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Different fields have been thriving with the advents in mobile communication systems in recent years.
These fields reap benefits of data collected by Internet of Things (IoT) in next generation (5G and 5BG)
mobile networks. The IoT concept transforms different fields by providing large amount of data to be used
in their operations. This is achieved by massively utilized sensors and mobile devices that acquire data
from internet connected devices to keep track of physical systems. Hence, different use cases benefit from
the data generated thanks to future mobile network systems. Intelligent Transportation Systems, Smart
Energy, Digital Twins, Unmanned Aerial Vehicles (UAVs), Smart Health, Cyber Security are of significant
use cases that big data plays an important role for them. Large amount of data entails more intelligent
systems with respect to conventional methods, and it also entails highly reduced response time for
use cases. Artificial intelligence and machine learning models are adept in satisfying the requirements
of this big data situations for different use cases. In this sense, this paper provides a survey of machine
learning and artificial intelligence applications for different use cases enabled by future mobile commu-
nication systems. An overview of machine learning types and artificial intelligence is presented to pro-
vide insights into the intelligent method concepts. Available studies are extensively summarized, and
they are also grouped to provide a complete overview of the study. Discussions on the reviewed papers
based on artificial intelligence and machine learning concepts are made, and some descriptive figures
about the results of the discussions are also given in the paper. Finally, research challenges for artificial
intelligence and machine learning applications in the use cases are introduced, future research directions
and concluding remarks are presented accordingly.
� 2023 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Machine learning (ML) is a sub-branch of Artificial Intelligence
(AI), and it is a popular research area which has attracted signifi-
cant attention. Although machine learning has many definitions
throughout the literature, Arthur Samuel and Tom Mitchell, two
prominent figures in the machine learning field, provided concise
definitions of the term. According to Samuel [1], machine learning
is where computers learn to perform defined tasks without being
explicitly programmed to do so. Tom Mitchell [2] defined machine
learning as a construction of computer programs that automatical-
ly improve with experience. He validated his definition with the
following concept: ‘‘A computer program is said to learn from expe-
rience E with respect to some classes of task T and performance mea-
sure P. Its performance at task T, as measured by P, improves with
experience E” [2]. The common characteristic of these two defini-
tions is computer learning. The distinction between machine learn-
ing methods is done based on this learning process, they are
generally divided into three categories: supervised learning, unsu-
pervised learning, and reinforcement learning. Supervised learning
and unsupervised learning differ in terms of the data used. Super-
vised learning uses labeled data for training its algorithms. A loss
function is optimized by an optimizer to perform classification or
regression tasks. Unsupervised learning uses unlabeled data in its
training procedure and extracts hidden/latent patterns in the data
used. To solve a problem through supervised learning, a designer
must follow four basic steps: collect a viable training set, deter-
mine an input representation and structure of the learning func-
tion and algorithm, run the algorithm to fit the data, and
optimize it using optimizers on a validation set, and evaluate the
accuracy. Unsupervised learning, on the other hand, completes
the learning process by looking for previously undetected patterns
in an unlabeled dataset. Instead of using a feedback technique, it
employs common-features identification based on the presence
of similarities such as k-means clustering, hierarchical clustering,
principal component analysis, kernel methods, independent com-
ponent analysis, non-negative matrix factorization, and singular
value decomposition. Unsupervised learning algorithms perform
three main tasks: clustering/anomaly detection, dimensionality re-
duction, and association. Some examples of frequently used unsu-
pervised learning algorithms include k-means clustering,
hierarchical clustering, gaussian mixture models, association rules,
principal component analysis, singular value decomposition, and
autoencoders. In contrast, supervised learning performs two main
tasks: regression and classification. In these tasks, the learning pro-
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cess is accomplished by mapping input examples with their asso-
ciated outputs based on the input–output pairs. The tasks in
supervised learning differ in the type of output produced. The out-
puts are real values for regression, and categories for classification.
Artificial neural networks (ANNs), naïve Bayes (NB), support vector
machine (SVM), random forest (RF), linear regression (LR), and lo-
gistic regression (LGR) are some examples of supervised learning
algorithms.

Reinforcement learning differs from these learning types by its
learning manner. Rather than using labeled and/or unlabeled data,
it learns by interacting with an environment through a trial–error
mechanism with the aim of maximizing cumulative expected re-
wards. The algorithms of reinforcement learning are modeled as
Markov Decision Processes (MDP) for some situations, which are
discrete-time stochastic control processes. Five basic terms in rein-
forcement learning are present: agent, state, environment, action,
and reward. The agent receives an initial state of S0 and takes ac-
tion A0 towards the environment based on that initial state. Next,
the environment transitions into a new state S1 and gives reward
R1 to the agent. The agent then maximizes the cumulative reward.
Q-learning, SARSA, deep Q-learning, actor-critic (AC), deep deter-
ministic policy gradients (DDPG), and trust region policy optimiza-
tion (TRPO) are some examples of reinforcement algorithms used
throughout the literature.

5G and 5BG, as future mobile network systems, will bring sev-
eral advantages by their powerful capabilities with respect to pre-
vious network generations, i.e. 2G, 3G, and 4G. They will densely
utilize heterogeneous networks to ensure seamless connectivity
for massively connected devices, and novel technologies such as
beamforming, massive multi–inputmultioutput (MIMO), Orthogo-
nal frequency-division multiplexing (OFDM) technologies thereby
providing high bandwidth and data rates, massive connectivity,
broad coverage, and low latency/ultra-low latency. These future
mobile network systems will enhance uses of different spectrums
which 5G networks can use low and high band frequencies- these
are sub 6 GHz and above 24.25 GHz. On the other hand, 6G net-
works will be able to use the frequency spectrums in the range
from 95 GHz to 3 THz. These different spectrum uses will enhance
different use case implementations of the future mobile network
systems. They will in turn provide higher data rates and speed
by enhancing reliability and network coverage with respect to
the previous generations. In addition, low/ultra-low latency will
be facilitated by the future mobile network systems. With the com-
bination of these advancements of the future mobile network sys-
tems, enhanced mobile broadband (eMBB), massive machine type



TABLE 1
An overview of existing research on machine learning.

Paper Year Description

[13] 2019 � Machine learning and IoT in smart transportation systems were reviewed. Smart transportation was considered as a broad problem, and several
sub-problems of ML deployment were highlighted. The reviewed studies were not restricted to journal papers.
ML deployments in IoT for smart transportation systems and IoT smart transportation applications with/without ML were examined and
categorized.

[14] 2020 � The paper focused on CNN applications in intelligent transportation systems.
Intelligent transportation systems were assessed by dividing their problems into sub-problems. Comprehensive categorizations of the sub-pro-
blems were presented. The reviewed studies were not restricted to journal papers.
The power of CNN deployment in intelligent transportation systems was showcased with respect to conventional algorithms.

[15] 2020 � A survey was conducted on machine learning applications in smart city-related areas such as intelligent transportation systems, cyber security,
smart grids, and UAVs. The reviewed studies were not restricted to journal papers.
Application areas and specific classifications were discussed.
Future research directions regarding data issues, standardization of big data concept, and UAV-based recommendations were presented.

[16] 2020 � A survey of ML deployments in distributed smart grids was provided. Various applications of machine learning in the sub-problems of smart
grids were reviewed. ML deployments were categorized and highlighted for each problem. The reviewed studies were not restricted to journal
papers.
Recommendations of ML deployments in smart grids were discussed for future research.

[17] 2021 � The paper focused on different problems of 5G and B5G network enabled systems rather than specific application fields. The reviewed studies
were not restricted to journal papers.
Learning type-related problem-specific classifications were presented.

[18] 2021 � A short review of smart transportation using ML and IoT was presented by summarizing several research regarding different problems in smart
transportation systems. The reviewed studies were not restricted to journal papers.

[19] 2021 � Open data-based ML applications in smart city-related areas were reviewed. This included smart governance, smart economy, smart mobility,
smart environment, smart people, and smart living. The reviewed studies were not restricted to journal papers.
Inferences and comments on machine learning applications were made regarding smart city-related fields. A comprehensive taxonomy of the
reviewed papers was provided.
Supervised learning significance, its prevalence in applications, as well as deep learning in smart city-related problems were highlighted.

[20] 2021 � Wireless sensor network and IoT technology-based open research problems were examined. Papers on ML applications in the field of smart
cities were examined. The reviewed studies were not restricted to journal papers.
A comprehensive summary of ML techniques in WSN-IoT for smart city challenges was provided. Supervised learning was found to be the most
deployed learning type in applications, followed by reinforcement learning.

[21] 2021 � A brief review was provided on machine learning applications in smart grids for solving specific problems. Only journal papers were included in
the study.

[22] 2021 � A review was made on machine learning applications for various problems in IoT-integrated modern power systems. The paper provided a sum-
mary of the reviewed research. Only journal papers were included in the study.

[23] 2022 � A comprehensive survey was made on the deployment of ML-based methods for different security concerns in vehicular networks. The re-
viewed studies were not restricted to journal papers.
Taxonomy-based security attacks in vehicular networks were examined. Several security challenges and requirements in vehicular networks
were discussed.
Future research directions for ML deployment in vehicular networks were highlighted.

This
survey

� A comprehensive survey has been made on ML deployment in different fields using future mobile communication systems. The paper does not
focus on specific application areas and reviews the deployment of ML algorithms throughout various fields.
In the reviewed papers, ML applications are considered for different application fields such as intelligent transportation systems, smart energy,
smart healthcare, UAVs, digital twins, and cyber security. These fields, although interrelated, have been separately reviewed due to the broad
range of applications that do not fall under one category. Hence, this paper covers an extensive range of applications in related topics and makes
a general review for machine learning deployments in different application fields. Only journal papers were included.
A timeline of machine learning evolution has been presented to provide insight into artificial intelligence, machine learning, and machine learn-
ing types for deployments across various fields using 5G and B5G systems.
A comprehensive summary of the reviewed papers has been accomplished. The time span of the reviewed papers is from 2015 until present. A
detailed taxonomy for each paper is also provided. Discussions on learning types in relation with each application area and total applications
have been accomplished.
The current challenges from the aspect of different application fields have been analyzed. Recommendations and future research directions
which may solve challenges and help in the large-scale deployment of ML algorithms in various fields have been presented and discussed.
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communications (mMTC), and ultra-reliable and low-latency com-
munications will be adopted across different fields. Since the fu-
ture mobile network systems will provide benefits in terms of
latency, speed, enhanced connectivity, and data rate and network
capacity, data collected by IoT from various sources, smart devices,
and communicating machines will gain importance. Different use
cases such as cyber security, healthcare, unmanned aerial vehicle
deployments, digital twins, and so forth will try to reap benefits
that the future mobile networks provide.

Since the big data concept is enabled by IoT and smart devices
in the future mobile communication systems, rapid digitalization
has matured by means of this concept recently. This situation
has provided numerous opportunities for deploying intelligent
methods in various fields enabled by the future mobile network
systems. Machine learning, which is an integral part of data
science, has vast application fields since several machine learning
algorithms can successfully accomplish clustering, classification,
3

and prediction. Along with big data abundance, powerful hardware
solutions such as Graphical Processing Units (GPUs), Tensor Pro-
cessing Units (TPUs), Massively Parallel Processing (MPP), and
the advent of algorithms (deep neural networks in particular) are
major contributors for widespread applications of machine learn-
ing across various fields. These solutions have propelled machine
learning applications across different domains with the recent ad-
vancements of future networks. Computer vision [3], natural lan-
guage processing [4], predictive analysis in energy [5], image
processing and analysis [6], telecommunication [7], robotics [8],
recommender systems [9], healthcare [10], bioinformatics [11],
and autonomous driving [12] are remarkable examples of com-
monly used ML application fields.

This paper highlights artificial intelligence and machine learn-
ing deployments in different fields enabled by future network sys-
tems. Table 1 provides an overview of the existing research studies
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on machine learning deployments enabled by future mobile com-
munication systems.

Reviewed research papers have brought domain-independent
advances for their scopes, and contributed to the current literature
as well. In [13], problem specific review of machine learning appli-
cations with IoT use exploitation in one-specific domain is made. In
[14], the focal point of the paper is to study CNN applications in
one-specific domain, and its sub-problems. Authors of the paper
provide detailed review of CNN’s algorithmic perspectives on the
domain. In [15], a brief summary of AI applications in some differ-
ent smart city aspects is introduced to the literature. In [16], a re-
view of AI applications in one-specific domain and its sub-
problems are introduced to the literature. In [17], a review of ML
types, and their applications for several specific problems in future
mobile network systems are introduced to the literature. In [18], a
review of ML application in one domain is made, and making intel-
ligent systems in this domain through ML integration with IoT sys-
tems is discussed. In [19], the study tries to address some
questions in ML applications in one-specific domain in relation to
open data use in the domain. In [20], a review of ML applications
with one of the leading technology, wireless sensor networks-IoT,
in one specific domain is made by introducing learning types appli-
cation analyses in the study. In [21], a review study for ML applica-
tions in one-specific domain and main findings of the reviewed
papers are introduced to the literature. In [22], a review of ML
techniques and applications with IoT systems in one-specific do-
main with comprehensive summaries is introduced to the litera-
ture. In [23], the study defines sub-problems in one specific
domain in relation with communication systems, then reviews
the papers for the problems by providing ML and implementation-
al information such as accuracy, dataset information, etc. Besides,
the paper reviews ML learning type applications for the domain
as well.

In our paper, we gleaned papers that povide insight about AI/ML
applications in different use-cases enabled by future mobile net-
work systems. This paper brings about taxonomies of the gleaned
papers in addition to brief summaries of them. Hence the study
provides review study of the various use-cases in a comprehensive
manner with respect to the compared studies. In the context of this
paper, the learning types of ML are presented to provide some ba-
sic insights into readers in advance, and different machine learning
application fields in relation to mobile communication networks
are then highlighted. Challenges and future research directions of
machine learning applications in future mobile communication
networks are also pointed out to provide an outlook for future
studies and applications.
Fig. 1. Timeline of machin

4

This paper is organized as follows: In Section II, we provide an
overview of ML, its core concepts, its evolution throughout years,
and the types of machine learning, which are supervised, unsuper-
vised, and reinforcement learning, through an extensive analysis.
In Section III, we summarize studies on machine learning applica-
tions in relevant fields in detail, and categorize them. In Section IV,
we discuss the current challenges on machine learning deploy-
ments in different fields enabled by future mobile communications
networks. In Section V, we highlight future research directions on
the research topic by providing an outlook for further studies
and applications. Finally, in Section VI, we conclude the paper.
2. Evolution of AI and machine learning

This section presents the evolution of ML in relation to AI. Arti-
ficial General Intelligence (AGI), or general-purpose AI, is the su-
perset of AI. These terms are related to several integral
components of intelligence which generally belong to humans,
such as learning, reasoning, problem solving, and perception. In
AI research, two approaches have been competing with each other
throughout the years to imitate intelligence: connectionist and
symbolist. The connectionist approach models cognition processes
according to human brain’s operating mechanism and its intercon-
nected neurons. The symbolist approach models cognition process-
es without considering brain structure or neural connections, and
instead uses semantics and symbols in the modeling.

AGI claims that an intelligent agent can understand and learn
any intellectual task on par with humans. Reaching this level is a
controversial issue for researchers of different fields. The contro-
versy roots back to fundamental approaches in intelligence and
cognition; i.e., the connectionists and the symbolists, as mentioned
earlier. AI has the ability to perform the tasks of intelligent beings
by simulating human intelligence in machines, such as in comput-
ers or robots. While the capability of AGI is comparable to humans,
such capability is limited for AI. For instance, AI systems excel at
performing assigned tasks, which is untrue for unassigned tasks.
In some fields, AGI achieves higher than human-level performance,
such as DeepMind’s algorithm for AlphaGo. This type of achieve-
ment is also expanding. The proliferation of such achievements
may be a sign of the shift from AI to AGI. These accomplishments
are due to several powerful machine learning algorithms, a subset
of AI, with different learning types. Evolution of AI is seen in Fig. 1.

In 1943, Walter Pitts (a logician) and Warren McCulloch (a neu-
roscientist) created the first mathematical model of a neural net-
work, providing a significant piece of a puzzle. Published in their
seminal work ‘‘A Logical Calculus of Ideas Immanent in Nervous
e learning evolution.
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Activity” [24], a combination of mathematics and algorithms were
proposed to mimic the human thinking process. The first concept
of ML came from human brain model with a vast number of neuron
cells connected to each other; a type of connectionist approach.
This model was proposed by Donald Hebb in 1949 which clarified
activations and communications of neurons [25]. In terms of ANN,
the model was described as the relationship between nodes, and
the nodes of individuals that are changing. The relation is powerful
if two nodes are simultaneously activated, otherwise it is poor. The
term ‘weight’ was used to illustrate the relations between nodes in
this model.

In 1950, Turing proposed such a machine, even hinting at genet-
ic algorithms in his paper ‘‘Computing Machinery and Intelli-
gence”. In the paper, he crafted what was dubbed as the Turing
Test, which he called the Imitation Game, to determine whether
a computer is able to ‘‘think”. The test required a machine to con-
duct a conversation with a human via text. If the human was con-
vinced after five minutes that they were talking to another human,
the machine would have passed the test [26].

The origin of machine learning concept was initiated in 1950.
Alan Turing developed the Turing Test to test whether a machine
may perform cognition tasks similar to a human [27]. Turing sug-
gested that a machine might produce similar basic human behav-
iors within the framework of pre-determined and specified testing
rules. The original test consisted of three main components which
were separated from each other. The first component, isolated
from the other two components, was a computer-based system.
The other components consisted of two people and a machine.
One person asked the questions, while the other person and the
computer-based system answered them. The person asking the
questions must determine whether the answering entity was the
other person or the machine. The person answering the questions
may only respond using a keyboard, and s/he must provide normal
answers to the questions. Since the machine was answering the
same questions as the person, it tried to convince the questioner
that it was human through its answers in the test [26]. This test
was repeated several times. If the questioner was unable to distin-
guish between the person answering and the machine, and was
convinced by the machine that it was human after the tests, the
machine algorithm was then regarded as having AI. After the Tur-
ing Test, remarkable developments were made in the 1980 s and
1990 s. Programmers created an ANN prototype that resembled a
human brain in various aspects. The ANN model included layers
of synthetic neurons that were linked together. Unfortunately, re-
search could not further progress since computing devices were
limited, and those present did not have much capability to manage
larger synthetic neuron clusters.

In the 1950 s, Arthur Samuel introduced a checkers-playing pro-
gram [1]. He established an alpha–beta pruning due to the memory
size of the computer used. The scoring function was applied in Sa-
muel’s design. This function calculated the chances of winning for
each side. The following step was determined by the minimax al-
gorithm. Samuel improved his program through rote learning so
that it could memorize all possible positions by combining them
with values of reward functions. In 1952, Samuel was the first per-
son who introduced the term ‘machine learning (ML)’ to the world.

In 1957, Rosenblatt discovered the idea of the perceptron [28].
The perceptron was the combined results of learning taken from
the contributions of both Samuel and Hebb. The perceptron was
a machine used for image recognition tasks. The first model was
called ‘Mark 1 perceptron’. The perceptron seemed to be a promis-
ing solution, however, it failed to recognize numerous patterns. It
was mostly good at so called ‘‘AND” and ‘‘OR” problems. This
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was not the case for ‘‘XOR” problems since ‘‘XOR” was much more
complicated for it. Hence, it did not yield promising results.

In the 1960 s, an important discovery was made regarding the
multilayer invention. However, this discovery did not stop the
abandonment of the connectionist approach for intelligence re-
search [29]. It did facilitate research advancements for neural net-
works. Adding two or more hidden layers to a neural network led
to enhanced performance by boosting the learning ability of the
network. These layers have the ability to determine more complex
patterns which, in turn, led to the creation of feed forward neural
networks and backpropagation algorithms. These innovations sig-
nificantly revolutionized machine learning field.

In 1967, Marcello Pelillo invented the ‘‘nearest neighbor rule”.
The introduction of this algorithm led to the creation of the basic
pattern recognition. The idea behind the algorithm was to use
mapping routes that had been applied to find the optimal route
for traveling salespeople [30].

The backpropagation algorithmwas later invented in the 1970 s
[31]. The algorithm got neural networks to modify layers according
to derivations of forwarded activation values. Its workflow began
with an error calculation that was a result of the output vs true val-
ue. This error was consecutively distributed backwards through
layers from the output layer into the input layer within the net-
work. In 1979, a general-purpose robot with visual guidance was
introduced.

In the late 1970 s and early 1980 s, ML and AI took separate
paths since AI researchers began focusing on logical knowledge-
based approaches instead of algorithms in their research. Studies
on neural networks were also abandoned. ML research shifted from
AI-based approaches to methods used in probability theory and
statistics.

In 1985, Rumelhart et al. [32] re-discovered the backpropaga-
tion algorithm that revolutionized and revived the neural network
research. In 1990, boosting algorithms were released to improve
ML by reducing bias in supervised learning and transforming weak
algorithm learners to strong ones; weak classifiers can produce a
final strong one. Boosting algorithms employ a training process
of turning weak classifiers into one strong classifier. A weighting
process then takes place to evaluate the accuracy of the weak clas-
sifiers. The weights are re-weighted iteratively throughout the
learning process of boosting. Several boosting algorithms are avail-
able throughout the literature such as AdaBoost, Light Gradient
Boost, Gradient Boost, and Logit Boost. These algorithms differ
from each other simply by how the training dataset is weighed.

In 1997, Schmidhuber and Hochreiter [33] introduced a neural
network model that could handle tasks which required memory
events that may have occurred thousands of times, such as speech.
This type of memory was called ‘Long Short-term Memory’ (LSTM).
It was a remarkable solution for the vanishing gradient problem
which had been an enduring problem for recurrent neural net-
works before the introduction of LSTM. This model consisted of
several gating mechanisms that store relevant information. The
relevant information was conveyed by passing through these gates
in successive layers. These gating mechanisms diminished the ef-
fect of the vanishing gradient during neural network performance.
Although the model was applied in earlier times when it was first
introduced, its widespread application was delayed due to insuffi-
cient amounts of data and powerful hardware requirements for
model training.

