-0 was anoma-
lously larger than the other GCMs with an upper bound of 2628.1%, suggesting that it is unreasonable to use the 
climate variables of CAS-ESM2-0 to estimate historical PM ETP. Therefore, bias correction must be performed 
to estimate PM ETP using CAS-ESM2-0.

This study developed the Python code to estimate a historical monthly PM ETP sample using climate varia-
bles of ACCESS-CM2. Figure 3 presents the spatial and temporal variation of annual PM ETP for ACCESS-CM2 
in the historical period. Furthermore, Table 4 presents the historical PM ETP ranges (Upper, Lower, and Median) 

Fig. 4 Trends in climate variables of a multi-model ensemble of equally weighted 14 CMIP6 GCMs for the four 
main SSPs in the future period (2015-2100).

Fig. 5 Trends in PM ETPs of 14 CMIP6 GCMs for the four main SSPs in the future period (2015-2100).
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depending on the 14 CMIP6 GCMs. The PM ETP was generally high in almost areas of NL1 and SL1. and high 
in some areas of SL2 . In contrast, the PM ETPs at NL2 and NL3 were estimated 3.9-67.0 mm and 2.1-24.2 mm 
for the historical period, respectively. The PM ETPs at SL2, NL2 and NL3 showed a gradual increase, while there 
was no significant change at SL1 and NL1. Consequently, the dataset of climate variables generated in this study 
provides a reasonable estimate of ET over the globe.

For NL1, the historical PM ETP estimated from CanESM5 had the largest difference between the lower 
and upper bounds, while the PM ETP estimated from INM-CM5-0 had the smallest compared to the other 
GCMs. The historical PM ETP estimated from INM-CM4-8 had the largest difference between the lower and 
upper bounds in NL2, and INM-CM5-0 showed the second largest. On the other hand, the historical PM ETP 
estimated from GFDL-ESM4 had the smallest difference between the lower and upper bounds. For NL3, the 
difference in PM ETPs estimated from most GCMs between the lower and upper bounds was calculated as 2 to 
3, except for CMCC-ESM2. On the other hand, the PM ETP estimated from CMCC-ESM2 was calculated as 
4.9 mm, and the difference between the lower and upper bounds was the most significant. For SL1 in SH, the 
difference in historical PM ETP between the lower and upper bounds estimated from CanESM5 was the largest 
at 12.1 mm, while PM ETP estimated from INM-CM5-0 had the smallest difference at 4.7 mm. For SL2, the 
difference in historical PM ETP estimated from MPI-ESM1-2-HR between the lower and upper bounds was the 
largest at 5.5 mm, while the estimated from ACCESS-ESM1-5 was the smallest. Significantly, the PM ETPs esti-
mated from CAS-ESM2-0 differed from phenomenon in Earth’s latitudes, and PM ETPs of all latitudes needed to 
be better estimated. Therefore, it is recommended to use a bias correction for estimating PM ETPs using climate 
variables of CAS-ESM2-0.

Validation of projected global climate variables and PET for the future period. This study com-
pared the projected six climate variables of four SSPs in the future period (2015–2100). Figure 4 presents the 
climate variables for each SSP scenario generated by equally weighted (0.071) the 14 CMIP6 GCMs. The projected 
solar radiation increased at most latitudes of SH. In contrast, the projected solar radiation decreased for SSP 

