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Abstract: The inclusion of physiographic and atmospheric influences is critical for spatial modeling of 
orographic precipitation in complex terrains. However, attempts to incorporate cloud cover frequency 
(CCF) data when interpolating precipitation are limited. CCF considers the rain shadow effect during 
interpolation to avoid an overly strong relationship between elevation and precipitation in areas 
at equivalent altitudes across rain shadows. Conventional multivariate regression or geostatistical 
methods assume the precipitation-explanatory variable relationship to be steady, even though this 
relation is often non-stationarity in complex terrains. This study proposed a novel spatial mapping 
approach for precipitation that combines regression-kriging (RK) to leverage its advantages over 
conventional multivariate regression and the spatial autocorrelation structure of residuals via kriging. 
The proposed hybrid model, RK (GT + CCF), utilized CCF and other physiographic factors to enhance 
the accuracy of precipitation interpolation. The implementation of this approach was examined 
in a mountainous region of southern Syria using in situ monthly precipitation data from 57 rain 
gauges. The RK model's performance was compared with conventional multivariate regression 
models (CMRMs) that used geographical and topographical (GT) factors and CCF as predictors. 
The results indicated that the RK model outperformed the CMRMs with a root mean square error 
of <8 mm, a mean absolute percentage error range of 5-15%, and an R2 range of 0.75-0.96. The 
findings of this study showed that the incorporation of MODIS-CCF with physiographic variables as 
covariates significantly improved the interpolation accuracy by 5-20%, with the largest improvement 
in modeling precipitation in March.

Keywords: regression-kriging; geostatistical methods; regional climate modeling; MODIS cloud; 
orographic effectiveness; Syria
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1. Introduction

Spatial datasets for precipitation at a high spatial resolution are essential for environ­
mental monitoring, agricultural planning [1], rainforest studies [2], hydrological model­
ing [3,4], and other sectors [5]. However, obtaining such datasets can be challenging due to
limited precipitation observation stations, especially in mountainous areas having complex 
terrains [6,7]. The spatial variability of precipitation over complex terrains is highly hetero­
geneous. Precipitation may occur within a few kilometers around a gauge, whereas there is
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no precipitation at a short distance. Thus, spatial interpolation of precipitation is a major 
challenge in such an area. Global datasets often fail to represent local precipitation patterns 
accurately [8,9]. They are also mostly available at a low spatial resolution [10,11], except for 
some recent products [12- 15]. Therefore, it is necessary to develop accurate methods for 
estimating precipitation to a sufficient spatial resolution before using them in hydrological 
models or related applications. However, developing high-resolution precipitation data is 
always challenging, particularly for complex terrains.

In recent years, two types of methods are frequently used for developing high-spatial- 
resolution precipitation data with a specific horizontal spacing from observation data: 
the first includes interpolation techniques based on sparse in situ observations [16- 19], 
and the second involves downscaling coarse-resolution gridded datasets, such as via the 
use of reanalysis, numerical weather models (NWM), regional climate models (RCMs), 
and remotely sensed data, to fine spatial resolution [20- 23]. The downscaling approach 
based on RCMs or NWMs employs physical processes of the coupled land-and-atmosphere 
systems, which need a large dataset from different sources [24]. Such an approach is also 
time-consuming and computationally cumbersome [25- 28]. Therefore, spatial interpolation 
techniques are more widely used to estimate precipitation distribution over an area [29,30].

Spatial interpolation techniques based on in situ observation can be divided into five 
subtypes: (i) geostatistical, (ii) deterministic, (iii) multiple regression, (iv) machine learning, 
and (v) hybrid methods. The geostatistical methods include simple kriging (SK), universal 
kriging (UK), ordinary kriging (OK), co-kriging (CK), and kriging with an external trend 
(KED) [31]. Among them, OK only considers the spatial autocorrelations of the sampled 
points and presumes that their structural constituents are locally stationary and stochastic 
in space. In contrast, UK, CK, and KED describe the effects of the explanatory variables 
on the dependent factor and use the spatial autocorrelation of the predicted variable. 
The deterministic methods include Thiessen polygons, inverse distance weighting (IDW), 
and radial basis function, which assume that nearby factors affect the predicted surface 
more than distant factors [32]. Many studies have compared the performance of these 
precipitation spatial modeling methods [33- 35]. Theoretically, KED and CK are considered 
better than OK at interpolating precipitation spatial variability as they also consider the 
effects of explanatory factors. However, the superior performance of these two algorithms 
over OK is still subject to a multitude of factors, such as precipitation type, the strength of 
the relationship between precipitation and explanatory factors, the density of rain gauges, 
and so on [36,37].