In the late 1980 s, convolutional neural network emerged as an-
other neural network type. The filter-type kernels in a model learnt
weights of a neural network, which was contrary to conventional
convolution operations in signal processing. The first Convolution-
al Neural Network (CNN) was designed by LeCun et al. [34] for



_I. Yazici, I. Shayea and J. Din Engineering Science and Technology, an International Journal 44 (2023) 101455
hand-written digit recognition tasks. This type of neural network
suffered from the same problems as LSTM.

Developments in machine learning algorithms continued
throughout the years. Their achievements have grown in line with
new developments. In 1997, Garry Kasparov lost in a game of chess
by IBM’s supercomputer. This illustrated the extent of develop-
ment of the machine learning concept. With time, another IBM su-
percomputer defeated numerous masters of chess in special events
with the help of comprehensive algorithms. These facts proved
that artificial intelligence was comparable with human-level per-
formance. Progress has been steadily increasing in the machine
learning field.

By 2012, machine learning has become widespread and increas-
ing with the application of deep neural networks. Since training
deep networks was computationally expensive and required sig-
nificant amounts of data to achieve better performance, CNN and
LSTM utilizations were extremely limited. It was only after the in-
troduction of AlexNet, which applied deep neural networks with
powerful hardware of its time, that problem of computational bur-
densome was alleviated. AlexNet architecture based on CNNs was
proposed by Alex Krizhevsky et al. in 2011 [35]. It was a contestant
in the ImageNet large scale visual recognition competition, and
ranked first in the challenge with a 25.8% error rate, the lowest er-
ror rate in that time.

A new computational paradigm was later introduced with Alex-
Net for deep neural networks, known as Graphical Processing Units
(GPUs). GPUs can significantly reduce the computation time from
several weeks to a few days. This is a significant breakthrough
for machine learning and artificial intelligence. These deep neural
networks are data hungry, requiring massive amounts of data for
achieving higher performance as compared to other machine
learning algorithms. Powerful hardware solutions are also needed
for computations. The emergence of hardware solutions combined
with the surge in big data and several algorithmic developments in
deep neural networks have all accelerated spread of deep learning
algorithms.

Since 2012, after the success of AlexNet, several architectural
developments of deep neural networks have been introduced
throughout the literature such as VGG, Inception, ResNet, NASNet,
RCNN, Transformers, etc. The use of deep neural networks in rein-
forcement learning has further increased applications of reinforce-
ment learning by transforming them into deep reinforcement
learning. Deep neural networks have become extremely important
Fig. 2. (a) Classification
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for machine learning, recently superseding conventional machine
learning algorithms in numerous applications.

In 2015, Google DeepMind achieved a significant breakthrough
in artificial intelligence by introducing the AlphaGo algorithm. This
algorithm defeated human competitors in the game Go. In recent
years, several novel developments in reinforcement learning have
been accomplished, achieving beyond human-level performance
in some tasks with high success, particularly in games. Fig. 1 pre-
sents a timeline of the milestones in machine learning evolution
throughout the years.

With these rapid developments in artificial intelligence, which
are mostly due to deep neural networks from the algorithmic
aspect, numerous application fields can now reap benefits of ma-
chine learning such as natural language processing [4], au-
tonomous driving [12], speech translation [36], machine
translation [37], computer vision [3], robotics [8], energy predic-
tive analytics [38], etc. These developments have enabled high-
tech companies to thrive such as Google, Facebook, Twitter, Tesla,
etc. For instance, Google uses machine learning algorithms in its
recommender systems to customize ads for relevant users. This
is also the case for Facebook’s Meta and Amazon. Google also uses
machine learning algorithms for its Google Assistant which per-
forms speech recognition. YouTube and Twitter gained several
benefits of machine learning algorithms with highly effective rec-
ommender systems as well. Further developments in machine
learning applications are ongoing with Tesla producing au-
tonomous cars and companies adopting numerous industrial
robots.

Due to deep neural networks’ easy implementation, and their
widespread uses across different application fields, artificial intel-
ligence research have reached to a new stage, thereby transforming
all industries. This transformation combined with additional devel-
opments and the big data concept enabled by IoT in future network
era are expected to exponentially grow in the near future. Hence,
this paper provides an overview of machine learning deployments
across various fields in the future network era.

It needs to introduce main learning categories to provide insight
on the learning types as well as their deployments. The main objec-
tive of machine learning is to enhance the performance of a partic-
ular set of tasks.

This is accomplished by creating a model that helps determine
patterns using learning algorithms under certain conditions, as
mentioned in previous sections. To accomplish this objective, ma-
chine learning enables computers to make decisions without being
and (b) regression.



Fig. 3. (a) Clustering, (b) dimension reduction, and (c) anomaly detection.
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explicitly programmed. This is conducted by analyzing and per-
forming several tasks (such as prediction, classification, grouping,
etc.) for a set of attributes that represent measurable features of
a process or an observed event. A machine learning approach con-
sists of two main stages during the learning process: training stage,
which includes a validation stage, and inference stage. During the
training stage, the machine learning method is applied to train a
model built with its algorithmic setups. A training dataset is used
to feed the model. In the inference stage, estimated output for each
new input is obtained through test data using the trained model.
The following subsections introduce supervised, unsupervised,
and reinforcement learning, which are the three main types of ma-
chine learning.
2.1. Supervised learning

Supervised learning is a task-driven learning technique that re-
quires a supervisor to train a machine learning model to perform
classification and regression tasks. In supervised learning, a labeled
training dataset, which consists of inputs and known outputs, is fed
into the machine learning model. Through a supervisor, parame-
ters of the machine learning model are learned, and the model is
trained to produce a mapping between inputs and outputs.
Throughout iterations in the training stage, the model, that best
represents the mapping, is created. The trained model can then
be used to produce expected output when a new input is fed into
it.

In Fig. 2(a), distinction between different classes is performed
by classification. In Fig. 2(b), a line fitting for input data is achieved
by regression. Both regression and classification tasks attempt to
form a relationship, either linear or non-linear, between input
and output data by extracting meaningful features from the input
dataset to map them to the output dataset. In their mappings, re-
gression models produce real-valued output such as age, price,
salary,

etc., while classification models produce binary or multi-class
label outputs such as male or female, true or false, and spam or
not spam. Hence, supervised learning algorithms can easily be
turned into classification from regression, and vice versa by tuning
their output producing mechanisms. For instance, linear regression
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can be turned into logistic regression, and decision tree regression
can be turned into decision tree classification.
2.2. Unsupervised learning

Unsupervised learning is a task-driven learning type that dis-
covers hidden patterns and structures in unlabeled data. It deter-
mines the similarities between a set of unlabeled input data by
clustering sample data into different groups based on the similar-
ities between them. Contrary to supervised learning, unsupervised
learning has no output associated with its inputs and no supervi-
sors. Therefore, an unsupervised model must accurately learn out-
puts based on the unlabeled input data. It uses previously learned
features to recognize a class of new input data when it is presented
to the model. However, performance is generally subjective and
domain-specific in unsupervised learning when compared to su-
pervised learning. Unsupervised learning problems are of three
types: clustering, dimensionality reduction, and anomaly detec-
tion. Fig. 3 presents an illustration of unsupervised learning algo-
rithms. Clustering is organizing a collection of instances that are
not previously classified in any way. These instances, in turn, do
not have a class attribute associated with them, and grouping is
performed according to some similarity metrics. Thus, the mem-
bership of instances for clusters proposed by a few procedures is
computed by a similarity measure, then instances are assigned to
their associated clusters according to the similarity measure used.
A clustering example is displayed in Fig. 3(a). The concept of sim-
ilarity can be expressed in different ways according to the study
purpose, the assumptions specific to the application field, and
the domain knowledge of the handled problem. One problem of
clustering methods is that the interpretation of obtained clusters
is difficult in some cases, which entails specific domain knowledge
in advance. Detailed information on clustering in unsupervised
learning can be found in [39]. Prominent algorithms for the cluster-
ing method include the k-means clustering, Gaussian mixture
models, and density-based spatial clustering of applications with
noise (DBSCAN).

Dimensionality reduction projects a dataset onto a lower-
dimensional space with a low information loss to reduce data com-
plexity and enhance the interpretability of the data used. It creates



Fig. 4. The reinforcement learning framework.

_I. Yazici, I. Shayea and J. Din Engineering Science and Technology, an International Journal 44 (2023) 101455
a subset from the dataset by selecting the most useful feature to
train, and has a lower prediction error than the full model. The gen-
eral flaw of most existing dimension reduction techniques is that
they do not produce a function that can be applied to new points
whose relationship with the training dataset is unknown, from
multiple inputs to outputs. Hence, several methods used for di-
mension reduction presume existence of a significant distance
measure in the input space [40]. Principal component analysis
(PCA) and principal axis factoring (PAF) algorithms are important
examples of dimensionality reduction methods.

Anomaly detection algorithms try to identify rare events or ob-
servations in a dataset that distinctively differ from most of data in
the dataset. They do not fit to normal patterns in the dataset. Ano-
maly detection algorithms assume that the number of normal in-
stances is substantially greater than the number of anomalies,
and that the anomalies are qualitatively different from normal in-
stances [41]. Hence, their aim is to capture available anomalies in a
dataset by powerful algorithms. Even they are similar to clustering
methods in some respect, they differ in nature. Isolation Forest
model, DBSCAN, local outlier factor (LOF), and neural network au-
toencoders are the frequently used anomaly detection algorithms.

2.3. Reinforcement learning

Reinforcement learning (RL) is a framework in which an agent
or a controller optimizes its behavior by interacting with its envi-
ronment. RL is a learning from the mapping of states to actions in
order to maximize cumulative reward by using a scalar reward or a
reinforcement signal. Contrary to most machine learning algo-
rithms, a learner is not informed of what action to take in advance.
Instead, it is expected to discover which actions will provide the
highest reward in reinforcement learning by experimenting
through trial and error. Actions are RL’s most distinctive features
compared to other algorithms. They include trial and error investi-
gation and delayed reward computations [42]. A typically en-
hanced learning algorithm consists of four integral components:
policy, reward function, value function, and environment. Fig. 4
presents the reinforcement learning system.

Policies are responsible for mapping states to actions taken by
the agent. The reward function evaluates the current states and
gives penalties or rewards according to the result of the action.
Value function, which has two types (state-value and action-value),
evaluates expected reward from the future state of the agent in
the long run. The environment is a task or simulation where the
agent performs maximization of cumulative reward via the trial–
error mechanism.

In an RL algorithm, an agent interacts with its environment,
senses its current state and the state of the environment, and con-
stantly learns and collects information to perform certain actions.
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Thus, it perceives the exact state of the environment at every step
of time, and takes an action that pushes the environment to move
into a new state. A reward-punishment system is present depend-
ing on the agent’s action selection and its result. At this point, if the
action is good, it will get a reward. If the action is bad, it will get a
penalty. While this feedback is less informative than supervised
learning where the right actions are given, it is more informative
with respect to unsupervised learning. This algorithm allows the
agent to discover correct actions merely from the trial and error
of its own actions without any explicit feedback on its
performance.

At each step t, the agent monitors state St and chooses an action
At from action space A. Next, it receives a scalar reward rt that indi-
cates the quality of the action chosen, and moves to the next St + 1,
this is the new state. The RL algorithm takes this combination of
experiences (St, At, Rt+1, St + 1), and learns to map them from states
to a measure of the long-term value of being in this state, known as
the optimum value function. The learning process of an RL agent
has been highlighted in Fig. 4.

In the RL context, there is a long-term problem called trade-off
between exploration and exploitation in the action selection. Ac-
cording to this trade-off, an agent must decide whether it is better
to randomly explore which outcome will result in taking another
action (exploration) in the environment, or preserve the existing
knowledge and maximize the rewards by selecting dictated actions
[43]. Deep Q-learning, deep double Q-learning, trust region policy
optimization (TRPO), and deep deterministic policy gradient
(DDPG) are some of the most popular RL algorithms used in nu-
merous applications.

3. Applications of AI and machine learning in future networks-
enabled systems

Future networks will enable immense simultaneous connec-
tions and widespread network in high mobility situations and ex-
tremely dense areas [44]. Due to the exponential growth of data
acquired from numerous wireless enabled devices (such as smart-
phones, drones, connected vehicles, wearables, and virtual reality
devices that boost IoT technology), communication traffic will
therefore increase. Future networks are expected to bring higher
data rates, lower latency, and massive simultaneous connections
in future communication systems [45,46]. However, these novel
network systems will encounter challenges alongside the advan-
tages they bring to both business and daily life. New technologies
enabled by future network systems will have require machine
learning applications due to the requirements of more intelligent
methods and the enormous amounts of data collected. Recently,
highly efficient and accurate real-time decision-making enabled
by intelligent methods, especially deep learning methods, have
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been increasing throughout various fields along with the IoT con-
cept in the future networks’ era. Hence, an extensive literature re-
view and research categorization are presented in the following
subsections.

3.1. Intelligent transportation systems

It is expected that intelligent transportation systems will be a
hot topic with the introduction of future network communication
systems. Autonomous driving, vehicle detection, intrusion and col-
lision prevention systems, and communication between vehicles
and network infrastructures will require transportation systems
to be more intelligent. This subsection presents the use cases of in-
telligent transportation systems throughout the literature. Fig. 5
presents an illustration of an intelligent transportation system.
Several use cases in relation to intelligent transportation systems
and future mobile communication systems have been introduced
into the literature in recent times.

A case study based on IoT big database for solving transporta-
tion network planning was accomplished in [47]. The problem
was divided into several parts using deep belief networks (DBNs)
model. K-means clustering algorithm was then used for clustering
according to the Geographical Information System data. The DBN
model classified all real time IoT data, and selected the k initial
points for clustering centers. The aim was to determine an optimal
dynamic transportation network with the lowest total cost in the
deployment of these models. Authors tested different cluster num-
bers to analyze their effects in terms of computational efficiency.
They found an optimal solution with the use of their model. Ac-
cording to their results, the study contributes to city traffic plan-
ning and generates economic benefits. The study enables the
rapid construction of a smart city network based on the IoT dataset
[47].

In [48], the problem of detecting parking lot occupancy was
managed using specifically designed CNN in smart cameras. CNNs
was developed for the sole purpose of detecting certain objects.
Smart cameras could process obtained images and convey the re-
sults to a remote server. Smart cameras built using Raspberry Pi
2 model B were used in experiments instead of ground sensors
due to two reasons: low cost per parking space and versatility.
The cameras also had additional capabilities such as tracking, log-
ging, and recognition, making them much more adaptable. The
study employed CNNs to PKLot (an existing dataset in the litera-
ture) and CNRPark-EXT (a newly introduced dataset). The newly
introduced dataset was used for various settings in the experi-
ments, such as obstructed point of views, illumination, and weath-
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er conditions, to contribute to the generalizability of the deep
learning method used [48]. The applied datasets exhibited the effi-
ciency of the proposed CNN architecture in managing the parking
lot occupancy task within the context of intelligent transportation
systems. In the application stage, periodically captured images of
parking lot segments for each parking space were detected by
the smart cameras’ software. The occupancy status was then iden-
tified by the CNN model. The CNN model was deployed to function
on embedded systems such as smart cameras.

In [49], automatic detection of street elements (such as traffic
lights, street crossing, and roundabouts) was examined to create
street maps. Authors of the paper presented a novel algorithm to
obtain road infrastructural elements using GPS traces from drive
conditions. GPS data from mobile devices included speed and ac-
celeration data. An outlier detection algorithmwas initially applied
to spot abnormal driving patterns were automatically analyzed,
and relevant features were extracted. These features were then
classified as different road elements, such as traffic lights, cross-
roads, urban roundabouts, etc. Since these road elements might
vary and generate outliers in the pattern of speed and acceleration
similar to nearby locations for the same drive, the proposed
method would spot and filter outliers in advance for detected driv-
ing points due to random traffic conditions. After the outlier detec-
tion pre-filtered candidate points, a classifier algorithm (deep
belief network) was used to determine the types of road elements.
The authors employed a classifier to distinguish between samples
in a set of classes. An autoencoder-based similarity method was
used to achieve the objective. A final classifier based on k-nearest
neighbor (KNN) and support vector machine (SVM) algorithms
were applied, achieving high performance in terms of precision
and recall. To enhance the performance of the proposed algorithm
in real-time scenarios, a variation of the proposed architecture
with a similarity measure that included null classes for road ele-
ments was also introduced. This variation used auto-encoders with
a similarity measure based on Pearson’s correlation coefficient.
Two datasets, with one from the literature, were used that they
presented real time conditions to validate the performance of the
proposed method. DBN and the final classifier layer evaluated
whether observed differences in the acceleration and speed pat-
terns of the outlier locations were well classified. DBN was first
trained, and class dependent features were then extracted. These
features were used as input for the final classifier. Performance
evaluation of the proposed method, in terms of recall and precision
metrics for the classification task, was successfully accomplished
[49].
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In [50], the traffic flow prediction for planned work zones of sig-
nificant importance was examined for intelligent transportation
systems. Several applications (such as ramp metering and hard
shoulder running) were implemented at work zones. These appli-
cations tremendously benefited from short-term traffic flow fore-
casts. The dynamic variation of demand and capacity due to
work zones affected traffic flow forecasting. Authors of the paper
used data collected from two different types of roadways in St.
Louis. Detectors on road segments provided the data, while the
Missouri Department of Transportation database supplied exten-
sive information on road segments. The acquired data were used
for long and short-term traffic flow prediction tasks. Intervals of
24-hrs, 1, 15, 30, 45, and 60 min were provided since multiple time
period predictions would enable a wider range of applications in
intelligent transportation system management. The authors ap-
plied regression tree, random forest (RF), and neural networks for
long-term predictions. To compare, these algorithms were also em-
ployed for short-term predictions. Performance outcomes were
compared in terms of the root mean square error (RMSE), mean ab-
solute error (MAE), and mean absolute percentage error (MAPE)
metrics. Variable importance for each prediction was also present-
ed in the paper. From the outcomes, the authors discussed the im-
portant features of each type of traffic prediction for effective
transportation management [50].

In [51], predicting the traffic flow was the main goal in this re-
search. Traffic data were acquired from several sources of sensors
such as radars, cameras, and mobile Global Positioning System
(GPS). As traffic steadily increased, predicting the traffic flow
would be crucial and more data driven. Intelligent methods were
needed to manage the problem since previous solutions would
be inadequate. The stacked autoencoder model was trained in a
layer-wise manner to learn features of the data used. In this
method, spatial and temporal correlations were considered, and
traffic flow prediction was accomplished by the Stacked Auto-
encoder (SAE). SAE method was first used for extracting traffic flow
features, and a logistic regression layer at the end of SAE was then
utilized for prediction. The method was deployed using real data
which were collected from the Caltrans Performance Measurement
System (PeMS) database obtained from numerous individual de-
tectors implemented statewide throughout the freeways of Califor-
nia. 15, 30, 45, and 60-minute intervals of traffic flow predictions
were conducted. SAE was compared to neural network, the random
walk method, SVM, and radial basis function NN in terms of MAE,
MRE, and RMSE [51].

In [52], a novel framework named Branch Convolution Neural
Network was proposed to increase the test-time performance of
traffic sign recognition. Germany’s traffic sign recognition dataset
was utilized. The branching method in earlier CNN layers was ex-
amined. This method was similar to deep networks since it gave
solutions to several problems, such as shortcut in ResNet and High-
way Net. The framework speed, which was the main aim of the
model, was accomplished in this manner. The proposed method
nearly produced results similar to existing methods for the same
tasks. The optimum branch strategy doubled traffic sign recogni-
tion, and only decreased accuracy by 1%. When considering real-
time deployment conditions, the framework can provide speed
with a marginal loss in accuracy [52].

With Intelligent Transportation Systems (ITS), the combination
of autonomous and manual vehicles may cause safety risks. These
risks must be efficiently managed to ensure safer systems. In [53],
a solution for traffic safety was proposed using the deep learning-
based method for different vehicle types. The approach performed
well in recognizing the intention for lane changes, with enhanced
real-time intention recognition during various traffic situations. In-
tention recognition was accomplished using deep learning based
on LSTM. Dataset used in the experiments was obtained from a
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driving simulator, a smart eye pro tracker system, and traffic cam-
eras. Design scenario attempted to simulate road situations by in-
cluding highway segments with real conditions. The scheme of the
proposed model was compared with other LSTMs and one machine
learning model in terms of recognition accuracy and RMSE metrics.
According to the results, the proposed method outperformed other
techniques, improving accuracy and efficiency of lane-changing
recognition [53].

In [54], CNN method was employed for traffic sign recognition
and data detection in Germany. Weighted multi-CNN was the pro-
posed approach in this study. Authors of the paper used prepro-
cessing to transform RGB colored dataset into HSV and grayscale-
colored spaces. Data augmentation, which is a significant general-
ization technique, was applied to increase the generalizability of
the deep learning model used. The application was deployed by us-
ing different CNN scenarios. Performance was compared in terms
of F1-score and Matthews Correlation Coefficient (MCC). Combined
model of CNN produced the most promising results based on the
performance metrics. According to the performance results, the
proposed classifier exceeded the frame rate of 10 fps. The classifier
performed well when used for traffic datasets of other countries.
For the scalability of the proposed model, the public traffic datasets
of 3 European countries (Belgium, Sweden, and Croatia) were used
for applications. For the stability of the classifier, the proposed
model was evaluated on the Challenging Unreal and Real Environ-
ments for Traffic Sign Recognition (CURE-TSE) dataset, which con-
sisted of traffic sign images in 12 challenge types and 5 levels. The
method was compared with existing techniques throughout the
literature. According to the classification accuracies obtained, the
proposed method yielded promising results for sign detection
and recognition as well as for several notable CNN architectures:
MobileNet, SqueezeNet, GoogleNet, ResNet50, and VGG-16 [54].

