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A B S T R A C T

The literature review reveals that lean manufacturing tool selection models still have some gaps. These models
lack the criteria for selecting LM tools. Only a few of these models adopted hybrid multi-criteria decision-
making (MCDM) methods. Obtaining reliable criteria weights in these models is complicated. They lack the
consideration of grey uncertainty. Thus, this study is the first to propose a hybrid model for selecting a set of LM
tools based on their effect on sustainability. This model combines the best-worst method (BWM) for weighting
the criteria and the grey technique for order of preference by similarity to the ideal solution (Grey-TOPSIS)
method to rank the alternatives and address the grey uncertainty problem. A set of sustainability metrics
(selection criteria) was determined based on a literature review and expert evaluation to prioritize a set of
LM tools. An Iraqi cement company was utilized to evaluate the proposed model. The ranking results showed
that the value stream mapping (VSM) tool was the most important, whereas the single-minute exchange of die
(SMED) tool was the least important. The rankings of the remaining LM tools ranged between these two tools
depending on their effects on sustainability. The study conducted a sensitivity analysis using three strategies
that verified the model’s robustness and reliability. This research provides 16 applicable sustainability metrics
and 12 LM tools that could function as a knowledge foundation for future research. It can help researchers
and manufacturers maximize sustainability performance by delivering a hybrid MCDM model to select the
appropriate LM tools.
1. Introduction

Sustainable performance is considered one of the significant indi-
cators in fulfilling the need for environmentally and socially aware
organizations because it concentrates on improving the company’s
economic, environmental, and social aspects (Kishawy et al., 2018).
Sustainability can be achieved by implementing sustainable perfor-
mance in enterprises (Jafarzadeh et al., 2022). Sustainability aims
to address pressing issues like economic inefficiency, environmental
degradation, and potential health and safety dangers to people and
other living things (Tasdemir and Gazo, 2018).

Numerous initiatives have been made over the past decades to
advance sustainable manufacturing processes, and lean manufacturing
(LM) is one of these important solutions (Vinodh et al., 2011a). LM
is one of the most popular manufacturing approaches comprising a
broad diversity of tools (Leksic et al., 2020). LM enables managers to
run their organizations and enterprises more efficiently while adhering
to resource limits (Marie et al., 2022). LM can meet the metrics of
the three pillars of sustainability as a feasible and complete concept
(Marques et al., 2022; Tăucean et al., 2019).

∗ Corresponding author.
E-mail address: m-wongky@utm.my (K.Y. Wong).

LM attempts to improve performance and effectiveness by perpetu-
ally eliminating non-value-added processes (Qin and Liu, 2022). Thus,
LM tools reduce many negative economic, environmental, and social
consequences associated with manufacturing operations (Cherrafi et al.,
2016; Chiarini, 2014). However, one of the biggest issues is that many
organizations have trouble selecting the right LM tools (Anvari et al.,
2014a). There are a growing number of LM tools that can assist firms
and their products to remain sustainable, but not all of these tools offer
the same results, and no tool is ideal for every business (Jing et al.,
2018; Maware and Parsley, 2022).

LM implementation, like many other strategies for improvement,
has not been used successfully everywhere (Benkarim and Imbeau,
2021). Despite LM’s immense popularity, the methodology’s record of
a successful application is, at best, patchy. According to some recent
studies, lean manufacturing failure rates are between 50 and 90 percent
(Esfandyari and Osman, 2010; Gerger and Firuzan, 2012; Secchi and
Camuffo, 2019). Misuse of various LM tools and a failure to compre-
hend the environment in which the chosen tools should be used are two
of the main causes of failure (Salonitis and Tsinopoulos, 2016; Da Wan
and Chen, 2008). Therefore, there is a need to select the right set of
LM tools in the manufacturing system.
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In this respect, experts have devised various methods to select
he most appropriate LM tools, including traditional methods and
ulti-criteria decision-making (MCDM) methods (Naeemah and Wong,
021). However, the existing literature reveals that models for LM tool
election still have certain limitations. LM tools were selected based
n their impact on economic performance metrics, removing waste, or
oth, where LM tools were not selected based on their effect on triple
ottom line (TBL) sustainability metrics because the environmental and
ocial sustainability metrics were overlooked. Therefore, these models
ack the criteria for choosing LM tools.

The literature review also revealed that only a tiny proportion of
xisting studies that used MCDM methods have hybridized MCDM
ethods together or with uncertainty treatment methods (Naeemah

nd Wong, 2021). Moreover, most existing hybrid models of LM tool
election depend on some MCDM methods such as the analytic hier-
rchy process (AHP) method and the analytic network process (ANP)
or weighing the criteria or metrics (Chamarthi et al., 2016). These
ethods often include complex and inconsistent comparisons which

ead to unreliable results (Rezaei, 2015).
Furthermore, only a small percentage of the reviewed studies ad-

ressed uncertainty. However, there is no available MCDM model for
electing LM tools that addresses grey uncertainty (insufficient informa-
ion) that occurs through the decision-making process because all the
eviewed studies solved one category of uncertainty, which is fuzziness.

The major questions of this study can be summarized as follows:

1. What is the suitable set of applicable TBL sustainability metrics
(criteria) that help in the selection of LM tools?

2. How can a hybrid model be developed for selecting and ranking
the proper set of LM tools (alternatives) depending on their
impact on TBL sustainability metrics (criteria), obtaining reliable
values of criteria weights, and treating the grey uncertainty
problem?

3. How can the reliability and robustness of the developed model
for selecting the LM tools be evaluated and validated?

s such, the objectives of this study are to:

1. Develop a set of applicable sustainability metrics as selection
criteria.

2. Develop a new hybrid model for selecting and ranking a set
of LM tools (alternatives) depending on their effect on sus-
tainability metrics (criteria). This model can avoid inconsistent
comparisons and get reliable criteria weights by using the best-
worst method (BWM). This model can also treat the ‘‘grey un-
certainty’’ problem during decision-making by using the grey
technique for order of preference by similarity to the ideal
solution (Grey-TOPSIS) method.

3. Evaluate and validate the reliability and robustness of the pro-
posed model in the real-life case study.

his research contributes to the body of knowledge by developing a
et of applicable metrics for TBL-based sustainability aspects that can
unction as a foundation for future research on selecting LM tools.
his study could also be a knowledge base for researchers to support
ustainable efforts by providing a hybrid MCDM model to choose
he most suitable LM tools that boost sustainability in companies for

safe environment and community in the future. From a practical
iewpoint, this study allows companies to choose the most suitable
et of LM tools. As a result, their company’s sustainability benefits are
aximized. Finally, the case study results provided experiential proof

f the applicability of the proposed method.
The rest of the article is structured as follows: Section 2 briefly

resents the literature review, and Section 3 illustrates the study
ethodology. Section 4 reviews the criteria for the selection of LM

ools. Section 5 displays the suggested model. Section 6 explains
he evaluation and validation of the proposed model. Section 7 ad-
resses the implications of the study. Finally, Section 8 presents the

onclusions.

2

2. Literature review

2.1. Integration between lean manufacturing and sustainability

LM is an approach that emphasizes the elimination of waste during
the complete value stream of the product (Thanki et al., 2016). As a
result, better products and services can be produced with less money
and effort. Another definition of LM is a work strategy that boosts
process efficiency, increases customer confidence, and produces better
outcomes (Shah and Ward, 2007). Eight forms of waste can be reduced
or eliminated by LM. For instance, waiting, unneeded inventory, inap-
propriate processing, unutilized talent, unnecessary motion, transport,
overproduction, and defects (Cherrafi et al., 2016).

Various LM tools have been applied to increase intra and inter-
company sustainability performance effectiveness and improve sus-
tainability metrics to achieve competitive manufacturing performance
characteristics (Carvajal-Arango et al., 2019). These tools aim to im-
plement the LM guiding principles, which include reducing non-value-
added activities, boosting productivity, lowering variability, speeding
up production cycles, and streamlining procedures by reducing the
number of parts and steps (Qin and Liu, 2022). The LM tools can
also improve the working environment and worker wellbeing while
lowering customer complaints.

Additionally, LM tools can reduce air and water pollutants and
enhance the use of materials, energy, and water (Afum et al., 2021).
According to the literature review, studies discussing the likelihood of
achieving true sustainability by utilizing an LM thinking philosophy
to create sustainable manufacturing are rare (Yusup et al., 2015).
Although there have been various recent attempts to combine sus-
tainability and LM (Souza and Alves, 2018), much of the research on
sustainability and LM is based on a limited understanding of the three
dimensions of sustainability (Abualfaraa et al., 2020).

TBL sustainability concepts have been added to the LM definition
in response to production’s growing ecological and social conscious-
ness. Sustainability has attracted great attention in most industries and
studies worldwide, especially after the publication of the written report
of the World Commission of Environment and Development (WCED),
‘‘Our Common Future’’(Naeemah and Wong, 2022). Sustainability can
be defined as meeting existing requirements without jeopardizing the
coming generations’ capacity to satisfy their own (Cherrafi et al., 2017).

In order to meet present and future generations’ social, economic,
and environmental needs, sustainability establishes and preserves the
conditions under which human beings and nature can coexist (Poudyal
and Adhikari, 2021). To ensure that human use of natural resources
or raw materials does not result in poor quality of life on the planet
due to damage, a lack of future economic prospects and negative
consequences on society and the environment, sustainability attempts
to design human and industrial systems in such a way that one does
not negatively impact the other (Birkin et al., 2021).

LM and sustainability work together to optimize manufacturing and
boost competitiveness. LM represents a comprehensive perspective of
sustainability and streamlines operations in terms of prices, time, waste,
and quality while also considering social and environmental quality
(Thanki et al., 2016). LM fulfils other sustainability principles like
preserving the environment, recycling wastes, and cutting air emissions
(Awad et al., 2022). Sustainable development requires LM, as reduc-
ing energy use, environmental pollution, and material use promote
sustainability (Yusup et al., 2015).

The same waste-reduction and efficiency-improvement strategies
are used by both LM and sustainability, albeit in different ways
(Naeemah and Wong, 2022). LM is a quick method since it offers
good performance during the manufacturing process. In contrast, sus-
tainability principles may be long-term and apply to the entire life
cycle of a product. Furthermore, LM provides various tools that support
sustainability (Souza and Alves, 2018).

In brief, LM achieves sustainability in three dimensions: 1. Econom-

ically, by conserving materials, effort, time, and money; 2. Socially, by
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Table 1
The LM tools.

LM Tools Definition References

(7S) (A1) A tool that helps companies achieve corporate goals through identifying seven
necessary elements (set in order, sort, shine, standardize, spirit team, safety,
sustain)

Souza and Alves (2018), Tasdemir et al.
(2020), Vinodh et al. (2011a)

Just in Time (JIT)
(A2)

A tool that helps plan the production process to minimize inventory to near
zero and supply the required components and items for workstations on time

Dieste et al. (2019), Iranmanesh et al.
(2019), Leksic et al. (2020)

Kanban (A3) A tool that utilized cards to represent the number of things that needed to be
manufactured

Cherrafi et al. (2016), Tăucean et al.
(2019), Vinodh et al. (2011a)

Visual Control/Visual
Management (A4)

This tool allows a manufacturer to build a system with simple indicators to
see and realize them with ease, letting supervisors grasp the state of the
manufacturing line and track shop floor activities

Helleno et al. (2017), Tasdemir and Gazo
(2018), Tăucean et al. (2019)

Value Stream Mapping
(VSM)
(A5)

A tool to recognize value-added and non-value-added activities in the value
stream to reduce unnecessary activities

Cherrafi et al. (2016), Chiarini (2014),
Vinodh et al. (2011a)

Kaizen (A6) A tool for achieving continual and gradual improvements without making a
big capital expenditure

Cherrafi et al. (2016), Souza and Alves
(2018), Tasdemir and Gazo (2018)

Poka-yoke (A7) A tool that either prohibits mistakes or defects from taking place and focuses
on deleting the reasons for their occurrence

Iranmanesh et al. (2019), Naeemah and
Wong (2022), Yusup et al. (2015)

Six Sigma (A8) A method for attaining quality control and reducing variance in
manufacturing operations that is consistently organized

Helleno et al. (2017), Leksic et al. (2020),
Tasdemir and Gazo (2019)

Total Productive
Maintenance (TPM)
(A9)

A tool that was created to optimize the effective use of equipment throughout
the manufacturing process while minimizing downtime

Cherrafi et al. (2016), Chiarini (2014),
Thanki et al. (2016)

Production Smoothing
(Heijunka) (A10)

A scheduling tool for minimizing batch sizes of production Leksic et al. (2020), Naeemah and Wong
(2022), Yusup et al. (2015)

Single-Minute Exchange
of Die (SMED) (A11)

A technique for reducing the amount of time it takes to replace equipment Chiarini (2014), Iranmanesh et al. (2019),
Yusup et al. (2015)

Cellular Manufacturing
(A12)

A tool for creating similar products in one cell to reduce the time, energy,
and effort

Iranmanesh et al. (2019), Tăucean et al.
(2019), Vinodh et al. (2011a)
concentrating on the health, safety, contentment, and well-being of con-
sumers and society, and through collaboration with stakeholders; and
3. Environmentally, by boosting waste minimization, contamination
decrease, and resource preservation (Helleno et al., 2017).

2.2. Tools employed for lean manufacturing sustainability

Various organizations have used diverse sets of LM tools to ac-
complish good performance because of the competitive demand of the
market (Tasdemir and Gazo, 2019). LM tools have recently gained
popularity as manufacturing sectors improve (Leksic et al., 2020).
Many benefits can be gained by choosing and implementing the most
appropriate LM techniques. This is due to their ability to improve per-
formance quality, profitability, and productivity (Behrouzi and Wong,
2013). Choosing the proper LM tools saves time and can help enhance
efficiency by decreasing or removing waste and improving performance
metrics. It also helps businesses achieve sustainable performance by re-
ducing negative environmental effects and saving costs, water, energy,
and raw materials.

