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a b s t r a c t

Indoor positioning systems (IPS) based on Wi-Fi fingerprinting have gained significant attention due to
their potential for providing location-based services. Large scale IPS deployments require implementation
of robust, accurate, and fast algorithms. Data analytics assisted algorithms provide positioning accuracy
improvements, however their integration within real-time and scalable solutions significantly depends
on the computational complexity. Therefore, we propose robust and computationally efficient algorithms
for performance enhancements in Wi-Fi fingerprinting-based IPS. A robust radio map algorithm based on
enhanced statistical cluster initialization was designed for efficient indoor environment characterization.
The proposed data filtering algorithm leveraged smart clustering to mitigate real-time data variations.
The designed area classification algorithm was based on smart dual-band data aggregation. We evaluated
the performance of proposed algorithms based on accuracy and computation time. The performance eval-
uations signified accuracy and computational enhancement, in comparison to related benchmark tech-
niques. The data filtering and area classification algorithms required 40% less computation time.
Simultaneously, 14.5% and 36% accuracy improvements were recorded for the area classification and
radio map algorithms respectively. The proposed algorithms have the potential to significantly enhance
IPS performance in a variety of real-time applications, including indoor navigation and asset tracking.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The demanding requirements of contemporary and future
indoor navigation applications, render the Global Positioning Sys-
tem (GPS) based localization, as an inefficient solution (Zafari
et al., 2019; Brena et al., 2017; Din et al., 2018). The demand for
efficient Indoor Positioning Systems (IPS) has become prominent,
with Internet of Things (IoT) emergence (Zafari et al., 2019; Yang
et al., 2021). Robust IPS based tracking systems (Frankó et al.,
2020) are also paramount for the realization of smart factories
(Osterrieder et al., 2020) and smart warehouses (Buntak et al.,
2019). Therefore, innovative IPS dedicated research works are per-
tinent and prevalent (Lin et al., 2023). The ubiquity of Wi-Fi net-
works, promising localization performance, and wide range
applications continue to promote research interest in Wi-Fi finger-
printing based IPS (Bellavista-Parent et al., 2021; Hayward et al.,
2022).

As the application range of Wi-Fi fingerprinting based IPS is
wide, enhanced robustness and system performance are impera-
tive for future solutions (Shang and Wang, 2022). In order to facil-
itate large scale deployments, it is necessary to design real-time
and scalable fingerprinting algorithms. Radio map construction
and area classification algorithms designed for computational effi-
ciency, degrade localization accuracy (Torres-Sospedra et al.,
2022). The incurred inaccuracy in the constructed radio map, is
mainly due to inadequate characterization of temporal variations
in Received Signal Strength Identifier (RSSI) data. Robust area clas-
sification relies on the efficiency of area partitioning stage. The
robustness however, is limited by the random cluster initialization
of the area partitioning algorithm (Zhang et al., 2020). Data filter-
ing algorithms provide accuracy enhancement by statistical condi-
tioning of real-time samples. Although the conventional data filters
are computationally efficient, their robustness to multipath varia-
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tions is inadequate for future applications (Koledoye et al., 2018).
On the other hand, adaptive gaussian and clustering based filtering
algorithms provide robust accuracy, at the cost of high computa-
tional complexity (Yang et al., 2020; Shi et al., 2020). Therefore, fin-
gerprinting algorithm designs that incorporate robustness,
accuracy, and computational cost are integral for implementation
of efficient future systems.

In this paper, we address the aforementioned gap by designing
robust, computationally efficient algorithms for real-time and scal-
able Wi-Fi fingerprinting based IPS. The algorithms are designed to
enhance accuracy and computational efficiency, thereby providing
robust solutions for real-time IPS implementation. Firstly, robust
indoor environment characterization is ensured by generation of
accurate radio maps. The characterization is leveraged by statisti-
cal clustering of Received Signal Strength Identifier (RSSI) data.
Secondly, the filtering algorithm efficiently estimates appropriate
RSSI from real-time data. Computational enhancement is ensured
by statistics driven, smart execution of the computation intensive
k-means clustering based data filtering. Lastly, the proposed area
classification algorithm, performs rigorous offline analysis, to
smartly partition the environment into appropriate sub-areas. In
the online stage, classification is completed by intelligent dual-
band RSSI data aggregation. Due to the modular design of the algo-
rithms, IPS realizations or deployments can select subsets of pro-
posed algorithms, as per application and system requirements.
The important contributions of our presented work are summa-
rized as:

� A set of smart, modular algorithms that enhance accuracy and
computational efficiency of Wi-Fi fingerprinting based IPS.
� Development of a radio map construction algorithm–Statistical
Clustered Radio Map (SCRM), to improve positioning accuracy.
� Introduction of the Statistically Enhanced RSSI Clustering
(SERC) data filtering algorithm, for computational enhancement
without accuracy compromise.
� Development of the Dual-Band Area Classification (DBAC) algo-
rithm, that simultaneously enhances accuracy, and computa-
tional efficiency.

The remainder of this paper is organized as follows. In Section 2,
related fingerprinting algorithms, designed for IPS performance
enhancement are reviewed. Section 3 explains the design method-
ology, and Section 4 reports the performance evaluation of pro-
posed algorithms. The main conclusions of this work are finally
discussed in Section 5.
2. Related works

The demand of accurate and robust Location Based Services
(LBS), continues to foster enhanced positioning IPS techniques
(Xie et al., 2022a; Biswas et al., 2023; Zhang et al., 2023). Perfor-
mance enhancement of fingerprinting based IPS requires robust
algorithms including radio map construction, data filtering, and
area classification algorithms (Roy and Chowdhury, 2021; Roy
and Chowdhury, 2022). Radio map construction algorithms are
required to create maps of radio signal characteristics within an
indoor environment. The target of such algorithms is to generate
a robust radio map that assists the positioning algorithm to esti-
mate real-time location with high accuracy. Conventional algo-
rithms store one sample per Reference Point (RP), using mean or
median sampling (Jung et al., 2017). The traditional algorithms
assist low computational positioning, however high errors are
incurred in multipath conditions. A fingerprint clustering based
algorithm was proposed as a robust solution with improved accu-
racy over conventional algorithms (Wang et al., 2019). The perfor-
2

mance degradation in areas with weak or variable signal strengths
however is not completely addressed. Clustering was utilized to
generate smaller radio maps and reduce computation time of
online positioning (Torres-Sospedra et al., 2022). Reducing the
radio map size however has an adverse impact on accuracy. Gaus-
sian Process Regression (GPR) based radio map construction algo-
rithms were proposed to generate radio maps with minimal data
acquisition (Zou et al., 2017; Huang et al., 2019). GPR based algo-
rithms provide a solution for small datasets, however they are con-
fronted with challenges of significant performance degradation in
large environments. Dual-band Wi-Fi data were incorporated in
the radio map to achieve higher accuracy than single band data
(Yiu et al., 2017). Multiple samples per RP in the radio map, also
increased localization accuracy (Huang et al., 2021). However,
incorporation of multi-sample, dual-band data in radio map con-
struction is not addressed. A precise Dual-Band Radio Map (DBRM)
algorithm, stored multiple dual-band Wi-Fi samples MAC-wise, in
the radio map (Ozdemir and Ceylan, 2020). Robustness of DBRM is
although restrained due to inadequate characterization of tempo-
ral variations.