The third subtype of spatial interpolation techniques is multivariate regression (MR), 
where a linear or nonlinear regression is fitted between precipitation and the predictive 
variables to interpolate precipitation at ungauged locations [6,38]. The ordinary least 
squares (OLS) approach is generally used for fitting the regression line. The OLS approach 
assumes that precipitation and predictive variables are associated in large-scale regression 
fitting in a stationary form, and the resulting model's residuals follow a normal distribu­
tion [39- 41]. However, these assumptions are not valid in most cases. As a result, novel 
MR approaches, such as generalized additive model (GAM) [42], geographically weighted 
regression (GWR) [43,44], and geographically and temporally weighted regression [45], 
have been introduced for spatial interpolation of precipitation. These three MR models 
significantly outperform OLS in modeling hypotheses and regression fitting. They can 
more accurately explain the geographically nonlinear or nonstationary responses between 
precipitation and related explanatory factors [41]. These regression approaches are also 
simple and computationally less expensive.

Nevertheless, as the relationship among precipitation-related variables is not always 
linear, nonlinear regression methods, such as machine learning and artificial intelligence 
approaches, have shown efficiency in precipitation interpolation [46]. These methods 
include artificial neural network (ANN) [47], self-organizing map (SOM), multilayer per- 
ceptron (MLP) [48], fuzzy inference [49], and random forest [50- 52]. However, it is not yet 
clear which method provides the most reliable precipitation estimates [9]. Nevertheless,
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several studies have indicated that a single method (e.g., geostatistical, linear regression, 
or machine learning) might not be able to explain precipitation occurrence properly, espe­
cially when modeling local precipitation patterns in complex terrains. Therefore, hybrid 
interpolation methods are proposed over typical interpolation approaches for complex 
terrains, especially when focusing on extreme precipitation events [27,28]. Hybrid inter­
polation methods combine several types of algorithms. Therefore, they are more capable 
of reproducing the observed precipitation at a high spatial resolution more precisely than 
a single method [53- 57]. In general, hybrid interpolation employs one approach to esti­
mate the target variable first and then another approach to interpolate the residuals of the 
first approach. Finally, the partial interpolation of the two methods is combined. Some 
examples of hybrid interpolation methods are Auto-Searched Orographic and Atmospheric 
Effects Detrended Kriging (ASOADeK) [58,59]; regression-kriging (RK), which combines 
the OLS method and OK [60,61]; geographically weighted regression kriging (GWRK); 
local regression-kriging (LRK) [62]; geographically and temporally weighted regression 
kriging (GTWRK) [56]; and stratified geographically weighted regression-residual kriging 
(s-GWRK) [41]. In addition to the above methods, some studies developed new hybrid 
interpolation methods by combining the deterministic/geostatistical methods and machine 
learning algorithms, such as regression-kriging and neural network residual kriging (RKN- 
NRK) [63]; model tree (MT) and kriging method [64,65]; and coupling random forest (RF) 
and inverse distance weighting (RF-IDW) [66].

Recently, auxiliary data have been used as independent variables for interpolation [67]. 
For example, steep precipitation gradients are correlated with atmospheric and orographic 
factors, geographic position, altitudes, slopes, and coastline distance. However, covariates 
should be available at fine resolution for high-resolution interpolation of precipitation. Covari- 
ates are generally climate variables derived from climate/satellite models/products [68- 70]. 
Other covariates are topography-related variables, such as elevation and slope. Several studies 
used topography and normalized difference vegetation index (NDVI) as covariate/auxiliary 
variables available in high resolution [71- 73]. These environmental factors, obtained from 
fine-resolution satellite datasets, are closely related to rainfall only in arid and semiarid regions 
where rainfall patterns are affected by elevation [71]. Additionally, timescale is important 
when selecting covariates/auxiliary data. For instance, when using a covariate that represents 
the greenness of an ecosystem's surface and shows the vegetation in a particular region, the 
response of the greenness indicator to a precipitation event lags in the order of a few months 
or weeks [74].

One of the high-resolution covariates with a strong relationship with precipitation is 
cloud cover and its characteristics. It can be derived from satellites to improve the spatial 
resolution of precipitation fields [22]. There is no precipitation if there are no clouds, and 
increased cloud cover frequency (CCF) also increases precipitation occurrences [75- 77]. 
This study presents an improved method by integrating mathematical tools with spatial 
interpolation techniques (multivariate regression with residual correction) to generate 
high-resolution continuous precipitation surfaces. Furthermore, this study investigates 
the interaction between a climatic component (precipitation) and independent climatic 
factors (topographical and geographical variables), as well as the capacity of these variables 
to explain the spatial variance in monthly precipitation. Thus, the main objective of this 
research is to integrate conventional multivariate regression and spatial autocorrelation 
structure of residuals using kriging to improve the accuracy of precipitation interpolation, 
employing remotely sensed data, such as the M ODIS (Moderate Resolution Imaging 
Spectroradiometer) cloud cover and other physiographic factors.