Moreover, it improves the health and safety of the manufacturing
industries’ communities, employees, and customers (Cherrafi et al.,
2017; Chiarini, 2014). However, not every LM tool yields the same
outcomes, and not every business can use them. The 12 LM tools with
the most effects on sustainability were determined by conducting a
comprehensive literature review. Numerous earlier studies that tracked
and identified the significance of these tools and repeatedly proved
their impacts, either on one, two, or three aspects of sustainability, were
a key factor in the selection of these 12 tools (Cherrafi et al., 2017;
Naeemah and Wong, 2022).

These 12 LM tools help manufacturers improve their businesses’ effi-
ciency and effectiveness by making them more sustainable. A collection
of 12 LM tools has been culled from the literature. Table 1 summarizes
the definition of each tool. Understanding the functional purpose of
each tool is necessary for the proper selection of LM tools to achieve

sustainability.

3

For example, 7S can reduce effort, cost, and lead and transportation
time. 7S helps to save energy, materials, and effort (Manzanares-
Cañizares et al., 2022). Also, it helps to maintain safety procedures and
alleviate stress (Chiarini, 2014). JIT can help to preserve inventory, im-
prove on-time delivery, reduce labour and other costs associated with
raw material handling before manufacturing products, and increase
worker involvement (Dieste et al., 2019).

Kanban can reduce all inventories, transportation costs, setup time,
raw materials, and waste. Kanban also allows for better utilization of
workshop space (Cherrafi et al., 2016). Visual control helps monitor
plant activities; reduce defects, downtime, material usage, energy, and
injuries; improve team spirit; and enhance the value to the customer
(Naeemah and Wong, 2022). Value stream mapping (VSM) can de-
crease cost, time, labour, energy, defects, inventory, liquid and solid
waste, and air emissions (Wang et al., 2022). Also, VSM can increase
quality, working conditions, health, and safety (Souza and Alves, 2018).

Kaizen can assist in promoting production and improving time,
profit, quality, and efficiency (Queiroz et al., 2022). Kaizen helps to re-
duce raw material and energy usage. Kaizen improves employee partic-
ipation, working conditions, and teamwork (Yusup et al., 2015). Poka-
Yoke positively impacts production sustainability by reducing setup
errors, lowering emissions rates, and improving customer satisfaction
and worker attitude (Tăucean et al., 2019).

Six sigma can reduce product errors, minimize cost, maximize qual-
ity, minimize air emissions, and increase customer retention (Cherrafi
et al., 2016). Total productive maintenance (TPM) can decrease ma-
chine malfunctions, expenses, errors, and oil leakage on the floor
(Queiroz et al., 2022). TPM also helps to extend the life of the equip-
ment, and increase material and energy efficiency (Chiarini, 2014).

The production smoothing technique keeps the manufacturing pro-
cess pace constant to reduce inventory, effort, cost, materials, and
energy (Yusup et al., 2015). The single-minute exchange of die (SMED)
tool aids in minimizing equipment downtime, and increasing produc-
tivity and flexibility (Dieste et al., 2019; Fonda and Meneghetti, 2022).
The cellular manufacturing technique conserves setup, changeover, and
transportation time. Also, this tool saves effort, materials, and energy
(Tasdemir and Gazo, 2019).
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2.3. Selection methods for lean manufacturing tools

The process of determining and selecting from a set of options based
on the preferences of the decision-maker(s) is referred to as decision-
making (Rezaei, 2016). There are two approaches that past research has
taken when selecting LM tools. The first category is the conventional
approach, in which the decision-makers use analytical mathematical
procedures and programs to make judgments that sometimes require
their understanding, insight, and intuition (Naeemah and Wong, 2021).
Numerous traditional techniques have been employed in the reviewed
studies. For example, the stepwise multiple linear regression model
(SMLR), the Rasch model (RM), etc.

MCDM methods are the second category of methods used to choose
LM tools. MCDM methods are decision-making strategies that examine
several competing criteria and allow for the involvement of many
decision-makers. Two types of MCDM methods were used in the re-
viewed studies:

1. Single MCDM methods such as the multi-objective decision-
making (MODM) method (Bidhendi et al., 2018), the analytic hierarchy
process (AHP) method (Saaty, 1987) the analytic network process
(ANP) method (Saaty, 2004) and many other MCDM methods that are
mentioned in Table 2. There have also been several MCDM methods
developed recently. For instance, the base-criterion method (BCM)
(Haseli et al., 2020; Haseli and Sheikh, 2022), the ordinal priority
approach (OPA) (Ataei et al., 2020), and the combined compromise
solution (COCOSO) method (Yazdani et al., 2019). However, these
methods were not used for the purpose of choosing LM tools.

2. Hybrid MCDM methods that have hybridized MCDM methods
together or with uncertainty treatment methods. For example, Jing
et al. (2018) combined the AHP technique to define the weights of
criteria and the fuzzy-VlseKriterijuska Optimizacija I Komoromisno Re-
senje (Fuzzy-VIKOR) technique to prioritize LM tools. Also, Mohammad
et al. (2021) integrated the entropy method to determine the weights of
criteria and the simple additive weighting (SAW) method and VIKOR
method to rank LM tools, in addition to some other hybrid methods
that were used in the studies of LM tool selection, as shown in Table 2.
Moreover, there were other hybrid MCDM methods (Cheraghalipour
et al., 2017; Hosseini et al., 2021) but they were not developed for
the purpose of selecting LM tools.

Each decision-maker has unique skills, knowledge, and perceptions
about the related significance of the various criteria and the relative
importance of the many choices. The selection of LM tools, therefore,
becomes an MCDM problem that involves various kinds of uncer-
tainty such as grey and fuzzy uncertainty (Naeemah and Wong, 2021).
Therefore, incorporating uncertainty treatment approaches can help
to overcome the uncertainty problems that sometimes occur in some
single MCDM techniques because of human qualitative assessments and
incomplete preferences (Naeemah and Wong, 2021; Zavadskas et al.,
2016b,a).

Also, hybrid MCDM methods, due to their capabilities in com-
bining different individual MCDM techniques, can depend on more
than one type of decision-making process and assist in addressing
various information when considering preferences (Zavadskas et al.,
2016b,a). Therefore, researchers in various fields have begun to use
hybrid MCDM approaches that integrate two or more MCDM methods
with uncertainty treatment methods to maximize the advantages of
each method and solve different types of decision-making problems. A
review of prior studies of selection methods of LM tools revealed that
these tools (alternatives) are ranked depending on the value of their
impact on performance metrics (criteria), wastes, or both. The decision-
making methods, criteria, uncertainty, and countries that were used in
27 previous studies on the selection methods of LM tools are shown in

Table 2.
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2.4. Research gaps

After conducting a comprehensive review of the studies of LM tool
selection in Section 2.3, the next step is to figure out the gaps in the
methods and criteria of LM tool selection. Table 2 reveals some gaps
and limitations that this study tries to bridge. The main research gap
is that the selection of LM tools in the prior studies was based on
performance metrics (economic metrics), waste, or both. However, the
environmental and social metrics were not considered.

A small percentage of the reviewed studies utilized hybrid MCDM
methods, as most studies have focused on some individual MCDM
methods that can treat certain decision-making issues. Also, most of
the hybrid models adopted some types of MCDM methods that require
high numbers of pairwise comparisons and consume a huge amount of
data, leading to a lack of consistency in the comparisons.

Moreover, a small percentage of the reviewed studies treated uncer-
tainty in decision-making and focused on fuzziness while overlooking
other types of uncertainty. Further, while previous studies covered
various industries in different countries, no study has addressed the
selection of LM tools in the Iraqi cement industry. The assumptions
made in this study are as follows:

• Assumption 1: For the first time in this field, LM tools can be
selected based on their effect on sustainability metrics.

• Assumption 2: A hybrid MCDM model for selecting and ranking
LM tools can address some weaknesses of single MCDM methods,
provide reliable results, and treat the grey uncertainty issue.

Hence, this study is the first in this field to attempt to develop a hybrid
model that integrates the BWM and Grey-TOPSIS methods to select the
most suitable set of LM tools in a cement company in Iraq depending
on their effects on applicable sustainability metrics. This model can
avoid inconsistent pairwise comparisons and get credible results when
calculating the criteria weights. It can also solve the problem of grey
uncertainty in the decision-making process.

3. A brief overview of BWM, TOPSIS, and grey numbers

3.1. Best-Worst Method (BWM)

The BWM is one of the most current MCDM techniques (Rezaei,
2015). This approach uses pairwise comparisons that are performed in
a specially organized manner so that not only is minimum data needed,
but the comparisons are often more consistent (Rezaei, 2016). In BWM,
the best and the worst criteria are distinguished first by the decision-
maker (Mahmoudi et al., 2020). Pairwise comparisons are then made
between the best and worst criteria on the one hand and the remaining
options on the other hand (Rezaei, 2016). After that, the problem
of mini-max is formulated, and the study determines the weights of
various criteria by using the model of BWM (Rezaei, 2015).

BWM includes two consistency ratios: the input-based consistency
ratio (CR𝐼 ) (Liang et al., 2020); the output-based consistency ratio
(𝐶𝑅𝑂) (Rezaei, 2015). Both ratios are used to check the reliability of
the results. BWM has numerous features and characteristics, making it
a more durable and desirable method for determining criteria weights
(Liang et al., 2020; Rezaei, 2016, 2015).

1. BWM depends on fewer pairwise comparisons compared to other
pairwise comparison MCDM methods.

2. BWM’s final weights are often reliable because BWM allows for
more consistent comparisons.

3. Only integers are utilized in the BWM, making it considerably
easier.

4. Unlike other weighting methods such as AHP and ANP, BWM
relies on the two types of consistency ratios (𝐶𝑅𝑂, 𝐶𝑅𝐼 ) to
ensure the reliability of the results and avoid errors in the
evaluation.
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Table 2
Detailed attributes and properties of LM tools selection studies.

Method Sector and industry Criteria Country Uncertainty
aspect

References

Entropy + SAW +
VIKOR methods

Services sector-hospital
management

Performance metrics
(economic metrics)

Iran Not considered Mohammad et al.
(2021)

SMLR model Manufacturing
sector-automotive
industry

Waste Croatia Not considered Leksic et al. (2020)

Multi-objective
decision-making
(MODM) method

Manufacturing
sector-electrical &
electronics
industry

Waste India Not considered Deshpande and Rao
(2019)

Lean fuzzy failure
Mode and effects
analysis (LFMEA)

Manufacturing sector-
machining & casting
industry

Waste India Considered (fuzzy
uncertainty)

Kumar and
Parameshwaran (2019)

MODM method Construction
sector

Performance metrics
(economic metrics) and
waste

Australia Not considered Bidhendi et al. (2018)

AHP +
Fuzzy VIKOR methods

Estate sector Performance metrics
(economic metric) and
waste

China Considered (fuzzy
uncertainty)

Jing et al. (2018)

Fuzzy failure mode and
effects analysis
(FMEA)+
fuzzy quality function
deployment (FQFD)

Manufacturing
sector-plastic
industry

Waste India Considered (fuzzy
uncertainty)

Kumar and
Parameshwaran (2018)

AHP method Services sector-
hotel management

Performance metrics
(economic metrics) and
waste

United Arab
Emirates

Not considered Al-Aomar and Hussain
(2018)

AHP method Manufacturing sector
-screw industry

Waste India Not considered Chamarthi et al. (2016)

MODM method Manufacturing sector-
drinks industry

Performance metrics
(economic metrics)

Libya Not considered Alaskari et al. (2016)

AHP method Manufacturing
sector

Performance metrics
(economic metrics)

India Not considered Thanki et al. (2016)

AHP method Services sector-hospital
management

Waste United Arab
Emirates

Not considered Hussain and Malik
(2016)

VIKOR methods Manufacturing
sector-dairy industry

Performance metrics
(economic metrics)

China Not considered Jing et al. (2015)

ANP method Manufacturing
sector
(hypothetical case)

Performance metrics
(economic metrics)

Colombia Not considered Wan et al. (2014)

VIKOR method Manufacturing
sector-automotive
industry

Performance metrics
(economic metrics)

Iran Not considered Anvari et al. (2014a)

AHP method+
data envelopment
analysis (DEA)

Manufacturing
sector-automotive
industry

Performance metrics
(economic metrics)

Iran Not considered Anvari et al. (2014b)

Weighted average
method (WAM)

Manufacturing
sector-automotive
industry

Waste India Not considered Arunagiri and
Gnanavelbabu (2014)

Rasch Model Manufacturing sector-
food industry

Waste Malaysia Not considered Khusaini et al. (2014)

Lean decision support
tool (LDST) +
AHP method

Simulation study for
manufacturing sector

Performance metrics
(economic metrics)

USA Not considered da Wan and Tamma
(2013)

MODM method Manufacturing
sector- electrical &
electronics
industry

Waste Australia Not considered Amin and Karim (2013)

MODM method Manufacturing
sector- electrical &
electronics
industry

Waste Australia Not considered Amin and Karim (2011)

AHP method Manufacturing
sector- electrical &
electronics
industry

Performance metrics
(economic metrics)

India Not considered Vinodh et al. (2011b)

(continued on next page)
5



A.J. Naeemah and K.Y. Wong Resources, Environment and Sustainability 13 (2023) 100120

3

a
i
p
t
a
a
p
(

t
u

Table 2 (continued).
Method Sector and industry Criteria Country Uncertainty

aspect
References

Lean web-based
decision support (DS)
tool

Manufacturing
sector

Performance metrics
(economic metrics)

USA Not considered da Wan and Chen
(2009)

House of quality
matrix (HQM) tool

Manufacturing
sector- machine tools
industry

Performance metrics
(economic metrics) and
waste

USA Not considered Inanjai and Farris
(2009)

Quality function
deployment (QFD) +
balanced scorecard
(BSC) +
life cycle cost analysis
(LCCA)+
MCDM

Manufacturing
sector-timber industry

Performance metrics
(economic metrics) and
waste

Sweden Not considered (Al-Hamed and Qiu,
2007)

Fuzzy AHP method Manufacturing sector-
die casting industry

Waste India Considered (fuzzy
uncertainty)

(Singh et al., 2006)

Productivity needs
analysis (PNA) +
training needs analysis
(TNA)+ manufacturing
needs analysis (MNA)

Manufacturing
sector-automotive
industry

Performance metrics
(economic metrics)

UK Not considered (Herron and Braiden,
2006)
5. BWM has fewer violations and overall deviations and requires
less time to fill out questionnaires than the AHP and ANP
methods.