Data filtering algorithms estimate the appropriate RSSI value
over multiple real-time samples, to provide clean data required
for high accuracy localization, by the positioning algorithm. The
performance of conventional, computationally efficient windowed
filters was analyzed by (Koledoye et al., 2018). Evaluated filtering
algorithms included moving average, moving exponential average,
and moving median. The data filters showed performance
improvement in comparison to using raw RSSI data. However,
large window size requirement for improved accuracy and
degraded performance in non line of sight scenario, restrict robust-
ness of the algorithms in multipath conditions. The moving win-
dow approach is also a computationally efficient solution in
tracking scenarios (Hu and Hu, 2023). The Savitzky-Golay filter
was proposed as an efficient digital filter capable of smoothing
non-linear, noisy input data (Krishnan and Seelamantula, 2013).
The sensitivity of Savitzky-Golay filter to outliers in RSSI data how-
ever, is known to degrade accuracy of location estimations. The
gaussian filtering algorithm was applied on real-time RSSI data
to improve accuracy (Yang et al., 2020). The matrix convolution
within the algorithm however, significantly increases computa-
tional complexity in high dimensional data scenarios usually
incurred by large environments. The Isolation Forest algorithm, fil-
tered RSSI data by anomaly detection (Guo et al., 2021). The filter-
ing algorithm lacks adaptation to real-time variations, since it
relies on offline training. The RSSI Clustering (RC) filter, proposed
k-means clustering with smart cluster initialization, to remove
outliers in successive RSSI samples (Shi et al., 2020). The RC filter-
ing algorithm significantly outperforms conventional algorithms,
in terms of accuracy. Due to the clustering process however, the
algorithm is considerably computationally intensive.

Area classification algorithms are conveniently implemented in
two stages. In the offline stage area partitioning of the indoor envi-
ronment is performed. Area classification is completed in the
online stage by estimation of sub-area as per real-time data.
Finally, the positioning algorithm has only to search within the
sub-area for final location estimate. Area partitioning was imple-
mented by sub-area definition according to data similarity in terms
of euclidean space (Wang et al., 2015). The proposed area classifi-
cation algorithmwas based on gradient descent search among pos-
sible sub-areas. The area partitioning according to data similarity
does not effectively deal with overlapping areas. Also the iterative
nature of gradient descent based area classification incurs added
computational complexity. Area partitioning based on k-means
clustering, and Bayes theorem for area classification were proposed
by (Zhang et al., 2020). The performance of area classification how-
ever, is significantly dependent on the cluster initialization of the
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unsupervised k-means clustering based area partitioning. The MAX
algorithm partitioned the environment according to Access Points
(APs) with highest RSSI. The MAX area classification was based on
sorting real-time RSSIs from all detected APs (Xie et al., 2022b).
Although the proposed algorithm is computationally efficient, yet
area partitioning based on one AP per sub-area limits the position-
ing accuracy in multipath scenarios. Partitioning of rooms into two
halves was proposed in (Biswas et al., 2023). The area classification
was performed by selecting the half, that provided highest sum of
RSSI probabilities. The partitioning scheme however lacks adapt-
ability to smaller or larger environments where two segment par-
titioning could be an over-fit or under-fit solution.

In order to efficiently address the requirements of real-time and
scalable, future IPS solutions, algorithms necessarily have to be
designed for simultaneous accuracy and computational
enhancements.

3. Materials and methods

In order to enhance the performance of indoor positioning sys-
tems, robust fingerprinting algorithms are proposed in this paper.
Firstly, a radio map construction algorithm is devised to enhance
accuracy. A data filtering algorithm that reduces computational
complexity without accuracy compromise is also designed. Lastly,
an area classification algorithm that jointly enhances accuracy and
computational efficiency is proposed. All proposed algorithms are
Fig. 1. Flowchart representat
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formulated and detailed in this section. The algorithm designs
are also analyzed from the scalability perspective. Specifically,
the capability to handle demanding computational requirements
of large-scale deployment is discussed. Algorithm design and
methodology details are preceded by introduction of the proposed
system and dataset utilized for performance evaluations.

3.1. The proposed system

The proposed system integrates robust and efficient radio map
construction, data filtering, and area classification algorithms for
performance enhancement of fingerprinting based IPS. The modu-
lar design of proposed algorithms facilitates their incorporation
within conventional fingerprinting solutions, in addition to form-
ing the integrated system. Fig. 1 illustrates the proposed system
architecture in the form of a flowchart.

In the offline phase, a radio map is constructed by leveraging k-
means clustering with smart cluster initialization. The initializa-
tion is based on quantile estimation of sample windows containing
equal number of RSSI samples. Using the radio map, further area
partitioning is performed in the offline phase. The indoor environ-
ment is divided into labeled sub-areas defined by locations having
common three strongest Access Points (APs). The online phase is
initiated by calculating the standard deviation (r) of m samples
from the same Wi-Fi MAC. A low r value indicates lower noise
and mean filtering is performed in such scenario. A substantially
ion of proposed system.



A. Abdullah, O.A. Aziz, R.A. Rashid et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101696
high r value represents high variations and outliers. In this case,
mean of four central sorted samples is used as filtered output. If
r is between the threshold values, k-means clustering is executed
using three clusters (Shi et al., 2020). The center of middle cluster
is the filter output in this situation. Next, the filtered data are
aggregated according to area partitions. The partition correspond-
ing to highest aggregation is declared as classified area. Finally, the
positioning algorithm estimates the location by searching within
the identified area only. Prior to detailed explanation of algorithm
design methodologies in Sections 3.4–3.6, details of the utilized
dataset are described.
3.2. Dataset and indoor environment