In [55], the aim was to develop automatic vehicle detection and
recognition. The authors employed a dataset of vehicle images col-
lected by traffic surveillance cameras during the day for 1 week
from the local police department. Feature extraction and building
classifiers with Haar-like features and AdaBoost algorithms were
utilized for spotting vehicle location over the input image. The
Gabor wavelet transform and the local binary pattern operator
were used to extract multi-scale and multi-orientation vehicle fea-
tures. Next, PCA was employed to reduce the dimension of images.
Nearest neighbor algorithm was then implemented for the final
classification [55].

In [56], fine-grained recognition of vehicles was examined for
intelligent transportation systems. Applied approach was based
on 3D bounding boxes built around vehicles. CNN was used for
the fine-grained recognition of vehicles in traffic surveillance ap-
plications. The paper employed 116 k images of vehicles from dif-
ferent viewpoints which were collected from various surveillance
cameras. Data was obtained from surveillance cameras mounted
on nearby streets for tracking passing vehicles in Brno, Czech
Republic. The data were further enhanced with additional process-
es. Authors conducted several experiments, confirming that the re-
sults did improve with the use of CNN. The applied method
outperformed the state-of-the-art methods in the task of fine-
grained recognition of vehicles. The architecture yielded promising
results compared to other CNN methods [56].

In [57], CNN method was used for detecting vehicles and classi-
fication. The method was deployed using the multi-task cascade
model. Vehicles were first detected in the image, followed by im-
age classification. Two different CNNs were used for these tasks.
Apart from the detection task, vehicle type classification for ITS
management was also accomplished. The employed methods out-
performed in their tasks due to data enhancement operations,
which might be included in future ITS management applications.
The modified CNN and data enhancement techniques boosted its
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performance in classification and detection. Real-world data was
also used to verify the practicality of the cascade model in the
study [57].

In [58], real-time vehicle classification was accomplished by
CNN and AdaBoost. High prediction accuracy of the utilized model
along with low storage cost have enabled its utilization for vehicle
classification in real-time. In the utilized methodology, CNN was
used as a feature extractor, exhibiting high accuracy and low stor-
age cost. SVM was combined with AdaBoost, serving as the weak
classifier of AdaBoost. The assembly process was designed by
SVM and AdaBoost hybridization. Two datasets were integrated
and used for method deployment, one regarding cars which exists
in the database and one that includes images taken in real-time.
According to the obtained results, the novel methodology outper-
formed several state-of-the-art CNNs during its tasks [58].

In [59], a multitask deep convolutional neural network was
used for detecting structural cues in visual signals. CNN performed
two types of tasks: classification and regression. Lane marks were
first detected by a classifier. If the detection was positive, the ori-
entation and location of the lane mark with the region of interest
(ROI) would be estimated by the regressor part, which was efficient
in managing large ROIs since it presented sophisticated target pre-
diction results. The detection accuracy increased due to the large
regions captured, which contained richer contextual information
for the given input. The RNN layers applied with CNN enabled
the memory for data structures. This feature was used for identify-
ing global targets from local cues without the need for structural
knowledge. To summarize, multi-task CNN detected the target
and its geometric attributes with respect to the ROI. RNN used
the extracted memory for determining whether a lane was present
over a sequence of images. The proposed method as well as other
deep learning-based methods were applied to a real-world traffic
data. The methods were tested using an existing dataset known
as the Caltech dataset. In the experiments, CNN, RNN-based pro-
posed model, and SVM were compared for lane detection perfor-
mance. The RNN-based lane detection model surpassed the other
methods in terms of the Received Operating Curve (ROC) perfor-
mance [59].

In [60], large-scale speed predictions of transportation net-
works were accomplished. CNN was applied for traffic feature ex-
traction and network-wide traffic speed prediction. Data collected
by GPS location sensors was used in the application of two real-
world transportation networks: the second ring road and north-
east transportation network in Beijing. Different horizons and
look-back strategies were applied for the speed prediction task,
and the proposed method was compared to several machine learn-
ing algorithms such as ordinary least squares, KNN, ANN, RF, SAE,
RNN, and LSTM. As per results obtained in the paper, CNN method
outperformed the other methods. However, due to its model ca-
pacity, training time of the proposed method was a computational
burden with respect to the machine learning methods used. This
problem may be solved with the use of highly efficient hardware
[60].

In [61], traffic light recognition using deep learning was con-
ducted since it is crucial in autonomous driving and intelligent
transportation systems. A novel real-time method was recom-
mended for this task. In the experiments, previously proposed orig-
inal CaffeNet model was modified to perform in real-time
conditions. To achieve robust experiment results, different scenar-
ios for used dataset were considered to compare various algo-
rithms. Performance evaluation of the methods was
accomplished using precision and recall metrics with and without
ROI. According to the obtained results, inclusion of ROI in the mod-
el proved its efficiency. With the ultimate goal of deploying the
model for real-time application and achieving high accuracy, the
proposed approach was compared with the YOLO algorithm. It out-
11
performed YOLO, efficiently detecting traffic lights under the con-
ditions of low exposure and dark frames. The performance of the
proposed method in terms of accuracy and robustness was en-
hanced by incorporating temporal trajectory tracking. Speed of
the algorithm increased using a prior detection mask which per-
formed with high efficiency in real-time tasks. Integration of the
algorithm in autonomous vehicles and its robust performance
were proven in real-time conditions [61].

In [62], a novel method was used for a pedestrian detection sys-
tem based on deep learning and the adaptation of a CNN to tasks
at-hand. For real-time application, a lightweight version of the pro-
posed algorithm was set on modern hardware to prove efficiency
of the method used. This hardware can be adopted for car proto-
types since it functions as a computational brain in the intelligent
transportation system. Intelligent transportation systems enabled
by 5G communication systems will demand similar hardware.
The experiments were conducted using the Caltech Pedestrian
Dataset which is challenging yet the most used dataset in the liter-
ature for pedestrian detection algorithms. The AlexNet and
GoogleNet algorithms with region proposals were deployed, and
comparisons of the algorithms were made in terms of the miss rate
and false positives per image metric. As per results obtained in the
paper, AlexNet LDCF yielded the best results with nearly the same
ratio as GoogleNet in terms of the miss rate with 0.1 false positives
per image. One of the main contributions of the paper is the light-
weight version of the proposed algorithm’s deployment to a real-
time modern hardware which will be embedded in future smart
cars of intelligent transportation systems. The proposed algorithm
has achieved promising results for the future deployment of AI in
intelligent transportation systems [62].

In [63], the authors recommended a novel model called Scale-
Aware Fast R-CNN. The model was based on VGG-19 and possessed
a unified architecture that incorporated both large-size and small-
size sub-networks. The combination of extracted features enabled
the model to detect large and small-sized pedestrian instances.
After conducting extensive experiments, the SAF R-CNN surpassed
several challenging benchmarks for detecting small-sized pedestri-
an instances. The model appears to be promising for future real-
time deployments [63].

A decentralized framework for collision avoidance in au-
tonomous driving was proposed in [64]. A modified version of deep
deterministic policy gradients Co-DDPG was used to train au-
tonomous vehicles. The authors designed a robust and efficient
framework to provide optimal autonomous driving solutions for
driving condition requirements in several 5G enabled systems. A
dynamic mobile network, vehicular ad-hoc network, and the algo-
rithm for establishing vehicular network during autonomous driv-
ing were created and used for communication between
participating agents within the vehicular ad-hoc network. Exten-
sive experiments using TORCS showed that the created framework
was highly efficient for autonomous driving. The authors compared
the algorithm with the Partially Observable Markov Decision Pro-
cess (POMDP) and evaluated the performance of the algorithms
in terms of three prominent metrics in autonomous driving: colli-
sions, reward, and system latency. According to results obtained in
the paper, the proposed algorithm outperformed the other frame-
works. The result is promising for 5G mobile communication sys-
tems that it may enable further enhancements of intelligent
transportation systems [64].

Internet of vehicles (IoV) is an emerging subset of IoT. In the ac-
tive safety system for ITSs, wireless communication, vehicular
sensing, and GPS localization are driving forces of the IoV concept.
With IoVs, intelligent transportation management, intelligent ve-
hicular control, and dynamic delivery of intelligent information
are merged into a single network. In [65], a decision-making sys-
tem that avoided rear-end collisions was proposed for IoVs. It



Table 2
Research on intelligent transportation systems.

Application Field Paper Year Problem Learning
Type

Task in ML Used Method(s)

[47] 2020 Transportation network
planning

UL Classification and clustering DBN + k-means

[48] 2017 Parking lot occupancy detection SL Classification CNN
[49] 2018 Traffic element detection UL&SL Classification and clustering A novel outlier algorithm + DBN
[50] 2015 Traffic flow prediction SL Regression Regression Tree, DNN, RF, Non-

parametric regression
[51] 2015 Traffic flow prediction UL&SL Dimension reduction and

regression
Stacked AE

[52] 2017 Traffic sign recognition SL Classification CNN
[53] 2021 Intention recognition in traffic SL Regression LSTM
[54] 2018 Traffic sign recognition SL Classification CNN
[55] 2017 Vehicle detection and

recognition
UL&SL Dimension reduction and

classification
AdaBoost + CNN + PCA

Intelligent Transportation
Systems

[56] 2019 Vehicle detection SL Classification CNN

[57] 2017 Vehicle detection and
classification

SL Classification CNN

[56] 2018 Vehicle classification SL Classification CNN + AdaBoost
[59] 2017 Structural prediction and lane

detection
SL Classification and regression CNN + LSTM

[60] 2017 Traffic network prediction SL Regression CNN
[61] 2019 Traffic light recognition SL Classification CNN
[62] 2016 Pedestrian detection SL Classification CNN
[63] 2018 Pedestrian detection SL Classification CNN
[64] 2020 Autonomous vehicle collision

avoidance
RL RL DDPG

[65] 2018 Rear-end collision prediction SL Regression CNN
[66] 2018 Obstacle detection SL Classification DSA + KNN
[67] 2019 V2V communication RL RL DQN
[68] 2019 Intrusion detection for

connected vehicles
UL&SL Dimension reduction and

classification
DT + DBN

Fig. 6. A smart grid system.
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was based on genetic algorithm, and optimized using deep neural
networks. Decision-making system modeled the impact factors of
collisions in IoVs. It predicted probability of rear-end collisions
by regarding several influential factors. The proposed algorithm
was compared with traditional backpropagation neural networks
during simulation experiments. It achieved more accurate results
with respect to conventional kinematic equation-based collision
probability calculations. The study may provide information on
benefits of autonomous driving in a distributed environment using
intelligent transportation systems enabled with 5G mobile com-
munication systems [65].

In [66], a stereovision-based method to detect obstacles in in-
telligent transportation systems was proposed by combining deep
stacked auto-encoder (DSAE) and KNN algorithms. The proposed
approach consisted of two stages. In the first stage, DSAE per-
formed feature extraction and dimensionality reduction. In the sec-
ond stage, the study’s obstacle detection problemwas treated as an
anomaly detection, and KNN was used as a binary classifier. The
authors employed three publicly available datasets taken from
cameras, road sensors, lidars, and radars to their proposed method:
the Malaga stereovision urban dataset, the Daimler urban segmen-
tation dataset, and the Bahnof dataset. The proposed method was
also compared with deep belief network-based clustering schemes.
The results of the three deployments were compared in terms of
recall, sensitivity, and area under curve (AUC). The applications
of the proposed method integrated with real-time conditions will
enhance intelligent transportation system management by provid-
ing efficient obstacle detection in urban areas [66].

Vehicle to vehicle (V2V) communications with ultra-low laten-
cy and high reliability are significant for safety requirements. In
[67], a novel decentralized resource allocation model for V2V com-
munications was proposed. The model was based on deep rein-
forcement learning and could be deployed for both unicast and
broadcast scenarios. It provided an autonomous decision-making
agent that determined the optimal sub-band and transmission
power level without the need for global information. In experi-
ments conducted, simulation setup for the Manhattan case de-
tailed in 3GPP TR 36.885 was used, containing a total of 9 blocks
with both line-of-sight (LOS) and non-line-of-sight (NLOS) chan-
nels. The proposed model jointly optimized scheduling and chan-
nel selection unlike previous works which separately managed
these tasks. The two tasks were compared to assess performance
of the methods, yielding different results. The model performed
better than the compared methods in terms of V2I capacity and
V2V latency. The model significantly increased V2V success rate
and V2I capacity [67].

In [68], an automated and secure continuous cloud framework
for smart connected vehicles was proposed. This approach detect-
ed intrusions from security attacks. DBN was used for data dimen-
sion reduction, while DT was applied for classifying attacks. The
proposed approach exhibited high performance in the overall accu-
racy, detection rate, false positive, and false negative rates during
deployment [68].

Table 2 summarizes available research studies on intelligent
transportation systems.

3.2. Smart energy

One field that benefits from smart systems and IoT is likely to be
smart energy field. With the introduction of next generation net-
works and extensive data from IoT systems, this field will further
mature through intelligent applications. Specifically, assistance
from artificial intelligence in next generation networks is expected
to provide more secure, stable, real-time or near real-time effective
management, control, and operation for smart energy systems. Ar-
tificial intelligence may also support smart grids and micro grids.
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Home energy management systems have grown in recent times,
as seen throughout the literature. This subsection discusses smart
energy use cases. Fig. 6 presents an example of the smart energy
system.

Smart grid utilization facilitates digital and intelligent technol-
ogy enabled by IoT systems. It provides more reliable power distri-
bution systems as well as economic benefits. Therefore, smart
energy community management was examined in [69]. Energy
system management in a local energy pool based on real-time de-
mand/supply ratio was accomplished by introducing a reinforce-
ment approach combined with fuzzy logic. The energy trading
process was modeled using fuzzy reinforcement learning (Q-
learning) to enable stakeholders in the P2P trading system and
the management of household energy storage systems. Real data
collected by smart meters, British electricity retail price, and solar
data (for a solar photovoltaic system) were applied for various sce-
narios. As per results of the paper, the proposed approach con-
tributed to energy system management and reduced the
decision-making period in used scenarios [69].

In [70], several deep RL methods were deployed to provide bet-
ter energy management for a microgrid system consisting of a
wind turbine generator, a set of thermostatically controlled loads,
price-responsive loads, an energy storage system, and a connection
to the main grid. The proposed approach coordinated between dif-
ferent flexible sources. Two enhancements for the A3C and PPO
methods were applied, and they outperformed the other algo-
rithms used in the paper. The algorithms were compared using a
realistic microgrid simulation for various scenarios. In the paper,
data consisting accurate electricity price and renewable energy
production in Finland were used [70].

Since smart grids require advanced communication technology,
management and scheduling problems do emerge. The real-time
scheduling of operational household appliances was accomplished
by applying reinforcement learning in [71]. Q-learning learnt re-
ward that scheduled the operational time of household appliances
in the next state and simultaneously ensured minimum energy
consumption. RL agents attached to each appliance of a smart
home shared memory synchronization and coordination. The ac-
tions of an agent are shared by other agents, establishing commu-
nication and coordination between all agents. Obtained results
were compared with other scheduling algorithms. The utilized ap-
proach efficiently reduced energy consumption and effectively
lowered the dissatisfaction level of home users [71].

In [72] a reinforcement learning approach was applied to con-
trol cooling setpoint and loads of smart buildings to provide energy
flexibility. Automated and intelligent control of smart energy sys-
tems can be accomplished in future smart and sustainable electri-
cal grids. The data used were a commercial building model from
the United States Department of Energy, and it mostly consisted
of commercial building stock in the USA. The robustness and scal-
ability of soft actor-critic-based controller over heterogeneous
building stock was investigated by running the model under differ-
ent climatic conditions. According to obtained results in the paper,
the deployed model was promising one for EnergyPlus-based high-
fidelity environments for establishing building energy flexibility in
the control policy [72].

Deploying agent(s) to different environments is useful for large
scale applications in future smart grids. In [73], a deep reinforce-
ment learning approach based on deep Q-learning was proposed
for home energy management and system control. The proposed
approach was deployed for a real-case study in Ireland. According
to results of the paper, the approach contributed in saving energy,
optimizing PV self-consumption of load shifting, and providing sig-
nificant ease for user preferences. In terms of energy efficiency, the
approach performed better than compared algorithm for the same
task. It also significantly reduced renewable energy consumption
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as compared to the other algorithm. The proposed approach helped
in load shifting and energy grid balance in smart systems [73].

In [74], a deep learning approach based on iterative residual
blocks of deep neural networks for a short-term residential load
forecasting was deployed using spatio-temporal correlation pat-
terns in the load data of appliances. Dataset used in the experi-
ments consisted of recorded consumption data of appliances for
residential users. Experiments with real world measurements were
conducted to evaluate the performance of the proposed approach.
It was then compared with several machine learning algorithms in
terms of RMSE, MAE, and MAPE. As per obtained results in the pa-
per, the proposed approach surpassed the other algorithms [74].

In [75], a deep learning-based energy management system was
examined for the microgrid system. The system had three compo-
nents: a forecasting system, an optimizer, and an optimized EV
charging station. Deep learning was used for the forecasting sys-
tem. The aim was to minimize import of power from the main grid,
thereby sustaining and increasing self-sufficiency. A real-case
dataset from PV panels installed in Wroclaw University of Science
and Technology was used for applying the methods in the paper.
The study is the starting point for addressing the proposal to con-
struct electric vehicle charge stations with modern energy man-
agement systems in the smart grid concept [75].

In [76], a scheduling framework for energy management in
buildings was proposed using a deep learning method combined
with discrete wavelet transformation. With the application of the
proposed framework, monitoring and controlling different aspects
of energy systems could be possible in smart grids. The combina-
tion of forecasting based on deep learning, energy storage, and
scheduling significantly contributed in curbing energy import from
the grid, further saving electricity cost as well. The proposed ap-
proach was deployed in a real-case problem using a dataset be-
longing to several residential buildings in the province of British
Columbia, Canada. LSTM-DWT was used to conduct forecasting
task. A scheduling algorithm was employed to schedule energy de-
mands with the aim of minimizing electricity imports from the
grid, thereby reducing energy costs. The LSTM-DWT method was
compared with the LSTM method in terms of RMSE, MSE, MAPE,
and R-squared metrics under different forecasting tasks including
wind speed, solar supply, and energy demands. According to re-
sults presented in the paper, the implemented forecasting and
scheduling framework managed to significantly achieved sustain-
able energy supply, renewable energy reliance, and cost-saving en-
ergy efficiency based on evaluations and financial analysis [76].

A multi-agent reinforcement learning approach was employed
for managing the energy of residential buildings in [77]. Q-
learning was also applied for this issue, and scheduling the opera-
tion of various components and demands in a multicarrier residen-
tial energy system was accomplished using the proposed MARL.
Two experiments were conducted using energy management sys-
tems. One was the deterministic scenario, while the other one
was the stochastic. According to results, the MARL approach
achieved low consumer cost with respect to conventional
optimization-based energy management programs [77].

Attaining optimal adaptive real-time decisions is of extreme im-
portance in energy management systems [78]. In [78], ANN and
MARL-based approaches were deployed using Q-learning for home
energy management. The deployed ANN conducted a steady price
prediction. After predicting future prices, MARL then ensured the
optimum and decentralized decision-making mechanism for vari-
ous home appliances in the energy management system. Data for
price and energy were obtained from the Pennsylvania-Jersey-
Maryland (PJM) electricity market data. Different scenarios were
considered for the performance evaluations of the proposed ap-
proach in the energy management scheme. It was discovered that
the proposed approach helped reduce cost for users in the system
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when compared to the benchmark method with no demand re-
sponse [78].

Energy cost minimization for smart homes was examined in
[79]. The aim was to design an optimal energy management
scheme that scheduled different energy systems within a smart
home using the DDPG algorithm. Real-world traces consisting of
different values were obtained from the Pecan Street database,
which is one of the largest real-world open databases for home en-
ergy consumption. Extensive experiments demonstrated the supe-
riority of the applied algorithm [79].

The energy supply chain is a crucial issue in the development of
smart grids since it maintains stability in energy distribution sys-
tems. Behavior and energy predictions at the customer level are
crucial since they will affect the entire system. In [80], with the
aim of increasing the prediction accuracy of energy consumption,
two stochastic models for time series prediction were deployed:
the Factored Restricted Conditional Boltzman Machine (FCRBM)
and the Restricted Conditional Boltzman Machine (RCBM). Dataset
consisted of electric power consumption obtained from an individ-
ual residential customer, and performance of the two models was
compared with several machine learning methods such as ANN,
SVM, RNN, and RCBM (in terms of RMSE and R-squared). According
to obtained results in the paper, FCRBM outperformed all other
methods [80].

In [81], an ANN-based method for demand side management
was deployed with real-time optimization of power system man-
agement. The paper proposed a data classifier generated by digital
meters through the deployment of ANN to classify the load curve
patterns. This classification achieved the most suitable demand
side management policy for each type of consumer ranked
throughout the network. The dataset used in the experiments con-
sisted of 2000 random consumers using low voltage from residen-
tial, commercial, and industrial areas. This dataset was obtained
from a local energy distribution company. The proposed approach
produced satisfactory results in the classification of load curve pat-
terns for efficient demand side management in intelligent network
environments [81].

In [82], smart appliance scheduling for optimizing an energy
management system was examined using the hybrid ANN-GA.
The deployed hybrid method successfully reduced energy demands
during peak periods, maximized renewable source usage, and si-
multaneously minimized reliance on energy grids. The hybrid
ANN method was utilized as a forecasting engine to capture oper-
ating patterns of appliances, and also to predict energy consump-
tion and generation of renewable energy. The ANN-based
prediction engine was combined with a GA-based optimization
method to determine the level of energy grid usage, and one gen-
erated dataset and one real-case dataset were used for the imple-
mentations. The real-case dataset was collected from eco-friendly
houses at the Little White Alice holiday resort in Cornwall (UK),
further demonstrating the approach’s reduction in energy grid
usage [82]. The approach is promising for smart buildings since
the authors are in the process of delivering commercial implemen-
tation of the proposed system, which will be applied through
smartphones.