6. BWM includes consistency thresholds to specify the dependabil-
ity of the outcomes.

3.2. Technique for order preference by similarity to ideal solution (TOPSIS)

The TOPSIS method was suggested by Hwang and Yoon (1981).
The TOPSIS method is one of the best methods of MCDM. In this
MCDM method, (i) alternatives are assessed by (j) criteria (Hwang and
Yoon, 1981). The idea of the method is that the alternatives are ranked
depending on their distances from positive and negative ideal solutions
(Yoon and Hwang, 1985). The best alternative is considered to be the
one that has the closest distance to the positive ideal solution and has
the longest distance from the negative ideal solution (Yoon and Hwang,
1985). The TOPSIS method is a compensative aggregation method that
ranks a group of alternatives with regard to a group of criteria. The
TOPSIS method has several features that distinguish it from the other
ranking methods (Shamsuzzoha et al., 2021).

1. The TOPSIS method has a simple procedure.
2. Regardless of the number of attributes or criteria, the number of

TOPSIS steps remains constant.
3. The TOPSIS method provides a rational ranking for alternatives.
4. The TOPSIS method can rank the alternatives based on relative

closeness values (CC 𝑖) from the best to the worst.
5. The TOPSIS method produces stable performance results even

when the input data oscillates.

.3. Grey number

The basic notion of uncertainty is a quantitative measure of vari-
tion in information. That is, uncertainty indicates the notion that all
nformation has a scope of anticipated values, as opposed to an exact
oint value (Naeemah and Wong, 2021). It is difficult to obtain all
he information about decision-making in reality. Also, decision-makers
re unaware of all the available alternatives, the outcomes of each
lternative, or their probabilities. Hence, decision-making on practical
roblems is always exposed to a lack of information (grey uncertainty)
Mahmoudi et al., 2020).

The existing studies did not treat this type of uncertainty. Therefore,
his study tries to address this issue (Naeemah and Wong, 2021). Grey
ncertainty can be treated by using the grey system theory which is a
6

mathematical theory founded on the notion of the grey set (Julong,
1982). Grey systems demonstrate a level of data and relationships
between black and white systems (Julong, 1989). In grey system theory,
numbers whose definite value is not distinguished are shown as grey
numbers. ⊗A is a grey number with known lower and upper limits,
and it is denoted as [𝐴, 𝐴 ] (Liu et al., 2012).

If ⊗A= [𝐴, 𝐴 ] and ⊗B= [𝐵, 𝐵 ] are two grey numbers, then
mathematical actions can be formulated as follows (Ikram et al., 2020):

⊗𝐴 +⊗𝐵 = [𝐴 + 𝐵,𝐴 + 𝐵] (1)

⊗𝐴 −⊗𝐵 = [𝐴 − 𝐵,𝐴 − 𝐵] (2)

⊗𝐴 × ⊗𝐵 = {Min [𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵], Max [𝐴𝐵,𝐴𝐵,𝐴𝐵,𝐴𝐵]} (3)

⊗𝐴∕⊗𝐵 = ⊗𝐴×⊗𝐵−1 = {Min [𝐴∕𝐵,𝐴∕𝐵,𝐴∕𝐵,A∕B],

Max [𝐴∕𝐵,𝐴∕𝐵,𝐴∕𝐵,𝐴∕𝐵]} (4)

𝐶 × ⊗𝐴 = [𝐶×𝐴,𝐶×𝐴] 𝐶 ∈ 𝑅 (5)

4. Sustainability metrics for selecting LM tools

To achieve success in the prioritization of the best set of LM tools
that boost different sustainability aspects in LM companies, it is critical
to choose the right collection of sustainability metrics (criteria) that
help to identify the best set of LM tools (Jing et al., 2018). To examine
the appropriateness of sustainability metrics for LM organizations, it
is necessary to assess the applicability of performance metrics in the
manufacturing sector (Ahmad et al., 2019). A comprehensive review of
the literature was conducted to recognize and extract the sustainability
metrics.

The criteria for selecting LM tools must be compatible with the
overall purpose (Bidhendi et al., 2018). These metrics mirror the objec-
tives of the company’s sustainability and meet the requirements of the
decision-makers to use them as criteria (Naeemah and Wong, 2022).
The sustainability metrics should be characterized by some features
such as easiness, robustness, order, and consistency so that they are
very beneficial in decision making (Al-Aomar and Hussain, 2018).

These metrics should reflect the three sustainability aspects
(Naeemah and Wong, 2022). The metrics were picked based on their
usage in the literature, importance, and relevance to the manufacturing
industry (Ahmad et al., 2019). Every aspect of sustainability includes
metrics to evaluate the sustainable performance of the industry (Hel-
leno et al., 2017). A set of sustainability metrics were collected. After
the preparatory screening, these metrics were filtered and edited.

As a result, an initial list of sustainability metrics (18 metrics)

was compiled and categorized based on three sustainability aspects (7
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Table 3
Proposed sustainability metrics for selecting LM tools.

Economic
metrics

Mean of
applicability
scores

References Environmen-
tal
metrics

Mean of
applicability
scores

References Social metrics Mean of
applicabil-
ity
scores

References

1. cost (C1) 4.2 (Kishawy et al., 2018;
Tasdemir et al., 2020;
Tasdemir and Gazo,
2018)

1. Material
usage (C6)

4 (Kishawy et al., 2018;
Tasdemir and Gazo, 2019;
Vinodh et al., 2011a)

1.Work
condition
(C12)

4.2 (Ahmad et al.,
2019; Kishawy
et al., 2018; Souza
and Alves, 2018)

2. Profit (C2) 4.2 (Ahmad et al., 2019;
Cherrafi et al., 2016;
Helleno et al., 2017)

2. Energy
usage (C7)

4.4 (Cherrafi et al., 2017;
Helleno et al., 2017; Yusup
et al., 2015)

2. Health and
safety (C13)

4.6 (Ahmad et al.,
2019;
Carvajal-Arango
et al., 2019;
Tasdemir et al.,
2020)

3. Flexibility
(C3)

3.9 (Carvajal-Arango et al.,
2019; Cherrafi et al.,
2017; Shrivastava,
2017)

3. Water
usage (C8)

4 (Carvajal-Arango et al.,
2019; Cherrafi et al., 2017;
Naeemah and Wong, 2022)

3. Labour
wellbeing
and
satisfaction
(C14)

4.2 (Chiarini, 2014;
Helleno et al., 2017;
Naeemah and
Wong, 2022)

4. Eight wastes
(C4)

4.3 (Chiarini, 2014;
Tasdemir and Gazo,
2018; Vinodh et al.,
2011a)

4.Air
emissions
(C9)

4.5 (Cherrafi et al., 2016;
Dieste et al., 2019;
Kishawy et al., 2018)

4. Society
wellbeing
and
satisfaction
(C15)

4.2 (Cherrafi et al.,
2017, 2016;
Tasdemir and Gazo,
2019)

5. Productivity
(C5)

4.2 (Helleno et al., 2017;
Naeemah and Wong,
2022; Tasdemir et al.,
2020)

5.
Wastewater
(C10)

3.9 (Ahmad et al., 2019;
Shrivastava, 2017; Vinodh
et al., 2011a)

5. Customer
wellbeing
and
satisfaction
(C16)

4.1 (Chiarini, 2014;
Helleno et al., 2017;
Souza and Alves,
2018)

6. Solid
waste (C11)

4.1 (Cherrafi et al., 2016;
Dieste et al., 2019;
Naeemah and Wong, 2022)
economic metrics, 6 environmental metrics, and 5 social metrics). By
considering the frequency of each metric, analysing these metrics, re-
moving redundancy and surplus, and merging similar types of metrics,
a list of 16 metrics was proposed. The evaluation tool was designed to
determine the applicability scores of the proposed metrics.

The applicability of metrics was evaluated based on a 5-point Likert
scale (Ahmad et al., 2019). Fourteen experts from different countries re-
sponded to this evaluation. These fourteen experts include six academic
experts and eight industrial experts, four of whom were from the Iraqi
cement industry, to create a balance between academic and industrial
experience. Usually, an evaluation by fourteen experts provides a suf-
ficient sample. The number of judging experts should not be excessive,
and generally, between 5 and 15 experts are sufficient (Anvari et al.,
2014a).

These experts have relevant experience and qualifications with
regard to sustainable manufacturing performance, such as scientific
research and practical experience. The comments of experts were taken
into account when editing metrics. The mean applicability score for
each metric has been calculated by collecting the applicability values
for each proposed sustainability metric (criterion) evaluated by experts
and dividing them by the number of experts as shown in Table 3. There
was no metric with an applicability score of less than 2.5. The experts’
answers were collected by sending the evaluation tool and receiving the
answers by email. Fig. 1 also shows all the mean applicability scores of
sustainability metrics (criteria).

5. Proposed research model

5.1. Determining the weights of the criteria using the best-worst method
(BWM)

The first step in developing the hybrid MCDM model is to determine
the weights of criteria (metrics) by adopting the BWM (Rezaei, 2020).
In order to implement the BWM in all four stages mentioned previously,
there are specific procedures for the BWM as follows (Kheybari and

Ishizaka, 2022; Rezaei, 2016):

7

1. Identifying a group of decision criteria {𝐶1, 𝐶2, . . . ., 𝐶n}.
2. Identifying the best and worst criteria by experts.
3. Conducting the pairwise comparison between the best criterion

and the other criteria (BO) utilizing numbers between 1 and 9.
4. Conducting the pairwise comparison between the other criteria

and the worst criterion (OW) utilizing numbers between 1 and 9.
5. Calculating the 𝐶𝑅𝐼 to examine the consistency for each pair-

wise comparison and comparing this ratio with the fixed thresh-
old. Table A.1 in the Appendix shows thresholds for a different
number of criteria and scales for 𝐶𝑅𝐼 (Liang et al., 2020).

𝐶𝑅𝐼 = max 𝐶𝑅𝐼
𝑗

𝐶𝑅𝐼
𝑗 =

⎧

⎪

⎨

⎪

⎩

|𝑎𝑏𝑗×𝑎𝑗𝑤−𝑎𝑏𝑤|

𝑎𝑏𝑤×𝑎𝑏𝑤−𝑎𝑏𝑤

0

⎧

⎪

⎨

⎪

⎩

𝑎𝑏𝑤 > 1

𝑎𝑏𝑤 = 1
(6)

where 𝐶𝑅𝐼 is the global ratio for all criteria, and 𝐶𝑅𝐼
𝑗 is the

local ratio associated with criterion 𝐶𝑗 , (0 ≤ 𝐶𝑅𝐼 ≤1) (Liang
et al., 2020).

6. Determining the optimal weights using the BWM model (Rezaei,
2015).

min 𝜉

s.t

|

𝑤𝑏
𝑤𝑗

− 𝑎𝑏𝑗 | ≤ 𝜉, for all 𝑗

|

𝑤𝑗

𝑤𝑤
−𝑎𝑗𝑤| ≤ 𝜉, for all 𝑗

∑

j
𝑤𝑗 = 1

𝑤𝑗≥0, for all 𝑗

(7)

7. Calculating 𝐶𝑅𝑂 to double-check the results’ reliability and
comparing it with the fixed threshold (Mohammadi and Rezaei,
2020).
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Fig. 1. The mean applicability score for sustainability metrics (criteria).
𝑅𝑂 =
𝜉
𝐶𝐼

(8)

here 𝜉 is the maximum objective value of the BWM model and CI
epresents the consistency index for different scales (𝑎𝑏𝑤). Table A.2 in

the Appendix shows the consistency index (CI) of 𝐶𝑅𝑂 (Rezaei, 2016).
lso, Table A.3 in the Appendix displays thresholds for a different
umber of criteria and scales for 𝐶𝑅𝑂 (Liang et al., 2020). The study

later utilized the global weights of the criteria obtained from BWM in
the Grey-TOPSIS method.

5.2. Ranking LM tools using the grey-TOPSIS method

The second step of the proposed model is to rank the alternatives
(LM tools). There are specific procedures in Grey-TOPSIS (Lin et al.,
2008b,a) to achieve the ranking as follows:

1. Evaluating the importance of the alternatives (⊗𝑔1, ⊗𝑔2,. . . .,
⊗𝑔𝑖) linguistically (see the Appendix, Table A.4) by the experts.
The group of experts (K) assesses each alternative with regard to
each criterion (Ikram et al., 2020; Zakeri and Keramati, 2015).

2. Converting the linguistic assessments to grey numbers.
3. Building a combined grey decision matrix using the arithmetic

mean method (Shamsuzzoha et al., 2021).

⊗𝑔𝑖𝑗 =
1
𝐾
[⊗𝑔1𝑖𝑗 +⊗𝑔2𝑖𝑗 +……. +⊗𝑔𝑘𝑖𝑗 ] (9)

where ⊗𝑔𝑘𝑖𝑗 (𝑖 = 1,2,. . . . . . ., m, 𝑗 = 1,2,. . . ..n) is an evaluation of
alternatives with respect to each criterion by the 𝑘𝑡ℎ (decision
maker) (Bai and Sarkis, 2018).

⊗𝐹 =

⎡

⎢

⎢

⎢

⎢

⎣

⊗𝑔11 ⊗𝑔12
⊗𝑔21 ⊗𝑔22

⋯
⊗𝑔1𝑛
⊗𝑔2𝑛

⋮ ⋱ ⋮
⊗𝑔𝑚1 ⊗g𝑚2 ⋯ ⊗𝑔𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(10)

where ⊗𝑔𝑖𝑗 indicates the importance value of the 𝑖th alternative
with respect to the 𝑗th criteria.