Prior to description of the indoor environment and correspond-
ing dataset utilized in this work, we detail the data requirements
for implementation and evaluation of designed algorithms. As
the proposed radio map construction algorithm is designed to sta-
tistically incorporate RSSI variations, extensive raw training data
corresponding to several minutes of data per location, are required.
Similarly the filtering algorithm requires extensive test data to
evaluate the performance of RSSI variations mitigation. Further-
more, the area classification algorithm is designed for dual-band
Wi-Fi environments. For robustness assessment, evaluations in
multi-floor, multi-building scenarios are recommended (Roy and
Chowdhury, 2022). In order to implement and evaluate the algo-
rithms, this work utilized the UTMInDualSymFi dataset (Abdullah
et al., 2022). The dataset is a comprehensive source of dual-band
Wi-Fi data acquired at multi-building environments. Data corre-
sponding to several consecutive minutes of acquisition per refer-
ence and test locations are provided in the dataset. The data is
far more extensive than other multi-building datasets (Torres-
Sospedra et al., 2014; Lohan et al., 2021), that provide few seconds
of training data and only one sample per test location. Further-
more, the two mentioned datasets do not contain dual-band Wi-
Fi data. Therefore, the utilization of these datasets, for implemen-
tation of the proposed radio map construction, data filtering, and
area classification algorithms is not practicable. The UTMInDual-
SymFi dataset promotes high accuracy positioning due to availabil-
ity of dual-band data collected at a high resolution of 1 m
Reference Point (RP) spacing (Ozdemir and Ceylan, 2020; Obeidat
et al., 2021). Furthermore, perfect network device homogeneity
ensured wireless hotspots interference-free, Wi-Fi data within
the dataset. The dataset also assists device heterogeneity evalua-
tions by providing individual as well as merged data of two
devices. Complete details of the dataset are available in the data
descriptor (Abdullah et al., 2023). Other pertinent details of data
provided in the dataset are summarized in Table 1.
3.3. Wi-Fi RSSI data formulation

Firstly, we define the notation convention adopted in this work.
Matrices are denoted with uppercase bold symbols (e.g., X). Lower
case bold symbols represent vectors (e.g., x). Scalars are repre-
sented by lower case italic symbols (e.g., x). We also adopt the typ-
ical terminologies of indoor fingerprinting positioning, in which, a
Table 1
Summary of utilized dataset features.

Building Floors Wings Total
MACs

Training
samples

Test
samples

CX1 2 4 71 58,760 48,216
F04 2 6 64 54,240 41,333

4

Reference Point (RP), refers to a position with known location. Test
Point (TP), is an unknown location that is to be estimated by the
positioning algorithm using a constructed radio map.

The radio maps, training and test datasets contain two-
dimensional Wi-Fi RSSI data, and therefore are represented as
matrices. Hence RM;TR and TS denote the radio map, training
and test data respectively of a specific building. A single rowwithin
the matrices, constitutes one training/test/radio map sample.
There are r RPs, t TPs, and m MACS within the data of considered
building. The radio map contains s samples of each RP, and there-
fore RM is a, rs�m matrix. In the training data, at RP a, there are
nðaÞ samples. The total samples within TR are nðrÞ, such that

nðrÞ ¼
Xr

i¼1
nðiÞ ð1Þ

Similarly, the total samples within TS are nðtÞ, such that

nðtÞ ¼
Xt

i¼1
nðiÞ ð2Þ

Eqs. (1) and (2) cater the scenario of unequal number of samples at
RPs and TPs respectively. From Eqs. (1) and (2), TR is formulated as
a, nðrÞ �m matrix, and TS is a, nðtÞ �m matrix. TR is defined as
TR ¼ TR1 TR2 . . . TRr½ �T , where TRx is the training data at RP-x,

and is defined as TRx ¼ trx;1 trx;2 . . . trx;nðxÞ
� �T

; 1 6 x 6 r. The vectors
within TRx, denote one complete sample and are defined as
trx;a ¼ fax;1;a ax;2;a . . . ax;m;ag; 1 6 a 6 nðaÞ, where ax;p;q is the RSSI
(in dBm), at RP-x of MAC-p, in the q-th sample. By the same formu-

lation TS ¼ TS1 TS2 . . . TSt½ �T ; TSy ¼ tsy;1 tsy;2 . . . tsy;nðyÞ
� �T

; 1 6
y 6 t ; tsy;b ¼ fby;1;b by;2;b . . . by;m;bg ; 1 6 b 6 nðbÞ, where by;p;q is the
RSSI (in dBm), at TP-y of MAC-p, in the q-th sample. Also,

RM ¼ RM1RM2 . . . RMr½ �T ; RMz ¼ rmz;1 rmz;2 . . . rmz;s½ �T ; 1 6
z 6 r ; rmz;c ¼ fcz;1;c cz;2;c . . . cz;m;cg ; 1 6 c 6 s, where cz;p;q is the
RSSI (in dBm), at RP-z of MAC-p, in the q-th sample of radio
map. We also define MAC-wise vectors, that comprise data of a
specific MAC. Formally, trmx;d ¼ fax;d;1 ax;d;2 . . . ax;d;nðxÞ gT ; tsmy;e ¼
fby;e;1 by;e;2 . . . by;e;nðyÞ gT ; rmmz;f ¼ fcz;f ;1 cz;f ;2 . . . cz;f ;sgT ; 1 6 d 6 m ;

1 6 e 6 m ; 1 6 f 6 m. For practical implementations the TP labels
are not used with test data, but are required for results verification.
3.4. Statistical Clustered Radio Map (SCRM) Algorithm

The proposed radio map construction algorithm–SCRM, statisti-
cally extracts RSSI data from recorded training samples, to achieve
improved characterization of the wireless network. The algorithm
is based on k-means clustering with enhanced statistical cluster
initialization. Specifically, the cluster centers are initialized based
on quantile estimation using a subset of RSSI samples, received
from the same AP/MAC. The samples are clustered in three clusters
(lower, middle, higher values), and the center of middle cluster is
stored into the radio map. SCRM algorithm generates the radio
map RM, from training data TR, of each building. The implementa-
tion schematic of SCRM within Wi-Fi fingerprinting based IPS is
illustrated in Fig. 2.

The SCRM algorithm is initialized by arranging samples of each
RP into s windows, each having sw ¼ bnðxÞ � sc samples. Essentially
the data in TRx are divided in sample windows. Depending on the
implementation scheme, MAC-wise data available in trmx;a can
also be readily utilized. From each window one RSSI value, repre-
sentative of the data is appended to the rmw vector, which even-
tually is incorporated in the final radio map RM. The sw RSSI
samples are sorted in ascending order and denoted as sd. The



Algorithm 1. SCRM algorithm pseudocode

Fig. 2. SCRM implementation within Wi-Fi fingerprinting based IPS.
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quantile of each sorted sample is estimated by forming qts, as in
Eq. (3).