2. Materials and Methods
2.1. Study Area and Data Collection

This study was carried out in one of the mountainous regions in southwestern Syria 
and northern Jordan, which is situated between latitudes of 32°17/45// N and 
33°25/01// N, and longitudes of 35°47/30// E and 37° 30/45// E, with a catchment area of
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20,362.2 km2 (Figure 1). The study area is characterized by a continental climate with a wet- 
cold climate in the winter and a dry-hot climate in the summer. The average summer tem­
perature varies between 18 and 32 ° C in July, while the winter average varies between 3 and 
10 ° C in January. The regional mean annual precipitation is 283 mm (the 25th and 75th 
percentiles are 200 and 350 mm, respectively), with a maximum rainfall of roughly 470 mm 
(1982-2015) [78]. Tine mean annual CCF is 20-55% , with the highest value of 40-95%  in 
February (2000-2015). According to the KSppen-Geiger classification, the region is located 
in the temperate-wet climatic zone in the central and western hilly regions. In contrast, 
the climate is desert (arid climate) and continental or steppe (semi-arid climate) toward 
the east [78]. The region is classified into three physiographic units: (i) mountain region 
in the western and central area (Mount Harmon and Jabal Al Arab), (ii) plateau in the 
northwestern part (Golan Heights extent), and (iii) a plain area thai occupies most of the 
study area (Horan plain) with an altitude varying between -1 8 in the southwest (lower part 
of the Yarmouk river) and 2814 m above mean sea level (m as l) in the northwest (Mount 
Hermon or Jhbal El Sheikh).

Figure 1. The location of the study area, thh regional seasonal cycle of precipitation (mm.), the hverage 
temperature (°C) for the 19)82-2015 period, and the averege cloud cover frequencies (CCF, °%) for the 
2a00-2015 period.

In this study, the spatial modeling of precipitation at fine resolution was based on in 
situ and remotely sensed da)a from several sources, which hre summarized in the hollowing 
sub-sections.

2.1.1. Monthly Observed Precipitation Data

The in situ observation data from 57 rain gauges were collected from the databases 
of the Syrian Meteorological Authority (SMA), the Syrian Ministry of Agriculture and 
Agrarian Reform (SMOAAR), and the Jordan Meteorological Department (JMD). The 
stations were selected considering their locations in areas that vary topographically and
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geographically, as shown in Table 1 and Figure 1, where all these data were collected on a 
monthly time scale for 1984-2015. The stations with observations for at least 20 years were 
only included in the data preparation stage. The gridded precipitation data from the CRU 
Ts4.3 dataset [11] with a resolution of 0.5° were used as the reference for correction, gap 
filling, and homogeneity testing, which led to interruption-free data acquisition. Table 2 
shows the precipitation datasets used in modeling and validation.

Table 1. Details of observed monthly precipitation data used in modeling and validation.

Variable Data Type Number of Stations/Points Spatial Resolution Reference Period Source

Observed precipitation (mm) Rain gauge and climatic stations 
(Historical)

57 - 1984-2015
SMA
SMOAAR
JMD

CRU Ts4.3 precipitation (mm) Gridded data (Historical) 9  gridded points 0.5 degree 1984-2015 http s://cru d ata .u ea .ac.u k/cru /d ata/h rg/, 
(accessed on 7 September 2022)

TerraClimate precipitation (mm) Gridded data (Monthly average) - ~4 km  (2.5 arc. min) 1970-2000
https://w w w .clim atologylab.org/, (accessed 
on 7 September 2022)

WorldClim V. 2.1 precipitation 
(mm)

Gridded data (Monthly average) - ~1 km (30 arc-second) 1981-2010 https://w w w .w orldclim .org/, (accessed on 
7 September 2022)

CHELSA V1.0 precipitation (mm) Gridded data (Monthly average) - ~1 km (30 arc-second) 1979-2016
https://chelsa-clim ate.org/, (accessed on 
7 September 2022)

2.1.2. Auxiliary Remote Sensing Data

To produce a regional high-spatial-resolution (at ~1 km resolution) precipitation 
dataset accurately, auxiliary variables with the same horizontal spacing should be ob­
tained. The elevation data for the study area were calculated and extracted for the 
in situ stations and the whole area from the Digital Elevation M odel (DEM) obtained 
from the US Geological Survey's Center for Earth Resources Observation and Science 
(EROS) Archive-Digital Elevation—Global (GTOPO30) within the HYDRO1k project data 
with a horizontal grid spacing of 30 arc-second (approx. ~1 km) resolution (Figure 2 ) 
(https://earthexplorer.usgs.gov, (accessed on 7 September 2022)).

Figure 2. Rectangular neighborhood method using height and width (3 by 3) to determine the new 
value of each elevation/CCF cell.