4. Normalizing the grey decision matrix (Oztaysi, 2014)

⊗ 𝐹 ∗ =

⎡

⎢

⎢

⎢

⎢

⎣

⊗𝑔11∗ ⊗𝑔12∗

⊗𝑔21∗ ⊗𝑔22∗
⋯

⊗𝑔1𝑛∗

⊗𝑔2𝑛∗

⋮ ⋱ ⋮
⊗𝑔𝑚1∗ ⊗𝑔𝑚2∗ ⋯ ⊗𝑔𝑚𝑛∗

⎤

⎥

⎥

⎥

⎥

⎦

(11)

For the beneficial type criteria.

⊗𝑔∗𝑖𝑗 =
⊗𝑔𝑖𝑗
max = [

𝑔
𝑖𝑗
max ,

𝑔𝑖𝑗
max ] where (𝑔max

𝑗 ) = max {𝑔𝑖𝑗} (12)

𝑔𝑗 𝑔𝑗 𝑔𝑗 1≤𝑖≤𝑚
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For the non-beneficial type criteria.

⊗𝑔∗𝑖𝑗 =
𝑔min
𝑗

⊗𝑔𝑖𝑗
= [

𝑔min
𝑗

𝑔𝑖𝑗
,
𝑔min
𝑗

𝑔
𝑖𝑗

] where (𝑔min
𝑗 ) = min

1≤𝑖≤𝑚
{𝑔

𝑖𝑗
} (13)

5. Formulating a weighted normalized grey decision matrix
(Nyaoga et al., 2016).

⊗𝑍 =

⎡

⎢

⎢

⎢

⎢

⎣

⊗𝑧11 ⊗𝑧12
⊗𝑧21 ⊗𝑧22

⋯
⊗𝑧1𝑛
⊗𝑧2𝑛

⋮ ⋱ ⋮
⊗𝑧𝑚1 ⊗𝑧𝑚2 ⋯ ⊗𝑧𝑚𝑛

⎤

⎥

⎥

⎥

⎥

⎦

, where ⊗𝑧𝑖𝑗 = ⊗𝑔∗𝑖𝑗 ×𝑤𝑗 (14)

where 𝑤𝑗 represents the weights of criteria (𝐶1, 𝐶2, . . . ., Cn)
obtained from BWM.

6. Identifying the positive and negative ideal solutions of alterna-
tives (Shamsuzzoha et al., 2021).

⊗𝑅𝑚𝑎𝑥 = {[max
1≤𝑖≤𝑚

𝑍 𝑖1, max
1≤𝑖≤𝑚

𝑍 𝑖1], [max
1≤𝑖≤𝑚

𝑍 𝑖2, max
1≤𝑖≤𝑚

𝑍 𝑖2],…, [max
1≤𝑖≤𝑚

𝑍 𝑖𝑛, max
1≤𝑖≤𝑚

𝑍 𝑖𝑛]}

(15)
⊗𝑅𝑚𝑖𝑛 = {[ min

1≤𝑖≤𝑚
𝑍 𝑖1, min

1≤𝑖≤𝑚
𝑍 𝑖1], [ min

1≤𝑖≤𝑚
𝑍 𝑖2, min

1≤𝑖≤𝑚
𝑍 𝑖2],… , [ min

1≤𝑖≤𝑚
𝑍 𝑖𝑛, min

1≤𝑖≤𝑚
𝑍 𝑖𝑛]}

(16)

7. Calculating the Euclidean distances between the alternatives and
the ideal solutions, both positive and negative (𝑑+𝑖 , 𝑑−𝑖 ) (Zolfani
and Antucheviciene, 2012).

𝑑+𝑖 = 𝑃

√

√

√

√

1
2

𝑛
∑

𝑗=1
[
(

𝑍+
𝑗 −𝑍 𝑖𝑗

)𝑃
+
(

𝑍+
𝑗 −𝑍 𝑖𝑗

)𝑃
]

=

√

√

√

√

1
2

𝑛
∑

𝑗=1
[
(

𝑍+
𝑗 −𝑍 𝑖𝑗

)2
+
(

𝑍+
𝑗 −𝑍𝑖𝑗

)2
] (17)

𝑑−𝑖 = 𝑃

√

√

√

√

1
2

𝑛
∑

𝑗=1
[
(

𝑍−
𝑗 −𝑍 𝑖𝑗

)𝑃
+
(

𝑍−
𝑗 −𝑍 𝑖𝑗

)𝑃
]

=

√

√

√

√

1
2

𝑛
∑

𝑗=1
[
(

𝑍−
𝑗 −𝑍 𝑖𝑗

)2
+
(

𝑍−
𝑗 −𝑍𝑖𝑗

)2
] (18)

8. Computing the relative closeness, 𝐶𝐶 𝑖 for each alternative (Lin
et al., 2008b).

𝐶𝐶 𝑖=
𝑑−𝑖
+ − , 𝑖 =1, 2, 3,… , 𝑚 (19)
𝑑𝑖 +𝑑𝑖
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Fig. 2. Hybrid MCDM model.
where 0 ≤ 𝐶𝐶 𝑖 ≤1 and the greater the index value is, the better
the assessment of alternative will be.

9. Ranking the preference order by choosing an alternative with
maximum 𝐶𝐶 𝑖. Fig. 2 shows the proposed hybrid MCDM model.

6. Evaluation and validation of the proposed model

6.1. Case study

To test and evaluate the proposed hybrid MCDM model, a case
study of one of Iraq’s largest cement manufacturing companies was
used to prove that the model can be applied to choose and rank the
most suitable set of LM tools. The plant has two production lines.
The factory’s annual production is about 2,000,000 tons of cement,
or more than 7500 tons per day of sulfate-resistant cement. The plant
operates on the dry technique of cement production. Approximately
700 people with different specializations work in this company. The
cement industry has always been critical to a country’s socioeconomic
9

prosperity. It has mostly led to improved affluence and expanded job
and livelihood options (Shrivastava, 2017). However, cement is one
of the main industries contributing to environmental contamination
(Uddin, 2020).

The cement industry has been accused of accelerating the use of
fossil fuels while also polluting the local and international environ-
ment by emitting liquid, solid, and gaseous pollutants (Majeed and
Mazhar, 2021; Shrivastava, 2017). One of the essential considerations
for the cement industry’s long-term viability is the consumption of
natural resources, such as raw materials, water, and energy (Majeed
and Mazhar, 2021). The cement production process passes through
numerous workstations, including crushing raw materials, grinding raw
materials, burning the materials in a rotary kiln, grinding cement in the
mills, packing the products, and other backing units, such as cement
silos, water treatment units, and the main power station. Several studies
have discussed the effective role of lean manufacturing in the cement
industry (Amrina and Lubis, 2017; Isaksson and Taylor, 2014; Masmali,
2021).
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Fig. 3. Global weights of the economic criteria.
The purpose of implementing LM tools is to develop and improve
the operations in cement factories by minimizing waste and non-
value activities that enhance sustainability performance (Cherrafi et al.,
2016). For instance, 7S can help cement companies reduce the space
needed for operations and draw attention to environmental waste. 7S
can help businesses save costs, energy, and materials, improve the
company’s hazardous material storage, and decrease the danger of spills
and mistreatment. 7S can assist firms in minimizing dangers to health
and safety (Tasdemir et al., 2020). To reduce individual bias, it is
advised that more than one expert be included in the decision-making
process.

Two experts from the company have been accredited because the
evaluation process for criteria and alternatives using the BWM and
Grey-TOPSIS methods requires sufficient experience and knowledge
about LM tools and sustainability metrics that are available only to a
very small number of engineers working in the company as heads of
department (s). Two experts in this company who work as production
and maintenance managers participated in the assessment process. The
number of years of experience was calculated from their first job in the
industry. These experts have sufficient experience more than 20 years
and have headed various departments during their working careers.

6.2. Weights of the criteria

Expert 1

Stage 1: Weight values of sustainability aspects
The environmental aspect was chosen as the best and the eco-

nomic aspect as the worst. Table 4 shows the BO and OW pairwise
comparisons (preferences) and the 𝐶𝑅𝐼

𝑗 ratio for each comparison.
The study calculated the 𝐶𝑅𝐼

𝑗 (using Eq. (6)) for the three aspects.
The value of the 𝐶𝑅𝐼

𝑗 was equal to zero; therefore, all pairwise compar-
isons are fully consistent and acceptable. After that, the optimal weight
of each aspect was determined using the BWM model (using Eq. (7)) as
follows:

w environmental aspect = 0.61035
w social aspect = 0.30517
w economic aspect = 0.08448

𝜉 = 0.08545
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Then the 𝐶𝑅𝑂 was determined (𝐶𝑅𝑂 = 0.08545
4.47 = 0.01911). The 𝐶𝑅𝑂

was very close to zero, and when the value of 𝐶𝑅𝑂 was compared with
the fixed threshold associated with scale (8) and the number of criteria
(3) (see the Appendix, Table A.3), the value was smaller than the fixed
threshold (0.01911 < 0.2267); therefore, the results were acceptable.

Stage 2: Weight values of criteria in each aspect of sustainability
In terms of the economic aspect, the eight wastes criterion was

chosen as the best and the flexibility criterion as the worst. Table 5
shows the BO and OW pairwise comparisons and the 𝐶𝑅𝐼

𝑗 ratio for each
pairwise comparison.

𝐶𝑅𝐼 = max 𝐶𝑅𝐼
𝑗

𝐶𝑅𝐼 = 0.07142
The 𝐶𝑅𝐼 ratio was compared with a fixed threshold that is asso-

ciated with the scale (8) and the number of criteria (5) (0.07142 <
0.2958) (see the Appendix, Table A.1), and this indicates the consis-
tency of pairwise comparisons. The local weights of economic criteria
were calculated using the BWM model as follows.

w cost = 0.16330
w prof it = 0.08165
w f lexibility = 0.02021
w eight wastes = 0.48989
w productivity = 0.24495
𝜉 = 0.01845
𝐶𝑅𝑂 = 0.01845

4.47 = 0.00412
The value of 𝐶𝑅𝑂 was close to zero and not greater than the fixed

threshold (0.4029) (see the Appendix, Table A.3); therefore, the results
were reliable. The study calculated the weights of environmental and
social aspects for the first expert by using the same formulas. All
previous procedures were also applied to the second expert. Table 6
displays the criteria’ local weights, average local weights, and average
global weights values. Table 6 also displays the values of 𝜉, 𝐶𝑅𝐼 , and
𝐶𝑅𝑂 for both experts.

Table 6 shows that all values of 𝐶𝑅𝐼 and 𝐶𝑅𝑂 for the main sustain-
ability aspects and the criteria in each aspect are less than the fixed
thresholds (see the Appendix, Tables A.1 and A.3). This means that
pairwise comparisons are consistent and the results are reliable. The
sum of the local weights for criteria in each aspect of sustainability is
equal to one, and the sum of the global weights for all criteria is equal
to one, indicating that the results are also reliable. Figs. 3 to 5 show
the average global weights for each criterion.
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Fig. 4. Global weights of the environmental criteria.
Fig. 5. Global weights of the social criteria.
i

Table 4
BO and OW pairwise comparisons and 𝐶𝑅𝐼

𝑗 for sustainability aspects.

Environmental
aspect

Social aspect Economic
aspect

𝒂𝒃𝒋 1 4 8
𝒂𝒋𝒘 8 2 1
CR𝑰

𝒋 0 0 0

6.3. Ranking LM tools using the grey-TOPSIS method

After evaluating the importance of the alternatives concerning each
criterion linguistically, the study converted the linguistic assessment
to grey numbers as shown in Tables A.5 and A.6 in Appendix. First,
the combined grey decision matrix was built, and then the study
 s

11
Table 5
BO and OW pairwise comparisons and 𝐶𝑅𝐼

𝑗 for economic criteria.

Cost (C1) Profit (C2) Flexibility (C3) Eight wastes (C4) Productivity (C5)

𝒂𝒃𝒋 4 5 8 1 2
𝒂𝒋𝒘 3 2 1 8 6
CR𝑰

𝒋 0.07142 0.03571 0 0 0.07142

normalized the grey decision matrix (⊗F∗) as revealed in Table A.7
in Appendix. Second, the weighted normalized grey decision matrix
(⊗Z) was formulated as displayed in Table A.8 in Appendix. Third, the
grey positive and negative ideal solutions (⊗ R𝑚𝑎𝑥, ⊗ R𝑚𝑖𝑛) were also
dentified using Eqs. (15) and (16), as shown in Table A.9 in Appendix.

Fourth, the 𝑑+𝑖 , d
−
𝑖 , and CC 𝑖 were calculated for each alternative as

hown in Table 7. Last, the alternatives were ranked based on values of
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Table 6
The local weights, average local and global weights, 𝜉, 𝐶𝑅𝐼 , and 𝐶𝑅𝑂 .

Aspect of sustainability Criteria Expert 1 Expert 2 Average local
weights

Average global
weights

Economic aspect

0.08448 0.08370 0.08409
Cost 0.16330 0.22518 0.19424 0.01633
Profit 0.08165 0.07506 0.07835 0.00658
Flexibility 0.02021 0.02421 0.02221 0.00186
Eight wastes 0.48989 0.37530 0.43259 0.03637
Productivity 0.24495 0.30024 0.27259 0.02290
𝜉 0.01845 0.01803 0.01824
𝐶𝑅𝐼 0.07142 0.15277 0.11209
𝐶𝑅𝑂 0.00412 0.00344 0.00378

Environmental aspect

0.61035 0.61087 0.61061
Material usage 0.28775 0.27155 0.27965 0.17075
Energy usage 0.17165 0.16293 0.16729 0.10214
Water usage 0.05755 0.05431 0.05593 0.03415
Air emissions 0.34530 0.38016 0.36273 0.22148
Wastewater 0.02166 0.02243 0.02205 0.01346
Solid waste 0.11510 0.10862 0.11185 0.06829
𝜉 0.01785 0.01746 0.01766
𝐶𝑅𝐼 0.12500 0.15277 0.13888
𝐶𝑅𝑂 0.00399 0.00334 0.00366

Social aspect

0.30517 0.30543 0.30530
Work condition 0.15063 0.19607 0.17335 0.05292
Health and safety 0.52722 0.45750 0.49236 0.15032
Labour wellbeing and
satisfaction

0.07531 0.06535 0.07033 0.02147

Society wellbeing and
satisfaction

0.22595 0.261430 0.24369 0.074320

Customer wellbeing and
satisfaction

0.02088 0.01963 0.02026 0.00618

𝜉 0.01865 0.01848 0.01856
𝐶𝑅𝐼 0.12500 0.08330 0.10415
𝐶𝑅𝑂 0.00412 0.00353 0.00383

𝜉 (for three aspects) 0.08545 0.08569 0.08557
𝐶𝑅𝐼 (for three aspects) 0 0.02380 0.02380
𝐶𝑅𝑂 (for three aspects) 0.01911 0.02297 0.02104
c
I
d
p
d
o
w

𝑑

𝑑

w

𝑑

Table 7
𝑑+
𝑖 , 𝑑−

𝑖 , CC 𝑖 and ranking of alternatives.