qts ¼ 0:5
sw

;
1:5
sw

;
2:5
sw

; . . .
ðsw� 0:5Þ

sw

� �
ð3Þ

To statistically cluster the data in three clusters, the 15th, 45th,
and 85th quantile samples are used as initial cluster centers. The
selected quantile values are utilized (a) to target consistent cluster-
ing performance by non-random initialization, (b) to provide rea-
sonable distance between adjacent cluster centers and (c) define
the middle cluster with widest range. Cluster initialization with
other similar quantile values that meet the defined criteria, can
also be readily used due to the iterative and convergence proper-
ties of clustering. To estimate the desired quantiles from qts, firstly
qt is defined as qt ¼ f0:15;0:45;0:85g. The sample indices closest
to the required quantiles are calculated using Eq. (4).
Require: r; s; m; TR; TR – fg; r > 0; s > 0; m > 0 .(Section 3.3)
1: k 3
2: RM fg
3: for x ¼ 1 tor do .(for each RP)
4: sw bnðxÞ � sc .# samples in a window, integer division
5: RMP fg
6: for i ¼ 1 tom do .(for each MAC)
7: rmw fg
8: dtm trmx;i .(data at RP-x, MAC-i)
9: for w ¼ 1 tos do .(for each window)
10: fs  nw� ðw� 1Þ þ 1
11: data  fdtm½fs�; dtm½fsþ 1�; . . . ; dtm½fsþ sw� 1�g
12: sd sortðdataÞ; qts f0:5sw ; 1:5sw ; . . . ðsw�0:5Þsw g
13: id1 arg minðqnts� 0:15Þ; id2 arg minðqnts� 0:45Þ
14: id3 arg minðqnts� 0:85Þ; cint fsd½id1�;sd½id2�;sd½id3�g
15: cfin kmeansðdata; k; cintÞ .(cint–initial cluster centers)

16: rmw frmw; cfin½2�gT
17: end for
18: RMP RMP rmw½ �
19: end for
20: RMx  RMP
21: end for
idi ¼ argmin
i

qti 8i ¼ f1;2;3g ð4Þ

where qti ¼ qts� qtðiÞPsw
j¼1f1g; 1 6 i 6 3. The initial cluster centers

are subsequently calculated as in Eq. (5).
5

cinti ¼ sdðidiÞ 8i ¼ f1;2;3g ð5Þ

Using the cluster centers, k-means clustering is applied to the RSSI
data. The center of second (middle) cluster is added to rmw. The
entire process is repeated for data of all windows, of all MACs, at
all RPs.

The SCRM design facilitates scalable implementation, with the
parameter s. Leveraging a lower value of s would construct a smal-
ler radio map, thereby enhancing scalability prospect. Construction
of a manageable radio map could however compromise accuracy.
From the design perspective it is asserted that, SCRM supports scal-
ability. The pseduocode of proposed SCRM algorithm is given in
Algorithm 1.
3.5. Statistically Enhanced RSSI Clustering (SERC) Algorithm

The proposed data filtering algorithm–SERC, efficiently esti-
mates the appropriate RSSI from multiple samples of real-time



Require
m; dlow; dhigh; m > 0; dlow > 0; dhigh > 0 .(Section 3.3)

1: TST m consecutive test samples
.(TST is a m�m; matrix)

2: km  3
3: for i ¼ 1 tom do .(for each MAC)

4: tstmi ¼ fq1;i;q2;i; . . . ;qm;igT
5: sdi  sortðtstmiÞ
6: ri  stdevðtstmiÞ .(Eq. (7))
7: if ri < dlow then
8: q̂i  meanðdataÞ
9: else
10: if ri > dhigh then
11: cs  b0:5ðm� 2Þc
12: q̂i  1

4

Pcsþ3
j¼cs sdiðjÞ

13: else
14: dc minðdataÞ; nc meanðdataÞ; ic maxðdataÞ
15: cint  fdc;nc; icg
16: cf  kmeansðdata; k; cintÞ .(cint–initial cluster

centers)
17: q̂i  cf ½2�
18: end if
19: end if
20: end for
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varying data. The algorithm is an improved version of the RSSI
Clustering (RC) data filter (Shi et al., 2020). Since the RC filtering
algorithm is based on the computationally intensive k-means clus-
tering, the proposed enhancements are specifically targeted to
reduce computational cost with negligible accuracy compromise.
The performance enhancements are manifested by smart execu-
tion of the clustering process. Fig. 3 shows the implementation
scheme to incorporate the SERC algorithm within Wi-Fi finger-
printing based IPS.

We denote that the SERC algorithm filters out one RSSI value q̂a

(MAC-a) per MAC, from m consecutive received samples i.e, TST,
which is defined in Eq. (6).

TST ¼
q1;1 q1;2 . . . q1;m

..

. ..
.

. . . ..
.

qm;1 qm;2 . . . qm;m

2
664

3
775 ð6Þ

where, qa;b is the RSSI of MAC-b in the a-th received test sample.
The TST data are essentially any m consecutive samples within the
building test data TS, excluding the TP labels. As suggested in (Shi
et al., 2020), the value of m is considered in the range 10 6 m 6 60.
From Eq. (6), the data of any MAC-i form the vector
tstmi ¼ fq1;i;q2;i;qm;igT . Firstly the standard deviation is calculated
as per Eq. (7).

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1
ðqj;i � liÞ2

m

vuuuut
1 6 i 6 m ð7Þ

where li ¼ 1=m
Pm

j¼1qj;i ; 1 6 i 6 m. The samples of tstmi are then
sorted in ascending order, denoted as sdi. We define two parametric
thresholds dlow; dhigh that control the execution of clustering process
for filtering RSSI data. If ri is lower than dlow, clustering is by-passed
and li is declared as filter output. Setting dlow to a low value would
signify that in case of low variations in RSSI, SERC simplifies to the
mean filter. If ri is higher than dhigh, this suggests very high varia-
tions in RSSI. In this scenario, mean of four central samples in sdi

is declared the filter output. The clustering procedure is avoided
in this case also, due to the fact that high variations and outliers
would significantly degrade clustering performance. The clustering
algorithm is executed when dlow 6 ri 6 dhigh. Cluster initialization as
adopted in (Shi et al., 2020) is followed. Three clusters with initial
values of cint ¼ fminðtstmiÞ;li;maxðtstmiÞg are used for clustering
of data in tstmi. The output cluster centers are denoted as the vec-
tor cf, and cfð2Þ is taken as q̂i. The SERC output according to para-
metric conditions is also described in Eq. (8).

q̂i ¼

li ri < dlow

1
4

Xcsþ3
j¼cs

sdiðjÞ ri > dhigh

cfð2Þ otherwise

8>>>><
>>>>:

ð8Þ
Fig. 3. SERC implementation within Wi-Fi fingerprinting based IPS.

6

where, cs ¼ b0:5ðm� 2Þc and cfð2Þ is the center of middle cluster
after application of k-means clustering with km ¼ 3. It must be
noted that generally the number of clusters in k-means algorithm
is denoted by k. In this paper, we used km instead, in order to differ-
entiate from the k parameter in k-Nearest Neighbors (kNN) algo-
rithm, which was used as the benchmark positioning algorithm.
In order to effectively implement SERC filtering in real-time track-
ing applications, the algorithm could be readily implemented by
using moving windows of m latest RSSI samples. An initial (one
time) delay, equivalent to acquisition time of m samples would be
incurred to estimate the initial position. Subsequent filtered data
would be available at each current sample. To ensure accurate
tracking, the initial position is recommended to be estimated in sta-
tic condition.