The cloud cover data (at ~1 km resolution) were extracted from the 16-year MODIS 
satellite delta (2000-2015). The MODIS CCF data have a twice-a-day frequency [79]. The 
CCF product used in this study was extracted from the original daily delta of the daytime 
surface reflectance products from both TERRA (i.e., MOD09GA, which compiled at approx. 
10:250 a.m. local time) and AQUA (i.e., MYD09GA at ipprox. 1:30 p.m.) from February 2000 
to Merch 2014 (see Wilson et al. [79] for m oie details).

https://crudata.uea.ac.uk/cru/data/hrg/
https://www.climatologylab.org/
https://www.worldclim.org/
https://chelsa-climate.org/
https://earthexplorer.usgs.gov
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Table 2. Details of remote sensing data used.

Dataset Variable Period Spatial
Resolution

Temporal
Scale Reference

Global Cloud 
Cover MODIS

Cloud 
frequency (%) 2000-2015 1 km Monthly [79]

HYDRO1K
(GTOPO30)

Digital
Elevation

Model
-

~1 km
(30 arc-second) Monthly [80]

2.2. Data Analysis
2.2.1. Preliminary Analysis of Monthly Precipitation Series

Precipitation data require careful preparation and handling, including outlier removal, 
selection of the candidate and reference stations, data gap filling, and homogeneity testing, 
regardless of the spatial interpolation method used. These matters are important when 
employing data from several sources with different settings. As a result, the data series 
were subjected to a precise procedure to ensure data completeness, homogeneity, and filling 
of data gaps for reliable climate evaluation. To that end, data quality was assessed by 
analyzing the difference in the monthly series between candidate and neighboring stations 
(i.e., pairwise comparisons) and interpolating missing values using the regression line (OLS 
method) (see Alsafadi et al. [57] for more details). The gridded precipitation data from 
the CRU Ts4.3 dataset were also used when overlaps in the missing values were evident 
among the precipitation series, which ultimately led to interruption-free data acquisition. 
Additionally, the standard normal homogeneity test (SNHT) was applied [81] to assess 
data homogeneity. More information on the quality control and homogeneity test processes 
can be found in the AnClim software, version 5.016 documentation [82].

2.2.2. Preprocessing of Explanatory Variables

The independent factors were chosen from the most frequently referenced geo-climatic 
parameters in the literature [83,84], considering their availability and relationships with 
precipitation in the study. Elevation (Elv.) and latitude (Lat.) are most widely used in terms 
of their impact on precipitation [84- 86]. Elevation information takes into consideration the 
environmental lapse rate (ELR), i.e., the ratio of change in precipitation with altitude variation, 
or orographic precipitation (OP) [87,88]. The longitude (Lon.) position and the distance to a sea 
coastline (Cdist) represent continentality, which significantly affects precipitation. The distance 
to a coast is an important geographic factor since it represents the influence of marine wind 
and its inland movement. Other components with a significant relationship with precipitation 
are cloud formation, cloud properties, and CCF. However, they are rarely employed since 
they are not always available [89,90]. CCF considers the rain shadow effect, which leads 
to the redistribution of precipitation forced by the local complex terrain. In the study area, 
the interpolation of precipitation is difficult due to the highly contrasting local climates and 
low rain gauge density [37]. Given these restrictions, previous studies confirmed the need 
to add CCF with terrain influences to avoid an overly strong relationship between elevation 
and precipitation with rain gauges at equivalent altitudes across rain shadows [13,17] Other 
topographic variables that may affect cloud formation and wind fluxes, such as aspects and 
slope, were not used in this study due to their low relationship with precipitation in the study 
area and were replaced by the CCF effect.

The selected covariables were preprocessed employing several methods. The DEM 
data were smoothed by removing or reducing the spatial variation (i.e., small-scale noise 
removal) to detect the ideal orographic effect of elevation [84]. An average of adjacent 
pixel values at 2 km, 3  km, and 5 km distances were considered to determine the ideal 
DEM with a strong relationship with precipitation. For this purpose, this study employed 
the focal statistics tool of ArcMap v.10.8 (Esri. Redlands, CA, USA) and the rectangular 
neighborhood method with a given height and width. Since the original resolution of the
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DEM was 1 km, we determined the new value of each cell as a square with the height and 
width of the 2, 3, and 5 nearest input pixels, respectively (Figure 2). Next, the relationship 
between precipitation and the new smoothed elevation points was determined to adapt the 
optimal DEM (the ideal topographic effectiveness) [21,57].

The principal component analysis (PCA) is often used to reveal the structure and 
composition of the relationship between independent variables based on the existence of 
a correlation between them (r correlation > 0.33) [91]. The PCA method helps evaluate 
the interrelationships between groups of correlated variables. It may be useful to con­
vert the original dataset of variables into new uncorrelated variables called the principal 
components (PCs). These new PCs are derived in descending order of importance; for 
example, PC1 represents the highest variance from the original data, PC2 represents the 
second highest variance, and so on [92]. As such, the PCA method reduces the number 
of variables without a substantial loss in the total explained variance. It is a procedure 
that helps avoid multicollinearity among independent variables and, thus, the difficulty 
of obtaining an optimal model that should explain the best variance ratio for the studied 
dependent variable [93,94]. In this study, the principal components of four factors affecting 
the spatial distribution of precipitation were analyzed: latitude, longitude, elevation, and 
distance to the sea coastline. In addition to the smoothed monthly CCF data, the grid 
data— a total of 27,813 dot cells— was used for the PCA. The PCA was calculated using 
SPSS v. 26, (IBM Corp. Armonk, NY, USA) and the PCs that accounted for at least 90% of 
the total variance were considered.