In [83], a real-time dynamic energy management system was
proposed using deep reinforcement learning to enable the achieve-
ment of optimal scheduling decisions. PPO used long-term histor-
ical energy consumption data and renewable energy generation. It
incorporated learned features from the data by updating neural
network to learn optimal policies. Energy management systems
provided stable operations by scheduling devices used, which
helped consumers within distributed networks. Predicted wind
turbine, photovoltaic output, load consumption, and reduced price
were the foundations of decision-making in scheduling. Data were
acquired from several sources (NERL measurement, Instrumenta-
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tion Data Center, and California ISO) to conduct the experiments.
The method was also deployed in real-time to demonstrate its ef-
ficiency in online decision-making. It was then compared to deep
deterministic policy gradient (DDPG), DDN, and conventional
stochastic programming. The results revealed that the proposed
approach outperformed the compared methods [83]. Its efficiency
in online decision-making and applicability in real-time problems
make it a potential solution for smart energy systems in the future
network era.

Lifelong control issues of an isolated grid were examined in
[84]. Modeling of progressive and abrupt changes over the life span
of microgrids was proposed in this paper. The modeling approach
was implemented to model an off-grid microgrid for rural areas.
The changes in the grid throughout its lifetime was incorporated
in the modelling process, and the proposed approach applied an in-
stance of Dyna, and used PPO for policy optimization. Training of
the model was performed with distributional loss, the model was
compared with a rule-based policy and a model predictive con-
troller, which served as benchmarks. Performance evaluations
were conducted using a real-case off-grid microgrid. The real-
case data contained data from a micro-grid system of a village in
Bolivia which has photovoltaic panels, battery storage, and a diesel
generator. According to results obtained in the paper, the proposed
model efficiently performed in the lifelong control of the off-grid
microgrid for rural electricity management [84]. Hence, its poten-
tial deployment in large microgrids is promising.

In [85], an approach was developed to conduct demand-side
management for households by producing a decision-making sys-
tem that enabled an efficient battery management scheme. It suc-
cessfully reduced the electricity cost of consumers, and further
postponed investments for grid expansion when the electricity tar-
iff of the day was very high due to higher loading period. The ap-
proach was based on an efficient recurrent neural network type,
NARXNET. Validation was performed by configuring MDMS with
different consumption and solar power scenarios for a set of house-
holds located at Sao Paulo city. Results proved efficiency of the
decision-making system in managing battery usage, thus providing
lower electricity bills [85].

Energy management system of multiple smart homes using a
novel federated reinforcement learning approach was proposed
in [86]. In this approach, a hierarchically distributed model with
different agents was used for the energy system. The agents inter-
acted with each other to optimally schedule the energy systems of
several smart homes. A2C was implemented as reinforcement
learning method in the paper. A private dataset was applied for
the implementation of the proposed approach. Obtained results
were promising since efficient management of scheduling energy
systems for multiple smart homes was accomplished within con-
siderable time [86]. The proposed approach can be beneficial for
smart homes.

In [87], a noncooperative stochastic game perspective was used
to model interactions between households and power grid. With
the aim of searching for Nash equilibrium in game theory, a dis-
tributed deep reinforcement learning method was proposed in
the paper. A real-case dataset from Pecan Street Inc. was used for
implementing the proposed approach. A deterministic policy
gradient-based method, known as the distributed power consump-
tion schedule, was used to solve the problem. Performance com-
parisons between the proposed method and both centralized
DDPG and distributed DDPG were accomplished for various house-
hold scenarios [87]. As per results obtained in the paper, faster
real-time control with respect to model-based method enabled
the approach to become a promising alternative for intelligent al-
gorithm deployment in smart grids.

A deep RL approach based on DQN for demand-side manage-
ment was proposed in [88]. The approach was compared with
15
mixed integer linear programming for load peak reduction, and
two case studies for residential demand response in smart grids
were used for implementing the proposed approach. The first case
minimized energy utility bill, while the second further reduced the
energy utility bill by simultaneously lowering peak and cost. DQN
was used as the reinforcement learning method. The proposed ap-
proach using DQN outperformed previously applied mixed integer
linear programing (MILP) methods in the two experiments [88].
Obtained results in the paper demonstrate the potential of the pro-
posed approach for smart grid deployment.

In [89], a task scheduling-based demand-side management was
examined for integrated home energy management system. A deep
reinforcement learning was utilized for the task scheduling-based
demand-side management. DDPG model was compared with A3C
(asynchronous advantage actor-critic), DQN, full local execution,
and full SHOP methods. For real-case deployment, a dataset con-
sisting of load, day-ahead, and real-time prices for ISO New Eng-
land Control Area was employed. The task scheduling problem
was formulated as an MDP to maximize reward of residential user-
s, incorporating energy cost, execution time, shop server fee, and
penalty of demand side management. Extensive comparisons re-
vealed that the utilized method outperformed all other methods
in the task scheduling problem for smart grids [89].

In [90], virtual power plants were deployed to efficiently man-
age and improve the stability of power systems using several dis-
tributed generation units since such work usually required
elaborate planning. Due to several characteristics in distributed
generation systems, timeliness and reliable communication be-
tween generations and load sides will need reliable economic dis-
patch from virtual power plants. In this paper, DRL algorithm was
proposed to achieve optional online economic dispatch using virtu-
al power plants. Offloading computation and communication loads
to network edge was considered for satisfying near-real time com-
munication and computation, successfully achieving economic dis-
patch in VPPs. A3C was used as reinforcement learning algorithm,
and it was later compared with DPG method in terms of average
cumulative cost. The proposed approach was also compared to
DPG and DDPG regarding computational time requirement. The
proposed approach outperformed all other methods as per results
presented [90].

In [91], reinforcement learning was applied with edge-cloud in-
tegrated solutions for demand response management of smart
grids, and RL agent of the proposed approach learned optimal con-
trol policy on the cloud infrastructure. The learnt policy was then
distributed to edge devices for policy execution in the demand re-
sponse management. A3C and Ape-X methods were used in the
proposed approach. Utilized dataset consisted of data collected
from a smart device in a real building. A utility company, building,
and cloud service provider were synergistically connected. Accord-
ing to the implementation results, the proposed approach could be
streamlined for real-time RL control execution and controller train-
ing in an end-to-end manner with minimal human intervention.
Results of the proposed approach further highlighted the financial
feasibility of the RL controller for smart building types [91]. This
method is promising for cost-efficient, large-scale deployments in
smart buildings.

In [92], a new approach was implemented based on reinforce-
ment learning and blockchain to create a secure demand-
response management scheme with the aim of reducing energy
consumption and cost. Q-learning was used to determine optimal
price decisions for reducing energy consumption. Q-secure
demand-response management approach was then applied to han-
dle data security, incorporating off-chain storage. U.S. dataset ob-
tained from the Pecan Street database was utilized since it
contained multivariate data from New York where day-ahead en-
ergy prices were obtained from PJM’s Data Miner. According to re-



Table 3
Research on smart energy.

Application
Field

Paper Year Problem Learning
Type

Task in ML Used Method(s)

Smart Energy

[69] 2019 Smart energy grid management RL RL Q-learning
[70] 2021 Micro energy grid management RL RL A3C, PPO
[71] 2020 Smart home energy scheduling RL RL Q-learning
[72] 2021 Smart building energy management RL RL SAC
[73] 2021 Smart home energy management RL RL DQN
[74] 2020 Short-term residential load forecasting SL Regression DNN
[75] 2020 Microgrid energy management SL Regression LSTM-AE
[76] 2021 Smart building energy scheduling SL Regression LSTM
[77] 2021 Residential buildings energy management RL RL Q-learning
[78] 2019 Demand response for home energy management SL & RL Regression & RL Q-learning
[79] 2020 Smart home energy scheduling RL RL DDPG
[80] 2016 Energy consumption prediction SL Regression FCRBM
[81] 2015 Demand side management SL Classification ANN
[82] 2016 Smart home appliance scheduling SL Regression ANN
[83] 2022 Microgrid energy scheduling RL RL PPO
[84] 2021 Off-grid microgrid control RL RL Dyna-PPO
[85] 2018 Demand side management SL Regression NARXNET
[86] 2022 Multiple smart homes energy scheduling RL RL A2C
[87] 2021 Load scheduling in residential smart grids RL RL DPG-based algorithm
[88] 2020 Residential demand side energy management RL RL DQN
[89] 2021 Demand side energy management in smart homes RL RL DDPG
[90] 2020 Dispatching of virtual power plant RL RL A3C
[91] 2021 Demand response management based on an edge-cloud RL RL A3C, Ape-X
[92] 2022 Demand response management in smart grid system RL RL Q-learning
[93] 2021 Control in smart home energy management RL RL AC-based method
[94] 2021 Electric vehicle smart charging strategy scheduling RL RL DQN
[95] 2019 Prediction in microgrid management SL Regression LSTM
[96] 2019 Secure computation offloading in Fog-Cloud-IoT RL RL Q-learning
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sults of the paper, the approach remarkably reduced both energy
consumption and cost as well as data storage [92]. This success
is promising since it may address large network bandwidth and la-
tency issues in terms of energy data security during real-time ac-
cess in the future network era.

In [93], optimal energy control and management approach to
reduce energy consumption cost for smart home systems was pro-
posed using actor-critic learning. An existing dataset in the litera-
ture was utilized in the study. The proposed approach was
compared with two Q-learning variants and the baseline. The re-
sults revealed the superiority of the proposed approach in the op-
timal energy control for smart home systems [93].

In [94], reinforcement learning approach was used to coordi-
nate charging in smart charging systems by considering baseload
present in power grids. The approach could coordinate charging
schedules of any sized fleet of electric vehicles, and it was flexible
and fully scalable to an arbitrary number of participating electric
vehicles. The approach managed to reduce the grid impact of elec-
tric vehicle charging from a charging provider. The proposed ap-
proach provided a centralized smart charging coordination
system for a scalable EV fleet with a single agent. DQN was also
used in this study. The proposed approach was applied in 250
households and 50 commuter electric vehicles, with each possess-
ing a 30 kWh battery [94]. Obtained results proved that the pro-
posed approach could be applied in real-time applications and
uncertain environments for optimizing charging systems in a rea-
sonable and efficient manner.

Virtual Power Plants (VPPs) provide a cloud-based distributed
power plant environment by incorporating different distributed
energy resources that enhance power generation management.
VPPs are important for maintaining system stability in smart grids,
providing flexibility in an energy network and enhancing trading
and forecasting in the system. Thus, they will be vital in smart grid
management.

In [95], LSTM method was used as the machine learning algo-
rithm. The proposed approach conducted cooperative learning of
16
LSTMs in a distributed environment, which is a significant develop-
ment in the context of smart grids. LSTMwas applied for predicting
each plant. To enhance accuracy of predictions, information was
shared between the agents in the environment, which established
cooperation between agents. The proposed approach was known
as the distributed average consensus LSTM model since it created
distributed cooperative learning without using a coordinator be-
tween agents. It was deployed in a photovoltaic plant located near
Denver, Colorado in the US. Relevant data was acquired from the
Measurement and Instrumentation Data Center database for de-
ployment of the proposed approach. Three different LSTM models
were applied and compared in terms of RMSE metric. According
obtained results in the paper, the proposed LSTM variant, the dis-
tributed average consensus LSTM, performed well as compared to
L-LSTM. Its performance was similar to C-LSTM but with an im-
provement in long-term forecasts [95].

In [96], a hybrid method consisting of particle swarm optimiza-
tion (PSO), neuro-fuzzy system, and reinforcement learning was
deployed for a secure computation offloading scheme in the Fog-
Cloud-IoT environment by using synergistical effect of the used
methods. The proposed method made contributions to offloading
latency, and minimized energy consumption simultaneously. PSO
method conducted optimal node selection for offloading IoT work-
load while Q-learning achieved suitable cloud selection at the fog
level. The neuro-fuzzy model was used to isolate IoT nodes that
could congest the network by sending invalid data. The proposed
method was implemented in a Fog-Cloud-IoT network, including
one smart gateway, 5–10 IoT mobile devices, one hybrid cloud ser-
ver, and five fog nodes. The proposed method was compared again-
st other methods, and the comparisons were made in terms of
throughput, delay, energy consumption, utilization rate, and re-
sponse time. According to results obtained in the paper, the pro-
posed method securely and effectively balanced trade-off
between latency and energy consumption [96].

Table 3 presents summarized papers regarding smart energy.
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3.3. Cyber security

Cyber security issues are significant problems in recent
intelligence-assisted systems. With the advancement of IoT and
blockchain technologies enabled by future mobile communication
systems, managing cyber-physical systems will have landmark im-
portance since they can move between physical and cyber systems
with intensive intelligence assistance. However, security issues in
these cyber-physical systems are growing. It is crucial to maintain
system stability and secure operations. Numerous problems have
currently emerged in cyber-physical systems, such as data integri-
ty attacks, anomaly detection, system authentication, and intru-
sion detection, and etc. Studies are still ongoing to address these
problems, and this subsection briefly discusses relevant research
papers on cyber security. Fig. 7 presents an illustrative example
of a cyber security system.

Smart grid systems provide reliable and robust operations for
power grids as well as remote control with advanced information
and communication control. However, the real-time monitoring
of such systems is extremely important for secure management.
False data injection attacks may harm cyber-security in control
and operation of power grids since smarter grids are more vulner-
able to cyber-attacks.

In [97], an AI-based method was proposed to spot false data in-
jection (FDI) attacks, eradicating them by singling out malicious
meters in a power grid system. A previously proposed approach
for attack detection was used in combination with ANN and ELM.
In this mechanism, after successful detection of an attack by
Kullback-Leibler (KL) divergence-based method, AI-based load es-
timator detected the attacked meters using ANN and ELM. Preven-
tive measures were then taken to maintain system stability. A real
case NY ISO data were used to simulate the capability of attack and
meter detections in real time. According to results obtained in the
paper, ANN exhibited superior performance, however, ELM’s com-
putational time was shorter. For large-scale smart grid deploy-
17
ments, applied methods may require some trade-off between
accuracy and computation time complexity [97].

The crucial role of state estimation in monitoring and managing
smart grids is obvious to maintain grid system stability. Data in-
tegrity attacks may pose risks to power grids. In [98], deep Q-
network detection-based approach was proposed to defend against
data integrity attacks in alternating current power systems. The
proposed approach was compared with other reinforcement algo-
rithms, and successfully outperformed them in terms of detection
accuracy and speed. Three evaluation metrics were defined and
used in performance comparisons which they are delay-alarm er-
ror rates, false-alarm error rates, and detect-failure rates. Two at-
tack models were designed for evaluations: continuous attack
model and discontinuous attack model. Experiments were con-
ducted using IEEE 9, 14, and 30-bus systems. With computational
time complexity, the algorithm was found to require further en-
hancements for more efficient functionality in real-time systems
[98].

In [99], a novel 5G-oriented cyber defense architecture based on
deep learning method was proposed to effectively detect cyber
threats in 5G mobile networks. A well-known botnet dataset (the
CTU dataset) was utilized, consisting of 13 scenarios with several
infected computers and seven botnet families. It was employed
to prove the efficiency of a neural network model for the anomaly
detection system that consisted of two sub-systems: anomaly
symptom detection (ASD) and network anomaly detection (NAD).
LSTM network was applied in the implementation of NAD. DBN
and SAE models were used in ASD to perform symptoms detection.
Local anomalous traffic conditions occurred in a short time period,
and all gathered symptoms were fed to NAD with a merged form.
LSTM recognized temporal patterns of cyberattacks. Classification
performances were evaluated in terms of precision, recall, and
the F1 score. According to results obtained in the paper, the pro-
posed approach proved its self-adaptability in the anomaly detec-
tion system which had large volumes of network flow gathered in
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real time from user equipment of 5G subscribers. The paper
demonstrated capability of the proposed approach to self-adapt
in managing traffic fluctuations [99]. According to conducted ex-
periments, the approach is suitable for evaluating traffic in a real
5G scenario, which is promising for future network systems.

In [100], LSTM-based autoencoders were used for anomaly de-
tections in smart grids. Simple autoencoder, variational autoen-
coder, and attention autoencoder were used for this problem.
The experiments utilized two datasets containing a large volume
of the daily usage patterns of different appliances from real cus-
tomers. The first dataset was acquired from the State Grid Corpora-
tion of Chine (SGCC), while the second was from the Irish Smart
Energy Trial (ISET). The proposed approaches were compared with
several machine learning methods using different metrics. Results
obtained showed that deep learning-based attention autoencoder
model exhibited notable improvements in false alarm rate and
anomaly detection in smart grids [100].

In [101], cyber-attacks and anomalous behavior identification
in different levels of a power grid system was proposed using deep
learning. The IEEE 9-bus system was used in the study, and Nonlin-
ear autoregressive (NAR) neural network was applied to capture
underlying behaviors of the power grid system and to detect any
cyber-attacks. As per results obtained in the paper, the proposed
approach can successfully detect cyber-attacks in power systems,
making it suitable for the new 5G era [101].

In [102], hybrid authentication, data privacy, preservation ap-
proach based on machine learning, and a cryptographic
parameter-based encryption and decryption algorithm were pro-
posed. The approach assured authentication of legitimate IoMT-
based-cyber-physical system with encrypted data transmission
through wireless communication channels. The proposed approach
performed impressively in security features. RF model was utilized
as machine learning method, and a real dataset was utilized to rec-
ognize smart phone users during ML implementation. The pro-
posed approach produced encouraging results in efficiency and
resilience against several security threats, thereby enhancing secu-
rity analysis, computation cost, computation time, storage memo-
ry, authentication latency, and parameters [102].

To efficiently detect attacks, various smart home security at-
tacks and quality of features used in detection algorithms were ex-
amined with the deployment of several machine learning
algorithms [103]. Due to IoT devices’ vulnerability to several at-
tacks, an intrusion detection and prevention system (IDPS) for
smart homes was analyzed in this paper. Effective intrusion pre-
vention mechanisms and a software-defined networking (SDN)-
based architecture of IDPS were used in smart home networks.
Several ML methods were applied to analyze the impact of fea-
tures. A realistic smart home testbed containing commercially
available IoT devices was the first dataset used. The second was a
dataset available in the literature, known as NSL-KDD. Machine
learning algorithms used included DT, KNN, RF, bagging, AdaBoost,
and voting classifiers. Performance of the algorithms using various
attack detections with different features were compared in terms
of detection rate. ML and SDN-based intrusion detection and pre-
vention systems provided a solution for cyber-attacks targeting
smart home security and privacy. The proposed approach can be
a guideline for future projects interested in building datasets that
include ML-based intrusion detection systems in IoT networks.
Other than using the ML method, it was found that the applied fea-
ture set is also an important factor for detection accuracy [103].

Different cyber security attacks can be encountered in IoT sys-
tems. A novel lightweight random neural network-based predic-
tion model was proposed for IoT-based data in [104]. With the
proposed method, a new machine learning-based scheme to detect
cyber-attacks for industrial IoT was presented by random neural
network, and the proposed method was deployed for an open-
18
source dataset named DS2OS. Comparisons were conducted with
several machine learning methods in terms of accuracy, precision,
recall, and F1 score. Real-time deployment of the proposed attack
detection method was accomplished on a single-board computer
using Raspberry Pi 4B with Intel Neural Compute Stick 2. Results
indicated that the proposed approach was easy to implement at
the edge for IoT attack detection and can be beneficial in future
smart system applications [104].

In [105], mobile edge computing (MEC) and physical-layer se-
curity for emerging cyber-physical systems were combined, and
a security problem was solved by deep reinforcement learning
(DRL) and convex optimization (CO) algorithm, accordingly the al-
gorithm was dubbed as DRCO. A secure mobile edge computing in
which some eavesdroppers attacked a network that threatened
task offloading was studied to ensure an efficient and secure
MEC. In the paper, finding a proper solution for offloading ratio
was performed by DRL, and allocating transmission power and
computational capability was done by CO. In addition, offloading
strategy making was performed by DQN, and the convex optimiza-
tion was used for transmission power and computational capabil-
ity allocation after the DQN determined a specific offloading ratio
for the convex optimization. The proposed algorithm was com-
pared against two different algorithms for MEC.

In [106], an intelligent reflecting surface-assisted mobile edge
computing network was studied as a cyber-security problem in
physical-layer in a network. The aim in the paper was to secure
data transmission rate for ensuring physical-layer security. DDPG
was used for optimizing system performance, and it tried to learn
and perform resource allocation and task offloading decisions for
MEC network in order to optimize cost of latency and energy con-
sumption. Impacts of different resource schemes oftentimes exist-
ed in MEC network and different resource allocation schemes were
considered in applications in the paper. The authors compared dif-
ferent resource allocation schemes, and they found out one ver-
sion, devised criterion, had superior performance over the other
schemes and robust enough for performing well with different
conditions of MEC networks.

In [107], an AI-based trust and privacy preserving system
(ATPS) for vehicle management in VANETs was proposed. Authors
of the paper considered privacy-preserving as a wholistic approach
in terms of data trustworthy, data availability, protection perfor-
mance in the VANETs, and proposed a novel method called ATPS.
With the ATPS system, they aimed to protect privacy of data provi-
ders with data availability at the same time, and maximize the
original data trustworthy. ATPS used Wasserstain Generative Ad-
versarial Networks as AI tool, and trajectory privacy protection
for vehicular data provider was performed by WGAN and differen-
tial privacy. As per obtained results, the ATPS method significantly
improved data quality, reduced malicious vehicle participants
along with vehicle privacy protection and data availability
ensuring.

