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is paper is concemed with the development of an efficient 
erne for solving the finite difference Navier-Stokes and energy 
ations using distributed parallel computer system. The 

'merical procedure is based on SIMPLE (Semi Implicit Method 
Pressure Link Equations) developed by Spalding. The 

Iveming equations are transformed into finite difference forms 
ing the control volume approach. The hybrid scheme which is 
. bination of the central dilIerence and up wind scheme is used 

obtaining a profile assumption for parameter variations 
,en the grids points. Parallelization method used on this 

ributed parallel computer system is Domain Decomposition 
:thod (DDM). The accuracy of the parallelization method is 
e by comparing with a benchmark solution of a standardized 
,Iern related to the two dimensional buoyancy flow in a square 

:Iosure. The results shown that the distributed parallel 
puter system will reduced an execution time to solve the 

Iblem about 70°. compared to the serial computer. 

!ywords 
PLE algorithm. Parallel Algorithm. Domain Dccomposition 
00, Navier-Stokes Equations. 

equations goveming the lluid dynamics and energy flow have 
know for the most parl for morc than a century and yet have 

'nued to defy analytical solution. Instead their solutions have 
:Iy been obtained by experimental simulations in wind 
,cis, water tables aud shock hlbes [4]. Novv with the ability of 

ced scientitic computer such as distributed parallel 
puter system. the equations can be solved using the methods 
Irnputational fluid dynamic (CFD). Now. it surprising that, 
dynamics and heat transfer are contributing to and benefiting 

.current development in finite difference numerical analysis. 

nt years. several finite difference schemes have been 
d and develop. Some methods have used the primitive 

les, while some have solved the equations in terms of 
:ity and stream function as the dependent variables. The 

ing equations are often transformed into the non
sionallorm. The advantage is that it is more ~onvenient to 
with dimensionless variables. The characteristi~ parameter 
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such as Reynold number. Prandt number and Rayleigh number 
can be varied independently. Furthermore. by non
dimensionalising the equations, the flow parameters such as 
velocity and temperature are normalized so that their values can 
be adjusted to fall between certain prescribed limits. A number of 
general purpose computer programs using finite difference 
methods have been developed. Some of these programs using 
serial computer have relied on works of the Argonne National 
Laboratory Group, IIIinious. USA [5] and methods based on the 
works at Imperial College. London [8]. 

This paper deals with a development of an efficient scheme tor 
solving the finite difference Navier-Stokes and energy equations 
using distributed parallel computer system. The numerical 
procedure is based on SIMPLE (Semi Implicit Method for 
Pressure Link Equations) developed by Spalding [2]. As we 
know. the analysis of an incompressible flow become more 
complicated and need a high performance computer to solve the 
problem. One of the problem during to solve the complicated 
problem on incompressible flow is time constraint. More 
complicated of the problem means more time should be spend to 
solve the problem. 

To overcome this problem. parallel computer was used and to 
determine the performance of this parallel computations. the 
corresponding parallel algorithms was developed and it based on 
method of parallelization there is Domain Decompositions 
Method. As the number of the nonlinear simultaneous equations 
formed after diseretisation of the modelling equations is large, an 
iterative technique is used to update the flow variables. Control 
volume approach is selected and the matrix formed used to solved 
using matrix tri-diagonal solver. At the end of this project. the 
result of simulation using distributed parallel computer system are 
in terms of how the parallel computer can reduced an execution 
time compare with the serial computer are presented and 
discussed. 

2. NUMERICAL ANALYSIS 
2.1 Governing equations 
Two-dimensional incompressible laminar constant-density flow 
[7J and energy equation is governed by set of partial differential 
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communication process between a data or function that will be 
send or receive. According to the pseudo code solution in Figure 
2, the communication process occurs between the master and 
slave during to their sending and receiving the data or function. 

find out iff am MASTER or SL4 VES 

iff am MASTER 
lnrtial/Ze array 
send each SL4 VES startmg mfo and subarray 

do until all SL4VES converge 
gather from all SL4/cES convergence data 
broadcast to all SL4VES cOnJ'ergence signal 

end do 

receive results from each SL4 VE 

else if1am SL4I'E 
receive from AfASTER starting mfrJ and subarray 

do untl! solutIOn converged
 
update time
 
send neighbors my border infO
 
receive from neighbors their border mfo
 

update my portion ofsolutIOn array 

determine ifmy solutIOn has converged 
send A1ASTER convergence data 
receive from MASTER convergence ."gnal 

end do 

send AL4STER results 
endif 

Figurl.' 2. Pseudo code solution 

3.2 Communication 
Basically this finite difference problem is same with the solution 
of the problem in this project. From top to bottolll of the Figure 3~ 

the one-dimensional vector X, where N=4: the task structure, 
showing the 4 tasks, each encapsulating a single data value and 
connected to left and right neighbors via channels: and the 
structure of a single task, showing its two in ports and outports. 
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Figure 3. A parallel algorithms for the finitl' difference 
problem 