2.2.3. Fine-Scale Modeling Using Regression-Kriging (RK)

RK is a local hybrid interpolation technique which merges conventional multivariate 
regression model (CMRM) and OK [60,61] to obtain spatially more accurate predictions 
of precipitation. In RK, the CM RM 's residuals (i.e., unexplained variation) are handled 
as random bias and interpolated using a kriging algorithm. The components of RK are 
expressed as follows:

_  p n
Z (s0 ) =  £  Pk (s0 ) Xk (s0 ) +  £  Wi e(Si) (1)

k=0 i=1

where Z(s0 ) is the estimation at site s0 ; Pk (s0) is the CMRM coefficient at site s0 ; Xk (s0 ) is 
the variable (PC score) at site s0 ; p is the overall variable applied in the CMRM model; Wi 
is the kriging weight; e(si) is the CMRM residual at observed station si; and n is the range 
of neighboring points for local modeling. The first portion of the left side of the equation 
represents the CMRM, and the second portion indicates the kriging of the MRM residuals.

Local RK is established to consider the local relationship between a target variable and 
covariates as a replacement for applying a single regression function for an entire observed 
dataset, which is used to handle spatial non-stationarity [57,62]. Herein, we used all the 
stations for the RK process due to the small number of stations as well as the short spatial 
dimensions of the study area.

2.2.4. Steps Involved in Fitting, Calculating, and Assessing the CMRM and RK Models

The RK process for estimating monthly precipitation in the study is summarized 
below:

Step 1: Fitting a CMRM function to specific stations to express the relationship between 
observed precipitation and the independent variables, i.e., the extracted PC scores from 
the PCA and the significant independent variables xn in the CMRM using the stepwise 
regression method (SW). The CMRM is expressed in Equations (2) and (3):

Y (s0 ),SW  =  p0 +  P1x1 +  p2 x2 +  p3 x3 +  . . .  pnxn (2)

Y(s0 ), PCs =  p0 +  p1 PC1 +  p2 PC2 +  p3 PC3 +  . . .  pn PCn (3)



Remote Sens. 2023,15, 2435 8 of 26

Step 2: Setting the CMRM function to the independent variables (PC scores' layers) at 
each gridded point to obtain a potential estimate of the precipitation variable (potential 
surfaces). The MRM coefficients Pk are predicted by fitting the OLS regression line [95].

sum of the square error as much as possible. Therefore, it takes the equation using matrices 
as follows:

Step 3: Computing the residual values of the monthly precipitation models (i.e., 
unexplained variation), which are the differences between the predicted values from the 
CMRM surfaces and the observed values o from the stations: e(si) =  o(s0 ) — Y(s0 ).

Step 4: Calculating the empirical semi-variogram of the CMRM's residuals of monthly 
precipitation as a measure of the variation between the CMRM's residuals calculated based 
on the following equation [33]:

where Y(h) is the semi-variance; N (h) is the number of pairs of data locations separated by 
the spatial lag h; Z(xi) is the CM RM 's residuals of the variable xi at site i; and Z (xi +  h) 
is the M RM 's residuals of the variable distributed at distance h from xi. As such, the 
empirical semi-variogram is calculated as 1 /2  of the averaged squared difference between 
the components of point pairs.

Step 5: Using an exponential variogram model to fit the computed empirical semi- 
variogram and predicted range "a "  (correlated distance parameter), partial sill variance 
"C 1" (the pure variance of the point), and nugget "c0" (uncorrelated or random noise). The 
exponential variogram model is the most fitted because it provides the best result for the 
residual correction of the CMRM functions, i.e., unexplained variation of CMRM fitting, to 
obtain climatic surfaces over Syria [57] and another region [8]. The exponential variogram 
model is expressed in Equation (6):

The model parameters are then optimized. The model parameters, nugget, partial sill, and 
other(s) are optimized using cross-validation, focusing on estimating the range parameter.

Step 6: Predicting the residual values of monthly precipitation at the gridded points 
using the previously fitted exponential variogram model.

Step 7: Ultimately, merging the potential surfaces of monthly precipitation estimates 
and the kriged residual surfaces of monthly precipitation estimates as the prediction of the 
final surface. Correspondingly, the sum of the CMRM variance and the kriging variance is 
considered the prediction variance, as shown in Figure 3. Various schemes have been tested 
for modeling monthly precipitation. We categorized them into three models, as shown in 
Table 3, each with a clear objective.

