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BSTRACT

s paper 1s concerned with the development of an efficient
eme for solving the finite difference Navier-Stokes and energy
ations using distnbuted parallel computer system. The
nerical procedure is based on SIMPLE (Semi Implicit Method
Pressure Link Equations) developed by Spalding. The
eming equations are transformed into finite difference forms
ag the control volume approach. The hybrnid scheme which 1s
nbination of the central difference and up wind scheme is used
obtaining a profile assumption for parameter variations
ween the grids points. Parallelization method used on this
tributed parallel computer system is Domain Decomposition
thod (DDM). The accuracy of the parallelization methed is
pe by comparing with a benchmark solution of a standardized
blem related to the two dimensional buoyancy flow in a square
losure. The results shown that the distributed parallel
mputer system will reduced an execution time to solve the
blem about 70% compared to the sernial computer.

eywords
MPLE algorithm. Parallel Algorithm, Domain Decomposition
pthod, Navier-Stokes Equations.

INTRODUCTION

equations governing the fluid dynamics and energy flow have
n know for the most part for more than a century and vet have
inued to defy analytical solution. Instead their solutions have
ly been obtained by experimental simnlations i wind
els, water tables and shock tubes {4]). Now with the ability of
ced scientific computer such as distributed parallel
puter system, the equations can be solved using the methods
pomputational fluid dynamic (CFD). Now, it surprising that,
dynamics and heat transfer are contributing to and benefiting
) current development in finite difference numerical analysis.

nt years, several finite difference schemes have been
d and develop. Some methods have used the primitive
es, while some have solved the equations i terms of
ity and stream function as the dependent variables. The
ing equations are often transformed into the
sional form. The advantage is that it 1s more convenient to
with dimenstonless variables. The characteristic parameter

non-
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such as Reynold number. Prandt number and Rayleigh number
can be varied independently. Furthermore, by non-
dimensionalising the equations, the flow parameters such as
velocity and temperature arc normalized so that their values can
be adjusted to fall between certain prescribed limits. A number of
general purpose computer programs using finite difference
methods have been developed. Some of these programs using
serial computer have relied on works of the Argonne National
Laboratory Group, Ilinious, USA [5] and methods based on the
works at Imperial College, London [8].

This paper deals with a development of an efficient scheme for
solving the finite difference Navier-Stokes and energy equations
using distributed parallel computer system. The numerical
procedure is based on SIMPLE (Semi Implicit Method for
Pressure Link Equations) developed by Spalding [2]. As we
know, the analysis of an incompressible flow become more
complicated and need a high performance computer to solve the
problem. One of the problem during to solve the complicated
problem on incompressible flow is time constraint. More
complicated of the problem means more time should be spend to
solve the problem.

To overcome this problem, parallel computer was used and to
determine the performance of this parallel computations, the
corresponding parallel algorithms was developed and it based on
method of parallelization there is Domain Decompositions
Method. As the number of the nonlinear simultaneous equations
formed after discretisation of the modelling equations is large, an
iterative technique is used to update the flow variables. Control
volume approach is selected and the matrix formed used to solved
using matrix tri-diagonal solver. At the end of this project, the
resnlt of simulation using distributed parallel computer system are
in terms of how the parallel computer can reduced an execution
time compare with the serial computer are presented and
discnssed.

2. NUMERICAL ANALYSIS

2.1 Governing equations
Two-dimensional incompressible laminar constant-density flow
[7] and energy equation is governed by set of partial differential
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equations. The coutinuity, momentum and energy equations in
their primitive form are shown in equation (1-4) where the
equation for conservation of mass is given by:
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The conservation of momentum in x and y directions are governed
by the u-momentum equation expressed as:
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as well as the v-momentum equation:

o) o) p g Oy Lo,

ox Ay L &? Hé& @)
PrRa* ia;‘:([+,,/)_2£%+ﬁpr[\>a“37'
H oy 3SHo L

The conservation of energy will express as:
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In the above equations, # and v are the x and y components of the
velocity, p is the pressure, p and v are the density and viscosity
respectively.

2.2 Finite Difference Equations

In the development of the control volume approach, the govermning
partial differential equations are first transformed 1nto divergence
force. Let the dependent variables (u. v. and T) are denoted by O,
the general differential equation can be written as:

div (p¢¢) =div (F gradg)+S

where I is the ditfusion coefficient. or:

div (ﬂl¢ -1 grad ¢) =S

When the above finite difference scheme is applied to each
momentum equation. the final difference equations can be written
as:

H
ap,lp :Zanbunb+b" +Z(PP_PE)yi (%)
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The summations are over the four neighboring velocities where
nb in above equations denotes neighbors.