Alternatives 𝑑+
𝑖 𝑑−

𝑖 CC 𝑖 Ranking

A1 0.1602 0.5745 0.7819 6
A2 0.3077 0.6052 0.6630 10
A3 0.1488 0.5761 0.7948 5
A4 0.2606 0.6050 0.6989 9
A5 0.0577 0.6158 0.9144 1
A6 0.0713 0.6089 0.8952 2
A7 0.1205 0.5940 0.8313 3
A8 0.1414 0.5790 0.8037 4
A9 0.1588 0.5686 0.7817 7
A10 0.1785 0.5677 0.7607 8
A11 0.5020 0.6252 0.5547 12
A12 0.4578 0.6000 0.5672 11

CC 𝑖 as shown in Table 7. Table 7 shows that the 5th alternative (VSM)
was ranked 1st , and the 6th alternative (Kaizen) was ranked 2nd, while
the 11th alternative (SMED) was ranked 12th, and the 12th alternative
(cellular manufacturing) was ranked 11th. Fig. 6 displays the relation-
ship between the CC 𝑖 values and the ranking of alternatives. Fig. 7 also
shows the relationship between positive and negative distances (𝑑+𝑖 , 𝑑−𝑖 )
and CC 𝑖 values.

6.4. Sensitivity analysis

In this subsection, a sensitivity analysis was performed to display
the model’s robustness

6.4.1. Impact of different distances on the alternatives’ ranking
Sensitivity analysis plays a crucial role in the decision-making pro-

cess. In this section, sensitivity analysis is performed by estimating
12
the change in the Grey-TOPSIS method’s final ranking of alternatives
when using different distance measurements between alternatives and
positive and negative ideal solutions to investigate the effect of different
distances on the ranking of alternatives and test the robustness of the
suggested model’s results. This can be achieved using the Minkowski
formula’s general form (Lin et al., 2008b). Therefore, the form of
determining the distance between two grey numbers can be shown
below.

In order to see the effects of the change in distance measurement on
the ranking of alternatives, the study used different values for P. In the
ase where P = 1, the distance is equivalent to the Manhattan distance.
n the case where P = 2, the distance is equivalent to the Euclidean
istance that was used in calculating the distances in Section 6.3
reviously. Also, the same calculations were applied using Minkowski
istance, where P = 3, P = 4, and P = 5 to see the change in the ranking
f alternatives.
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w

𝑑

𝑑

Fig. 6. The relationship between CC 𝑖 values and alternative ranking.
Fig. 7. The relationship between d+𝑖 ,d−𝑖 and CC 𝑖 values.
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Table 8
Manhattan distance (P =1).

Alt. 𝑑+
𝑖 𝑑−

𝑖 CC 𝑖 Ranking

A1 0.1315 0.4310 0.7662 7
A2 0.2584 0.5238 0.6696 10
A3 0.1252 0.4577 0.7852 5
A4 0.2166 0.5134 0.7033 9
A5 0.0511 0.5015 0.9075 1
A6 0.0612 0.4882 0.8886 2
A7 0.0991 0.4682 0.8254 3
A8 0.1210 0.4605 0.7919 4
A9 0.1331 0.4365 0.7663 6
A10 0.1528 0.4496 0.7463 8
A11 0.4202 0.5841 0.5816 12
A12 0.3839 0.5569 0.5920 11

Table 9
Minkowski distance (P = 3).

Alt. 𝑑+
𝑖 𝑑−

𝑖 CC 𝑖 Ranking

A1 0.1767 0.6396 0.7835 7
A2 0.3385 0.6478 0.6568 10
A3 0.1625 0.6398 0.7974 5
A4 0.2867 0.6526 0.6948 9
A5 0.0616 0.6820 0.9172 1
A6 0.0767 0.6753 0.8980 2
A7 0.1328 0.6586 0.8322 3
A8 0.1542 0.6430 0.8066 4
A9 0.1741 0.6334 0.7844 6
A10 0.1951 0.6296 0.7634 8
A11 0.5530 0.6444 0.5382 12
A12 0.5083 0.6264 0.5542 11

Table 10
Minkowski distance (P = 4).

Alt. 𝑑+
𝑖 𝑑−

𝑖 CC 𝑖 Ranking

A1 0.1866 0.6756 0.7836 7
A2 0.3575 0.6723 0.6528 10
A3 0.1710 0.6769 0.7984 5
A4 0.3026 0.6800 0.6920 9
A5 0.0641 0.7212 0.9184 1
A6 0.0799 0.7143 0.8994 2
A7 0.1402 0.6954 0.8322 3
A8 0.1623 0.6804 0.8074 4
A9 0.1836 0.6704 0.7850 6
A10 0.2055 0.6655 0.7640 8
A11 0.5842 0.6552 0.5286 12
A12 0.5321 0.6427 0.5471 11

Table 11
Minkowski distance (P= 5).

Alt. 𝑑+
𝑖 𝑑−

𝑖 CC 𝑖 Ranking

A1 0.1931 0.6983 0.7834 7
A2 0.3699 0.6879 0.6503 10
A3 0.1765 0.7007 0.7987 5
A4 0.3129 0.6974 0.6903 9
A5 0.0657 0.7465 0.9191 1
A6 0.0820 0.7393 0.9001 2
A7 0.1451 0.7188 0.8320 3
A8 0.1676 0.7042 0.8077 4
A9 0.1898 0.6939 0.7852 6
A10 0.2125 0.6884 0.7642 8
A11 0.6045 0.6621 0.5227 12
A12 0.5506 0.6532 0.5426 11

The study calculated the 𝑑+𝑖 and 𝑑−𝑖 for all alternatives and calcu-
lated the values of (𝐶𝐶 𝑖) for all alternatives as shown in Tables 8 to 11.

From Tables 8 to 11, it can be seen that both the values of 𝑑+𝑖 , and
𝑑−𝑖 for each alternative increase with increasing the P value. However,
the 𝐶𝐶 𝑖 values were increased disproportionately, where Tables 8 to 11
reveal that some 𝐶𝐶 𝑖 values of alternatives were smaller even when
using bigger P values. Nevertheless, although an extra four different
14
distances were used by using four different values of P (𝑃 = 1, 𝑃 = 3,
𝑃 = 4, and 𝑃 = 5) to rank the alternatives, the ranking of all alternatives
remained similar to the rankings based on Euclidean distance (𝑃 = 2)
except for A1 and A9 as they took each other’s ranking.

Based on the new four scenarios, the VSM tool (A5) was ranked 1st

and the Kaizen tool (A6) was ranked 2nd, while the SMED tool (A11)
was ranked 12th and the cellular manufacturing tool (A12) was ranked
11th. The A1 was ranked 6th when the Euclidean distance (𝑃 = 2)
was used, while it was ranked 7th when (𝑃 = 1, 𝑃 = 3, 𝑃 = 4, and

= 5) were used, while the A9 was ranked 7th when (𝑃 = 2) was
sed, and it was ranked 6th when (𝑃 = 1, 𝑃 = 3, 𝑃 = 4, and 𝑃 = 5)

were used. This indicates the stability and robustness of the model
such that, despite using different values of distances that differ from
the Euclidean distance through changes in the P values, the ranking
of the alternatives did not change, except for the A1 and A9. Table 12
compares the rankings of the alternatives at the different P values.

.4.2. The ranking of alternatives based on the criteria of each aspect of
ustainability

An additional scenario was provided for the sensitivity analysis
o determine the model’s robustness. Alternatives (LM tools) can be
anked based on the criteria of each aspect of sustainability separately,
eglecting the other aspects of sustainability. For example, the study
anked the LM tools based on the criteria of the economic aspect of
ustainability and ignored the other aspects, and then ranked the LM
ools based on environmental and social criteria using the same pro-
edure. This procedure revealed the different rankings for alternatives
ased on each aspect of sustainability. Table 13 displays 𝑑+𝑖 , 𝑑−𝑖 , 𝐶𝐶 𝑖,
nd three additional rankings of alternatives based on the criteria of
ach aspect of sustainability separately.

Table 13 reveals a significant change in the ranking of the alter-
atives when the alternatives were ranked according to the metrics
criteria) of each aspect of sustainability. In the first scenario (ranking
ased on economic criteria), the A6 and A5 were ranked 1st and 2nd,
espectively, while the A11 and A12 were ranked 12th and 11th, re-
pectively. In the second scenario (ranking based on the environmental
riteria), the A5 and A6 were ranked 1st and 2nd, respectively, while the
11 and A12 were ranked 11th and 12th, respectively. The third scenario

ranking based on social criteria) is slightly different, where the A5 was
anked 1st , and the A4 was ranked 2nd, while the A6 was ranked 7th.
lso, the A11 and A12 were ranked 12th and 11th, respectively.

As for the rest of the alternatives, there is a clear change in most
f the rankings in the three scenarios. These changes in the ranking
rovide insights for managers of companies and researchers to carefully
onsider each of the criteria for the aspects of sustainability when
sing LM tools according to priority. Table 13 shows how the ranking
iffered when it was conducted based on each aspect of sustainability
eparately, as some LM tools can affect the criteria of one aspect of
ustainability more than the criteria of other aspects. Therefore, the
anking of the alternatives was different from the previous scenarios.
his issue should be taken into account by managers when ranking
lternatives.

.4.3. Comparison of the results of the proposed methods with other meth-
ds

The suggested methods (BWM-Grey-TOPSIS) results have been com-
ared with those obtained from other methods. First, the study used
he OPA method to calculate the criteria weights and then compared
hose weights to those obtained from the BWM. The OPA method is
ne of the newly developed MCDM methods used to calculate the
eights of the alternatives, criteria, and experts after some simple steps
ith no pairwise comparison, normalization, or decision matrix (Ataei
t al., 2020; Mahmoudi et al., 2021c). This method utilizes ordinal
ata as inputs and is based on the linear programming (LP) technique
Mahmoudi et al., 2021a,b).
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Table 12
The comparison of the rankings of alternatives using different distances.

Distances Alternatives ranking

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

Manhattan Distance (P = 1) 7 10 5 9 1 2 3 4 6 8 12 11
Euclidean Distance (P = 2) 6 10 5 9 1 2 3 4 7 8 12 11
Minkowski Distance (P = 3) 7 10 5 9 1 2 3 4 6 8 12 11
Minkowski Distance (P = 4) 7 10 5 9 1 2 3 4 6 8 12 11
Minkowski Distance (P = 5) 7 10 5 9 1 2 3 4 6 8 12 11
Table 13
𝑑+
𝑖 , d−𝑖 , 𝐶𝐶 𝑖 , and the ranking based on environmental and social criteria.

Economic aspect Environmental aspect Social aspect

Alt. 𝒅+
𝒊 𝒅−

𝒊 CC 𝒊 Rank 𝒅+
𝒊 𝒅−

𝒊 CC 𝒊 Rank 𝒅+
𝒊 𝒅−

𝒊 CC 𝒊 Rank
A1 0.0134 0.0432 0.7627 5 0.1087 0.3548 0.7655 6 0.0381 0.1765 0.8226 9
A2 0.0186 0.0449 0.7069 8 0.2374 0.3870 0.6198 10 0.0517 0.1733 0.7704 10
A3 0.0142 0.0430 0.7519 7 0.1047 0.3528 0.7712 5 0.0299 0.1803 0.8577 5
A4 0.0240 0.0427 0.6401 9 0.2124 0.3766 0.6394 9 0.0242 0.1857 0.8847 2
A5 0.0067 0.0476 0.8765 2 0.0281 0.3831 0.9316 1 0.0228 0.1851 0.8902 1
A6 0.0056 0.0488 0.8972 1 0.0318 0.3808 0.9228 2 0.0339 0.1794 0.8412 7
A7 0.0138 0.0426 0.7549 6 0.0787 0.3688 0.8241 3 0.0279 0.1826 0.8672 3
A8 0.0105 0.0444 0.8092 3 0.1029 0.3531 0.7743 4 0.0280 0.1815 0.8662 4
A9 0.0128 0.0435 0.7723 4 0.1134 0.3454 0.7528 7 0.0325 0.1797 0.8466 6
A10 0.0243 0.0424 0.6355 10 0.1203 0.3463 0.7422 8 0.0340 0.1790 0.8405 8
A11 0.0409 0.0452 0.5252 12 0.2708 0.3772 0.5821 11 0.1903 0.2029 0.5159 12
A12 0.0267 0.0419 0.6106 11 0.3105 0.3797 0.5501 12 0.1206 0.1784 0.5967 11
Table 14
The comparison between the results of BWM and OPA.