Step 8: In this last step, the leave-one-out cross-validation (LOOCV) is performed 
using statistical indicators, root mean square error (RMSE), mean absolute percentage error 
(MAPE), coefficient of determination (R2), and Pearson's correlation coefficient (r) [57,85,96].

The OLS estimator chooses the best model that matches the input data and minimizes the

P ols =  (X X) 1 XY (4)

1 N(h)

Y (h) =  2N (h) £  {Z (x i) — Z(xi +  h )}

N(h)
2 (5)

(6)

where h denotes the distance between the predicted location and the observed location.
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Table 3. Description of models applied for modeling monthly precipitation.

M odel Description Included Variables Benefits

Regression model: 
CMRM-SW (GT)

Fitting the CMRM function using the 
stepwise regression (SW) method.

Both geographical and topographical 
factors (elevation, longitude, latitude, 
and distance to the coast) by including 

only significant independent 
variables.

Calculating geographical and 
topographical contribution (GT) in 

precipitation modeling.

Regression model: 
CMRM-PCs (GT+ CCF)

Using the extracted PC scores from the 
PCA to fit the CMRM function.

Geographical and topographical 
factors (elevation, longitude, latitude, 

and distance to the coast) were 
included, besides the CCF data. The 
extracted PC scores from the PCA.

Calculating remotely sensed CCF 
contribution in precipitation modeling 

besides GT effects.

Hybrid model:
Using the extracted PC scores from the 
PCA to fit the CMRM function and then As presented in the CMRM-PC (GT + CMRM's residual correction to

RK (GT + CCF) adding the CMRM's residuals using OK CCF) scheme. improve the outputs.
with exponential variogram model.

Figure 3. Flowchart of the methodology of fitting, calculating, and assessing the CMRM and RK 
models.

3. Results
3.1. Effect o f  Topographical-Geographical Factors on the Spatial Variability o f Precipitation

The small-scale DEM noise removal procedure revealed the optimal effects on monthly 
precipitation patferns for the horizontal scale of 3 km (Figure; 4, the right panel). The highest 
correlation between monthly precipiCation and altitude was in March (r =  0.51, p <  0.05), 
which was a significant positive correlation, while the lowest value of correlation -was in 
September (r =  0.3, p <  0.05). In the case of the continentality effect, the longitude location
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(Lon.) and distance to the seacoast (Cdist.) showed a significant negative correlation with 
monthly precipitation. The highest values of the negative correlations between monthly 
precipitation and (Lon.)/(Cdist) were for November and December (r =  -0 .3 6  to -0 .4 2 , 
p <  0.05), while the lowest (negative correlation) was for March and May, with a  value 
of —0.2.

r c o r r e la t io n
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• 1 Km — o —  2 Km — 3 Km — o —  5 Km

Figure 4. The spatial correlation between elevation using smoothed DEMs at multiple horizontal 
scales (e.g., 1, 2, 3, and 5 km) and average monthly precipitation.

3.2. Spatial Distribution o f  CCF and Its Effect on the Average Monthly Precipitation

Figure 5 shows the spatial distribution of monthly CCF. The highest CCl1 was in winter, 
with 40-95°% in January and February, and 3d-820/o in December. The high CCF (>70°%) was 
in the mountainous regions of Jabal Alarab and Aljulan Heights in the winter, while the 
iowest was in September (3.5-25%). Interestingly, regardless of the monthly CCe amounts, 
its distribution is spatially symmetric, making it a good predfctor of spatial p recipitation 
patterns in complex terrains.

Because CCF considers the r ain shadow effecS, which loads So the redistribution of pre­
cipitation forced by the local complex terrain, we analyzed the spatial aorrelation between 
t ie  CCFs at multiple horizontal scales and the observed average monthly precipitation. The 
optima 1MODIS-CCF surface effects on monthly peecipitation patterns were the most sig­
nificant at a horizontal scale of 7 lam. Figure 5 shows the correlation betweera the observed 
monthly precipitation and the monthlo CCF, ranging between 0.58 and 0.84. The highest 
valuos wese in April and March (a > 0.8, p < 0.05), with a significantly positive correlation, 
while the lowest was in SepSember (r = 0.58, p < 0.05), but it was also statistically significant. 
This indictates that CCF is a good predictor for explaining complex terrain precipitation 
patterns and can improve interpolation accuracy.

