Universiti Teknologi Malaysia Institutional Repository

Progress in solid oxide fuel cells with hydrocarbon fuels

Rabuni, Mohamad Fairus and Li, Tao and Othman, Mohd. Hafiz Dzarfan and Adnan, Faidzul Hakim and Li, Kang (2023) Progress in solid oxide fuel cells with hydrocarbon fuels. Energies, 16 (17). pp. 1-36. ISSN 1996-1073

[img] PDF
1MB

Official URL: http://dx.doi.org/10.3390/en16176404

Abstract

Solid oxide fuel cells (SOFCs)’ main advantage in fuel flexibility appears to be an interesting subject for further exploration. From the literature survey, direct utilisation of hydrocarbon as fuel for SOFCs has garnered attention with promising results reported. Various approaches, showcasing potential for using methane (CH4) and heavier hydrocarbons in SOFCs, have been described. The direct use of hydrocarbons can occur through either direct internal reforming or gradual internal reforming, with requisite precautionary measures to mitigate carbon formation. While the internal reforming process could proceed via steam reforming, dry reforming or partial oxidation, an exciting development in the direct use of pure hydrocarbons, seems to progress well. Further exploration aims to refine strategies, enhance efficiency and ensure the long-term stability and performance of hydrocarbon-fuelled SOFC systems. This review delves into the progress in this field, primarily over the past two decades, offering comprehensive insights. Regardless of fuel type, studies have largely concentrated on catalyst compositions, modifications and reaction conditions to achieve better conversion and selectivity. Finding suitable anode materials exhibiting excellent performance and robustness under demanding operating conditions, remains a hurdle. Alternatively, ongoing efforts are directed towards lowering working temperatures, enabling consideration of a wider range of materials with improved electrochemical performance.

Item Type:Article
Uncontrolled Keywords:direct utilisation, fuel flexibility, hydrocarbons, SOFC
Subjects:T Technology > TP Chemical technology
Divisions:Chemical and Energy Engineering
ID Code:106732
Deposited By: Widya Wahid
Deposited On:28 Jul 2024 06:10
Last Modified:28 Jul 2024 06:10

Repository Staff Only: item control page