From the scalability perspective, utilizing the same m value
would ensure consistent filtering performance and comparable
computational requirement. In a large-scale environment, the total
non-detected sources would significantly increase. Due to the
smart clustering execution within SERC, the undetected sources
would be efficiently catered with mean filtering. Essentially, in a
scaled scenario the proportion of mean filter execution would be
higher as compared to non-scaled conditions. Therefore, the scala-
bility of SERC data filtering approach is duly asserted. The pse-
duocode of SERC is reported as Algorithm 2.

Algorithm 2. SERC algorithm pseudocode
3.6. Dual Band Area Classification (DBAC) Algorithm

The proposed area classification algorithm–DBAC efficiently
classifies real-time input samples to labeled sub-areas of the entire
environment. The DBAC is implemented in offline and online
stages. In the offline phase, area partitioning according to three
strongest APs, is performed. In the online phase, RSSIs of dual-
band APs are aggregated potential area partitions-wise. Among
the partitions, the one with highest aggregated RSSI is classified
as the final output. Consequently, the positioning algorithm has



Require RM; dar
A fg; Ar fg; AR fg; agg
 fg; cnt fg; act  0; uct  0
procedure OFFLINE STAGE

for x ¼ 1 tor do
for i ¼ 1 tos do
idxi  argsortðrmx;iÞ
Ax�i  fidxi½1�; idxi½2�; idxi½3�g

end for
end for
for p ¼ 1 tors do
for q ¼ 1 to i do
if Ap ¼¼ Aq then
cnt½q� þ þ; break

end if
if p ¼¼ q then
act þþ; Aract  Ap

end if
end for

end for
for y ¼ 1 toact do
if cnt½y� > dar then
uct þþ; ARuct  Ary

end if
end for end procedure

procedure ONLINE STAGE

for u ¼ 1 touct do

agg½u�  P3
z¼1ts½ARu½z��

if u > 1 then
if agg½u� > agg½/a� then
/a  u

end if
else
/a  u

end if
end for end procedure
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to search only within the classified area partition, for final location
estimation. The methodology to implement the proposed DBAC
algorithm within Wi-Fi fingerprinting based IPS, is illustrated in
Fig. 4.

In the offline stage, firstly the matrix A is formed. Using the
radio map RM, the RSSIs within rmx;i are sorted in ascending order.
The first three indices of the sorted data, (corresponding to AP/
MAC number) are recorded in A, as given in Eq. (9) and (10).

idxi ¼ argsortðrmx;iÞ 1 6 x 6 r; 1 6 i 6 s ð9Þ

Ax�i ¼ fidxi½1�; idxi½2�; idxi½3�g 1 6 x 6 r; 1 6 i 6 s ð10Þ
From A, all unique rows are found and recorded as Ar. The occur-
rence of each unique row is also calculated and stored in cnt. Using
Ar the final matrix AR is extracted by applying the threshold dar as
shown in Eq. (11).

ARi ¼ Ary cntðyÞ > dar
U ðdiscardÞ otherwise

�
ð11Þ

where U represents an empty vector, and signifies discarding of
potential areas according to set threshold. Also, 1 6 y 6 act and
1 6 i 6 uct. Essentially, AR groups locations at which the three
strongest APs are the same, to a common labeled area. Leveraging
three strongest APs has also been proposed in (Moreira et al.,
2015). The DBAC area partitioning, additionally handles the dual-
band Wi-Fi APs scenario. To incorporate the dual-band situation,
APs are identified using MACs of both bands. Area partitioning using
only the strongest AP (Xie et al., 2022b) suffers accuracy degrada-
tion in multipath conditions due to inefficient resolution of, loca-
tions at boundaries of multiple sub-areas. Using three highest
RSSI APs rather than one, defines sub-areas with more distinct
boundaries and reduces the possibility of nearby locations being
grouped/classified to different areas (Le Dortz et al., 2012; Peng
et al., 2020). Partitioning based on more than three APs, would fur-
ther decrease classification of close proximity locations to different
areas, at the cost of increased computations in the online phase
(Obeidat et al., 2021).

In the online phase, the area classification of real-time input
vector ts, is accomplished by aggregating the dual-band RSSIs
according to AR. The aggregation is given in Eq. (12).

aggu ¼
X3
z¼1

ts½ARu½z�� 1 6 u 6 uct ð12Þ

The area corresponding to highest aggregated RSSI is declared
as the classified area, as given in Eq. (13).

/a ¼ argmax
u

aggu 8u ¼ f1;2;3; . . . ; uctg ð13Þ

Since the three strongest APs based area partitioning, is aptly
implementable under large-scale conditions, the formed area par-
tition sizes would be comparable to the non-scaled scenario. Con-
sequently, the required computations for the positioning algorithm
Fig. 4. DBAC implementation method w
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would also be similar in both scenarios. Therefore, the scalability of
DBAC algorithm is manifested. The pseduocode of DBAC is pro-
vided as Algorithm 3.

Algorithm 3. DBAC algorithm pseudocode
4. Results and discussion

This section details the performance evaluations of proposed
algorithms, in comparison to state-of-the-art benchmarks. To
ensure comprehensive evaluations, performance was measured
in terms of accuracy and computation time. Algorithms that are
ithin Wi-Fi fingerprinting based IPS.
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implemented in offline phase of fingerprinting positioning were
only evaluated by accuracy. The three metrics used for perfor-
mance evaluations are described below.

i. Classification accuracy: The percentage of correct floor and
wing classification by the positioning algorithm.

ii. Positioning error: The 75th percentile of the positioning
errors in meters. The same metric was adopted in (Torres-
Sospedra et al., 2018; Mendoza-Silva et al., 2018) and
encouraged for fair comparisons.

iii. Computational time: The time in seconds taken for execu-
tion on the same computing platform.

The proposed algorithms were evaluated using data of two
buildings CX1 and F04. Furthermore, device wise evaluations were
also performed in order to fairly incorporate device heterogeneity
scenario. Throughout this section, ‘Device 1’ and ‘Device 2’, refer to
the scenario that only test samples and radio map of the corre-
sponding device were used. ‘Device 1&2’ refers to the scenario that
all test samples and merged radio map (i.e. device heterogeneity)
was utilized. The performance evaluations were implemented in
MATLAB� on a 3.6 GHz Intel� CoreTM i7 work station with 16 GB
RAM. The schematics depicted in Figs. 2–4, were implemented
for the performance evaluations. The values of internal parameters
used within implementation of each proposed algorithm, are
reported in Table 2.

The parametric selections were determined by one of the fol-
lowing criteria/methods:

i. To ensure fair comparisons, parameter values as used in
comparative benchmark algorithms were adopted. There-
fore the values of m; km, and s were set to same values as in
corresponding benchmark algorithms.
Table 3
Classification accuracy using radio maps generated by SCRM algorithm in building CX1. k

Device Classifi

k ¼ 3

Mean DBRM SCRM Mean

1 99.6 99.8 99.9 99.5
2 99.4 99.6 99.8 99.0

1 & 2 99.5 99.7 99.8 99.1

Table 4
Classification accuracy using radio maps generated by SCRM algorithm in building F04. kN

Device Classifi

k ¼ 3

Mean DBRM SCRM Mean

1 89.2 90.8 91.3 90.8
2 97.5 98.7 99.3 99.2

1 & 2 94.8 95.1 95.8 94.6

Table 2
Internal parameter values used for implementation and performance evaluation of
proposed algorithms.