3.3. Interrelationships between Explanatory Variables and PC Analysis

Before performing the PCA, the structure and composition of the interrelationships 
between the independent variables contributing to the precipitation variance should be 
revealed under autocorrelation (r correlation > 0.33) and multicollinearity assumptions re­
garding the independent variables. The results indicate that the monthly CCF is negatively 
correlated with longitudes (< -0 .5 )  for all months except September through November 
and May. The same pattern exists for the "distance to the seacoast". On the other hand, 
the monthly CCF and elevation are positively correlated, with values ranging from 0.35 to 
0.53 for January through May and at the annual level (Figure 6a). The correlation matrix
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of monthly CCF (Figure 6b ) reveals significant positive interrelationships between the 
monthly CCFs of January, February, March, and April, which take a spatially homogeneous 
pattern with an r ranging between 0.84 and 0.92. A similar interrelationship was observed 
between the average annual CCF and the CCFs for January through April, with an r higher 
than 0.9. The results indicate that PCA is required to convert the correlated covariables into 
uncorrelated variables (PCs).

Figure 5. The spatial distribution of smoothed monthly CCF (%) at a 7 km horizontal scale and its 
correlation with observed average monthly precipitation at 57 rain gauges.

The PCA of the explanatory variables were used to extract the key factors contributing 
to the spatial variability of precipitalion on titer monthly and annual scale's (Figure 7). The 
extraction of the key factors employing the rotation metOod resulted in three main PCs. The 
first component (PC1) in all months explains the highest variance in the included factors, 
with values ranging between 39%o xnd 49.5%o, while the PC3 contributes tho least to spaOial 
variance, ranging between 18% and 23% of the total variance. The explained cumulative 
variance for the extracted PCs ranges between 90% for September and 97.1% for January 
(Figure 7a). Figure 7b shows the loadings of the original variables on the extracted PCs 
after rotation. The "longitudes" and "distance to the seacoast" are positively loaded on the 
PC1 (0.94 to 0.99).

It is worth noting that the CCF is negatively and partly loaded on the same component, 
with a value ranging from —0.66 to —0.78. The inverse correlation indicates decreased CCF 
with the distance from the seacoast in January, February, March, April, and December, ax 
well as the aveeage annual velue. °n contraet, the CCF in May is partly loaded positively on 
the PC1 due to increased CCF when moving away from thee seacoast (see Figure 5).
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Figure 6. Correlation matrices between the explanatory variables: (a) the topographical-geographical 
factors with the monthly CCF, and (b) correlation matrix of monthly CCFs.

The CCF is positively loaded on the PC2 in all months, except March and December, 
with a value ranging between 0.414 and 0.88. This positive loading of CCF is accompanied 
by the elevation factor, which is also positively loaded on the PC2 in all months, with a 
value ranging between 0.81 and 0.97. This indicates that an increase in elevation increases 
the CCF. Table 4 shows the correaation matrsx between the observed precipitation and 
extracted PCs aftee the varimax rotation method.

Table 4. Eigenvectors of the correlation matrix between the observed monthly precipitation (n = 57) 
and extracted PCs after varimax rotation method with Kaiser normalization.

PCs/Prc. January February M arch April M ay June July August Septem ber October Novem ber Decem ber Annual

PC1 -0.415 -0.39 -0.38 -0.45 -0.35 - - -  -0.34 -  0.30 -0.36 -0.42 -0.36
PC2 0.47 0.51 0.005 0.49 0.64 - - -  0.12 0.55 0.46 0.46 0 .5a
PC3 0.14 0.13 0.56 0.13 0.30 - - -  0.27 0.34 0.33 0.17 0.17
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Figure 7. A scree plot presenting the cumulative variance (%) for the extracted PCs (a) and the 
loading matrix of the explanatory variables on the PCs (b).

3.4. Modeling o f  Monthly Precipitation Using the CMRM

The CMRM process referred to above was applied to the region, which covers a 
complex terrain with two CMRM schemes. The first CMRMs-SW (GT) scheme was fitted 
to ensure that the CM RM 's efficiency is only related to the ability of the geographical- 
topographical factors to interpret the spatial variability of precipitation. It was carried out 
after selecting the best independent variables based on their significant effect on the spatial 
variability of precipitation, i.e., using the SW regression method and excluding variables 
that have no effect. The second CMRMs-PCA (GT + CCF) scheme was fitted to ensure that 
the CM RM 's efficiency is related to the ability of the GT factors and CCF to interpret the 
spatial variability of precipitation. It was conducted after obtaining the three main PCs that
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explain the highest variance instead of applying the SW method to add the CCF variable to 
avoid multicollinearity.

Table 5 reveals that the applied CMRMs-SW (GT) on a monthly scale has statistical 
significance based on the adjusted determination coefficient (Adj. R2) and standard error. 
This indicates that the geographical-topographical factors influence the spatial variation 
of monthly precipitation. The interpretation of the statistical significance of the factors 
demonstrates high adequacy in explicating the monthly precipitation patterns in the com­
plex topography, specifically in the winter months (Dec, Jan, and Feb), with an Adj. R2 of 
0.71, 0.70, and 0.66, respectively, whereas the precipitation patterns are well interpreted for 
the remaining months, with an Adj. R2 ranging from 0.42 to 0.61.