Aspect of
sustainability

Criteria Average local
weights for both
experts based on
BWM

Average global
weights
based on BWM

Average local
weights for both
experts based on
OPA

Average global
weights
based on OPA

Economic aspect

0.08409 0.07576
Cost 0.19424 0.01633 0.14709 0.01114
Profit 0.07835 0.00658 0.07475 0.00566
Flexibility 0.02221 0.00186 0.02928 0.00221
Eight wastes 0.43259 0.03637 0.49845 0.03776
Productivity 0.27259 0.02290 0.25043 0.01897

Environmental
aspect

0.61061 0.66029
Material usage 0.27965 0.17075 0.44443 0.29345
Energy usage 0.16729 0.10214 0.24566 0.16221
Water usage 0.05593 0.03415 0.14627 0.09658
Air emissions 0.36273 0.22148 0.08830 0.05830
Wastewater 0.02205 0.01346 0.05186 0.03424
Solid waste 0.11185 0.06829 0.02347 0.01549

Social aspect

0.30530 0.26394
Work condition 0.17335 0.05292 0.13776 0.03636
Health and safety 0.49236 0.15032 0.50152 0.13237
Labour wellbeing and
satisfaction

0.07033 0.02147 0.07309 0.01929

Society wellbeing and
satisfaction

0.24369 0.07432 0.25901 0.06836

Customer wellbeing
and satisfaction

0.02026 0.00618 0.02863 0.00755
t
c

G
t
B
d
i
A

The study has collected additional data to conduct the OPA method
rom the same two experts in the case company to compute the criteria
eights. The study gave both experts equal weight values since they
ave the same years of experience at the case company. The study
dopted and followed the steps and equations of the OPA method given
y Ataei et al. (2020). Table 14 compares the weights of the criteria
btained from OPA and BWM.

Table 14 shows that when using the OPA method, the sum of the
ocal weights of criteria in each aspect equals 1, and the sum of the
lobal weights for all criteria is also equal to 1. Table 14 reveals that
hen comparing the local and global weights of criteria obtained from

he BWM and OPA methods, it is obvious that there are differences
n the weight values. However, the results are rational and reasonable
n both methods, as the most influential metrics are still related to
ight wastes in the economic aspect, air emissions in the environmental
 ⊗

15
aspect, and health and safety in the social aspect, although the two
methods used different decision-making processes.

As for the rest of the metrics, they have the same order of weights
in both methods. However, the BWM provides two types of consistency
ratios (𝐶𝑅𝑂 and 𝐶𝑅𝐼 ) that this study used to justify the reliability of
he weights, but the OPA method does not have such measurements for
onsistency.

Second, the study determined the weight of the criteria using the
rey-BWM and compared them with the criteria weights obtained from

he BWM. Therefore, the study combined the grey numbers with the
WM to calculate the criteria weights and consider the uncertainty
uring decision-making. In order to perform the pairwise comparison
n Grey-BWM, the study has adopted grey linguistic variables (see the
ppendix, Table A.10) (Bai et al., 2019; Mahmoudi et al., 2020).

After completing the pairwise comparisons, the study calculated
𝐶𝑅𝐼 for each pairwise comparison using the formula for 𝐶𝑅𝐼
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Table 15
The local grey weights, average local and global grey weights, ⊗ 𝜉, ⊗ 𝐶𝑅𝐼 , and ⊗ 𝐶𝑅𝑂 .

Aspect of sustainability Criteria Expert 1 Expert 2 Average local weights Average global weights

Economic aspect

[0.01939, 0.08785] [0.07974, 0.08718] [0.04956, 0.08752]
Cost [0.08239, 0.18108] [0.21255, 0.23536] [0.14747, 0.20822] [ 0.00730, 0.01822]
Profit [0.07243, 0.08238] [0.06724, 0.08502] [0.06983, 0.08370] [ 0.00346, 0.00732]
Flexibility [0.01136, 0.02217] [0.02226, 0.02490] [0.01681, 0.02353] [ 0.00083, 0.00205]
Eight wastes [0.47080, 0.61790] [0.34740, 0.38259] [0.40910, 0.50024] [ 0.02027, 0.04371]
Productivity [0.20596, 0.25351] [0.29757, 0.30261] [0.25176, 0.27806] [ 0.01247, 0.02433]
⊗ 𝜉 [0.01825, 0.01950] [0.01790, 0.06261] [0.01807, 0.04105]
⊗ 𝐶𝑅𝐼 [0.04633, 0.18324] [0.04098, 0.22891] [0.04365, 0.20607]
⊗ 𝐶𝑅𝑂 [0.00377, 0.00402] [0.00298, 0.01043] [0.00337, 0.00722]

Environmental aspect

[0.49030, 0.65154] [0.46013, 0.65175] [0.47521, 0.65164]
Material usage [0.28266, 0.30553] [0.26825, 0.28569] [0.27545, 0.29561] [0.13089, 0.19263]
Energy usage [0.16974, 0.17987] [0.15872, 0.17070] [0.16423, 0.17528] [0.07804, 0.11421]
Water usage [0.05139, 0.06789] [0.04877, 0.06348] [0.05008, 0.06568] [0.02379, 0.04279]
Air emissions [0.33406, 0.37344] [0.36580, 0.41267] [0.34993, 0.39306] [0.16629, 0.25613]
Wastewater [0.01549, 0.02353] [0.01593, 0.02451] [0.01571, 0.02402] [0.00746, 0.01565]
Solid waste [0.06789, 0.12848] [0.06348, 0.12193] [0.06568, 0.12520] [0.03121, 0.08158]
⊗ 𝜉 [0.01756, 0.01853] [0.01724, 0.02394] [0.01747, 0.02123]
⊗ 𝐶𝑅𝐼 [0.04247, 0.24607] [0.04247, 0.24607] [0.04247, 0.24607]
⊗ 𝐶𝑅𝑂 [0.00362, 0.00382] [0.00287, 0.00399] [0.00325, 0.00390]

Social aspect

[0.26061, 0.49030] [0.26070, 0.46012] [0.26065, 0.47521]
Work condition [0.08236, 0.16848] [0.15933, 0.20787] [0.12084, 0.18817] [0.03149, 0.08942]
Health and safety [0.50544, 0.61770] [0.44544, 0.54176] [0.47544, 0.57973] [0.12392, 0.27549]
Labour wellbeing and satisfaction [0.06739, 0.08236] [0.05939, 0.06673] [0.06339, 0.07454] [0.01652, 0.03542]
Society wellbeing and satisfaction [0.20590, 0.23587] [0.22307, 0.26726] [0.21448, 0.25156] [0.05590, 0.11954]
Customer wellbeing and satisfaction [0.01165, 0.02281] [0.01211, 0.02002] [0.01188, 0.021415] [0.00309, 0.01017]
⊗𝜉 [0.01817, 0.01948] [0.01687, 0.01929] [0.01752, 0.01938]
⊗𝐶𝑅𝐼 [0.04247, 0.24607] [0.04247, 0.24607] [0.04247, 0.24607]
⊗𝐶𝑅𝑂 [0.00375, 0.00402] [0.00281, 0.00321] [0.00315, 0.00337]

⊗𝜉 (for three main aspects) [0.01932, 0.08658] [0.08406, 0.08719] [0.05169, 0.08688]
⊗𝐶𝑅𝐼 (for three main aspects) [0.05791, 0.10471] [0.02010, 0.02877] [0.03900, 0.06674]
⊗𝐶𝑅𝑂 (for three main aspects) [0.00399, 0.01788] [0.02055, 0.02131] [0.01227, 0.01959]
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(Eq. (6)). After that, the study calculated the grey weights of the
sustainability aspects and the criteria in each aspect using the BWM
model (Eq. (7)). Finally, ⊗𝐶𝑅𝑂 was calculated using the formula of
𝑅𝑂 (Eq. (8)) but in this case, the study used a different consistency

ndex. The equation from Mahmoudi et al. (2020) was used to deter-
ine the grey consistency index. Table A.11 in the Appendix shows

he grey consistency index (⊗CI). Table 15 shows local grey weights,
average local grey weights, and average global grey weights for the
sustainability aspects and all criteria for both experts. Table 15 also
shows the values of ⊗𝜉, ⊗𝐶𝑅𝐼 , and ⊗𝐶𝑅𝑂 for both experts.

Table 15 reveals that all the values of the criteria weights obtained
rom the normal BWM method are located inside the values of the
rey intervals obtained from Grey-BWM. Also, the values of the grey
ntervals of the ⊗𝐶𝑅𝐼 and ⊗𝐶𝑅𝑂 are close to zero. Moreover, none of
he upper bounds of the intervals of ⊗𝐶𝑅𝐼 and ⊗𝐶𝑅𝑂 are bigger than
he fixed thresholds (see the Appendix, Tables A.1 and A.3). Therefore,
he pairwise comparisons are consistent, and the results are reliable and
cceptable.

Third, the study used the Fuzzy-TOPSIS method to rank the alter-
atives and compare the results with the results of the Grey-TOPSIS
ethod. Therefore, the study combined the fuzzy numbers with the
OPSIS to rank the alternatives and treat the problem of fuzzy un-
ertainty. After evaluating the alternatives with the help of experts,
he study converted linguistic variables into fuzzy numbers (see the
ppendix, Table A.12). After that, the study built the combined matrix

o aggregate the assessments of alternatives concerning each criterion
Shamsuzzoha et al., 2021).

Then the study normalized the fuzzy decision matrix and deter-
ined the weighted normalized fuzzy decision matrix. The study also

dentified 𝑅max and 𝑅𝑚𝑖𝑛. After that, the Euclidean distances (𝑑+𝑖 , 𝑑−𝑖 )
ere calculated for each alternative using the formula from Shamsuz-

oha et al. (2021). Last, the 𝐶𝐶 𝑖 values were determined to rank the
lternatives. Table 16 displays 𝑑+𝑖 , 𝑑−𝑖 , 𝐶𝐶 𝑖, and the new rankings of
lternatives based on the Fuzzy-TOPSIS method and compares them
ith the ranking of the Grey-TOPSIS.
16
Table 16 shows that when using fuzzy numbers with the TOPSIS
ethod to rank the alternatives, the 𝐶𝐶 𝑖, 𝑑+𝑖 , and 𝑑−𝑖 values became

maller because a different formula was used to calculate the 𝑑+𝑖 and 𝑑−𝑖
n Fuzzy-TOPSIS. Nevertheless, Table 16 reveals that when ranking the
lternatives using the Fuzzy-TOPSIS method, 10 out of 12 alternatives
emained in the same ranking as in the previous method (Grey-TOPSIS).

These alternatives are A2, A3, A4, A5, A6, A7, A8, A10, A11, and
12. The other alternatives (A1 and A9) took each other’s rankings. A1
as the 7th in Fuzzy-TOPSIS while it was the 6th in Grey-TOPSIS, and A9
as the 6th in Fuzzy-TOPSIS while it was the 7th in Grey-TOPSIS. This

hows the consistency of the results and the robustness of the model;
espite the different scales and methods used to rank the alternatives
nd treat the problem of uncertainty, most of the alternatives ranked
imilar to the original ranking.

All previous scenarios conducted in this study reveal that the VSM
nd Kaizen tools (A5 and A6) have the highest ranking among the set of
M tools because these tools greatly affect sustainability. For instance,
he VSM tool lowers defects, cuts down on several sorts of time (cycle
ime, setup time, etc.), saves labour expenses, and raises productivity,
fficiency, and quality. The VSM helps reduce environmental waste
uch as wastewater, solid waste, and air emissions by preventing the
veruse of materials, water, and energy.

Operators can be aware of the environmental repercussions of in-
ustrial processes by using the VSM tool. This leads to instructions
n properly using the resources, allowing the cement industry to gain
ignificant environmental benefits. Last, the VSM tool can potentially
mprove stakeholder communication, ergonomics, and the health and
afety of workers.

The Kaizen tool improves efficiency, quality, and production while
owering product defects. The Kaizen tool minimizes the use of raw
aterials, energy, costs, and production time. The Kaizen lowers in-

entory and boosts workplace health and safety. Additionally, it boosts
mployee engagement, enhances the competitive climate, strengthens
ollaboration within the workplace, and generates a collaborative, in-
ovative, and proactive opportunity for continual development. More-
ver, Kaizen encourages a problem-solving culture that is based on
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Table 16
𝑑+
𝑖 , 𝑑−

𝑖 , 𝐶𝐶 𝑖, and ranking of alternatives based on Fuzzy-TOPSIS and Grey-TOPSIS.

Alternatives Fuzzy-TOPSIS Grey-TOPSIS

𝑑+
𝑖 𝑑−

𝑖 CC 𝑖 Ranking 𝑑+
𝑖 𝑑−

𝑖 CC 𝑖 Ranking

A1 0.2136 0.2040 0.4885 7 0.1602 0.5745 0.7819 6
A2 0.2898 0.2066 0.4162 10 0.3077 0.6052 0.6630 10
A3 0.2055 0.2223 0.5196 5 0.1488 0.5761 0.7948 5
A4 0.2494 0.2127 0.4602 9 0.2606 0.6050 0.6989 9
A5 0.0740 0.2087 0.7382 1 0.0577 0.6158 0.9144 1
A6 0.0938 0.2134 0.6947 2 0.0713 0.6089 0.8952 2
A7 0.1502 0.1980 0.5686 3 0.1205 0.5940 0.8313 3
A8 0.1976 0.2171 0.5235 4 0.1414 0.5790 0.8037 4
A9 0.2260 0.2169 0.4897 6 0.1588 0.5686 0.7817 7
A10 0.2443 0.2240 0.4783 8 0.1785 0.5677 0.7607 8
A11 0.4141 0.2099 0.3364 12 0.5020 0.6252 0.5547 12
A12 0.4259 0.2330 0.3536 11 0.4578 0.6000 0.5672 11
scientific and systematic thinking, which can help cement companies
address environmental issues by improving the performance of sup-
porting flows and lowering the manufacturing process’s environmental
effects.

In contrast, SMED and cellular manufacturing tools (A11 and A12)
have the lowest ranking among the list of LM tools. Using the SMED
tool helps to reduce equipment setup time, overproduction, stock,
power, material consumption, and air emissions. SMED decreases many
environmental influences of the machines, such as oil leakage and
chemical fumes, into the environment. However, because there are few
dies to modify throughout cement manufacturing, using this equipment
is unusual in cement firms.

Cellular manufacturing assists cement companies in reducing setup
times and changing over time. It also reduces material transportation
inside the company. Therefore, this tool could lower the cost, effort,
resources, energy, and stress on employees. However, using this tool is
unusual in cement companies because the cement manufacturing stages
are difficult to complete in stages in the form of cells, as in other types
of manufacturing industries.