2.3 Correction Equation
In the SIMPLE method, the true pressure field, P, which wil
produce the true velocity fields satisfying the continuity equatiol
is given as:

P=P +P )
where P’ is the pressure correction. Similarly, the true veloci
fields are given by:

u=u"+u' (8)

v=yv"+v
where 1’ and v’ are the velocity corrections. Expressions for the

velocity corrections can be obtained from the momentu
equations and they are of the forms:
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The true velocity fields are then obtained by adding f
intermediate velocity tields to the velocity corrections. For

control volume shown the true velocity fields can be written as:
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We now tum to the task of deriving a difference equation for
pressure correction using the continuity equation. The integra
continuity equation is given by:

F-F ~-F -F =0
or:
Uy, ~1u,y,+v,x,—vx =0 (13

p/

Substitute the expressions given in equations (11) to (14) for
the velocity components into equation (15), we have:

a,P',=a,P +a, P, +ayP y+a P, +b (16

where:
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2.4 Solution of the Differential Equation

‘When all the goveming equations are transformed into finite
difference form, we have a set of algebraic equations which can
be solved by any suitable method. For the present calculations, we
kave employed a line by line iteration method on distributed
parallel computer system. Parallelization method used known as
Domain Decomposition Method (DDM). Using this method, a
grid line is chosen and the values of O for the nodes along the
chosen line are assumed to be unknowns. However, the values of
0 for the nodes along the neighboring lines are assumed to be
known and these values arc taken from previous iteration. The
equations for the grid points along the chosen line are then solved
using tridiagonal matrix algorithm (TDMA).

2.5 Solution Procedure of the SIMPLE
Algorithm

The SIMPLE method proceeds by a cyvclic series of guess and
correct operations. The important operations are described in the
following steps below. The flow chart of the algorithm was
showed in Figure 1.

i Guess the pressure field, p*.

ii.  Solve the momentum equation to obtain #* and v*.

ili. Solve the pressure correction equation to obtain p’.

iv. Calculate p form equation “ p = p * +p' ” by adding p°
to p*.

v.  Calculate 27 and v trom their starred values using velocity
cofrection equation.

vi.  Solve the discretization equation for other o’s (for this case,
we solve the energy equation to obtain temperature 7)

vii. Treat the corrected pressure p as new guessed p*, retum to
step 2 and repeat the whole procedure until a converged
solution is obtained.
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Figure 1. Flow chart of SIMPLE algorithm

3. PARALLEL IMPLEMENTATION

A parallel implementation can provide a further reduction in
computing time. Parallel implementation also makes solution
possible to problems that would require too much memory to
solve on a single processor. During to solve this problem, the
paraltel implementation is based on message passing (distributed
memory systems) using the PVM software. Portability is ensured
because PVM is available on many types of parallel computers.

The implementation uses a layer of subroutines on top of PVM,
symbolically denoted by;

*  start: start entire parallel application
"  sfap: stop parallel application

»  send send a message

' receive: receive a message

3.1 Communication Process

Communication process is the most important process in parallel
tmplementation. As described above, the implementation uses a
laver of subroutines on top of PVM, denoted by start. stop. send
and recerve. For the send and receive subroutines, it consists of




communication process between a data or function that will be
send or receive. According to the pseudo code solution in Figure
2, the communication process occurs between the master and
slave during to their sending and receiving the data or function.

[ find out if { am MASTER or SLAVES

if I am MASTER
wtialize array
send each SLAVES starting info and subarray

do until all SLAVES converge
gather from all SLAVES convergence data
broadcast to all SLAVES convergence signal
end do

receive results from each SLAVE

else if"] am SLAVE
receive from MASTER starting 1nfo and subarray

do until solution converged
update time
send neighbors my border info
receive from neighbors thetr border info

update my portion of solution array

determine if my solution has converged
send MASTER convergence data
recetve from MASTER convergence signal
end do

send MASTER results
endif

]