Algorithm Parameter Value

SERC m 10
km 3
dlow 1.5 dB
dhigh 7.5 dB

SCRM s 3
km 3

DBAC dar 15
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ii. Selection of values from a suitable range, that optimized per-
formance in terms of accuracy and computational cost.
Values of the thresholds dar; dlow, and dhigh were therefore
determined by this method.

4.1. Benchmark positioning algorithm

The proposed fingerprinting algorithms were devised for per-
formance optimization of indoor positioning systems, and had to
be implemented along with a benchmark positioning algorithm.
The algorithms were therefore implemented along with the k-
Nearest Neighbors (kNN)-based positioning algorithm (Mendoza-
Silva et al., 2018). It is widely used as a benchmark in fingerprint-
ing IPS (Rojo et al., 2019; Retscher, 2020). Furthermore, the bench-
mark accuracy of UTMInDualSymFi dataset was also determined
using the same algorithm. All internal parameters of kNN as
adopted in (Abdullah et al., 2023), were replicated for the
evaluations.

4.2. SCRM performance evaluation

The performance of SCRM algorithm was evaluated in compar-
ison to the Dual-Band Radio Map (DBRM) construction technique
proposed by (Ozdemir and Ceylan, 2020), and the performance
baselines established of the dataset (Abdullah et al., 2023). Since
radio map algorithms are implemented in the offline phase of fin-
gerprinting IPS, the computational evaluations were not per-
formed. The classification accuracy achieved with SCRM in CX1
and F04 buildings are respectively given in Tables 3 and 4.

The dataset baselines are reported for a conventional mean
sampling algorithm. In building CX1 the baseline classification
accuracy was 99% or higher. Despite the very high baseline, the
performance of DBRM (Ozdemir and Ceylan, 2020) and SCRM gen-
erated radio maps were better than the baseline, across all values
of k. Similarly in building F04, DBRM and SCRM recorded higher
accuracy than the baseline, across all tested values of k for all
device scenarios. Therefore, in statistical terms, classification per-
formance of DBRM and SCRMwas better than the established base-
line. The recorded results also proved the marginal classification
enhancement shown by SCRM in comparison to DBRM. Through-
out the multi-scenario evaluations, corresponding to various build-
ings, devices, and k values, the classification improvement
achieved by SCRM over DBRM was 0.1% to 1.7%. Evaluations from
NN-based classification results are reported for various values of k.

cation accuracy (%)

k ¼ 5 k ¼ 7

DBRM SCRM Mean DBRM SCRM

99.8 99.9 99.6 99.8 99.9
99.2 99.7 99.5 99.6 99.8
99.6 99.9 99.2 99.5 99.7

N-based classification results are reported for various values of k.

cation accuracy (%)

k ¼ 5 k ¼ 7

DBRM SCRM Mean DBRM SCRM

91.2 91.8 90.4 90.6 90.9
99.4 99.7 99.0 99.2 99.5
94.9 95.8 93.6 94.1 95.7
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the perspective of positioning accuracy were also conducted. Com-
parative results of the 75th percentile of positioning errors in the
two buildings are presented in Tables 5 and 6.

The reported results demonstrate the superiority of DBRM and
SCRM constructed radio maps, in comparison to the baseline –
mean sampling generated radio maps. DBRM and SCRM exhibited
enhanced positioning accuracy as compared to the baseline, for all
test scenarios including across buildings, devices, and k values.
Combined with the classification results, the positioning accuracy
findings reassert the statistical eminence of DBRM and SCRM over
the baseline. In building CX1, SCRM generated radio maps showed
35% to 52% superior accuracy over DBRM. The average positioning
improvement provided by SCRM as compared to DBRM in building
F04 was 28%, across devices. Therefore, enhanced positioning
shown by SCRM also signifies the algorithm’s robustness in
multi-building and device heterogeneity conditions. The position-
ing algorithm was run sample-by-sample to generate the results
presented for the SCRM technique. Along with the construction
Table 6
75th percentile of positioning errors using radio maps generated by SCRM algorithm in b

Device 75th percen

k ¼ 3

Mean DBRM SCRM Mean

1 1.16 1.10 1.06 1.48
2 1.43 1.36 1.04 1.62

1 & 2 1.37 1.31 1.08 1.64

Table 5
75th percentile of positioning errors using radio maps generated by SCRM algorithm in b

Device 75th percen

k ¼ 3

Mean DBRM SCRM Mean

1 2.23 2.05 1.24 2.43
2 4.51 3.43 1.78 4.64

1 & 2 2.25 2.52 1.76 2.32

Table 7
Classification accuracy results of filtering algorithms in building CX1. Baseline accuracy corr
of k.

Device Classifi

k ¼ 3

No filter RC SERC No filter

1 99.1 99.5 99.3 99.1
2 99.0 99.5 99.3 99.1

1 & 2 99.2 99.9 99.8 98.9

Table 8
Classification accuracy results of filtering algorithms in building F04. Baseline accuracy corr
of k.

Device Classifi

k ¼ 3

No filter RC SERC No filter

1 93.3 98.3 97.9 93.7
2 98.3 98.7 98.4 98.2

1 & 2 97.5 99.9 99.3 97.4
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of multi-sample (per location) radio maps with improved cluster
initialization, dataset features like hotspot interference free dual-
band data and high resolution RP spacing (1 m), also assisted
achieving high accuracy performance. The performance of SCRM
constructed radio maps is related to the deployed Wi-Fi network
density. In less favorable scenarios as sparse network coverage
conditions, SCRM constructed radio map could suffer from inade-
quate area coverage. The adverse impact would be catered by the
enhanced network characterization, such that an adequate level
of accuracy is maintained.