Global air connectivity is obtained through UAV use, but some
technical problems such as wireless communication deployment
and channel modeling in this communication system will still re-
main as obstacles. UAV-assisted communication in agriculture sys-
tem was intended in [108]. In an agriculture deployment, safe
operation of agricultural information systems and data security
of smart agriculture were aimed through UAV-assisted communi-
cation systems use in the paper. Agricultural IoT intrusion detec-
tion system based on machine learning was implemented
through deep reinforcement learning for UAV localization and tra-
jectory planning, and hybrid CNN + LSTM for intrusion detection
system. Authors of the paper used KDD-CUP99 data set in their ex-
periments. Different parameters for performance evaluation of dif-
ferent UAV wireless network deployments were experimented by
comparing DDQN, k-means, random static deployment, and global



Table 4
Research on cyber-security.

Application
Field

Paper Year Problem Learning
Type

Task in ML Used Method(s)

Cyber
Security

[97] 2018 Cyber-attack detection SL Classification ANN + ELM
[98] 2019 Data integrity attack defending RL RL DQN
[99] 2018 Anomaly detection SL Classification DBN + SAE + LSTM

[100] 2021
Anomaly detection of electricity cyber attacks SL Classification LSTM-based AEs

[101] 2019 Cyber-attack detection SL Regression NARNET

[102] 2022
Authentication of cyber-physical systems-mIoT case SL Classification RF

[103] 2022
Intrusion detection and prevention in smart homes SL Classification DT, KNN, RF, Bagging, AdaBoost,

Voting

[104] 2020
Attack detection in smart homes SL Classification Random NN

[105] 2022
A secure MEC for emerging cyber-physical systems RL RL DQN

[106] 2022
An intelligent reflecting surface-assisted MEC RL RL DDPG

[107] 2022 Privacy protection in VANETs SL Classification GAN

[108] 2023
Agricultural information security and intrusion
detection

SL&RL RL &
Classification

DDQN, CNN + LSTM

[109] 2023 Secrecy energy efficiency maximization for picocells RL RL Dueling double DQN
[110] 2023 An IoT intrusion detection model for metaverse security SL Classification GAN + DAE + RF
[111] 2023 Securing edge computing vulnerability RL RL Q-learning

_I. Yazici, I. Shayea and J. Din Engineering Science and Technology, an International Journal 44 (2023) 101455
position information-learning algorithms, and the global position
information-learning algorithm outperformed the compared algo-
rithms in most of wireless network scenarios as per given results
in the paper. Then, with the setting of the proposed wireless net-
work system, CNN, CNN + LSTM, and one generic algorithm were
compared, and hybrid CNN-LSTM method outperformed the other
methods. From obtained results, LSTM introduction into CNN sig-
nificantly contributed to performance of the intrusion detection
system.

In [109], a multi-agent cooperative deep reinforcement
learning-based approach was proposed for secrecy efficiency max-
imization for picocells in a 5G heterogenous network. Beamform-
ing vectors of picocells, channel allocation, and power control
were jointly optimized with the aim of boosting average secrecy
rate with reduced power consumption consideration in the paper.
In the problem setting, a two-tier HetNet that had a sub-6 GHz
macro-cell and multiple mm-Wave picocells were considered. In
eavesdroppers’ medium in realistic-time varying channels, the av-
erage secrecy energy-efficiency of the picocells were maximized
through the multi-agent DRL approach. The proposed approach,
dueling double deep Q-learning, was compared against Q-
learning-based and deep Q-learning-based multi-agent reinforce-
Fig. 8. Smart healthcare fram

19
ment learning secrecy energy-efficiency approaches, joint
beamforming-based secrecy energy-efficiency, and one-time pad-
based encrypted data transmission approaches. Secrecy rate anal-
yses of the approaches were performed along with algorithmic
analyses. As per obtained results, the proposed approach outper-
formed the compared approaches in terms of the average secrecy
energy-efficiency performance of picocell users.

A software defined network IoT intrusion detection model for a
metaverse security was considered in [110]. A novel method com-
bining deep auto-encoder, generative adversarial network, and
random forest was proposed for the intrusion detection problem.
The deep auto-encoder performed data feature extraction and rep-
resentation while the generative adversarial network made imbal-
ance processing for data and data optimization. Random forest
model finally performed classification. A public-available data
set, InSDN, was used for experiments in the paper. Four different
models, which they were CNN, LSTM, CNN + LSTM and the pro-
posed model, were compared for both binary classification and
multiple classification for the detection system. The methods were
compared in terms of accuracy, recall, and precision metrics. As per
obtained results in the paper, the proposed method outperformed
the compared methods.
ework based on cloud.
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In [111], a security framework for edge computing vulnerabili-
ties in smart cities through genetic algorithm-based reinforcement
learning combined with a distributed authorization algorithm was
developed. A secure framework modeling was done by the autho-
rization algorithm called secure trust-aware philosopher privacy
and authentication to mitigate privacy breaches in networks, then
genetic algorithm-based reinforcement learning approach was
used for optimizing the search, and detecting anomalies in the net-
works along with finding shortest route during the RL agent’s
learning process. The RL method was compared against existing
methods for anomaly detection frameworks in the literature. As
per results obtained in the paper, the proposed approach outper-
formed the compared approaches in terms of F1-measure, preci-
sion, and sensitivity.

Table 4 presents a list of summarized papers on cyber security.

3.4. Smart health

The next generation network systems will contribute to en-
abling remote and real-time smart healthcare services. Data col-
lected from different sources in future network-enabled systems
(such as medical IoT, wearable devices, and smart health sensors)
are steadily increasing, thereby playing a crucial role in enhancing
smart healthcare. Fog computing, cloud servers, short and long-
range wireless communications, portable processing units, IoTs,
and blockchain further assist in the expansion of smart healthcare.
These systems combined with machine learning methods synergis-
tically contribute to the efficient diagnosis and treatment of dis-
eases, providing more reliable and secure management for smart
healthcare operations. Healthcare can also be personalized with
the assistance of next generation network systems. It is expected
that remote robotic surgeries will be more likely a common con-
cept in the near future with the assistance of u-RLLC in future net-
work systems. Smart healthcare assisted by next generation
networks will expand remote healthcare services, and positively
contribute to daily life by benefitting the disabled, the elderly sec-
tions, etc.

With the vast applications on healthcare enabled by the future
networks, innovations will be more possible in this field. This sub-
section presents smart healthcare and machine learning applica-
tions in the existing literature. Fig. 8 presents a smart healthcare
framework based on cloud.

A novel blockchain-based secured information management
system as well as data and predictive analytics modules were de-
signed in [112]. Real-case data consisting of healthcare appoint-
ment scheduling from a veterinary clinic at Jeju National
University, South Korea were used for deployment of the proposed
module. Machine learning methods were applied for two different
cases. In the first case, several DNNs and SVR were compared in
terms of RMSE, MAE, and R-squared metric for veterinary patient
appointments. In the second case, LSTM was compared with differ-
ent schemes for veterinary patient appointments. The proposed
module contributed to overall performance in throughput and
minimization of latency of the permissioned blockchain system
[112]. As per obtained results in the paper, the proposed module
has potential for smart healthcare implementation in 5G-enabled
systems.

Multi-sensor-based framework for human activity recognition
was conducted in [113]. Several deep learning methods, simple re-
current units, and GRU in the hybrid form were used for the frame-
work. A mobile health dataset consisting of recorded body motions
and vital signs of SHIMMER2 wearable sensors was used for de-
ploying the proposed framework. It was compared the deep simple
recurrent unit in terms of precision, recall, F1-score, and sensitivity
metrics. The proposed framework outperformed compared method
[113].
20
A voice pathology detection system was proposed in [114].
Deep learning-based mobile healthcare framework was utilized
for the proposed approach. The aim was to improve accuracy of
smart healthcare systems through deep learning. Audio captured
by mobile smart sensors were processed, and predictions were
made by the proposed approach. Two real audio datasets were
used, and VGG-16, CaffeNet models, and several other convention-
al methods were compared in terms of accuracy, sensitivity, and
precision through the datasets. The proposed approach based on
CaffeNet outperformed all other methods [114].

In [115], a novel technique for smart healthcare systems was
proposed to overcome several problems such as data availability
in isolated island, privacy security breaching, etc. The approach
was a federated transfer learning framework for wearable health-
care. This approach addressed the mentioned problems using data
aggregation through federated learning. It made relatively cus-
tomized models using transfer learning. The proposed framework
was deployed for two datasets: wearable activity recognition data
and real Parkinson data collected by smart phones. The framework
was compared with KNN, SVM, RF, and without federated learning
in terms of accuracy and F1 score, outperformed all other methods
[115]. The proposed approach is promising for smart healthcare
systems since it tackles several issues from the aspect of data man-
agement in healthcare systems. This will enable personalized and
flexible healthcare solutions in smart healthcare systems integrat-
ed with IoMT technologies in the 5G era.

In [116], physical activity recognition was accomplished using
CNNs. Data obtained from a multi-sensor system was fed to a deep
learning model as it was encoded to an activity image. CNN was
then used to extract multiscale spatio-temporal correlations from
the image. In the method used, handcrafted and extracted features
using deep learning were merged to be processed by a multiclass
SVM. Authors implemented the method for three different real-
life datasets available throughout the literature, and they com-
pared the proposed method with several other methods that had
used the same datasets in terms of accuracy. The proposed ap-
proach achieved outstanding performance in most of the compar-
isons [116]. IoMT-enabled computer-aided diagnosis has valuable
and important in smart healthcare. It enables remote communica-
tion between medical experts and patients. One area where IoMT
enabled CAD system can help would be cancer detection. In
[117], brain tumor classification based on transfer learning inte-
grated classifiers was performed using brain MRI images. An auto-
mated brain tumor classification was proposed to classify different
brain tumor types. Authors of the paper deployed GoogleNet for
feature extraction, then used several classifiers for the extracted
features. Brain MRI images of patients were collected from Nan-
fang Hospital in Ghuangzhou, China and the general hospital of
Tian-jin Medical University. Performance evaluation of the propose
method was conducted using different classifiers and compared in
terms of precision, recall, and specificity. The method produced the
highest results for brain tumor classification [117]. Hence, the pro-
posed method can potentially be applied to other IoMT-enabled
computer aided diagnosis systems for smart healthcare.

IoT based real-time data acquisition systems will significantly
contribute to smart healthcare systems. Machine learning algo-
rithms will be beneficial since they can handle enormous amounts
of data. During Covid-19 era, several machine learning techniques
were considered for Covid-19 detection through speech and voice
analyses. In [118], an efficient machine learning model for speech
and voice analyses of Covid-19 patients was proposed, and later
embedded in mobile health systems to enhance smart healthcare.
The proposed approach used a dataset from a crowd-sourced data-
base released by the Indian Institute of Science, Bangalore. Several
machine learning algorithms were compared with the dataset in
terms of accuracy, F1-score, specificity, precision, recall, and AUC
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metrics. SVM outperformed all other methods in terms of accuracy
[118].

5G-enabled cloud computing and edge computing do provide
low-latency and high-performance computing in 5G communica-
tion systems. Real-time output and data forgery detection in such
systems are extremely important. In [119], a smart healthcare sys-
tem was proposed for detecting forgeries of medical images using
cloud and edge computing. The novel image forgery detection
model consisted of noise-pattern extraction, a multi-resolution re-
gression filter realizer, and two classifiers. Wiener-filter-based
noise reduction technique was used for the noise-pattern extrac-
tion, while SVM-ELM was used as the binary classifier. Three data-
sets were utilized to implement the model. The first two were
publicly available image datasets, CASIA 1 and CASIA 2, that con-
tained both authentic and forged images. The third dataset consist-
ed of real mammography images obtained from a healthcare
database. The method was compared with several methods in
terms of classification accuracy, and hybrid SVM-ELM outper-
formed all other methods. Another key aspect of the study was that
the bandwidth consumption in bits per second, with and without
edge computing, was also examined. The proposed model did not
require much bandwidth as per obtained results [119]. It can
therefore be implemented in other smart healthcare applications
of future networks-enabled systems.

In [120], a fog-centric wireless, real-time smart wearable and
IoT-based framework for smart healthcare and fitness analysis in
a smart gym medium was proposed. The framework supported
athletes, trainers, and physicians by providing several physical
signs that alerted them in case of an emergency health situation.
The fog-centric model in the framework achieved real-time re-
sponse using a smart healthcare mobile application. The frame-
work consisted of three layers: the IoT sensor network layer, fog
node and services layer, as well as a cloud storage and analytics
layer. Real-time data collection from IoT sensors were performed
in the fog node layer. The same node also classified data and alert-
ed athletes and trainers in case of any developing health risks. It
further conveyed processed data to the cloud infrastructure for
storage and analysis. The cloud storage and analytics layer pro-
cessed data and created reports for athletes, trainers, and physi-
cians. Four data sets were collected from smart gym devices
supported by mobile applications during framework deployment.
LSTMwas used for classification task. Different scenarios were con-
sidered using the dataset. The proposed method achieved higher
performance as compared to other methods. Performance compar-
isons were conducted in terms of precision, recall, and F1-score. In
this framework, fog computing predicted health emergencies on
the network edge in real time rather than using cloud, further con-
Table 5
Research on smart healthcare.

Application
Field

Paper Year Problem

Smart
Health

[112] 2021 Predictive analytics
[113] 2019 Human activity recognition
[114] 2018 Voice pathology detection
[115] 2020 Activity recognition
[116] 2021 Physical activity recognition
[117] 2022 Brain tumor classification
[118] 2021 Detection of Covid-19 presence through voice and

analysis
[119] 2018 Medical image forgery detection
[120] 2021 Fog-centric IoT-based smart healthcare design
[121] 2020 Cardiovascular disease detection
[122] 2021 Healthcare monitoring system deployment
[123] 2020 Automatic diagnosis of heart diseases in IoT-Fog e
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tributing to smart healthcare operations [120]. The framework has
potential in 5G enabled smart healthcare systems.

In [121], a safe architecture based on the Android system was
proposed for acquiring patient data, and a reliable cloud-based sys-
tem was used for storing data. A predictive model was also applied
for cardiovascular disease classification. The main objective of this
paper was to form a secure Android-based application for smart
healthcare system which protected sensitive patient data. This
would enable better designs of smart healthcare application on
any device. A predictive model for cardiovascular disease was de-
ployed for this smart healthcare system. Data included clinical
health records and physiological signals collected from wearable
sensor nodes. The proposed predictive method and the hybrid form
of SVM and DT were compared with SVM, DT, KNN, and naive
Bayes using the CVD dataset acquired from the proposed secure
cloud-based storage model. Comparisons were made in terms of
accuracy, sensitivity, and specificity. According to the metrics,
the proposed method outperformed all other methods in most de-
ployed tasks. Obtained results revealed that the proposed method
can be employed in 5G-enabled smart healthcare systems [121].

A smart healthcare system that provided efficient, scalable, re-
liable, and secure AI-enabled IoT with low latency edge
computing-based smart healthcare system was proposed in
[122]. The collected health-related data were initially processed
and analyzed at edge nodes, then stored and shared at the edge
data centers. Scheduling patients and providing resources in real
time were achieved by the edge nodes and edge controller in the
system. Different sensors were used for computing several vital pa-
rameters of the utilized data. Various sensors were connected to
Raspberry Pi and Arduino Yun boards. The collected data were
stored in an edge node, and three edge nodes were used for repre-
senting hospitals. A neural network method was utilized to moni-
tor transmission latency for evaluating system performance in
real-world scenarios. Obtained results revealed that computing,
optimization, and transmission latency were adequate in the de-
ployed system [122].

Use of big data enabled by IoT is growing in healthcare applica-
tions. Unfortunately, big data also creates problems for databases
and cloud systems since system performance degradations tend
to emerge. Fog and edge computing are novel solutions that bridge
the gap between users and resources, providing low latency and
energy efficiency in data processing as compared to conventional
types of data storage. In [123], a new framework based on ensem-
ble deep learning in edge computing devices was proposed for au-
tomatic heart disease analysis. This framework was called
HealthFog. It performed as a fog service using IoT devices, and pro-
cessed heart patient data in real time by identifying the severity of
the disease. The framework was tested using real-case data with
Learning
Type

Task in ML Used Method(s)

SL Regression LSTM
SL Classification GRU
SL Classification CNN
SL Classification CNN
SL Classification CNN + SVM
SL Classification CNN

speech SL Classification SVM, AdaBoost, Naive Bayes,
Bagging

SL Classification SVM + ELM
SL Classification LSTM
SL Classification SVM + DT
SL Regression ANN

nvironment SL Classification DNN



Fig. 9. UAV-assisted communication system.
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different scenarios by applying deep neural networks based on the
ensemble method. It achieved better results in the analysis of di-
verse fog computation scenarios and for different user require-
ments, exhibiting the best quality of service and prediction
accuracy [123].

Table 5 presents studies on smart healthcare.
3.5. UAVs

UAVs are one of the disruptive technologies found in various
fields. They provide a wide range of services such as cellular net-
work assistance for both ordinary and emergency situations which
maximize coverage area of the network. They also conduct inspec-
tion and detection tasks, serve as flying base stations to become a
communication platform, network resource allocation, etc. UAVs
will intensely contribute to quality of service and reliability in fu-
ture generation networks. In 5G and B5G systems, network relia-
bility and resource allocation will require much more consistent,
flexible, and rapid solutions. These requirements can easily be
met by UAVs since they provide reliable transmission efficiency,
large coverage, and high flexibility when combined with intelligent
methods in upcoming network generations. The use of the UAVs in
5G and B5G systems will likely be more apparent in the near future
due to the potential benefits they offer. This subsection highlights
use cases of UAVs. Fig. 9 further presents an exemplary UAV-
assisted communication system.

In [124], an autonomous vision-based power line inspection ap-
proach was proposed using unmanned aerial vehicles and deep
learning. A multi-stage component detection (MSCD) pipeline
based on a multi-box detector was employed with deep residual
networks, and data were collected from sensors. The data from
the cameras mounted on UAVs were fed to the proposed approach,
and augmented to perform better tasks. The approach exhibited
significant improvements in autonomous inspection [124]. The
proposed approach is promising for fully automated UAV inspec-
tions, and for directly operating on GPUs of UAVs.

In [125], an automated deep learning-based approach was de-
veloped to support manual detection of damaged wind turbines.
Two real datasets acquired from wind turbines were used for ap-
plying the proposed method. With different data augmentation
strategies, Fast R-CNN methods were compared with several exist-
ing CNN backbones. As per results obtained in the paper, the auto-
mated damage detection system was more cost efficient than
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manual inspection systems. The results were promising for partial-
ly automated inspection and analysis processes for damage detec-
tion since it minimized cost and human intervention [125].

In [126], a multi-layer perceptron and LSTM were applied to de-
tect the position of UAVs. The aim was to maximize the overall sys-
tem performance and user throughput that would subsequently
enhance network performance for users. To evaluate system per-
formance, a hybrid MLP-LSTM was deployed for classification and
regression tasks, and k-means was used with MLP-LSTM to auto-
matically cluster classes.

Class and grid-based data were gathered from several mobile
users and UAVs. The data consisted of real-time data recordings
from the National Taipei University of Technology, Taiwan. The
method used was compared with SVM, MLP, and LSTM under dif-
ferent scenarios for assessing the positioning accuracy of UAVs. Ac-
cording to obtained results, the used method successfully achieved
both tasks of classification and regression-based positioning [126].

UAV applications are more widespread and expected to grow in
the near future. The connectivity of UAVs will thus be a crucial is-
sue. Several challenges may emerge when establishing reliable
wireless connectivity with secure operations, such as mobility
management, handovers, cyber-physical attacks, and authentica-
tion issues. Therefore, ANN-based solutions were proposed to take
advantage of wireless system resources of UAVs and ensure secure
operations in real-time [127]. In [127], issues regarding UAV-based
delivery systems, UAV-based real-time multimedia streaming net-
works, and UAV-enabled intelligent transportation systems were
considered for potential deployment. A deep RL approach based
on Echo State Network (ESN) was used to optimize the trajectories
of multiple UAVs online. By performing this optimization, a reduc-
tion in latency and interference was possible for multiple cellular-
connected UAVs. The proposed approach produced promising re-
sults. The next issue was user content request, which was also suc-
cessfully managed. Based on a user’s context information (such as
gender, job, and age), the ESN-based algorithm determines the dis-
tribution of user content requests. As per these distributions, UAVs
could determine the content to be stored at the UAV cache, thereby
conveying the content to relevant users without backhauling.

A real-case study was considered in this paper, and the pro-
posed approach was deployed for this real case study, exhibiting
satisfactory performance. For the issue of security and authentica-
tion, LSTM-based deep RL method was applied. The proposed ap-
proach was compared with two baselines, and outperformed the
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compared baselines both in terms of vulnerability to cyber-attacks
[127].

In [128], an interference-aware path planning for a cellular-
connected UAV network was considered. In this scheme, the ulti-
mate goal was to achieve a trade-off between energy efficiency
maximization and both wireless latency and interference for each
UAV in the network through ground network minimization. A nov-
el multi-agent deep RL approach integrated with ESN was pro-
posed for interference management. The study provided
interference-aware path planning of cellular-connected UAVs
based on deep ESN. A novel multi-agent reinforcement learning ap-
proach with ESN cells enabled numerous UAVs to optimize their
trajectories online in cellular-connected UAV networks. The pro-
posed approach required UAVs to jointly and autonomously learn
their own path in a dynamic non-cooperative game condition.
The approach was deployed for a system containing 15 BSs. The
800 m � 800 m square area was divided into 40 m � 40 m grids,
and its performance was compared with the shortest path baseli-
nes for various scenarios. The proposed approach contributed to
a trade-off between wireless latency, energy efficiency, and inter-
ference for the ground network [128].

In [129], a DRL-based intelligent solution was proposed to de-
tect the best position for multiple drone small cells in an emergen-
cy scenario. The aim was to maximize the total coverage area for
users under the constraints that drones may be hindered by back-
hauling and limited radio access network restrictions. Q-learning,
that was the integral part of the intelligent solution proposed,
was used as the machine learning approach in the paper to identify
the best position for multiple drone small cells in an emergency
scenario by performing maximization the total coverage area for
the users under the mentioned constraints for the drones. In addi-
tion to maximizing the total coverage area, Q-learning could iden-
tify the best position of each drone small cell in the environment
by minimizing the outage of users in radio access network as well.
An urban scenario published in an earlier work was modified and
adopted for deploying the proposed approach. A previously func-
tional network that was completely destroyed due to a natural dis-
aster was considered for the case setting, and the proposed
approach was compared with various other methods. It outper-
formed all other methods in terms of identifying the best position
for multiple drone small cells according to some metrics. The re-
sults showcases the importance of mobile BSs, which are suitable
for dynamic environments in future cellular networks [129].