The rankings of the remaining eight LM tools (A1, A2, A3, A4, A7,
A8, A9, and A10) that the experts also evaluated ranged between the
VSM and Kaizen tools (A5 and A6) on the one hand, and the SMED and
cellular manufacturing tools (A11, and A12) on the other hand. This
indicates that experts have seen that the impacts of the remaining 8 LM
tools on 16 metrics of sustainability ranged between A5 and A6, which
were ranked high, and A11 and A12, which were ranked low. The
impacts of these LM tools on the sustainability of the manufacturing
industry have been briefly discussed in Section 2.2.

7. Implications of the study

7.1. Theoretical implications

From the results of this study, it is clear that this research has
significant outcomes for researchers, businesses, and manufacturers.
This is the first study that has ranked the LM tools depending on their
effects on sustainability metrics. This research has produced a set of
TBL sustainability metrics (16 metrics) that can be used as a foundation
for future research on selecting LM tools based on their impact on
sustainability in the manufacturing industry, particularly in the cement
industry. This study presented to practitioners and researchers a hybrid
MCDM model that combines two methods (BWM and Grey-TOPSIS).
This hybrid model can help researchers select and rank LM tools based
on their impact on sustainability. In contrast, previous studies have
ranked the LM tools based on their impact on economic criteria only.

This study has selected a set of 12 LM tools that show a great
impact on the sustainability aspects of the manufacturing sector. The
study offered more reliable results for researchers. It helped them
select a suitable set of LM tools more accurately by using one of the
modern MCDM methods (BWM) to determine the criteria weights,
which can avoid the contradictions and inconsistencies of comparisons
17
and lead to more reliable results. Moreover, unlike all of the reviewed
research, this study addressed the grey uncertainty problem during the
decision-making process of ranking LM tools

7.2. Managerial implications

In practice, the managers of cement companies are currently fo-
cusing on choosing approaches that support sustainability in their
companies because of the pollution of the environment caused by their
companies. When there are so many LM tools available, choosing from
among them is a complex decision, thus corporate managers often use
experience and common sense to make the selection decision. It can
often be a waste of time and money if the incorrect LM tools are chosen.
It is necessary to have an appropriate method to help companies
select the right set of lean tools. Thus, this research allows businesses
and organizations to use the hybrid MCDM model to choose the best
collection of LM tools, as manufacturers should prioritize implementing
the LM tools as one of the most critical conditions for success in LM
employment.

As a result, using the generated ranking of LM tools mentioned in
Table 7 can maximize the benefits of sustainability in their business.
Therefore, the study will positively impact the economic aspects of
companies and organizations by rationalizing and decreasing resource,
energy, time, and labour expenses. It also enhances the social aspect by
promoting team spirit, increasing employee satisfaction, and improving
occupational safety procedures. Furthermore, the environmental aspect
can be enhanced by lowering many negative consequences of the
manufacturing processes, such as material consumption, liquid and
solid waste generation, and water and energy consumption.

8. Conclusions

LM tools are techniques used to make manufacturing systems leaner
and more sustainable. Applying unsuitable LM tools increases defi-
ciencies and non-value-added activities in the cement manufacturing
processes. The conclusions of this study can be summarized as follows:

• A group of 16 applicable TBL sustainability metrics (selection cri-
teria) was proposed based on a comprehensive literature review
and academic and industrial experts’ evaluations.

• The study determined a list of 12 LM tools that have the most
significant impacts on sustainability aspects.

• This study developed a new hybrid model for choosing and
ranking the best set of LM tools based on their impact on sus-
tainability, getting credible criteria weights, and addressing grey
uncertainty in the decision-making process.

• To our knowledge, this is the first study to rank LM tools based
on sustainability metrics, where the BWM and Grey-TOPSIS tech-
niques were integrated for the first time for this purpose in this

field.
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Table A.1
Thresholds for a different number of criteria using CR𝐼 .

Scale 𝑎𝒃𝒘 Criteria

3 4 5 6 7 8 9

3 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
4 0.1121 0.1529 0.1898 0.2206 0.2527 0.2577 0.2683
5 0.1354 0.1994 0.2306 0.2546 0.2716 0.2844 0.2960
6 0.1130 0.1190 0.2643 0.3044 0.3144 0.3221 0.3262
7 0.1294 0.2457 0.2819 0.3029 0.3144 0.3251 0.3403
8 0.1309 0.2521 0.2958 0.3154 0.3408 0.3620 0.3657
9 0.1359 0.2681 0.3062 0.3337 0.3517 0.3620 0.3662

Note: in case of 𝑎𝑏𝑤 = 1, 2, and n = 2, the threshold is equal to zero.
Table A.2
Consistency index (CI).

Scale (𝑎𝑏𝑤) 1 2 3 4 5 6 7 8 9

Consistency index (CI) 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23
Table A.3
Threshold for different number of criteria using CR𝑂 .

Scale (𝒂𝒃𝒘) Criteria

3 4 5 6 7 8 9

3 0.2087 0.2087 0.2087 0.2087 0.2087 0.2087 0.2087
4 0.1581 0.2352 0.2738 0.2928 0.3102 0.3154 0.3273
5 0.2111 0.2848 0.3019 0.3309 0.3479 0.3611 0.3741
6 0.2164 0.2922 0.3565 0.3924 0.4061 0.4168 0.4225
7 0.2090 0.3313 0.3734 0.3931 0.4035 0.4108 0.4298
8 0.2267 0.3409 0.4029 0.4230 0.4379 0.4543 0.4599
9 0.2122 0.3653 0.4055 0.4225 0.4445 0.4587 0.4747

Note: in case of abw = 1, 2, and n = 2, the threshold is equal to zero.
Table A.4
Grey linguistic variables with grey numbers.

Linguistic term Very low influence (VLI) Low influence (LI) Medium influence (MI) High influence (HI) Very high influence (VHI)

Grey interval number [0,2] [2,4] [4,6] [6,8] [8,10]
• The proposed model was evaluated at a real-life cement company
in Iraq.

• The results of the BWM revealed that the most influential criteria
were eight wastes in the economic aspect, air emissions in the
environmental aspect, and health and safety in the social aspect.

• The result of the Grey-TOPSIS method showed that the most
important alternative was the VSM tool, and the least signifi-
cant alternative was the SMED tool. The rankings of the other
tools ranged between these two based on the experts’ estima-
tions of their importance and their impacts on improving the
sustainability of the cement industry.

• The study used three scenarios to verify the results. First, it ranked
the alternatives using different distances instead of Euclidean
distance. Second, it ranked the alternatives based on the criteria
of each sustainability aspect. Third, it used other methods to
determine the criteria weights and rank the alternatives, then
compared the obtained results with those used in the proposed
model. The results of the three scenarios verified the proposed
model’s robustness and reliability.

lthough many solutions are presented in this study, there are some
imitations. It did not consider the negative impact of some LM tools;
nly a few LM tools and sustainability metrics were considered; and the
umber of experts from the cement industry involved in the study was
nly two.
18
Several recommendations and directions can be followed in the
future. First, future studies can modify and increase the number and
types of LM tools that impact sustainability. Second, they can improve
or adjust the number and types of sustainability metrics. Third, they
could combine fuzzy numbers with BWM to treat fuzziness during
pairwise comparisons. Fourth, researchers can use this study’s LM tools
and metrics in other industries after re-evaluating their applicability
since they are generally suitable for the manufacturing sector. Fifth,
the number of experts from cement companies can be increased in
the evaluation processes of the BWM and TOPSIS methods to improve
the reliability of the results. Sixth, the negative impacts of some LM
tools, such as increased emissions or stress, can be considered in future
studies.
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Table A.5
The evaluation of the LM tools’ effects on the sustainability metrics using grey numbers (expert 1).

LM tools Sustainability metrics (criteria)

(alternatives) Cost (C1) Profit
(C2)

Flexibility
(C3)

Eight
wastes
(C4)

Productiv-
ity
(C5)

Material
usage
(C6)

Energy
usage
(C7)

Water
usage
(C8)

Air
emissions
(C9)

Wastew-
ater
(C10)

Solid
waste
(C11)

Work
condition
(C12)

Health
and
safety
(C13)

Labour
wellbe-
ing and
satisfac-
tion
(C14)

Society
wellbe-
ing and
satisfac-
tion
(C15)

Customer
wellbe-
ing and
satisfac-
tion
(C16)

(7S) (A1) [4,6] [2,4] [6,8] [4,6] [4,6] [4,6] [4,6] [2,4] [2,4] [2,4] [4,6] [2,4] [4,6] [2,4] [4,6] [2,4]

Just in Time (JIT)
(A2)

[6,8] [4,6] [4,6] [4,6] [2,4] [6,8] [2,4] [2,4] [2,4] [2,4] [4,6] [4,6] [2,4] [4,6] [2,4] [2,4]

Kanban (A3) [4,6] [4,6] [2,4] [4,6] [2,4] [6,8] [4,6] [2,4] [2,4] [4,6] [4,6] [4,6] [4,6] [6,8] [4,6] [4,6]

Visual
Control/Visual
Management (A4)

[2,4] [2,4] [2,4] [4,6] [2,4] [4,6] [4,6] [2,4] [2,4] [2,4] [2,4] [4,6] [8,10] [2,4] [4,6] [2,4]

Value Stream
Mapping (VSM)
(A5)

[6,8] [4,6] [4,6] [8,10] [4,6] [6,8] [6,8] [4,6] [8,10] [4,6] [6,8] [6,8] [4,6] [4,6] [6,8] [4,6]

Kaizen (A6) [6,8] [6,8] [4,6] [8,10] [6,8] [6,8] [6,8] [4,6] [6,8] [4,6] [4,6] [4,6] [4,6] [6,8] [6,8] [6,8]

Poka-yoke (A7) [4,6] [2,4] [6,8] [4,6] [4,6] [4,6] [4,6] [2,4] [4,6] [2,4] [4,6] [2,4] [6,8] [2,4] [4,6] [4,6]

Six Sigma (A8) [4,6] [6,8] [6,8] [4,6] [4,6] [4,6] [2,4] [2,4] [2,4] [4,6] [8,10] [4,6] [4,6] [2,4] [4,6] [4,6]

Total Productive
Maintenance
(TPM) (A9)

[4,6] [2,4] [6,8] [4,6] [6,8] [2,4] [6,8] [2,4] [4,6] [2,4] [2,4] [2,4] [4,6] [2,4] [4,6] [2,4]

Production
Smoothing
(Heijunka) (A10)

[2,4] [2,4] [6,8] [4,6] [2,4] [6,8] [4,6] [2,4] [2,4] [4,6] [2,4] [4,6] [4,6] [2,4] [2,4] [2,4]

Single-Minute
Exchange of Die
(SMED) (A11)

[0,2] [0,2] [0,2] [2,4] [4,6] [4,6] [2,4] [2,4] [0,2] [0,2] [0,2] [2,4] [0,2] [2,4] [2,4] [2,4]

Cellular
Manufacturing
(A12)

[2,4] [2,4] [4,6] [4,6] [2,4] [0,2] [0,2] [2,4] [2,4] [2,4] [2,4] [2,4] [2,4] [2,4] [0,2] [0,2]
Table A.6
The evaluation of the LM tools’ effects on the sustainability metrics using grey numbers (expert 2).

LM tools Sustainability metrics (criteria)

(alternatives) Cost (C1) Profit
(C2)

Flexibility
(C3)

Eight
wastes
(C4)

Productiv-
ity
(C5)

Material
usage
(C6)

Energy
usage
(C7)

Water
usage
(C8)

Air
emissions
(C9)

Wastew-
ater
(C10)

Solid
waste
(C11)

Work
condition
(C12)

Health
and
safety
(C13)

Labour
wellbe-
ing and
satisfac-
tion
(C14)

Society
wellbe-
ing and
satisfac-
tion
(C15)

Customer
wellbe-
ing and
satisfac-
tion
(C16)

(7S) (A1) [2,4] [2,4] [6,8] [6,8] [4,6] [2,4] [4,6] [0,2] [4,6] [0,2] [4,6] [4,6] [4,6] [4,6] [2,4] [2,4]
Just in Time
(JIT) (A2)

[4,6] [6,8] [4,6] [6,8] [2,4] [4,6] [0,2] [2,4] [0,2] [2,4] [4,6] [4,6] [4,6] [6,8] [2,4] [2,4]

Kanban (A3) [4,6] [4,6] [4,6] [6,8] [4,6] [6,8] [2,4] [2,4] [2,4] [4,6] [4,6] [2,4] [4,6] [6,8] [4,6] [6,8]
Visual
Control/Visual
Management
(A4)

[4,6] [6,8] [2,4] [4,6] [2,4] [4,6] [4,6] [0,2] [0,2] [2,4] [2,4] [4,6] [6,8] [4,6] [2,4] [4,6]

Value Stream
Mapping (VSM)
(A5)

[6,8] [6,8] [6,8] [8,10] [4,6] [4,6] [4,6] [6,8] [8,10] [4,6] [4,6] [4,6] [4,6] [6,8] [6,8] [4,6]

Kaizen (A6) [8,10] [6,8] [4,6] [8,10] [4,6] [6,8] [6,8] [2,4] [6,8] [4,6] [6,8] [4,6] [2,4] [6,8] [4,6] [6,8]
Poka-yoke (A7) [6,8] [4,6] [4,6] [4,6] [4,6] [6,8] [4,6] [0,2] [4,6] [0,2] [4,6] [4,6] [6,8] [4,6] [2,4] [6,8]
Six Sigma (A8) [6,8] [4,6] [4,6] [6,8] [4,6] [6,8] [4,6] [2,4] [2,4] [2,4] [6,8] [6,8] [4,6] [4,6] [4,6] [8,10]
Total Productive
Maintenance
(TPM) (A9)

[6,8] [4,6] [4,6] [4,6] [4,6] [2,4] [4,6] [2,4] [2,4] [2,4] [4,6] [4,6] [6,8] [4,6] [2,4] [2,4]

Production
Smoothing
(Heijunka) (A10)

[4,6] [2,4] [4,6] [4,6] [2,4] [4,6] [2,4] [2,4] [2,4] [2,4] [2,4] [6,8] [4,6] [4,6] [4,6] [2,4]

Single-Minute
Exchange of Die
(SMED) (A11)

[2,4] [2,4] [4,6] [2,4] [4,6] [2,4] [2,4] [0,2] [2,4] [2,4] [2,4] [0,2] [2,4] [0,2] [0,2] [4,6]

Cellular
Manufacturing
(A12)

[2,4] [2,4] [2,4] [4,6] [2,4] [2,4] [2,4] [0,2] [2,4] [0,2] [0,2] [2,4] [2,4] [0,2] [2,4] [2,4]
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Table A.7
Normalized grey decision-making matrix (⊗F ∗).