Overall, the SCRM algorithm contributed to significant position-
ing accuracy enhancement in comparison to benchmark tech-
niques. It is therefore asserted that the introduction of enhanced
statistical cluster initialization, within the proposed algorithm,
adequately characterized RSSI variations in the resultant radio
maps. The performance analyses of SCRM manifested robustness
and efficiency, for implementation within multi-building, multi-
device fingerprinting positioning applications.
uilding F04. kNN-based positioning results are reported for various values of k.

tile positioning error (m)

k ¼ 5 k ¼ 7

DBRM SCRM Mean DBRM SCRM

1.38 1.12 1.75 1.70 1.24
1.52 1.07 2.24 2.14 1.36
1.55 1.08 1.82 1.76 1.28

uilding CX1. kNN-based positioning results are reported for various values of k.

tile positioning error (m)

k ¼ 5 k ¼ 7

DBRM SCRM Mean DBRM SCRM

2.21 1.58 2.65 2.58 1.61
3.55 1.69 4.65 3.71 1.82
2.16 1.67 2.71 2.60 1.85

esponds to no filtering. kNN-based classification results are reported for various values

cation accuracy (%)

k ¼ 5 k ¼ 7

RC SERC No filter RC SERC

99.5 99.4 99.2 99.7 99.5
99.7 99.4 99.2 99.6 99.4
99.9 99.8 99.5 99.9 99.7

esponds to no filtering. kNN-based classification results are reported for various values

cation accuracy (%)

k ¼ 5 k ¼ 7

RC SERC No filter RC SERC

98.5 98.2 93.2 97.9 97.2
98.5 98.4 98.0 98.4 98.2
99.9 99.5 97.5 99.9 99.6
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4.3. SERC – Performance evaluation

This section reports the comparative performance of our pro-
posed data filtering algorithm SERC, in terms of classification, posi-
tioning accuracy, and computational complexity; across multi-
building and multi-device scenarios. Classification accuracy results
for evaluated data filtering algorithms in buildings CX1 and F04 are
reported in Tables 7 and 8 respectively.

Due to high baseline classification in building CX1, the filtering
algorithms showed marginal improvements. In the case of building
F04, the average accuracy recorded for SERC filtering was 2.5%
higher than the baselines. As targeted, the performance of SERC
was consistently comparable to the RC filtering algorithm (Shi
et al., 2020). Results of the 75th percentile of positioning errors
are presented for buildings CX1 and F04, in Tables 9 and 10
respectively.

Significant positioning accuracy enhancement by both data fil-
tering algorithms is evident from the results of both buildings.
The average accuracy enhancement provided by SERC in compar-
ison to the baselines was around 37% and 38% respectively, in
buildings CX1 and F04. Therefore, significant enhancement was
achieved with SERC data filter in comparison to no filtering.
Throughout the results, it is also evident that the accuracy of SERC
and RC filter, was comparable. The computational time for execu-
tion of both filtering algorithms was also measured and are
reported in Tables 11,12, for buildings CX1 and F04 respectively.

It is evident from the performance evaluation in both buildings
that, the SERC on average took 42% less computation time for exe-
cution. Therefore, a significant enhancement in computational effi-
ciency was achieved by SERC in comparison to the RC filtering
algorithm (Shi et al., 2020). In order to comprehensively evaluate
the performance of proposed SERC algorithm, the worst degrada-
Table 10
75th percentile of positioning errors for implemented filtering algorithms in building F0
reported for various values of k.

Device 75th percen

k ¼ 3

No filter RC SERC No filter

1 1.08 0.96 1.02 1.13
2 1.67 0.96 0.98 1.89

1 & 2 2.26 1.05 1.14 2.63

Table 11
Computation time measured for execution of data filtering algorithms in building CX1. Expe

Device Total Computation time (seconds

samples RC SER

1 24,194 178.2 100
2 24,082 176.1 101

1 & 2 48,216 356.6 207

Table 9
75th percentile of positioning errors for implemented filtering algorithms in building CX
reported for various values of k.

Device 75th percen

k ¼ 3

No filter RC SERC No filter

1 2.32 1.51 1.58 2.67
2 2.27 1.36 1.41 2.25

1 & 2 2.96 1.38 1.42 3.25
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tion in accuracy was also measured. Relative to the RC algorithm
performance, the worst recorded degradation in 75th percentile
errors were 9 cm and 8 cm respectively, for buildings CX1 and
F04. From the comparative accuracy degradation values and com-
putation time, it is clearly established that the significance of com-
putational enhancement, outweighed the corresponding degraded
accuracy. Therefore, SERC filtering provided high positioning accu-
racy, in much lesser execution time. All reported results for the
SERC filter were determined by running the positioning algorithm
on SERC filtered data from m consecutive samples. The availability
of dual-band data at high resolution with network device homo-
geneity, in addition to smart clustering, assisted the achievement
of performance improvements. The SERC filtering algorithm is
designed to ensure efficient performance in beneficial and less
favorable conditions. In unfavorable scenarios such as severe mul-
tipath fading or dynamic environment changes that cause large
RSSI variations, SERC would provide typical performance. This is
due to efficient outlier removal and utilization of suitable central
samples from sorted RSSI data.

In summary, the proposed SERC algorithm showed pertinent
performance enhancement across the multi-building and multi-
device test scenarios. The proposed smart clustering within the
SERC data filter, induced significant reduction in computational
complexity, while maintaining accuracy, throughout the test cases.
Therefore, viability of incorporating the proposed data filtering
algorithm in real-time and scalable fingerprinting positioning solu-
tions is manifested.
4.4. DBAC – Performance evaluation

In this section the performance evaluation of the proposed area
classification algorithm DBAC is reported. In addition to compara-
4. Baseline accuracy corresponds to no filtering. kNN-based classification results are

tile positioning error (m)

k ¼ 5 k ¼ 7

RC SERC No filter RC SERC

0.97 0.99 1.44 1.03 1.12
0.97 0.99 2.32 1.06 1.08
1.04 1.09 2.25 1.15 1.19

riments were performed on the same work station and averaged over 100 repetitions.

) SERC computational SERC accuracy

C Improvement (%) degradation (m)

.6 43.5 0.08

.7 42.2 0.05

.6 41.7 0.04

1. Baseline accuracy corresponds to no filtering. kNN-based classification results are

tile positioning error (m)

k ¼ 5 k ¼ 7

RC SERC No filter RC SERC

1.55 1.62 2.24 1.61 1.69
1.54 1.57 2.32 1.49 1.53
1.62 1.64 3.32 1.85 1.88



Table 13
Classification accuracy using DBAC algorithm in building CX1. kNN-based classification results are reported for various values of k.

Device Classification accuracy (%)

k ¼ 3 k ¼ 5 k ¼ 7

MAX DBAC MAX DBAC MAX DBAC

1 89.2 99.5 89.4 99.6 89.1 99.2
2 86.3 99.6 86.5 99.5 86.2 99.3

1 & 2 87.6 99.6 87.8 99.8 87.1 99.3

Table 12
Computation time measured for execution of data filtering algorithms in building F04. Experiments were performed on the same work station and averaged over 100 repetitions.

Device Total Computation time (seconds) SERC SERC accuracy

samples RC SERC Improvement (%) degradation (m)

1 20,610 151.6 87.3 42.4 0.09
2 20,723 150.7 85.4 43.3 0.04

1 & 2 41,333 305.3 179.8 41.1 0.09
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tive accuracy evaluations, computational analysis was also con-
ducted for comprehensive assessments. The performance of DBAC
algorithm was evaluated in comparison to the heap sort based
algorithm, MAX (Xie et al., 2022b). The classification accuracy
results with implementation of both algorithms are reported in
Tables 13 and 14.