We first consider a one-dimensional finite difference problem, in 
h h v(o) -' N d \-(T)whIC· we ave a vector A ot sIze an IlIUSt compute· , 

where; 

O<i<N-1. O~t<T :X,II<I) = X,II)+2X,(t)+X>+1~
 
4
 

That is, we must repeatedly update each element of X, with no 
element being updated in step t+ 1 until its neighbors have been 
updated in step t. A parallel algorithm for this problem creates N 
tasks. one for each point in X. The ith task is gi ven the value 

X IO )and is responsible for computing, in T steps. the 
valuesx,I'I. X,III, ... , X,IT). 

Hence, at step I, it must obtain the values X II) and X (I) from 
I-I /....1 

tasks i-I and i+ 1. We specify this data transfer by defining 
channels that link each task with "left" and "right" neighbors, as 
shown in Figure 3. and requiring that at step I, each task i other 
than task 0 and task N-l 

i. sends its data x(T)on its left and right outports, 
I 

ii. receives Xi./')and X,}I from its left and right 

and 

iii. use these values to com pute X (1+1). 
1 

Notice that the N tasks can execute independently. with the only 
constraint on execution order being the synchronization enforce 
by the receive operations. This synchronization ensures that n 
data value is updated at step f+ 1 until the data values i 
neighboring tasks have been updated at step I. Hence, execution i 
deterministic. 

C broadcast data to slaves 

call pvmfimtsend (PVMDEFAULT, info)
 
call pvmfpack (fNTEGER4, nproc, 1, 1, info)
 
call pvnifpack (fNTEGER4, tlds, nproc, 1, mfo)
 
call pvmfPack (fNTEGER4, n, 1, 1, mfo)
 
call pvmfPack (RE4L8, data, n, 1, info)
 
msgtype = 1
 
call pvmfmcast Inproc, tids, msgtype, infO)
 

C wait for results from slaves 

msgtype = 2 
do 30 1= l,nproc 
call pvmfrecv 1-1, msgtype, mfo) 
call pvmjimpack IINTEGER4, who, 1, 1, info) 
call pvmfunpack lRE4L8, resultlwho+ 1), 1, 1, info) 
if Iwho.eq. 0) 
then 
wme 1*,1000) resultlwho+ 1), who, Inroc-1) 
else 
w/'lte (*,1000) resultlwho+ l), who, 2*(who-l) 

30 continue 

Figure 4. Algorithm master to send and rl'ceive 
from slaves. 
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msgtype = 1 
call pvmfrecv (mtid, msgtype, mfo) 
callpvmjimpack (1NTEGER4. nproc, 1, 1, info) 
call pvmjUnpack (1NTEGER4, tids, nproc, 1, info) 

. call pvmjUnpack (1NTEGER4, n, 1, 1, mfo) 
call pvmjUnpack (REAL8, data, n, 1, info) 

determine which slave J'm (O...nproc-1) 

do calculation wIth the data 

send the result to the mas ter 

call pvmfinitsend (PVMDEFAULT, info) 
callpvmfpack(1NTEGER4, me, 1, 1, mfo) 
callpvmfpack(REAL8, result, 1. 1. mfo} 
msgtype = 2 
call pvmftend (mtid, msgtype, info) 

re 5. Algorithm sIan's to receive and send data from and 
master. 

figure 4 and 5 above showed the algorithms for the sending and 
iving data from master and slaves. 

4.	 DISCUSSION 

4.1 Validation of the Results 
'able I to 3 compared the results from the present simulation 

with the literature results obtained by de Vahl Davis [2]. The 
JeSUits of de Vahl Davis are the standard against which all other 
~es have been evaluated. Maximum horizontal velocity on the 
lertical midplane of the cavity, Umax, maximum vertical velocity 
CllI the horizontal midplane of the cavity, Vmax, and an average of 
Nusselt number was compared at Rayleigh numbers of 10J, 10'. 
101 and 106 The comparison was done between the benchmark 
ICSUlts obtained by de Vahl Davis which in serial processor and 
dte present study that is simulation using serial processor and 
parallel processor or parallel computer. 

From the tables. it showed that all these results are in excellent 
_ 'eement with the benchmark results of de Vahl Davis, 

Percentage error for the three methods of solution is below than 
3% compare with benchmark result. Besides that. the result that 
was showed in the forms of contour maps of non-dimensional 
temperature and velocities also was compared with the results that 
obtained by de Vahl Davis. 