LM tools
(alternatives)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

A1 [0.2000,0.3333] [0.2500,0.5000] [0.2500,0.3333] [0.2857,0.4000] [0.3333,0.5000] [0.2000,0.3333] [0.1667,0.2500] [0.3333,1.0000] [0.2000,0.3333] [0.3333,1.0000] [0.1667,0.2500] [0.2000,0.3333] [0.1667,0.2500] [0.2000,0.3333] [0.2000,0.3333] [0.2500,0.5000]
A2 [0.1429,0.2000] [0.1429,0.2000] [0.3333,0.5000] [0.2857,0.4000] [0.5000,1.0000] [0.1429,0.2000] [0.3333,1.0000] [0.2500,0.5000] [0.3333,1.0000] [0.2500,0.5000] [0.1667,0.2500] [0.1667,0.2500] [0.2000,0.3333] [0.1429,0.2000] [0.2500,0.5000] [0.2500,0.5000]
A3 [0.1667,0.2500] [0.1667,0.2500] [0.4000,0.6667] [0.2857,0.4000] [0.4000,0.6667] [0.1250,0.1667] [0.2000,0.3333] [0.2500,0.5000] [0.2500,0.5000] [0.1667,0.2500] [0.1667,0.2500] [0.2000,0.3333] [0.1667,0.2500] [0.1250,0.1667] [0.1667,0.2500] [0.1429,0.2000]
A4 [0.2000,0.3333] [0.1667,0.2500] [0.5000,1.0000] [0.3333,0.5000] [0.5000,1.0000] [0.1667,0.2500] [0.1667,0.2500] [0.3333,1.0000] [0.3333,1.0000] [0.2500,0.5000] [0.2500,0.5000] [0.1667,0.2500] [0.1111,0.1427] [0.2000,0.3333] [0.2000,0.3333] [0.2000,0.3333]
A5 [0.1250,0.1667] [0.1429,0.2000] [0.2857,0.4000] [0.2000,0.2500] [0.3333,0.5000] [0.1429,0.2000] [0.1429,0.2000] [0.1429,0.2000] [0.1000,0.1250] [0.1667,0.2500] [0.1429,0.2000] [0.1429,0.2000] [0.1667,0.2500] [0.1429,0.2000] [0.1250,0.1667] [0.1667,0.2500]
A6 [0.1111,0.1429] [0.1250,0.1667] [0.3333,0.5000] [0.2000,0.2500] [0.2857,0.4000] [0.1259,0.1667] [0.1250,0.1667] [0.2000,0.3333] [0.1250,0.1667] [0.1667,0.2500] [0.1429,0.2000] [0.1667,0.2500] [0.2000,0.3333] [0.1250,0.1667] [0.1429,0.2000] [0.1250,0.1666]
A7 [0.1429,0.2000] [0.2000,0.3333] [0.2857,0.4000] [0.3333,0.5000] [0.3333,0.5000] [0.1429,0.2000] [0.1667,0.2500] [0.3333,1.0000] [0.1667,0.2500] [0.3333,1.0000] [0.1667,0.2500] [0.2000,0.3333] [0.1250,0.1667] [0.2000,0.3333] [0.2000,0.3333] [0.1429,0.2000]
A8 [0.1429,0.2000] [0.1429,0.2000] [0.2857,0.4000] [0.2857,0.4000] [0.3333,0.5000] [0.1429,0.2000] [0.2000,0.3333] [0.2500,0.5000] [0.2500,0.5000] [0.2000,0.3333] [0.1111,0.1429] [0.1427,0.2000] [0.1667,0.2500] [0.2000,0.3333] [0.1667,0.2500] [0.1250,0.1667]
A9 [0.1429,0.2000] [0.2000,0.3333] [0.2857,0.4000] [0.3333,0.5000] [0.2857,0.4000] [0.2500,0.5000] [0.1429,0.2000] [0.2500,0.5000] [0.2000,0.3333] [0.2500,0.5000] [0.2000,0.3333] [0.2000,0.3333] [0.1429,0.2000] [0.2000,0.3333] [0.2000,0.3333] [0.2500,0.5000]
A10 [0.2000,0.3333] [0.2500,0.5000] [0.2857,0.4000] [0.3333,0.5000] [0.5000,1.0000] [0.1429,0.2000] [0.2000,0.3333] [0.2500,0.5000] [0.2500,0.5000] [0.2000,0.3333] [0.2500,0.5000] [0.1429,0.2000] [0.1667,0.2500] [0.2000,0.3333] [0.2000,0.3333] [0.2500,0.5000]
A11 [0.3333,1.0000] [0.3333,1.0000] [0.5000,1.0000] [0.5000,1.0000] [0.3333,0.5000] [0.2000,0.3333] [0.2500,0.5000] [0.3333,1.0000] [0.3333,1.0000] [0.3333,1.0000] [0.3333,1.0000] [0.3333,1.0000] [0.3333,1.0000] [0.3333,1.0000] [0.3333,1.0000] [0.2000,0.3333]
A12 [0.2500,0.5000] [0.2500,0.5000] [0.4000,0.6667] [0.3333,0.5000] [0.5000,1.0000] [0.3333,1.0000] [0.3333,1.0000] [0.3333,1.0000] [0.2500,0.5000] [0.3333,1.0000] [0.3333,1.0000] [0.2500,0.5000] [0.2500,0.5000] [0.3333,1.0000] [0.3333,1.0000] [0.3333,1.0000]
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C6 C13 C14 C15 C16

[0.034 .0176] [0.0251,0.0376] [0.0043,0.0072] [0.0149,0.0248] [0.0015,0.0031]
[0.024 .0132] [0.0301,0.0501] [0.0031,0.0043] [0.0186,0.0372] [0.0015,0.0031]
[0.021 .0176] [0.0251,0.0376] [0.0027,0.0036] [0.0124,0.0186] [0.0008,0.0012]
[0.028 .0132] [0.0167,0.0215] [0.0043,0.0072] [0.0149,0.0248] [0.0012,0.0021]
[0.024 .0106] [0.0251,0.0376] [0.0031,0.0043] [0.0093,0.0124] [0.0010,0.0015]
[0.021 .0132] [0.0301,0.0501] [0.0027,0.0036] [0.0106,0.0149] [0.0007,0.0010]
[0.024 .0176] [0.0188,0.0251] [0.0043,0.0072] [0.0149,0.0248] [0.0008,0.0012]
[0.024 .0106] [0.0251,0.0376] [0.0043,0.0072] [0.0124,0.0186] [0.0007,0.0010]
[0.042 .0176] [0.0215,0.0301] [0.0043,0.0072] [0.0149,0.0248] [0.0015,0.0031]
[0.024 .0106] [0.0251,0.0376] [0.0043,0.0072] [0.0149,0.0248] [0.0015,0.0031]
[0.034 .0559] [0.0501,0.1503] [0.0072,0.0215] [0.0248,0.0743] [0.0012,0.0021]
[0.056 .0265] [0.0376,0.0752] [0.0072,0.0215] [0.0248,0.0743] [0.0021,0.0062]

.0569,0 559] [0.0501,0.1503] [0.0072,0.0215] [0.0248,0.0743] [0.0021,0.0062]

.0213,0 106] [0.0167,0.0215] [0.0027,0.0036] [0.0093,0.0124] [0.0007,0.0010]
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Table A.8
A weighted normalized grey decision-making matrix (⊗Z) matrix.

LM tools
(alternatives)

C1 C2 C3 C4 C5

A1 [0.0033,0.0054] [0.0016,0.0033] [0.0005,0.0006] [0.0104,0.0145] [0.0076,0.0114]
A2 [0.0023,0.0033] [0.0009,0.0013] [0.0006,0.0010] [0.0104,0.0145] [0.0114,0.0229]
A3 [0.0027,0.0041] [0.0011,0.0016] [0.0008,0.0014] [0.0104,0.0145] [0.0091,0.0152]
A4 [0.0033,0.0054] [0.0011,0.0016] [0.0010,0.0021] [0.0121,0.0181] [0.0114,0.0229]
A5 [0.0020,0.0027] [0.0009,0.0013] [0.0005,0.0008] [0.0073,0.0091] [0.0076,0.0114]
A6 [0.0018,0.0023] [0.0008,0.0011] [0.0006,0.0010] [0.0073,0.0091] [0.0065,0.0091]
A7 [0.0023,0.0033] [0.0013,0.0022] [0.0005,0.0008] [0.0121,0.0181] [0.0076,0.0114]
A8 [0.0023,0.0033] [0.0009,0.0013] [0.0005,0.0008] [0.0104,0.0145] [0.0076,0.0114]
A9 [0.0023,0.0033] [0.0013,0.0022] [0.0005,0.0008] [0.0121,0.0181] [0.0065,0.0091]
A10 [0.0033,0.0054] [0.0016,0.0033] [0.0005,0.0008] [0.0121,0.0181] [0.0114,0.0229]
A11 [0.0054,0.0163] [0.0022,0.0066] [0.0010,0.0021] [0.0181,0.0363] [0.0076,0.0114]
A12 [0.0041,0.0082] [0.0016,0.0033] [0.0008,0.0014] [0.0121,0.0181] [0.0114,0.0229]

Table A.9
Grey positive and negative ideal solutions of alternatives (⊗R𝑚𝑎𝑥, ⊗R𝑚𝑖𝑛).
⊗R𝑚𝑎𝑥 [0.0054,0.0163] [0.0022,0.0066] [0.0010,0.0021] [0.0181,0.0363] [0.0114,0.0229] [0
⊗R𝑚𝑖𝑛 [0.0018,0.0023] [0.0008,0.0011] [0.0005,0.0008] [0.0073,0.0091] [0.0065,0.0091] [0
C7 C8 C9 C10 C11 C12

1,0.0569] [0.0171,0.0256] [0.0114,0.0342] [0.0443,0.0738] [0.0045,0.0135] [0.0114,0.0171] [0.0106,0
4,0.0341] [0.0341,0.1024] [0.0085,0.0171] [0.0738,0.2215] [0.0034,0.0068] [0.0114,0.0171] [0.0088,0
3,0.0285] [0.0205,0.0341] [0.0085,0.0171] [0.0554,0.1107] [0.0023,0.0034] [0.0114,0.0171] [0.0106,0
5,0.0427] [0.0171,0.0256] [0.0114,0.0342] [0.0738,0.2215] [0.0034,0.0068] [0.0171,0.0341] [0.0088,0
4,0.0341] [0.0146,0.0205] [0.0049,0.0068] [0.0221,0.0277] [0.0023,0.0034] [0.0098,0.0137] [0.0076,0
3,0.0285] [0.0128,0.0171] [0.0068,0.0114] [0.0277,0.0369] [0.0023,0.0034] [0.0098,0.0137] [0.0088,0
4,0.0341] [0.0171,0.0256] [0.0114,0.0342] [0.0369,0.0554] [0.0045,0.0135] [0.0114,0.0171] [0.0106,0
4,0.0341] [0.0205,0.0341] [0.0085,0.0171] [0.0554,0.1107] [0.0027,0.0045] [0.0076,0.0098] [0.0076,0
7,0.0854] [0.0146,0.0205] [0.0085,0.0171] [0.0443,0.0738] [0.0034,0.0068] [0.0137,0.0228] [0.0106,0
4,0.0341] [0.0205,0.0341] [0.0085,0.0171] [0.0554,0.1107] [0.0027,0.0045] [0.0171,0.0341] [0.0076,0
1,0.0569] [0.0256,0.0512] [0.0114,0.0342] [0.0738,0.2215] [0.0045,0.0135] [0.0228,0.0683] [0.0176,0
9,0.1707] [0.0341,0.1024] [0.0114,0.0342] [0.0554,0.1107] [0.0045,0.0135] [0.0228,0.0683] [0.0132,0

.1707] [0.0341,0.1024] [0.0114,0.0342] [0.0738,0.2215] [0.0045,0.0135] [0.0228,0.0683] [0.0176,0.0

.0285] [0.0128,0.0171] [0.0049,0.0068] [0.0221,0.0277] [0.0023,0.0034] [0.0076,0.0098] [0.0076,0.0
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Table A.10
Grey linguistic variables for BWM.

Equally
Important
(EQI)

Weakly
Important
(WI)

Slightly
important
(SI)

Moderately
important
(MI)

Moderately
plus
important
(MPI)

Strongly
important
(SI)

Strongly
plus
important
(SPI)

Very
strongly
important
(VSI)

Extremely
important
(EI)

[1, 1] [1, 2.5] [2.5, 3.5] [3.5, 4.5] [4.5, 5.5] [5.5, 6.5] [6.5, 7.5] [7.5, 8.5] [8.5, 10]
Table A.11
The grey consistency index (⊗CI).

Linguistic
terms

Equally
important
(EQI)

Weakly
important
(WI)

Slightly
important
(SI)

Moderately
important
(MI)

Moderately
plus
important
(MPI)

Strongly
important
(SI)

Strongly
plus
important
(SPI)

Very
strongly
important
(VSI)

Extremely
important
(EI)

⊗ (𝒂𝒃𝒘) [1-1] [1-2.5] [2.5-3.5] [3.5-4.5] [4.5-5.5] [5.5-6.5] [6.5-7.5] [7.5-8.5] [8.5-10]
⊗ (CI) 0.00 0.708 1.30 1.95 2.64 3.35 4.09 4.84 6.00
Table A.12
Linguistic variables with triangular fuzzy number.

Linguistic term Very low influence (VLI) Low influence (LI) Medium influence (MI) High influence (HI) Very high influence (VHI)

Fuzzy numbers (2,2,4) (2,4,6) (4,6,8) (6,8,10) (8,10,10)
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