In [130], UAVs serving as aerial base stations were proposed to
enable coverage and performance enhancements in communica-
tion networks for different real-world cases. Achieving certain
communication coverage in a group of UAVs is a challenging task.
A novel method was suggested to enhance DRL for controlling a
group of UAVs using a highly efficient model. The method con-
trolled connectivity and coverage, learnt and adapted in a dynamic
environment. A simulation scenario consisting of numerous UAVs
flying horizontally was accomplished to provide communication
coverage for ground users in a particular location. The specified re-
gion was divided into K cells. Each UAV knew its own location
within the setting. A point-of-interest (PoI) was defined at the cen-
ter of each cell which was covered by at least one UAV for a reason-
able amount of time. A DDPG-based energy-efficient control for
coverage and connectivity method was used as the DRL approach,
and it was then compared with two commonly used baseline
methods (random forest and greedy algorithm) in simulation ex-
periments. As per obtained results, the utilized method outper-
formed the compared methods in terms of average coverage
score, average energy consumption, energy efficiency, and the fair-
ness index [130].

In [131], a trajectory design framework of multiple UAVs was
proposed. User mobility information was utilized with ESN and
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multi-agent Q-learning. Joint trajectory design and power control
were used for maximizing the instantaneous sum transmit rate
to simultaneously meet satisfaction rate and user coverage re-
quirements. The proposed framework consisted of three-step de-
ployment. First, a multi-agent Q-learning based placement
algorithm was used to identify the initial deployment of UAVs. Se-
cond, user mobility was predicted using an ESN. Finally, the multi-
agent Q-learning was used for trajectory acquisition and power
control of UAVs. The proposed framework applied to a real dataset
consisting of user mobility information collected from Twitter. As
per obtained results, the proposed framework could potentially
support the UAV wireless network by maintaining high quality
user experience in mobility management [131].

In [132], a user association approach was proposed using a
dual-UAV-enabled wireless network with D2D connections. The
approach conducted user association optimization by maximizing
the sum rate of UAV-served users and the total number of D2D-
connected users. A learning-based clustering algorithm and an op-
timization approach were used for this method. In the first phase,
users served by UAVs were regarded as cluster centers. In the sec-
ond phase, the learning-based clustering algorithm determined
user clusters via D2D connections. This method was implemented
for an existing problem in the literature. According to results ob-
tained, the approach achieved good results with low complexity
due to the algorithms applied in the paper [132].

In [133], a novel framework was proposed for rapid UAV iden-
tification using encryptedWi-Fi traffic. In the proposed framework,
features were extracted by only using the packet size and inter-
arrival time of encrypted Wi-Fi traffic. Detection of UAVs and iden-
tification of their operation modes were then accomplished. This
framework was deployed in a real-world Wi-Fi data traffic with
eight types of consumer UAVs, and the dataset was created using
a computer embedded system-assisted wireless network interface
card. Detecting the type of UAV was achieved using the logistic
regression-based learning algorithm, while identifying their opera-
tion mode was accomplished using multi-class classification meth-
ods, SVM, and RF. The proposed detection system was tested using
a dataset that contained the presence of non-UAV data traffic. Lin-
ear discriminant analysis (LDA) method was employed to detect
UAVs [133]. As per results obtained, the proposed framework
may be used in other cyber-physical/IoT systems for different wire-
less communication systems.

A machine learning-based recruitment scheme collecting mas-
sive data with the collaboration of vehicles and UAVs in the IoT
network was proposed in [134]. A genetic algorithm was used for
vehicular collector selection to collect massive data from sensors.
The aim was to maximize the coverage ratio and minimize em-
ployment cost. A novel DRL-based route policy was employed to
plan the collection routes of UAVs with limited energy. DRL-R
method combined two data collection schemes: the first was a ve-
hicular collector that operated with larger coverage ratio within
limited costs using a genetic algorithm, the second was the UAV
collection process where data were collected from remaining static
devices. The main aim was to minimize flying routes of UAVs while
meeting data collection coverage criteria within an acceptable
range. The A3C method served as the machine learning method,
and the proposed technique was compared with other existing
methods found in the literature. A trajectory dataset of vehicles
in Beijing was utilized for deploying the proposed scheme. As per
results obtained, the length of the data collection path was signif-
icantly reduced. Moreover, the coverage ratio of data collection fur-
ther increased as compared to other methods (U5). Hence, the
proposed scheme was suitable for application in smart 6G-based
IoT systems [134].

In [135], an approach to enhance fairness in network resource
allocation among vehicles was proposed by identifying UAVs on-
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demand as flying communication infrastructures. A DRL method
was applied for determining the position of UAVs by considering
their communication, flying range, and energy constraints. This
would increase the efficiency and fairness of network resource al-
location. A simulated scenario including a real-world dataset was
used for the experiments, and an existing bus tracing dataset in
Rio was incorporated for the experimental settings. The proposed
approach applied the dynamic UAV placement method using
real-world vehicle mobility traces. Different DRL algorithms,
DDPG, PPO, and temporal difference (TD)-3 were compared with
the proposed approach, and the comparisons revealed that SAC
used in the proposed approach outperformed all other methods.
For UAV positioning, the results revealed that the proposed ap-
proach did improve network resource allocation according to the
targeted fairness objective [135]. This method can be a promising
solution for network resource allocation in future network
systems.

In [136], a deep RL-based collaborative computation offloading
and resource allocation approach were proposed for an aerial-to-
ground network service for emergency cases. A central network
controller trained observations, then fed the trained data to a
multi-UAV cluster network. In this approach, each UAV cluster
head acted as an agent while autonomously allocating resources
to eIoT devices in a decentralized manner. The agents performed
computation offloading in the defined setting with the aim of min-
imizing task execution delay and energy consumption. Efficient so-
lutions were also achieved by learning in a dynamic aerial-to-
ground network. This technique applied DDPG as the machine
learning method, and, in the experiments, the simulation settings
incorporated the deployment of the proposed approach with pa-
rameter configurations of previous studies. The DRL method deter-
mined optimal computation offloading policy for the eIoT devices
and allocated resources as observed in mIoT network. The DDPG
was compared with greedy-based, DQN-based, and A3C-based
methods in terms of convergence, time-delay performance, energy
consumption performance, and UCH resource consumption. Ac-
cording results obtained, the proposed approach outperformed
all other methods [136].

In upcoming network generations with high mobility environ-
ments, the tasks of predicting dynamic traffic and channel condi-
tions while scheduling time division duplex (TDD) configurations
in real time will be crucial. In [137], a channel model was consid-
ered for a heterogenous network with high mobility. A deep learn-
ing method for feature extraction and a deep reinforcement
learning-based model were employed for allocating online radio
resources using an intelligent time division duplex configuration
algorithm. In this approach, DBN was used for feature extraction
and the Q-learning-based RL algorithm was applied for adaptively
changing the time division duplex up/down-link ratio. A simula-
tion model was created using users’ traffic demand patterns from
the existing literature. DQN was compared to both the convention-
al model and the Q-learning-based algorithm in terms of packet
loss rate and network throughput. Results of the paper revealed
that DQN outperformed all other methods. According to the result-
s, the proposed approach dynamically changed the TDD configura-
tion to optimize up/down-link radio resource allocation with low
overhead. The network performance revealed a significant en-
hancement in the packet loss rate and the network throughput
[137].

In [138], a reinforcement learning-based task scheduling ap-
proach was proposed for UAVs. The proposed approach achieved
automatic and dynamic adjustments of the UAV task strategy by
using the calculation of task performance efficiency. It was able
to coordinate UAV movements and achieve real-time networking
of UAV clusters using a decentralized networking protocol. A sim-
ulated scenario was considered for implementing the approach. A
24
deep reinforcement learning method based on deep strategy gradi-
ent descent approach with actor-critic constraints was employed
for optimizing the value functions to schedule UAVs [138].

In [139], a virtual network function (VNF) was developed to
achieve better resource utilization. Machine learning was em-
ployed for predicting the resource requirements as per the network
traffic load. SVR and Kernel Ridge Regression (KRR) served as the
machine learning algorithms. Three existing datasets were used
as benchmarks, and KRR outperformed SVR in the benchmark
study. As per results obtained, the machine learning algorithm
helped in the dynamic allocation of resources to VNFs according
to their requirements. Through the deployment, excessive and in-
sufficient resource allocation were prevented, thereby reducing
wastage of unused resources and preventing service quality de-
cline. The proposed approach may enable URLLC enhancement
for B5G networks [139].

Assisting ultra-dense networks with flying base stations will be
a significant task during emergency situations. In [140], a commu-
nication resource allocation scheme was proposed for UAV-
assisted UDN systems to improve the quality of user experience.
DQN method was applied in the resource allocation scheme to
maximize energy efficiency of ultra-dense network systems. A sim-
ulated case study and its parameters were in line with 5G specifi-
cations, as set by 3GPP standards and existing studies. The applied
DQN approach was compared with several methods in terms of en-
ergy efficiency and computation time by considering the number
of BSs and the minimum transmission power. As per obtained re-
sults, the applied DQN efficiently performed the resource alloca-
tion task to maximize the system’s energy efficiency [140].

In [141], MEC was used for UAV-assisted communication in
maritime environment to provide powerful computation capabili-
ties in terms of latency aspect and resource limitations. Deep rein-
forcement learning was used to provide minimum latency for both
computation and communication in the environment of UAV
swarm MEC network, and it found the required number of virtual
machines in the network. In the paper, DQN and DDPG methods
were used for trajectory optimization of top-UAV in the MEC net-
work, and configuration of virtual machines in the network. Perfor-
mance of the used two deep RL algorithms were compared against
some baseline algorithms in terms of total average latency, and ob-
tained results showed that they outperformed the baseline algo-
rithms. The DDPG algorithm performed better than the DQN in
reducing the total average latency for the joint optimization, i.e.
trajectory finding for top-UAV in the network and configuration
of number of VMs in the network.

In [142], UAVs were used as edge clouds for large-scale dis-
tributed user equipment to provide reliable and stable network.
Due to the UAVs constrained computation and energy characteris-
tics, a collaborative MEC system including multiple UAVs and mul-
tiple edge clouds was studied. A cooperative multi-agent deep
reinforcement learning model was performed with the aim of min-
imizing energy consumptions and sum of execution delays by re-
garding trajectory design, communication resource allocation and
computation task allocation. Authors carried out simulations with
different settings such as mobile UEs, and fixed UEs, and different
UAV numbers in their simulations, and they compared the pro-
posed method MATD3 with different MADDPG, MATD3 scenarios
(fixed power and fixed height ones) and random scenario. Accord-
ing to obtained results, MADT3 method produced better results
than the compared ones.

In [143], UAV placement method assisted by ANN use for en-
hancing an integrated UAV-D2D non-orthogonal multiple access
cooperative network system was proposed. UAV placement
scheme in the network through the ANN was considered, and the
proposed method was compared for different network scenarios
against two unsupervised learning methods, k-means and k-



Table 6
Research on UAVs.

Application
Field

Paper Year Problem Learning
Type

Task in ML Used Method(s)

UAV

[124] 2018 Intelligent monitoring and inspection SL Classification-Object
Detection

CNN

[125] 2019 Intelligent monitoring and inspection SL Classification-Object
Detection

Fast R-CNN

[126] 2019 Throughput maximization in wireless communication UL & SL Classification,
regression, and
clustering

LSTM + MLP + k-means

[127] 2018 UAV-based delivery systems, UAV real-time multimedia streaming
networks, and UAV intelligent transportation systems

SL & RL Regression and RL ESN + LSTM based
proposed deep RL
algorithms

[128] 2019 Interference management RL RL ESN based novel multi-
agent RL algorithm

[129] 2018 Base station positioning for emergency cellular network RL RL Q-learning
[130] 2018 Energy-efficient UAV control for effective and fair communication

coverage
RL RL DDPG

[131] 2019 Trajectory design and power control for multi-UAV assisted wireless
networks

SL & RL Regression and RL ESN + Q-learning

[132] 2019 User association for dual UAV-enabled wireless networks UL Clustering A clustering-based method
[133] 2020 UAV detection and operation mode identification in encrypted

wireless network
SL Classification RL, SVR, RF, LDA

[134] 2021 Recruitment scheme for massive data collections in 6G IoT networks RL RL A3C
[135] 2021 Fair 5G bandwidth allocation in vehicular communication by UAV

harnessing
RL

RL DDPG, PPO, SAC, TD3

[136] 2021 Collaborative offloading computation and resource allocation in
multiple UAV-assisted IoT networks

RL RL DDPG

[137] 2020 Resource allocation in high mobility 5G HetNets SL & RL Regression based
autoencoding and RL

DBN + DQN

[138] 2019 UAV cluster task scheduling RL RL An AC-based model
[139] 2022 5G assisted drone networks for dynamic resource sharing SL Regression SVR, KRR
[140] 2021 Resource allocation for UAV-assisted ultra-dense networks

RL
RL DQN

[141] 2022 UAV-assisted maritime communication with MEC
RL

RL DQN and DDPG

[142] 2022 UAV-assisted edge cloud for large scale sparely-distributed user
equipment

RL

RL TD3

[143] 2023 UAV placement for integrated UAV communication SL Regression ANN
[144] 2023 Location optimization for UAV-base stations in the presence of

mobile endpoints
RL RL Actor-Critic

[145] 2023 Resource slice embedding for UAV-assisted edge computing SL Regression LSTM
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medoids. In the comparisons, non-orthogonal multi access device-
to-device cooperative, non-orthogonal multi access, and orthogo-
nal multi access schemes considering sum rate and spectral effi-
ciency were the scenarios in the paper. As per results obtained in
the paper, the proposed method in the UAV-supported device-to-
device non-orthogonal-cooperative network would provide more
high-quality and reliable communication for terrestrial users with
respect to non-orthogonal multi access and orthogonal multi ac-
cess schemes.

UAV uses as a support to ground base stations is of important
issue in future mobile network systems. UAVs as they offer base
station tasks for the future networks will provide cost-effective in-
ternet connection to more users as well as they can be used in
emergency cases when ground base stations in the network fails.
However, locating UAVs in a highly dynamic user environment cre-
ates an optimization problem for UAV-base station deployment. In
[144], a continuous actor-critic deep reinforcement learning ap-
proach was used to solve this problem for optimally locating the
UAV-base stations in the presence of mobile endpoints. Authors
of the paper brought about novelty to the literature by introducing
continuous action space rather than discrete one for the problem
setting, thereby enabling use of continuous actor-critic algorithm.
In addition, they designed a new reward function for the proposed
RL approach that enabled the RL agent to receive both positive and
negative rewards, thereby keeping the UAV-base stations inside
boundaries of area of interest while simultaneously aiming to max-
25
imize sum data rates of users in a cellular network. Firstly, the pro-
posed approach was compared against random movement, q-
learning, deep q-learning, and Gauss–Markov methods, and ob-
tained results showcased that the approach outperformed the
other ones in terms of packet loss of endpoints, transmission de-
lays, and data rate. Apart from these comparisons, the proposed
approach was compared against two RL approaches in terms of al-
gorithmic performance, and, as a result, it surpassed the compared
approaches in this comparison as well. As future research direc-
tion, inclusion of energy limitation of UAV-base stations to the cur-
rent problem will be considered that will turn the current problem
into a joint optimization problemwhich simultaneously minimizes
the energy consumption and maximizes data rate. In addition, 6G
inter-cell interference inclusion to the problem might be another
important future research direction to extend the research
problem.

Mobile edge computing assists in alleviating pressure of core
networks in the future mobile network systems. Edge servers’ mo-
bility and flexibility are improved through combined use of UAVs
and the mobile edge computing. Managing and allocating re-
sources for massive number of devices is a kind of hard issues to
tackle. Energy limitation of UAVs also makes them less stable than
fixed edge server. Hence, resource slicing may be one of the
promising solutions in these constrained problem settings for
UAV-assisted mobile edge computing. In [145], a survivable re-
source slice embedding algorithm was proposed through network



Fig. 10. A flight digital twin system.
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slicing for UAV-assisted edge computing assisted by LSTM. The
LSTM was used for forecasting workloads of resource slice, then re-
source slice algorithm for the UAVs was framed based on the fore-
cast results. In case of the UAV failure in the edge computing
system, a resource slice re-embedding algorithm was used to com-
pensate the resource slice failure with minimum response time. A
dataset was provided by a mobile operator in Ireland, including
uplink and downlink transmission rates, access time, and mobile
status of users. A real-world testbed was used to assess the pro-
posed method’s effectiveness by comparing it against two bench-
mark algorithms. As per results obtained in the paper, the
proposed algorithm outperformed two existing algorithms, general
network slice design algorithm and global resource capacity based
survivable virtual network, in the system performance in terms of
slice recovery ratio and consumption, and request acceptance ratio.

Table 6 presents available research on UAVs.
3.6. Digital twin

The main objective of a digital twin is to represent a virtual en-
vironment of an object or a system by integrating cyber space and
physical space. For this objective, a replica of a physical system/ob-
ject is created, and then updated by real-time data stream. It sup-
ports decision-making by using simulations and machine learning
methods. Digital twin and simulations are similar, yet they differ in
several aspects. Unlike simulations, a digital twin uses real-time
data. A digital twin can also conduct multiple processes by running
numerous simulations simultaneously. However, a simulation typ-
ically performs one particular process. 5G and B5G-enabled smart
sensors, reliable communication of physical systems, low latency,
and real-time systemmonitoring are the key driving forces that in-
crease digital twin applications. For current and future application-
s, digital twin is a promising solution to easily manage physically
large systems, manufacturing projects, and power systems with
abundant data, and digital twin applications have recently spanned
several fields. This subsection presents the digital twin use cases
with machine learning applications, as reviewed from the litera-
ture. Fig. 10 displays an example of a digital twin application.

An intelligent context-aware healthcare system using the digi-
tal twin framework was proposed in [146]. The framework con-
tained an ECG classifier utilizing machine learning in the
diagnosis of heart disease. In the framework, IoT wearable sensors
first acquired data, then conveyed that data in real time as the
body metrics of patients. These sensors monitored health status
and early detection of abnormalities. The utilized machine learning
algorithms included CNN, MLP, logistic regression, LSTM, and SVR.
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The algorithms were used to sense the electrodes of ECG rhythms
obtained from different patient data in real time. Performance met-
rics for the algorithms are precision, recall, and the F1-score. As per
obtained results, digital twin (DT) in smart healthcare systems sig-
nificantly enhanced healthcare processes. It promoted health and
life expectancy and further reduces healthcare costs by providing
novel solutions to healthcare problems. The inclusion of machine
learning to the framework for ECG classification has proven that
such intelligent systems are valuable for smart healthcare, and will
significantly contribute to future healthcare systems [146].

In [147], a framework based on 5G next generation radio access
network with cloud-based digital twins was proposed for monitor-
ing wind turbines and constructing a prediction model for wind
speed and generated power. A deep learning approach, temporal
convolutional neural network (TCNN), and a conventional regres-
sion model (KNN) were used for predictions. The TCNN predicted
the wind speed while KNN predicted the generated power based
on the TCN results.

The proposed approach applied to a dataset belonging to a wind
farm in Yalova, Turkey. The wind speed generation performance
was evaluated in terms of MAE and RMSE for each quartile predic-
tion period. Next, the power prediction performance of the pro-
posed approach was compared with DT regression, RF, and SVR
in terms of MAE. According to results obtained, the proposed ap-
proach outperformed all other methods [147]. The approach is en-
couraging for remote real-time monitoring of wind farms using
digital twins as well as the real-time predictive modeling of wind
turbines.

In [148], authors focused on digital twin enhancements for bet-
ter similarity with reality. A system identification perspective was
considered in this digital twin application. The hybrid form of
RNNs was used for predicting between measured velocities and
outcomes of the model used in ship motion prediction. With the
application of digital twin, a maneuvering model was proposed
with real-world ferry operation data. The model improved predic-
tions in the ship’s surge, velocities of sway, and yaw. The dataset
used in the paper was collected from several sensors and provided
by Scandlines for the ferry M/F Berlin. To model ship navigation,
the hybrid maneuvering model was used along with different
RNNs to predict the speed of a ferry with different operating con-
ditions. Obtained results revealed that the model did improve pre-
dictions [148].

In [149], a digital twin framework was proposed for stochastic
non-linear multi-degrees of freedom dynamical systems. The pro-
posed framework consisted of four modules: a nominal model, a
data collection module, an algorithm for real-time update, and a
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future state prediction module. Real-time update and predictions
were performed by modeling approach that used physics-based
and data driven modules. This enabled the digital twin to general-
ize and predict future states. The modeling used Gaussian process
regression as the machine learning method. The proposed frame-
work was deployed using two datasets: the 2-(DOF) system and
the 7-(DOF) system. The proposed digital twin calculated time-
evolution of parameters of the DOF systems. According to obtained
results, the proposed DT performed well by achieving high accura-
cy rates, which was useful for other realistic systems [149].

In [150], a digital twin with a physics-based approach was pro-
posed to investigate several damage scenarios. In this approach, a
machine learning classifier was used to simplify real-time engi-
neering of decision-making for physical twins. An emulated data
constructed a synthetic dataset by considering real-time scenarios,
and several machine learning algorithms were tested under vari-
ous scenarios to analyze real-time conditions using the digital
twin. Quadratic discriminant, SVM, linear discriminant analysis,
KNN, bagged tress, decision tree, and ensemble boosted trees were
compared in terms of accuracy metrics for performance evalua-
tions. SVM with the Gaussian kernel method outperformed all
other compared methods [150]. The results indicate that deploying
digital twin is useful for a large range of applications.