Models

SSP1-2.6 SSP2-4.5 SSP3-7.0

Upper Lower Median Upper Lower Median Upper Lower Median

ACCESS-CM2 129.4 18.6 53.9 131.8 16.6 60.4 132.1 16.8 58.9

ACCESS-ESM1-5 127.5 17.8 57.7 129.6 16.4 63.1 132.8 16.5 62.6

CAS-EMS2-0 6.4 0.0 0.8 14.9 0.2 3.8 20.0 0.6 1.4

CMCC-ESM2 115.0 21.5 54.5 114.1 14.3 59.7 107.8 14.6 55.7

CanESM5 123.1 20.8 55.2 125.6 18.8 61.5 129.1 18.7 62.2

FGOALS-g3 112.4 16.7 52.0 112.4 15.6 53.7 115.2 16.0 55.5

GFDL-ESM4 109.2 17.0 48.8 111.9 19.4 52.5 111.4 16.3 52.9

INM-CM4-8 122.4 20.5 63.3 132.1 16.8 62.6 126.4 19.6 67.4

INM-CM5-0 121.4 21.3 62.4 123.2 20.0 65.6 125.8 20.0 66.2

IPSL-CM6A-LR 121.6 20.8 56.8 123.9 19.1 61.4 125.2 19.1 61.5

MIROC6 126.9 24.2 65.9 127.6 22.7 69.9 126.8 22.6 69.4

MPI-ESM1-2-HR 124.2 18.0 55.9 125.0 16.6 59.0 126.1 16.8 59.4

MPI-ESM1-2-LR 120.2 16.3 51.7 121.0 15.2 56.2 121.8 14.7 56.5

MRI-ESM2-0 119.1 19.2 55.6 120.8 18.1 59.0 122.0 17.7 58.2

Models
SSP5-8.5

Upper Lower Median

ACCESS-CM2 137.6 16.5 61.2

ACCESS-ESM1-5 134.3 16.9 64.4

CAS-EMS2-0 32.2 1.5 10.1

CMCC-ESM2 108.6 13.3 55.2

CanESM5 134.2 18.8 64.1

FGOALS-g3 115.2 16.0 55.5

GFDL-ESM4 113.4 16.1 53.2

INM-CM4-8 129.7 19.6 68.8

INM-CM5-0 129.1 20.3 67.6

IPSL-CM6A-LR 129.2 19.3 63.3

MIROC6 131.0 22.4 71.2

MPI-ESM1-2-HR 127.3 16.7 60.1

MPI-ESM1-2-LR 123.7 15.2 57.1

MRI-ESM2-0 124.9 18.0 60.2

Table 5. Projected the annual PM ETP (mm) ranges (Upper, Lower, and Median valuse) of main four SSPs in 
the future period (2015–2100).
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scenarios with higher greenhouse gas concentrations than those with lower concentrations at most latitudes in 
NH. The projected trend in wind speed for four SSPs at mid-latitudes (NL2 and SL2) of both hemispheres was 
lower in the far than in the near futures. However, the projected wind speed at low and high latitudes of both 
hemispheres was higher for the high-emission scenarios than for the low-emission scenarios. The relative humid-
ity was projected to decrease at all latitudes for all scenarios. Especially the wind speed in NH has decreased the 
most. Likewise, the decreased signals of relative humidity were lower for the high-emission scenarios than for 

Fig. 6 Spatial and temporal changes (%) in projected annual PM ETP estimated for four SSPs based on the 
equal-weighted multi-model ensemble compared to the base period (1980–2014) (a: SSP1-2.6, b:SSP2-4.5, c: 
SSP3-7.0, and d: SSP5-8.5).
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the low-emission scenarios. All temperatures showed an increase in the future at all latitudes for all SSPs. The 
increase signals was the highest for SSP5-8.5 at all latitudes compared to other scenarios. The trends in climate 
variables for different SSPs reflect the greenhouse gas emission levels considered in developing the SSPs.

Supplementary Table S1 presents the upper and lower bounds for future climate variables of SSP scenar-
ios. For relative humidity, most GCMs gradually decrease with higher greenhouse gas concentrations. In par-
ticular, the difference in the relative humidity between the upper and lower was the largest in CAS-ESM2-0. 
Furthermore, the maximum relative humidity of CAS-ESM2-0 was above 200%, and the difference was sig-
nificant compared to the relative humidity projected by other GCMs. For maximum, minimum, and average 
temperatures, the MIROC6 was higher than other GCMs. Moreover, the variability of projected future average 
temperature was the largest in CanESM5, while the variability of ACCESS-CM2 and ACCESS-ESM1-5 was the 
smallest. Meanwhile, the variability of maximum temperature for all scenarios was the smallest in FGOALS-g3 
and MIROC6. On the other hand, the projected minimum temperature for the future was the highest in 
MIROC6. The variability of minimum temperature was the smallest in ACCESS-ESM1-5, whereas CanESM5 
had the highest variability compared to other GCMs. The variability of solar radiation was the smallest for 
ACCESS-CM2, while MPI-ESM1-2-LR had opposite results. Notably, MPI-ESM1-2-LR had the largest insola-
tion across all scenarios. For wind speed, FGOALS-g3 had the highest variability, while ACCESS-ESM1-5 had 
the lowest variability.