From the results of both buildings, the superior classification
accuracy of DBAC is evident. The DBAC outperformed the MAX
algorithm in all tested scenarios. In building CX1, DBAC provided
a consistent 99% accuracy whereas the MAX algorithm consistently
recorded below 90%. The DBAC performance was observed as, on
average 13% superior than the MAX area classification. In building
Table 14
Classification accuracy using DBAC algorithm in building F04. kNN-based classification res

Device Cl

k ¼ 3

MAX DBAC MAX

1 86.9 96.1 86.5
2 77.4 99.2 77.8

1 & 2 82.2 94.5 82.6

Table 15
75th percentile of positioning errors for implemented area classification algorithms in bu

Device 75th pe

k ¼ 3

MAX DBAC MAX

1 1.16 1.05 1.38
2 1.32 1.13 1.47

1 & 2 3.2 3.03 2.87

Table 16
75th percentile of positioning errors for implemented area classification algorithms in bu

Device 75th pe

k ¼ 3

MAX DBAC MAX

1 1.06 0.91 0.98
2 1.08 1.03 1.14

1 & 2 2.37 2.04 2.23
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F04, the average classification enhancement was 16% in compar-
ison to MAX performance. The vivid superiority of DBAC is also evi-
dent by the fact that throughout the test cases in building F04, the
worst performance was still better than MAX algorithm perfor-
mance. The area classification algorithms were also compared in
terms of positioning accuracy. In Tables 15 and 16, comparisons
of positioning accuracy results in both buildings are given.

Across different k values, both buildings and devices, DBAC
showed improvement throughout in terms of positioning accuracy.
More precisely, in building CX1 an average 6% enhancement was
shown by DBAC in comparison to MAX algorithm. In building
F04 the mean improvement was 7.5%. The mean of all 75th per-
ults are reported for various values of k.

assification accuracy (%)

k ¼ 5 k ¼ 7

DBAC MAX DBAC

96.4 90.4 91.5
99.4 77.3 99.1
94.8 82.1 94.1

ilding CX1. kNN-based classification results are reported for various values of k.

rcentile positioning error (m)

k ¼ 5 k ¼ 7

DBAC MAX DBAC

1.33 1.82 1.76
1.42 1.91 1.78
2.83 2.94 2.81

ilding F04. kNN-based classification results are reported for various values of k.

rcentile positioning error (m)

k ¼ 5 k ¼ 7

DBAC MAX DBAC

0.93 1.28 1.21
1.06 1.27 1.21
2.03 2.48 2.26



Table 17
Computation time measured for execution of area classification algorithms in
building CX1. Experiments were performed on the same work station and averaged
over 100 repetitions.

Device Computation time, per
sample (seconds)

DBAC

MAX DBAC Improvement (%)

1 0.79 0.47 40.5
2 0.81 0.49 39.5

1 & 2 1.87 1.11 40.6

Table 18
Computation time measured for execution of area classification algorithms in
building F04. Experiments were performed on the same work station and averaged
over 100 repetitions.

Device Computation time, per
sample (seconds)

DBAC

MAX DBAC Improvement (%)

1 0.58 0.35 39.6
2 0.56 0.34 39.2

1 & 2 1.35 0.79 41.4
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centile errors in buildings CX1 and F04 was recorded as 1.85
meters and 1.35 meters respectively. For all test data scenarios,
the positioning algorithm was run sample-by-sample to determine
the findings reported for the DBAC technique. High accuracy
results were achieved due to availability of dual-band data at high
resolution, free of hotspot interference within the dataset, in addi-
tion to efficient partitioning and data aggregation. The computa-
tion times for execution of area classification algorithms were
also measured and are reported in Tables 17,18.

The computational results across buildings and devices, clearly
signify the superiority of proposed DBAC, as it consistently
required 40% lesser computation time as compared to the MAX
algorithm. It must be further noted, that higher recorded computa-
tion times for the multi-device scenario, was due to higher samples
per location, than in the single device radio maps (Abdullah et al.,
2022). Sparse Wi-Fi network coverage is a scenario, that would
result in lower computational enhancement over conventional
techniques, than as reported in achieved results. The efficient
dual-band data aggregation would still maintain typical accuracy,
under such an unfavorable condition.

Overall, the proposed area classification algorithm DBAC,
showed performance enhancements in terms of classification,
positioning, and computational efficiency. The targeted computa-
tionally efficient, high classification performance was achieved by
DBAC as it showed significant improvement to state-of-the-art.
The attained improvements were specifically reaped due to, incor-
poration of robust area partitioning and efficient dual-band RSSI
aggregation, within the algorithm.
5. Conclusions

We proposed novel design approach for implementation of
robust radio map construction, data filtering, and area classifica-
tion algorithms in Wi-Fi fingerprinting based IPS. Efficient charac-
terization of RSSI temporal variations was ensured by our radio
map construction algorithm–SCRM. Apt estimation of real-time
RSSI in multipath conditions, was efficiently accomplished by the
data filtering algorithm–SERC. Reduced positioning algorithm
search space, was aptly implemented in the proposed area classifi-
cation algorithm–DBAC. To evaluate the performance, the pro-
posed algorithms were implemented along with kNN-based
12
positioning technique. The robustness of proposed algorithms
was ensured by rigorous performance evaluations inclusive of
heterogeneous positioning devices, dual-band Wi-Fi data, and
multi-building test scenarios.

The conducted evaluations revealed the robustness and effi-
ciency of SCRM, SERC, and DBAC algorithms, throughout the
multi-building and multi-device investigations. According to the
performance evaluations, the SERC and DBAC algorithms consis-
tently showed a 40% reduction in computation time, across build-
ings. In addition to the computational enhancement, SERC
provided positioning accuracy within 9 cm of benchmark data fil-
tering performance. Along with computation improvement, DBAC
algorithm also provided 14.5% superior accuracy, across buildings.
The average positioning accuracy enhancement provided by SCRM
was 36%. The performance evaluations indicate significant
enhancements provided by proposed algorithms. The accuracy
enhancement showed by SCRM generated radio maps, validates
the algorithm’s effective indoor environment characterization
approach. The up to mark positioning accuracy provided by SERC,
with significant execution speed enhancement, endorses the
robust and efficient filtering approach in multipath scenario. Fur-
thermore, the significant computational enhancement and encour-
aging accuracy improvement demonstrated by DBAC, manifests
the efficacy of area classification approach. The reported results
indicate that the proposed algorithms significantly improve accu-
racy and computational efficiency. Therefore, the algorithms are
feasible for incorporation in high-precision real-time Wi-Fi finger-
printing based IPS. Furthermore, the modular design of the algo-
rithms allows for flexibility in integrating certain subsets of the
algorithms, depending on the specific IPS application and system
requirements. Therefore, the fingerprinting algorithms offer a
promising solution for enhancing the computational efficiency
and accuracy of IPS, with potential applications in indoor naviga-
tion and asset tracking. The internal parameters used within the
algorithms were selected based on statistical data analysis. Future
work will include selection of algorithmic parameters using opti-
mization algorithms, to enable seamless implementation across
diverse datasets.
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