A digital twin approach in the environmental science field was
proposed in [151]. A process-based model generating data were
aggregated for lowering resolution of time horizon to mimic real
situations. A machine learning model was applied by using the
process-based model inputs. ML models were used for predicting
pasture nitrogen response rates, and their reliability was analyzed
by evaluating their predictive and generalization capacity. The pro-
posed approach was deployed using a dataset generated by APSIM
as a reasonable estimator of pasture growth in New Zealand. The
RF algorithm was used as the machine learning algorithm in this
approach, and the study outcomes highlighted the practicality of
developing operational digital twins for limited data scenarios
[151].

The tasks of analyzing and predicting risk probability rate of an
oil pipeline system were accomplished by a digital twin in [152].
Dirichlet process clustering and canopy clustering were used in
the prognostic analysis for grouping the rise and fall of pressure
of the system. The SVM algorithm was deployed to extract features
of data obtained from multiple oil substation integration platform-
s, which enabled real-time control action in the pipeline system via
wireless data communication. Data from an integrated IoT model
in the system were used for implementing utilized approach to
gauge the risks and conduct the prognostic analysis [152]. The uti-
lized approach is promising for virtual intelligent automated con-
trol systems since it predicts the risk rate in the oil industry by
providing real-time transmission lines via wireless networks in re-
mote locations.

In [153], a digital twin framework was proposed for dynamical
systems that evolved into two distinct operational time scales. The
framework consisted of two modules: a physics-based nominal
model to process data and predict responses, and a data-driven
machine learning model for the system parameters to evolve in
time. Gaussian Process and Markov Chain Monte Carlo methods
were used in the data-driven model. The model was deployed for
three different cases, and it considered different scenarios of data
collected by IoT. According to obtained results in the paper, the
proposed framework performed well in predicting system param-
eters that evolved in time. This is beneficial for future deployments
of the framework in multi-timescale dynamical systems [153].

In [154], a digital framework for a petrochemical industrial IoT
was proposed. A machine learning approach was also deployed to
enable the digital twin model to accomplish production control op-
timization. The proposed digital twin approach integrated machine
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learning and real-time industrial big data in training and optimiz-
ing digital twin models. The dataset was collected from an indus-
trial IoT, a production line in a petrochemical factory in China, to
deploy the proposed framework. Different machine learning algo-
rithms were used in the paper: RF, AdaBoost, XGBoost, Gradient
boosting, decision tree, Light GBM, and ANN. The methods were
compared in terms of different metrics such as MAR (model accu-
racy ratio), RMSE, and VIR (variance interpretation ratio). Light
GBM performed extremely well in the predictions. The proposed
digital twin framework based on industrial IoT and machine learn-
ing successfully optimized petrochemical production control. The
paper further provided time series data processing methods in dig-
ital twin modeling, such as frequency unification and lag identifi-
cation [154]. The proposed approach is promising for other
production control optimization cases using digital twin.

In [155], a deep transfer learning digital twin-based fault diag-
nosis framework was proposed for machinery. The digital twin
modeled a physical system in the paper. The framework trained
a novel sparse de-noising autoencoder, which was then used as a
transfer learning model for predicting machine fault diagnosis by
considering different working conditions and characteristics of
the machinery system. The proposed approach was deployed for
diagnosing triplex pump faults. Machine learning method used in
the proposed approach was compared with different methods such
as stacked LSTM, stacked GRU, Gaussian DBN, and several variants
of sparse de-noising autoencoders in terms of accuracy. The pro-
posed approach significantly outperformed the compared methods
[155].

A vision-based digital twin that supported threat assessments
for construction site disasters was proposed in [156]. The context
of disaster risk encoded into deep learning models was used for
identifying and analyzing characteristics and effects of disasters
in the construction site of the digital twin models. Two case studies
were used, and data were collected by UAVs, smartphones, and the
cameras of tablets for evaluating the proposed approach’s perfor-
mance. Instance segmentation was accomplished using deep learn-
ing methods. Utilized deep learning methods included AlexNet,
VGG19, ResNet-18, and ResNet-50, and they were compared in
the segmentation task in terms of accuracy. ResNet-50 outper-
formed all other methods. The proposed approach achieved risk-
informed decision-making and alerted practitioners in the event
of a hurricane which could immensely damage construction sites.
The approach can also help in rapid scene understanding for site
monitoring [156].

In [157], a robot arm digital twin approach was proposed. The
paper provided simulation and communication architectures be-
tween virtual agents and physical representations of virtual agents
with the deployment of the proposed approach. A robot arm was
created using several smart equipment to establish communica-
tion with its environment, and PPO was used for training the dig-
ital twin. The proposed approach might be used to test scenarios
that include hardware sensors to guide the physical actions of a
system in trained virtual space. The deployed approach can estab-
lish connectivity between the physical and virtual components of
digital twin. The framework’s generalization ability for tackling
virtual-physical connections may be well-suited for other digital
twin application fields [157].

Industrial robots are adept due to intensive training. Their train-
ing process may probably require more time, be highly expensive,
and include safety concerns. Digital twin deployment in such situ-
ations will likely produce favorable results [158]. In [158], a digital
twin approach was proposed using DRL for an assembly-oriented
industrial grasping robot. The DRL algorithm-trained system was
transferred to a physical robot in the study. Two parallel training
systems (real robotic system and its digital replica) were formed
during the deployment phase. An industrial robotic assembly sce-
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nario including several robotic arms was considered in the paper.
The DRL algorithm (DQN) used real time pictures from an RGB-D
camera placed on the assembly area. The proposed digital twin
of the industrial assembly system was built on a robot-simulator
that enabled communication with the physical robot. A digital
twin-based sim-to-real transfer approach was proposed for linking
virtual and real systems by correcting real output with virtual
ones. The proposed approach contributed to the adaptability and
flexibility of robots in real industrial environments with different
environmental scenarios such as illumination, occlusion, and com-
plex task scenes [158].

In [159], a full life cycle digital twin for complex equipment was
proposed by embedding machine learning into digital twin. The
proposed approach combined digital twin, machine learning, and
edge-cloud computing under a single framework. The digital twin
approach was deployed for predictive maintenance of diesel loco-
motives. Data from CRRC Qishuyan Locomotive Co. were used for
the implementation, and the proposed approach was compared
with LASSO, SVR, XGBoost, and their combination. Performance
comparisons of the machine learning methods were accomplished
in terms of RMSE, MAR, and R2 metrics. The combined method for
the digital twin framework outperformed all other methods in the
comparisons [159]. Applying and embedding machine learning in
digital twin highlights the potential of integrating machine learn-
ing in digital systems for predictive maintenance.

In [160], a digital twin framework was proposed, incorporating
cloud computing and deep learning for real-time monitoring and
proactive maintenance of structural health monitoring. The pro-
posed framework applied for a case study of a real bridge structure,
Nam O, in Vietnam. To collect vibration data of the bridge, a net-
work of triaxle accelerometers was located at truss connections
in the bridge. The data were used to implement deep learning
method. Testing confirmation and validation of the cloud platform
was accomplished with the bridge structure data. Integration of
deep learning, fog computing, cloud computing, and digital twin
for structural health monitoring of physical systems is promising
for advancing physical health monitoring systems in real time
[160].

A beam selection framework was formed in [161]. The aim was
to reduce beam training overheads to enable the efficient operation
Table 7
Research on digital twins.

Application
Field

Paper Year Problem L
T

Digital
Twin

[146] 2021 Healthcare system management S
[147] 2022 Predictive modeling in wind turbines S
[148] 2022 Ship maneuvering prediction S
[149] 2021 Non-linear MDOF systems modeling S
[150] 2021 Damage detection in structures S
[151] 2022 Predictive modeling in environment S
[152] 2022 Oil pipeline risk estimation U

[153] 2021 Multi-scale dynamical system modeling S
[154] 2019 Production optimization in petrochemical

industry
S

[155] 2021 Intelligent fault diagnosis for machinery U
[156] 2022 Risk assessment for construction site disaster

preparedness
S

[157] 2021 Robot arm simulation R
[158] 2022 Industrial robot grasping simulation R
[159] 2022 Predictive maintenance of complex equipment S
[160] 2022 Structural health monitoring S
[161] 2022 Beam selection for time sensitive industrial IoT S
[162] 2023 Digital twin for handover optimization R
[163] 2023 UAV target search model training R
[164] 2023 State of charge prediction of battery energy

storage system
S
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of time sensitive IoT applications in industrial environments. An
accurate map-based channel model of an environment was created
using digital twin, and a beam predictor was trained to reduce the
beam search space for potential space set configurations. Predic-
tions for a set of beam configurations between IoT devices, the ac-
cess point, and base stations were performed using a machine
learning model. The proposed framework was deployed in an in-
dustrial case scenario using IoT devices connected to an mm-
Wave network in a factory vehicle that conducted remote control
operations [161].

In [162], a digital twin application for handover parameter op-
timization scheme in an ultra-dense network was performed, and a
DQN method based on digital twin was proposed. Through the
DQN, the handover parameter optimization scheme based on
earning
ype

Task in ML Used Method(s)

L Classification CNN, MLP, LSTM, SVR
L Regression TCNN + KNN
L Regression LSTM + GRU
L Regression GPR
L Classification SVM, DT, KNN, EBT Discriminant Variants
L Regression RF
L & SL Clustering and

classification
Dirichlet Process Clustering + Canopy
Clustering + SVR

L Regression GPR + MCMC
L Regression RF, AdaBoost, XGB, GBDT, LGBM, ANN

L Data compression Sparse de-noising autoencoder
L Segmentation-

classification
CNN

L RL PPO
L RL DQN
L Regression Lasso, SVR, XGB, and hybrid model
L Classification CNN
L Regression MLP
L + SL RL and classification DQN and LSTM
L RL QMIX
L Regression RF, ANN, LSTM, GRU, AdaBoost



Fig. 12. Learning types applied in smart energy.

Fig. 13. Learning types applied in cyber security.

Fig. 14. Learning types used in digital twin applications.

Fig. 15. Learning types applied in UAVs.
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LSTM-assisted digital twins was performed which digital twins
were used for prediction of reward value under the assumed han-
dover parameters. For different wireless signal fading conditions, a
DQN handover parameter selection method was formed, and the
LSTM-assisted digital twin enhanced performance of the handover
parameter optimization scheme by further increasing system effi-
ciency and convergence effect. The digital twin was used for pro-
viding some needed real-time data for the handover parameters
such as reference signal received power, to predict reward for rein-
forcement learning deployment. LSTM method was also used with
the digital twin in the study to predict success of the handover, and
for whether ping-pong handover occurred as per reference signal
29
received power series. Simulation data were used for the study,
and this utilized approach and non-digital twin enhanced DQN ap-
proach were compared. According to results obtained in the paper,
the proposed approach significantly contributed to robustness of
conventional DQN, and convergence efficiency. It also produced
more effective handover rate with respect to its conventional
counterpart by means of the LSTM-assisted digital twin.

In [163], a digital twin use in combination with multi-agent
deep reinforcement learning approach to solve a target search
problem for multi-UAVs environment was studied in this paper.



Fig. 16. Total learning types applied.

Fig. 17. Machine learning applications in various use cases.
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A digital twin-driven training framework was formed that facilitat-
ed centralized training, continuous evolution, and decentralized
execution for the proposed multi-agent deep reinforcement learn-
ing approach. In the training stage of the proposed approach, mul-
tiple digital twin environments provided data for centralized
training of the decision model, and facilitated execution of the tar-
get search for UAVs in distributed manner. The proposed approach
was compared against two baseline methods in terms of some al-
gorithm performance metrics. After then, the proposed approach
was compared against some existing schemes for the problem in
terms of search rate, coverage rate, number of collisions, and epi-
sode length. As per obtained results in the paper, in most of the
comparisons, the proposed approach outperformed the rest of
the methods compared.

In [164], a digital twin for a battery energy storage system by
providing frequency containment reserve for normal operation in
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Nordic region was used. The twin using real frequency in Nordic
region was utilized to generate dataset, and several machine learn-
ing methods for a set of state of charge for battery energy storage
systems’ forecast were then compared with digital twin-generated
and real battery energy storage system operation data. Random
forest, LSTM, feed-forward neural network, AdaBoost, GRU, and
SVR methods were deployed to develop the battery storage sys-
tems’ digital twin. Different forecasting horizons with the used
data were conducted, and random forest and AdaBoost methods
were found the best performing methods among the methods used
in most of the predictions as per results obtained in the paper.

Table 7 presents available studies on digital twins.
3.7. Discussion

This section presents the reviewed papers that offer concise in-
formation regarding machine learning and use case scenarios.
Table 1 categorized previous research papers, and comparison of
this paper with respect to the published papers. In this paper, each
subsection has investigated the employed learning types, their cor-
responding visuals, and results. After giving reviewed papers and
their related information, we also give discussion about their appli-
cations from the perspective of learning types and machine learn-
ing. Relevant figures are given in Figs. 11-18. Learning types used
in each use case, percentage of machine learning applications in
the use cases in the reviewed papers, and relevant papers publish-
ment throughout the years are given in these figures. Discussions
on the figures are also provided.

Fig. 11 highlights the rate of employing learning types in the
field of intelligent transportation systems. UL, SL, and RL represent
unsupervised learning, supervised learning, and reinforcement
learning, respectively. The + sign represents the hybrid form of
the mentioned learning types or the ML algorithms/methods. Su-
pervised learning encompasses most use case applications with a
rate of 68%. This is followed by the hybrid unsupervised + super
vised learning with a rate of 18%. Reinforcement learning accounts
for 9% of applications, while unsupervised learning accounts for 5%.

In intelligent transportation applications, object detection, seg-
mentation, and vehicle/pedestrian recognition tasks that require
supervised learning has made up the majority of use cases. With
the advancement of V2V, V2I, and autonomous self-driving cars
in 5G and B5G enabled systems, it is expected that RL applications
will increase in the near future.

Fig. 12 presents the rate of application for each learning type in
the smart energy field. Reinforcement learning consists of the ma-
jority of applications with a rate of 68%, it is followed by supervised
learning with a rate of 29%. The remaining applications include the
hybrid supervised method and reinforcement learning type with a
rate of 3%. Smart homes, autonomous decision-making, decentral-
ized decision-making, decision engines, and adaptive learning are
key topics in the smart energy field. Reinforcement learning thus
makes up the majority of applications in this field. Load prediction
is also significantly important, especially for smart energy. Hence,
supervised learning applications follow reinforcement learning ap-
plications in the smart energy field.

Fig. 13 presents the rate of applications of learning types in the
cyber security field. Since detection and identification tasks are sig-
nificant in cyber physical systems, the high rate of supervised
learning applications (60%) is plausible. Reinforcement learning
applications are also found in many studies on cyber security ap-
plications. As seen in Fig. 13, Sole RL applications accounts for 33
% while the hybrid one accounts for 7%. A noteworthy issue is that
anomaly detection can be applied as an unsupervised learning type
since unsupervised learning has not been employed in the re-
viewed papers for this field.



Fig. 18. Annual use case applications in total.
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Supervised learning covers all smart health applications in the
reviewed papers; therefore, unsupervised learning is not presented
for this field. Classification and detection of diseases, human activ-
ity recognition, and diagnosing diseases all require regression or
classification tasks. Therefore, all smart health applications in the
reviewed papers have used the supervised learning type for either
regression or classification tasks.

Fig. 14 presents the learning types used in digital twin applica-
tions. In digital twin applications, the supervised learning type ac-
counts for 72% of applications, followed by reinforcement learning
with a rate of 17%. Hybrid form of supervised learning with unsu-
pervised one accounts for 6% of applications while hybrid super-
vised and reinforcement learning applications accounts for 5%.
Digital twin enables simulations of large physical systems and
monitors their processes. Regression and classification tasks are
needed for these processes. For instance, structural damage classi-
fication, load prediction in wind turbines, and oil pipeline risk es-
timation use cases will require these tasks, hence, the supervised
learning type for digital twins account for the majority of applica-
tions in the reviewed papers. Robot simulations have recently
emerged in industrial fields. Training robots with simulations re-
quire reinforcement learning applications since they perform sim-
ulations in the environment of an agent. As shown in Fig. 14,
reinforcement learning applications are relatively low in digital
twin, however, applications are likely to exponentially increase
with future mobile communication networks.

Fig. 15 presents the rate of learning types applied for unmanned
aerial vehicles. Since autonomous decision-making is extremely
crucial for UAVs, reinforcement learning will be the first key en-
abler. Reinforcement learning applications in UAV use cases ac-
count for 50%, while its hybrid application with supervised
learning accounts for 14%. Supervised learning is also noteworthy
in this field and accounts for 27% of applications. Several inspec-
tions, detections, and health monitoring tasks assisted by UAVs
will require regression, classification, and/or segmentation. Super-
vised learning thus follows reinforcement learning in UAV use cas-
es. Fig. 16 presents the total rate of learning types applied.
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Supervised learning applications in the reviewed papers ac-
count for 53%, followed by reinforcement learning with a rate of
35%. The remaining applications are the hybrid learning type
which accounts for 12%. From Fig. 16, the percentage of supervised
learning application is noteworthy. The trial–error learning type,
which is reinforcement learning, also has a prominent position in
applications, and is expected to grow since new technologies will
require intensive autonomous decision-making and optimal con-
trol. Reinforcement learning is the most viable option for this task.

Fig. 17 presents the machine learning deployments in various
use cases. In the figure, DT represents digital twin, SH is smart
health, CS is cyber security, SE is smart energy, and ITS is intelligent
transportation systems. From the aspect of machine learning used
in the reviewed papers, smart energy and UAVs are the first two
leading fields, respectively. This is followed by ITS and digital twin,
both with an equal rate. Smart health and cyber security are two
fields with the least machine learning deployments with respect
to the other fields.

In addition to the use cases of specific learning types, the annual
change of the total use case applications is illustrated in Fig. 18. A
steadily increasing trend is apparent until year 2020, and a surge in
machine learning applications can subsequently be seen. A de-
crease in applications during 2020 may be due to the effect of
the global pandemic. Research is now expected to increase, ex-
ceeding that of year 2021. Papers published for the use cases in
the first quarter of 2023 make promise for ML applications in these
future mobile network-enabled fields. Supervised and reinforce-
ment learning are mostly the prevalent machine learning types de-
ployed, and unsupervised learning is rarely used as compared to
them. This may be due to classification, segmentation, semantic
parsing, regression, prediction, autonomous decision-making, and
determining the optimal strategy are mostly dominant tasks in
the use cases. Finding hidden patterns in data is rare in the use cas-
es, unsupervised learning deployments are thus rare. With the ad-
vancements in IoT by 5G and B5G mobile communication systems,
data volumes will significantly grow, and physical systems will
turn into more cyber physical systems. New problems will emerge
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throughout different fields as well. As a result, the need for intelli-
gent methods will subsequently increase. Innovative algorithmic
developments for new problems may further boost the application
of machine learning throughout various fields. Requirements are
expected to increase in the near future to perform operations in cy-
ber physical systems with better performance. It is apparent that
the literature will consist of numerous machine learning applica-
tions in the near future for various fields enabled by future mobile
communication systems.
4. Challenges of AI and ML applications

Digitalization and big data surges enabled by future mobile
communication systems are transforming individual lives and
business areas. Data obtained from different IoT sources (such as
smart sensors, smartphones, wearable devices, antennas, micro-
controllers, etc.) have been increasing on a daily basis, and physical
systems are evolving into more cyber physical form. Digitalization
is maturing in every aspect of daily life. It is expected that digital-
ization and big data surges will increase as 5G and B5G enabled
technologies become more apparent in the near future. In this dig-
italized environment, machine learning with powerful algorithms
will become a viable option for various application fields, from in-
telligent transportation systems to smart health. However, several
limitations and challenges will emerge when using machine learn-
ing in different applications in general. This section highlights the
limitations, challenges, and several potential solutions of AI andML
applications for different areas.

4.1. Big data

In 5G and B5Gmobile communication systems, the data volume
is expected to exponentially grow with the IoT concept. Machine
learning will reap the benefit of this growth. A subset of deep neu-
ral networks will take advantage of such growth since data volume
expansion will significantly boost their performance throughout
vast applications and across various fields. Big data opens numer-
ous opportunities for the application of machine learning algo-
rithms; however, it will lead to challenges for machine learning
applications. High volume, velocity, variety, and veracity of big
data problems are significant problems that must be resolved
[165].

4.1.1. High volumes of big data
High data volumes may hinder real-time or near real-time per-

formance since it will create issues associated with data volume for
computing all learning types. The use of multiple computers or
processors for the learning process may reduce computational
complexity and memory allocations. Advanced hardware solution-
s, such as graphical processing units (GPUs), tensor processing
units (TPUs), and massively parallel processing (MPP) may help
practitioners by introducing faster computations compared to con-
ventional CPU computations with high data volumes. Hardware-
based machine learning solutions produced by Google [166], IBM
[167], and Stanford [168] may be viable options for the issue of
high data volumes. Since efficiency, real-time, or near real-time
decision-making are critical for several applications due to safety
concerns (such as autonomous self-driving cars), handling high
data volumes with advanced hardware solutions that facilitate
low latency and efficiency in decision-making systems will boost
the performance of machine learning algorithms, and this fact is
not only valid for intelligent transportation systems, but also for
smart energy systems, cyber security, UAVs, etc. System perfor-
mance will be enhanced with real-time decision-making in smart
energy systems and real-time cyber-attack detection in cyber
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physical systems. The performance of UAV operations will in-
crease, boosting the stability of power system management in
smart energy. Thus, integrating machine learning, cloud comput-
ing, fog computing, and mobile edge computing may be viable op-
tions for handling high data volumes according to application
requirements.