Figure 2. Pseudo code solution

3.2 Communication

Basically this finite difference problem is same with the solution
of the problem in this project. From top to bottom of the Figure 3.
the one-dimensional vector A, where N=4. the task structure.
showing the 4 tasks, each encapsulating a single data value and
connected to left and right neighbors via channels; and the
structure of a single task, showing its two inports and outports.
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Figure 3. A parallel algorithms for the finite difference
problem
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We first consider a one-dimensional finite difference problem, in

@

which we have a vector X0 size N and must compute X,
where;

0<i<N=l O0<ter :x'0=20 7280 Tl

That is, we must repeatedly update each element of X, with ne
element being updated in step ¢+17 until its neighbors have beern
updated in step f. A parallel algorithm for this problem creates N
tasks, one for each point in X. The iy task 1s given the value
Xand is responsible for computing, in T steps, the
values y W x !y ).

i

Hence. at step 4, it must obtain the values Xl__l(') and X‘*l(’)from

tasks i-/ and 7+/. We specity this data transfer by defining
channels that link each task with “left” and “right™ neighbors, as
shown in Figure 3. and requiring that a1 step 7, each task i other
than task 0 and task N-/

i.  sendsits data X,_(T)on its left and right outports,

i receives y, Wand y © from its left and right inports,

and

iii. use these values to compute X,(H”'

\
Notice that the N tasks can execute independently, with the only
constraint on execution order being the synchronization enforce
by the receive operations. This synchronization ensures that n
data value 1s updated at step ++/ until the data values i
neighboring tasks have been updated at step 1. Hence, execution i
deterministic.

C  broadcast data to slaves

call pvmfinitsend (PYMDEFAULT, info)

call pvmfpack (INTEGERA4, nproc, 1, 1, info)
call pvmfpack (INTEGERA4, uds, nproc, 1, info)
call pvmfpack (INTEGER4, n, 1, 1, info)

call pvmfpack (REALS, data, n, 1, info)
msgtype = 1

call pymfmcast (nproc, tids, msgtype. info)

C  wait for results from slaves

msgtype = 2

do 30 1 = I,nproc

call pvmfrecv (-1, msgtype, info)

call pvmpunpack (INTEGER4, who, 1, 1, info)

call pymfunpack (REALS, result(who+1), 1, 1, info)

if (who.eq.0)

then

write (*,1000) result(iwho+1), who, (nroc-1)

else

write (*,1000) resultywho+1), who, 2*(who-1)
30 continue

Figure 4. Algorithm master to send and receive data to
from slaves.



" receive data from master

- msgtype = |
call pymfrecv (mtid, msgtype. info)
. call pymfunpack (INTEGER4, nproc, 1. 1, info)
call pymfunpack (INTEGER4, tids, nproc, 1, info)
"~ call pvmfunpack (INTEGER4, n, 1. 1, info)
. call pmfunpack (REALS, data, n, 1, info)

do 5 i = Onproc
if (tids(i).eq.mytid) me = i

]
F determine which slave I'm (0...nproc-1)
E
L
| continue

> docalculation with the data

’ result = work (me, n, data, tids, nproc)

> send the result to the master

call pvmfinitsend (PYMDEFAULT, info)
call pvmfpack (INTEGER4, me, 1, 1, info)
call pvmfpack (REALS, result, 1. 1, info)

msgtype = 2
call pvmfsend (mtid, msgtype, info)

?lgure 5. Algorithm slaves to receive and send data from and
b master.

igure 4 and 5 above showed the algorithms for the sending and
eceiving data from master and slaves.

l, DISCUSSION
l.1 Validation of the Results

fable 1 to 3 compared the results from the present simulation
vith the literature results obtained by de Vahl Davis [2]. The
esults of de Vahl Davis are the standard against which all other
odes have been evaluated. Maximum horizontal velocity on the
ertical midplane of the cavity, U, maximum vertical velocity
a the horizontal midplane of the cavity, V., and an average of
Jusselt number was compared at Rayleigh numbers of 10°, 10°,
0° and 10°. The comparison was done between the benchmark
esults obtained by de Vahl Davis which in serial processor and
he present study that is simulation using serial processor and
arallel processor or parallel computer.