This study used the SSP scenarios dataset to project future PM ETP, as shown in Fig. 5. The projected PM ETP 
showed a gradual increase in all SSPs. The projected PM ETP in high greenhouse gas concentrations increased 
steeper than in low greenhouse gas concentrations. Furthermore, the upper and lower bounds of projected 
PM ETP were the highest in SSP5-8.5 in NL2 and NL3, whereas SSP1-2.6 was the lowest. The upper bound of 
projected PM ETP at all latitudes of SH was the highest in SSP5-8.5. However, the lower bound of projected PM 
in most scenarios was similar in the far future.

Table 5 presents the projected future annual PM ETP ranges based on the scenarios. Overall, the projected 
PM ETP of the upper bound in the high greenhouse gas concentration scenario was higher than in the low 
greenhouse gas scenario. In contrast, the lower bound for PM ETP had the opposite results. For PM ETP esti-
mated from the low-emission scenarios, the difference between the upper and lower bounds was greatest in 
ACCESS-CM2 compared to the other GCMs, while the difference in GFDL-ESM4 was the smallest. On the 
other hand, the difference in PET ETP of high emission scenarios between the upper and lower bounds was 
greatest in ACCESS-CM2 and lowest in CMCC-ESM2. Significantly, the PM ETP estimated from CAS-ESM2-0 
was unusually lower compared to the other scenarios, which suggests that the relative humidity projected in 
CAS-ESM2-0 is unusually high compared to the other GCMs.

Projected changes in annual and seasonal potential evapotranspiration. The spatially interpo-
lated changes in annual PM ETP for different SSP scenarios are shown in Fig. 6. Overall, PM ETP for all scenarios 
at NL2 showed an increase in the near future compared to the historical period. Furthermore, the increased sig-
nals were more in the far future than in the near future. Especially the change in PM ETP for the high-emission 
scenarios at all latitudes was higher than for the low-emission scenarios. Therefore, the PM ETP changes at all 
latitudes were aligned with the emission levels of SSPs. Supplementary Table S2 shows the range of change in 
annual and seasonal PM ETP based on the four SSP scenarios. For SSP1-2.6, the annual and seasonal PM ETP 
of CMCC-ESM2-0 had the largest variability, while the PM ETP of CAS-ESM2-0 had decreased compared to the 
historical period. Furthermore, the annual PM ETP of INM-CM4-8 had the smallest variability. Furthermore, 
the variability of seasonal PM ETP was the smallest in INM-CM4-8 (Winter), FGOALS-g3 (Spring), and 
MPI-ESM1-2-LR (Fall), respectively. For SSP2-4.5, the variability of annual and seasonal PM ETP was the small-
est for FGOALS-g3, while CMCC-ESM2-0 was the opposite results. Meanwhile, the variability of annual and 
seasonal PM ETP estimated in SSP3-7.0 was the smallest for INM-CM4-8, and the variability of annual PM ETP 
for SSP5-8.5 was also the lowest for INM-CM4-8. On the other hand, the GCMs with lower seasonal variability 
for SSP5-8.5 were all estimated differently.

Usage Notes
This global dataset can improve robust projections of the future climate for SSPs using various GCMs. It can be 
used to analyze the climate change impact and quantify the effectiveness of adaptation and mitigation policies. 
Its applicability can be extended in the future by adding simulations for more GCMs and SSPs.

Code availability
The code to produce the data was written using Python, PyCharm 2022.2.2. The code is available in pyeto30 
(https://pyeto.readthedocs.io/en/latest/).
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