4.1.2. Variety of big data
Data variety is another challenge of the big data concept. In fu-

ture mobile communication systems, data collected from different
devices are significant source of big data variety in IoT systems.
Noise, software bugs, human errors, statistical biases, and lack of
data lineage are other sources, and intelligent transportation sys-
tems may be affected from this challenge. The available sensors
may collect structured, semi-structured, or unstructured data.
Thus, data may differ in standardization and distribution, giving
rise to diverse types of data. Such data will likely create challenges
for algorithm deployment since it will require extensive prepro-
cessing before becoming suitable to feed machine learning algo-
rithms. The variety of data may halt efficiency and performance
when applying machine learning algorithms due to problematic in-
put data. A potential solution would be to investigate data repre-
sentations from each data source, then feed the learned features
into models at different levels [165]. This variety of big data poses
challenge for intelligent transportation systems, and it may also
pose risks for cyber-security since it deals with data and their au-
thentication as well. In addition, UAV autonomous decision-
making process with data collected from different sources needs
to be handled efficiently to make robust training for algorithms.

4.1.3. Veracity of big data
Veracity of big data is another issue in the big data concept

since it concerns the accuracy and quality of data. Missing pieces
of information and data inaccuracies may cause machine learning
algorithms to perform poorly. This may subsequently lead to catas-
trophic outcomes in certain cases. For instance, an autonomous
driving system trained by inaccurate data will learn its environ-
ment through inaccurate situations, thereby causing fatal collisions
when implemented. Inaccurate data usage for machine learning
may also be risky in the smart healthcare field. The wrong diagno-
sis of a disease or misclassification of tumors may be dangerous in
healthcare operations. Inaccurate data inclusion to a cyber-attack
detection mechanism will disrupt the detection mechanism, re-
sulting in wrong outcomes. Hence, it is crucial to manage this
problem to improve the decision-making process of machine
learning algorithms. Enacting regulations to prove the authenticity
of data as well as validating standards for relevant application
fields will reduce the risks associated with the veracity of data in
the big data concept. Robust machine learning that facilitates gen-
eralization will further reduce the associated risks. This type of
problem is not only valid and does not pose risks for one use-
case, they are related to each use-case mentioned in the paper with
the same level.

4.1.4. Velocity of big data
Velocity is related to the speed of streaming data and its analy-

sis to produce an outcome. In some cases, static models may fail to
make reliable inference under high velocity of data since they re-
main unchanged during inference and perform their tasks with
learned input data settings. Automatically learning from incoming
data during the inference process may be risky for conventional
machine learning models, resulting in misleading outcomes.
Machine learning algorithms that can adapt to perform online
learning will yield more reliable and robust results in real-time
or near real-time scenarios, which is significant in numerous fields
[169]. Online learning performance is linked to advanced hardware
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solutions for machine learning methods. To resolve this challenge,
online learning and speed issues must be simultaneously consid-
ered in the design process of hardware solutions. The velocity of
big data becomes crucial especially for real-time decision-making
requiring systems. Intelligent transportation systems including
D2D, V2V communications etc., cyber-security systems, smart
grids including several components in their system acting cooper-
atively, UAV systems especially multi-agent UAV ones require han-
dling velocity of big data when real-time decision making is
needed. This challenge is also related to computational burden-
some problem that can be solved with practical lightweight com-
putational hardware for AI and ML methods.

4.2. Robustness of models

In machine learning, acquiring plausible and trustworthy re-
sults will either hinder or boost large-scale deployment of machine
learning algorithms. Robust machine learning models are related
to big data issues in some respect since they are linked to other
challenges, such as security and privacy. Adversarial attacks will
corrupt the performance of machine learning methods. Data poi-
soning, evasion attacks, and model extraction are several adversar-
ial incidents that threaten the performance of machine learning
methods. Data poisoning injects bad data to databases. With this
injection, a machine learning model is adversely affected since it
is trained with corrupted data, thereby producing false and mis-
leading results. Evasion attacks fool a system by concealing content
of malware code or data to evade infiltration into the system.
Model extraction attempts to learn a black box model by extracting
data used for training the model. A targeted model can be learned
and easily replicated with this type of attack. This will subsequent-
ly lead to vulnerability of the model. Hence, several attacks may
pose different risks regarding machine learning types.

Conventional machine learning models use static features and
predefined labels that may be vulnerable to deliberate attacks.
The evasion attacks, that contaminate data in supervised learning,
are difficult to be detected and distinguished will result in unex-
pected outcomes. Poisoned features with evasion attacks will raise
challenges for supervised learning since performance quality will
deteriorate due to the use of low-quality feature sets. Feature se-
lection establishes input–output relation in supervised learning,
hence implementing automated feature selection rather than man-
ual will be a solution for poisoned data. This automated feature se-
lection is useful for high volumes of data since it will save data
processing time. Another solution is to employ data augmentation
to acquire more robust training for deployments. Evasion attacks
may also contain test sample manipulations. Automated feature
selection may not fully hinder the functionality of the manipula-
tion; however, it will reduce the risk to some extent. Addressing
this problem with data security and privacy will produce more
promising results. The vulnerability of unsupervised learning to
adversarial attacks is less when compared to supervised learning.
However, the vulnerability of reinforcement learning is compara-
ble to supervised learning. Trained under several challenging con-
ditions (such as lack of data sanity or injection of faulty data from
sensor readings), agent(s) of reinforcement learning will not per-
form well, hence decision-making in real-time may be misleading.
Adversarial data attacks may also influence decision-making pro-
cess of the agents. For instance, defective data injected to train a re-
inforcement learning agent in an autonomous driving may cause
fatal traffic accidents. This may also be possible for UAV applica-
tions. For smart energy, system stability can be disrupted by such
attacks. An aggressive attack that deceives recognition systems of
intelligent transportation systems may also pose a risk for the en-
tire system by congesting communication between machines and
infrastructures. In the context of reinforcement learning, robust,
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interpretable, fair, responsible, and defensive algorithm utilization
is crucial since autonomous decision-making will significantly in-
fluence different use cases. Ensuring data stability alongside pow-
erfully equipped algorithms will enhance the robustness of
reinforcement learning to combat different types of attacks [23].
Overfitting is a conventional challenge for machine learning mod-
els. Algorithmic solutions (such as adding regularization, batch
normalization, maximum and/or average pooling operations, drop-
out utilizations, several validation dataset strategies, and data aug-
mentation) reasonably address the overfitting challenge since they
strengthen machine learning algorithms.

4.3. Energy and computation costs

Energy requirements and computational cost of hardware solu-
tions are other challenges of machine learning applications. UAV
use-case, cyber security, intelligent transportation system, smart
grids are seen the mostly affected use cases by this challenge when
they use deep learning in particular with large amount of data.
Machine learning algorithms, deep learning, and deep reinforce-
ment learning algorithms, in particular, will use high volumes of
data and high-capacity models. They will subsequently require
high-capacity hardware in the big data era enabled by future mo-
bile communication systems. Smart sensors, smart batteries, trans-
ceiver units, and smart phones will stream tremendous amounts of
data in a short time. Local computations for machine learning algo-
rithms will also consume high energy. Advanced hardware solu-
tions (such as GPUs, TPUs, and MPP units) contribute to the
speed of machine learning algorithms, yet they require high energy
consumption and computational cost. Lightweight hardware solu-
tions that can be placed on any device for the related use-case may
be an option to overcome this challenge in some respect. Energy ef-
ficient hardware solutions for machine learning are considered as
an open challenge. Offloading in mobile edge computing may be
a solution for the energy requirements of machine learning algo-
rithms depending on applications.

4.4. Security and privacy

The challenges and limitations of machine learning applications
in the future mobile communication systems are interrelated is-
sues. Thus, the solutions for these challenges are interrelated as
well. The big data concept transforms every industry, and bringing
novel opportunities. However, concerns will emerge at the same
time as well. Data privacy and security is a hot topic in the big data
concept. This challenge is very crucial for smart health and cyber-
security use cases in particular. Corrupted and unsecure data pro-
cessed by ML and AI techniques may result in catastrophic results
for many use cases. Hence, measurements to provide security and
privacy of data are of significant issues in this sense. This is expect-
ed to gain significance with the expansion of the next generation
networks. In this context, the security and privacy of machine
learning models based on their robustness is another crucial issue.
Poisoned data, adversarial attacks infiltrating databases, clouds,
nodes, and model extractions in the future mobile
communication-enabled systems must be resolved by intelligent,
secure, and reliable solutions. Their effects may otherwise lead to
colossal damage. For instance, untrusted and poisoned data may
trigger false alarms in large scale systems by urging needless oper-
ations, destroying system reliability and sustainability. They may
further affect autonomous driving, disrupt personalized healthcare
services, etc. The adverse effects of poisoned data, cyber-attacks,
and model extractions can be stopped depending on the robust-
ness of the machine learning model applied. Securing data will sig-
nificantly enhance performance of both use case systems and
machine learning models. Integrated solutions of machine learning



Fig. 19. Performance comparison of different neural networks and traditional
learning algorithms with respect to data amount [170].
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robustness and security will yield the most promising results for
any use case application. Blockchain technology based on cryptog-
raphy and data decentralization to ensure trustable transactions
are currently seen viable options for guaranteeing the security
and privacy of data. The integration of blockchain to applied frame-
works is expected to facilitate data security and privacy in 5G and
B5G era.
4.5. Low latency

Real-time or near-real time decision-making may be the most
important issue in several machine learning applications. For in-
stance, UAV positioning in disaster management will require
real-time decision-making. For non-urgent cases, UAV training
Fig. 20. An example of the tr
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and testing will reap benefits of the real-time decision-making
by enhancing performance. Another example of the importance
of the real-time decision-making would be V2I and V2V communi-
cations in intelligent transportation systems. Cyber security sys-
tems also need for low latency in order to perform in an
undisrupted manner. These will require real-time or near real-
time performance using AI and machine learning algorithms.
Hence, this challenge must be addressed for consistent manage-
ment during use cases. Mobile edge computing and fog computing
are two potential solutions for low latency requirements in ma-
chine learning applications assisted by 5G and B5G mobile com-
munication systems. Edge computing enables low latency by
transferring cloud services to intermediate nodes closer to applica-
tion layer(s), thereby reducing the reliance on a cloud network
[23]. However, this solution comes with its own challenge. Data
in a single node will be limited in a centralized network, hence,
the quality of decision-making will be somewhat low in this com-
puting alternative with respect to the cloud network. This is also
valid for fog computing. The trade-off between choosing the right
option depends on use cases.

5. Future research directions

The previous section presented the challenges of applying ma-
chine learning for different use cases along with potential solution-
s. This section highlights several future research directions of AI
and ML applications for the different use cases by considering
the various challenges.

5.1. Deep learning

Deep learning is a subset of neural networks, rather than a
learning type. With the surge in big data enabled by IoT in 5G
and B5G communication systems, powerful hardware (such as
GPUs, TPUs, and MPP units) as well as novel algorithmic develop-
ments (deep learning) have emerged as dominant solutions for
most machine learning application issues. Their sophisticated
ansfer learning process.
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mechanism that resembles the functions of the brain combined
with enormous amounts of data may be the reason behind deep
learning success. Conventional machine learning algorithms per-
form well up to an extent, depending on data amounts, to provide
consistent performance. However, the performance of deep learn-
ing algorithms significantly improves with large amounts of data
[170]. This is showcased in Fig. 19.

After acquiring a set amount of data, the learning of convention-
al learning algorithms will stop since the curve flattens out as
shown in Fig. 19.

Small neural networks, which have a small number of units, lay-
ers, and hyperparameters as compared to conventional algorithms,
perform slightly better in the task of supervised learning, as shown
in Fig. 19 [170], and the relation between large amounts of data
and deep neural network performance can be seen in the same
figure.

Training large neural networks with tremendous amounts of
data will boost their performance. This shows the importance of
acquiring large amounts of data for efficient deep neural networks,
as displayed in the figure. The use of deep learning with big data in
IoT enabled by 5G and B5G mobile communication systems will
produce more promising results for different application fields,
surpassing conventional machine learning algorithms. Throughout
the literature, the benefit of applying deep learning in various
fields is clear. Deep learning is less dependent on hand-crafted fea-
tures since it conducts automatic feature extraction using its inner
mechanism(s), providing end-to-end learning with less domain ex-
pertise required. This feature also makes them attractive for large
scale deployments. Deep learning is also transforming reinforce-
ment learning. Using deep neural networks in reinforcement learn-
ing enhances the performance of reinforcement learning. Sim-to-
real transfer is a significant issue in reinforcement learning since
a reinforcement agent simulates the environment through its
training, then applies it to real-world cases. With the deployment
of deep reinforcement learning, the performance of sim-to-real
transfer will be further enhanced with the support of deep
learning.

5.2. Transfer learning

Transfer learning is a possible solution for machine learning ap-
plications. It is a process that uses knowledge gained as a result of
training process for deep neural networks. The gained knowledge
is then applied to a different but related domain(s). Fig. 20 presents
an example of transfer learning. In the figure, an adaptation of a
deep neural network is trained with the ImageNet dataset to per-
form classification for the Stanford 40 HAR dataset, which is em-
ployed as the transfer learning.

The weights from the pre-trained deep neural network (exclud-
ing the last layer) are transferred for another deep neural network
training. This new network then conducts the classification. Three
major types of transfer learning are present: fixed feature extrac-
tors, fine-tuning, and pre-trained models. In the first case, the last
fully connected layer of deep neural network is removed, and the
remaining part of the network is used for the feature extraction
of a new dataset. In the second case, weights of a pre-trained net-
work are fine-tuned by maintaining backpropagation operations.
In the third case, since training deep learning models is a time-
consuming process, the pre-trained models can be saved by check-
points, and then used for fine-tuning or for the same domain de-
ployment. As seen from the transfer learning types, this strategy
will save time in deep learning applications, and it will further con-
tribute to energy-related solutions as well as reduce the computa-
tional cost of deep learning algorithms. Hence, transfer learning
seems to be a viable option for different application fields with
big data enabled by 5G and B5G mobile communication systems.
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5.3. Federated learning

Federated learning is one of the hot topics in the context of ma-
chine learning. With the wake of 5G and B5G networks, different
devices will use the new mobile network communications for
which low latency, high data rates, and massive and intensive con-
nectivity are significant pillars. IoTs, wearable devices, smart
phones, intelligent machines in plants, machine-to-machine de-
vices are some examples of the devices that will reap the benefits
of these future mobile network systems. In massively connected
devices, the extension of distributed machine learning, federated
learning, gets machine learning and deep learning algorithms
trained on data in the edge devices such as laptops, wearable de-
vices, smart phones, etc. thereby moving the computation in local
that the data generated. As a result of this type of learning, latency
requirement is met, and it also contributes to data privacy and se-
curity. In addition, federated learning does not require to move
data from edge devices to a cloud thereby making computations
with data from different data sources and updating parameters
of machine learning and deep learning in a distributed manner
[171]. With massively deployed smart devices, smart machines,
and IoT systems, it is expected that federated learning use with
the future mobile network systems will mature in the future.
5.4. Blockchain

Massively connected devices have been producing enormous
amount of data, and this amount will also expand in the future mo-
bile networks-enabled systems. In these systems, data privacy and
trust will gain more importance. Hence, this data and privacy issue
needs to be addressed through novel technologies. Blockchain
technology is one of these technologies that may respond to data
privacy and trust issue in the future mobile networks-enabled sys-
tems [171,172]. Deep learning deployment with big data produces
desirable outcomes with respect to conventional machine learning
deployment, however, many deep learning deployments are de-
pendent on centralized servers, and this may result in less reliabil-
ity, security, trust, and, operational transparency [173]. Using these
two immersive technologies, deep learning and blockchain, will
create a synergistical effect in the future mobile networks-
enabled systems in the sense of data privacy and trust with enor-
mous amount of data. Hence, operational efficiency will be boosted
by means of this synergistical efficiency of integrated use of block-
chain and deep learning [173,174].
6. Conclusion

This paper provides a comprehensive assessment of machine
learning applications in various fields enabled by the future mobile
communications-enabled systems. Introductory information on
machine learning types has been presented. Machine learning
types and their groundbreaking evolution are highlighted to pro-
vide further insight. Various use cases of machine learning applica-
tions have been examined. The use cases include intelligent
transportation systems, smart energy, smart healthcare, cyber se-
curity, digital twins, and UAVs. The journal papers that only discuss
such use cases using machine learning algorithms are highlighted
in this paper. A comprehensive summary of the reviewed papers
is provided to elaborate on the machine learning algorithms used
for each use case. The discussion of the papers is further accom-
plished to present the learning types employed in the application
fields. This may assist practitioners for further developing and em-
ploying machine learning algorithms in different fields.

A categorization of the relevant studies is also presented, in-
cluding the years of publication, problem definition, learning types



Table 8 (continued)

Abbreviation Definition

AGI Artificial General Intelligence
ANN Artificial Neural Network
APSIM The Agricultural Production Systems sIMulator
AUC Area Under Curve
B5G Beyond 5th Generation
BS Base Station
CAD Computer Aided Drawing
C-LSTM Centralized Long-Short Term Memory
CNN Convolutional Neural Network
CS Cyber Security
CVD Cardiovascular Disease
D2D Device-to-Device
DBSCAN Density-based Spatial Clustering of Applications with Noise
DBN Deep Belief Network
DDPG Deep Deterministic Policy Gradient
DQN Deep Q Network
DRL Deep Reinforcement Learning
DS2OS Distributed Smart Space Orchestration System
DSAE Deep Stacked Auto-Encoder
DiT Digital Twin
DOF Degree of Freedom
DT Decision Tree
ECG Electrocardiogram
EIoT Energy Internet of Things
ELM Extreme Learning Machine
ESN Echo State Network
GBM Gradient Boosting Method
GPS Global Positional Systems
GRU Gated Recurrent Unit
HAR Human Activity Recognition
IBM International Business Machines
IDPS Intrusion Detection and Prevention System
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and task, and used machine learning algorithm(s). The paper has
also addressed several challenges of different machine learning ap-
plications in the future mobile communications-enabled systems.
The potential solutions for these challenges were discussed accord-
ingly. The paper introduced the necessary future research direc-
tions for upcoming studies as well. Big data management, model
robustness, energy and computation costs, low latency, and securi-
ty and privacy are the highlighted challenges of machine learning
applications for the different fields. Advanced hardware
utilization-based solutions, several algorithmic developments (-
such as automated feature selection, online learning, fair and re-
sponsible model generation, etc.), offloading, mobile edge
computing, fog computing, federated learning, and blockchain
technology are some solutions that address the mentioned chal-
lenges. For future research directions, deep learning is the emerg-
ing field in machine learning. From the computational aspect,
federated learning is considered as a promising solution, and it is
a growing area for future research. With massively collected data
environment, data privacy and security issue is of significant issue.
Hence, blockchain technology combined with deep learning in
enormous amount of data collected environments will possibly
be an emerging area for future research. Supervised learning and
reinforcement learning are the most used learning types in most
of the applications, and they benefit from deep neural networks.
The deployment of deep learning algorithms for different use cases
are expected to exponentially grow with the expansion of big data
and IoT assisted by 5G and B5G mobile communication systems.
Transfer learning is another emerging field in future deployments
of machine learning applications.
IEEE Institute of Electrical and Electronics Engineers
IoMT Internet of Medical Things
IoT Internet of Things
IoV Internet of Vehicles
ISET Irish Smart Energy Trial
ISO Independent System Operator
ITS Intelligent Transportation Systems
eMBB enhanced Mobile Broad Band
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FDI False Data Injection
FRCBM Factored Restricted Conditional Boltzman Machine
GA Genetic Algorithm
GPU Graphical Process Unit
KL Kullbakc-Leibler
KRR Kernel Ridge Regression
kWh kiloWatt/hour
LOS Line-of-Sight
LSTM Long-Short Term Memory
LR Linear Regression
Lg.R Logistic Regression
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
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MARL Multi-agent Reinforcement Learning
MCC Matthew’s Correlation Coefficient
MDMS Manager’s Decision-Making System
MILP Mixed Integer Linear Programming
ML Machine Learning
MLP Multi-layer Perceptron
mMTC Massive Machine Types Communications
MPP Massively Parallel Processing
MRI Magnetic Resonance Imaging
APPENDIX

The abbreviations and acronyms first introduced in the text,
and, for convenience, the list of abbreviations used in this paper
is summarized in Table 8.
Table 8
Summary of abbreviations.

Abbreviation Definition

3-D Three dimensional
3GPP TR 3rd Generation Project Partnership Technical Requirements
5G 5th Generation
A2C Advantage Actor Critic
A3C Asynchronous Advantage Actor Critic
ASD Anomaly Symptom Detection
AI Artificial Intelligence

MRE Mean Relative Error
NAD Network Anomaly Detection
NAR Non-linear Autoregressive
NARXNET Non-linear Autoregressive Network with Exogenous Variable
NY New York
PJM Pennsylvania-Jersey-Maryland
PoI Point of Interest
POMDP Partially Observable Markov Decision Process
PSO Particle Swarm Optimization
RCBM Restricted Conditional Boltzman Machine
R-CNN Regions with Convolutional Neural Network
RF Random Forest
RGB RedGreenBlue
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Table 8 (continued)

Abbreviation Definition

RMSE Root Mean Square Error
RNN Recurrent Neural Network
ROC Received Operator Curve
RoI Region of Interest
RL Reinforcement Learning
SAE Stacked Auto-Encoder
SAF R-CNN Scale Aware Fast R-CNN
SDN Software-Defined Radio
SE Smart Energy
SGCC State Grid Cooperation of China
SH Smart Health
SL Supervised Learning
SVR Support Vector Regression
TCNN Temporal Convolutional Neural Network
TD Temporal Difference
TDD Time Division Duplex
TORCS The Open Race Car Simulator
TPU Tensor Processing Unit
TRPO Trust Region Policy Optimization
UK United Kingdom
US United States
uRLLC Ultra-Reliable and Low-Latency Communication
UAV Unmanned Aerial Vehicle
UL Unsupervised Learning
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
VGG Visual Geometry Group
VIR Variance Interpretation Ratio
VNF Virtual Network Function
VPP Virtual Power Plant
WSN-IoT Wireless Sensor Network Internet of Things
YOLO You Only Look Once
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