‘rom the tables, it showed that all these results are in excellent
greement with the benchmark results of de Vahl Davis.
Percentage error for the three methods of solution is below than
% compare with benchmark result. Besides that, the result that
vas showed in the forms of contour maps of non-dimensional
emperature and velocities also was compared with the results that
btained by de Vahl Davis.
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Table 1. Comparison of the numerical result of present study
for U pae

Ra 10° 10°* 10° 10°
G. de Vahl Davis 3.649 16.193 34,620 64.593
Present study:
i) Serial processor 3.652 16.163 34.871 65.812
% error 0.082% 0.185%  0.725% 1.880 %
ii)Parallel processor 3.592 16.376 34.852 65.847
% error 1.560 % 1.131% 0.670 % 1.941 %

Table 2. Comparison of the numerical result of present study
for Va

Ra 10° 10* 10° 10°
G. de Vahl Davis 3.697 19.167 68.590 216.360
Present study:
1) Senial processing 3.704 19.675 69.482 220.641
% error 0.189 % 2.650 % 1.300 % 1.978 %
ii)Parallel processing 3.715 19.642 69.680 221.282
% error 0.487 % 2478 % 1.589 % 2275 %

Table 3. Comparison of the numerical result of present study for ]Tu

Ra 10° 10* 10° 10°
G. de Vahl Davis 1.118 2.243 4.519 8.800
Present study:
1) Serial processing 1.120 2.282 4.583 8.983
% error 0.23% 1.74 % 1.42% 2.08 %
ii)Parallel processing 1.123 2.272 4.594 9.008
% error 0.47 % 1.31% 1.67 % 2.36 %

4.2 Parallel Computing Results

In order to achieve the objective of this project, parallel execution
time was studied to determine the performance of the parallel
computations. Two methods of solution there are serial
computation and parallel computation were used during to obtain
the results of the simulation. Table 4 showed the results for both
methods of computational solution in term of execution time.
Table 5 was showed the tabulated results of computational time
and communication time for parallel with domain decomposition
method.

Table 4. Execution time for three computational solutions

Sequential time Parallel time

(Iseq) (1)
10° 328s 943 s
10° 13575 s 41395
10° 2040.26 s 612.06 s
10 163602.04 s 49080.61 s




Table 5. Computational and communication time for parallel
computation

Ra teomp Teomm i

10° 841s 1.02s 943 s
10 34.62's 6.78 s 4139s
10° 522.82's 89.24 s 612.06 s
105 41923.02s  7157.60s  4908G.61s

Other parameter that was used to measure a performance of
parallel computations is speed-up and efficiency. From the speed-
up, we know that how fast the parallel computer solves the
problem under consideration. It is sometimes useful to know how
long processors are being used on the computation, which can be
found from the efficiency. Table 6 below was showed result tor
speed-up and efficiency for parallel methods. Figure 6, 7 and 8
showed graphically an execution time, speed-up and efficiency
against number of processors for Ra=10" respectively.

Table 6. Results for speed-up and efficiency

Ra Speed-Up Efficiency
10° 3.478 86.95 %
10 3.279 81.97 %
10° 3.333 83.32 %
10° 3.333 83.32 %

4.3 Discussions

From the results that were obtained., we can see that execution
time for parallel computation was decrease compare with
sequential computation. By using sequential computation, total
execution time that we need to complete our simulation at
Rayleigh number 10° is 163602.04 seconds or 2726.7 minutes or
45.45 hours. For parallel computation, we were reduced an
execution time for the simulation at Rayleigh number 10° to
49080.61 seconds or 818.01 minutes or 13.63 hours. Compare for
both methods of simulations, we got the parallel computation with
domain decomposition method is more successtul for solve this
problem with reducing about 70% of execution time.

From the Figure 6 to 8., we can see an effect of number of
processors in parallelization to the execution time, speed-up and
efficiency. As we can see, the execution time will decrease with
increasing of the number of processors. For the speed-up. it will
increase with the increasing of the number of processors.
However, the efficiency of a simulation was decrease with an
increasing of the number of processors.
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S. CONCLUSION

A parallel algorithm has been developed to simulate
incompressible flow for the problem of natural convection t
occurred in a square cavity with specified boundary conditio
The simulations of the incompressible flow using SIMP
method on parallel computer are agreement with the benchm
result. Thus. the simulation is successful. Percentage errors for



computational solutions which are simulation by serial and
lel computer are below than 3% compare with benchmark
t by de Vahl Davis.

felization using distributed parallel computer system with
in decomposition method can reduce an exection time to
 the problem ‘about 70% by using 4 processors. Therefore it
proved that clustering personal computers together can
ide adequate computing power for large engineering

ems.
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