Table 1. Comparison of the numerical result of present study 
for Umax 

Ra 103 10' 10' 10' 

G. de Vahl Davis 3.649 16.193 34.620 64.593 

Presenl study: 

i) Serial processor 3.652 16.163 34.871 65.812 

0/0 error 0.082 % 0.185 % 0.725 % 1.880 % 

ii)Parallel processor 3.592 16.376 34.852 65.847 

°10 error 1.560 % 1.131 % 0.670 % 1.941 % 

Table 2. Comparison of the numerical result of present study 
for V""", 

Ra )03 10' 105 106 

G. de Vahl Davis 3.697 19.167 68.590 216.360 

Presenl study: 

i) Serial processing 3.704 19.675 69.482 220.641 

°/0 error 0.189% 2.650 % 1.300 % 1.978 % 

ii)Parallel processing 3.715 19.642 69.680 221.282 

% error 0.487 % 2.478 % 1.589 % 2.275 % 

Table 3. Comparison of the numerical result of present study for Nu 
Ra 103 10' 10' 10' 

G. de Vahl Davis 1.118 2.243 4.519 8.800 

Present study: 

i) Serial processing 1.120 2.282 4.583 8.983 

0/0 error 0.23 % 1.74% 1.42 % 2.08 % 

ii)Parallel processing	 1.123 2.272 4.594 9.008 

0/0 error 0.47% 1.31 % 1.67 % 2.36 % 

4.2 Parallel Computing Results 
In order to achieve the objective of this project. parallel execution 
time was studied to determine the performance of the parallel 
computations. Two methods of solution there are serial 
computation and parallel computation were used during to obtain 
the results of the simulation. Table 4 showed the results for both 
methods of computational solution in term of execution time. 
Table 5 was showed the tabulated results of computational time 
and communication time for parallel with domain decomposition 
method. 

Table 4. Execution time for three computational solutions 

Ra Sequential time Parallel time 

(tS"'l) (tp) 

10J 32.8 s 9.43 s 

10' 135.75 s 41.39 s 

lOS 2040.26 s 612.06 s 

106 163602.04 s 49080.61 s 

44 



Table 5. Computational and communication time for parallel 
computation 

Ra tcamp tcomm tp 

103 8.41 s 1.02 s 9.43 s 

104 34.62 s 6.78 s 41.39 s 

105 522.82 s	 89.24 s 612.06 s 

106 41923.02 s	 7157.60s 49080.61 s 

Other parameter that was used to measure a performance of 
parallel computations is speed-up and efficiency. From the speed
up, we know that how fast the parallel computer solves the 
problem under consideration. It is sometimes useful to know how 
long processors are being used on the computation. which can be 
found from the efficiency. Table 6 below was showed result for 
speed-up and efficiency for parallel methods. Figure 6, 7 and 8 
showed graphically an execution time, speed-up and efficiency 
against number of processors for Ra~1 03 respectively. 

Table 6. Results for speed-up and efficiency 

Ra Speed-Up EffiCiency 

103 3.478 86.95 % 

104 3.279 81.97 % 

105 3.333 83.32 % 

106 3.333 83.32 % 

4.3 Discussions 
From the results that were obtained. we can see that execution 
time for parallel computation was decrease compare with 
sequential computation. By using sequential computation, total 
execution time that we need to complete our simulation at 
Rayleigh number 106 is 163602.04 seconds or 2726.7 minutes or 
45.45 hours. For parallel computation. we were reduced an 
execution time for the simulation at Rayleigh number 106 to 
49080.61 seconds or 818.01 minutes or 13.63 hours. Compare for 
both methods of simulations, we got the parallel computation with 
domain decomposition method is more successful for solve this 
problem with reducing about 70% of execution time. 

From the Figure 6 to 8. we can see an effect of number of 
processors in parallelization to the execution time. speed-up and 
efficiency. As we can see. the execution time will decrease with 
increasing of the number of processors. For the speed-up. it will 
increase with the increasing of the number of processors. 
However. the efficiency of a simulation was decrease with an 
increasing of the number of processors. 
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Figure 6. Execution time against no. of processors for Ra =1 
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Figure 7. Speed-Up against no. of processors for Ra = ur 
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Figure 8. Efficiency against no. of processors for Ra = 103 

5. CONCLUSION 
A parallel algorithm has been developed to simulate 
incompressible flow for the problem of natural convection 
occurred in a square cavity with specified boundary conditi, 
The simulations of the incompressible flow using SIMP' 
method on parallel computer are agreement with the benchm 
result. Thus. the simulation is successful. Percentage errors for 
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