Table 5. Unstandardized coefficients of the CMRMs-SW (GT) used (|3 ) to estimate average monthly 
precipitation and some statistical indicators to assess the models' performance (the GT effect-based 
potential precipitation surfaces using the SW method).

Variables p January February M arch April M ay June July August Septem ber October N ovem ber D ecem ber

Constant ?0 3303 3013 1706 600 4.8 - - -  51.1 13.5 44.9 2610
Elv. ?1 0.083 0.088 0.053 0.017 0.005 - - -  0.001 0.010 0.025 0.064
Lon. ?2 -85.4 -83 -46.9 -16.5 - - - -  -1.42 - - -71.8
Lat ?3 - - - - - - - - - - - -

caCA5C - - - - -0.04 - - - - -0.10 -0.28 -
r correlation 0.84 0.81 0.79 0.77 0.73 - - -  0.69 0.75 0.65 0.843

Adj. R2 0.70 0.66 0.61 0.6 0.53 - - -  0.46 0.56 0.42 0.71
RMSE (mm.) 16.25 18.4 11.8 4.1 1.25 - - -  0.42 2.6 10.2 13.3
Sig. value (p) <0.01 <0.01 <0.01 <0.01 <0.01 - - - <0.01 <0.01 <0.01 <0.01

The CCF was included to improve the accuracy of the CMRM outputs in the study 
area. This helps avoid an excessive relationship between altitude and precipitation in areas 
at equivalent altitudes across rain shadows. The results shown in Table 6  reveal that the 
applied CMRMs-PCA (GT + CCF) on a monthly scale has statistical significance based on 
the Adj. R2 and that the CCF has an obvious influence on the spatial variation of monthly 
precipitation besides the geographical-topographical factors. The CCF demonstrates high 
performance in improving the CMRMs' outputs, specifically during spring (March, April, 
and May), with an Adj. R2 of 0.83, 0.72, and 0.73, respectively. Additionally, the spatial 
precipitation patterns are exceedingly interpreted in December, January, and February, with 
an Adj. R2 of 0.78,0.781, and 0.77, respectively. Once the CMRMs-PCA (GT + CCF) method 
was used instead of the CMRMs-SW (GT), the standard error of the estimation became 
lower.

Table 6. Unstandardized coefficients of the CMRMs-PCA (GT + CCF) used to estimate average 
monthly precipitation and the statistical indicators to assess the models' performance (i.e., the GT 
and CCF effect-based potential precipitation surfaces using the PCA).

Variables p January February M arch April M ay June July August Septem ber October N ovem ber D ecem ber

Constant ?0 33.4 36.6 26.2 8.05 2.8 - - -  0.18 6.8 23.7 28£

C1P -37.7 -37.4 -21.5 -9.6 -1.62 - - -  -0.47 -  3.6 -11 -29.1
PC2 ?2 18.8 18.9 2.02 3.54 1.03 - - -  0.31 2.35 6.74 15.3
PC3 ? 3 -0.09 1.1 12.3 0.13 0.14 - - - -0.01 0.42 1.9 -1.6

r correlation 0.885 0.88 0.91 0.85 0.856 - - -  0.72 0.82 0.76 0.88
Adj. R2 0.781 0.77 0.83 0.72 0.73 - - -  0.51 0.67 0.53 0.78

RMSE (mm.) 14.37 15.7 8.3 3.5 0.98 - - -  0.42 2.4 9.0 11.8
Sig. value (p) <0.01 <0.01 <0.01 <0.01 <0.01 - - - <0.01 <0.01 <0.01 <0.01

3.5. Interpolation o f the CMRM's Residuals

Figure 8 presents the monthly CMRMs-PCA (GT + CCF) residual diagnostics for the 
observed data. The outputs of the normality test, as shown in Figure 8, show that most of the 
diagnostics are normally distributed based on the Kolmogorov-Smirnov test (K-S test) or 
the null hypothesis, which assumes that the residuals are taken from a normal distributed
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form, with p > 0.05 for all months except September. In other words, the significance 
value of each CMRM's residual distribution is greater than 0.05 and the null hypothesis is 
accepted; the majority of the expected cumulative probability of the standardized residual 
data yielded by the CMRMs is aligned along the 45-degree line of the residuals, analogous 
to a normal probability scheme (normal P-P plot). This indicates that the selected models' 
residuals are normally distributed and can be interpolated using a geostatistical method, 
such as OK.

Regression Standardized Residual Observed Cum  Prob Regression Standardized Residual Observed Cum  Prob

Figure 8!. Histograms of CMRMs-PCA (GT + CCF) standardized residual distribution and normal 
P-P plote of CMRMs-PCA (GT + CCF) standardized resklual.

Figure 9 shows that most of the CMRM residual values are between ± 1 5  and 
± 2 0  mm for the winter months, at ± 1 0  for March and November, and at ± 5 0  for the 
mean annual total precipitation using the OK method. The values present a nearly mono­
lithic pattern where the highest residuals recede in limited ranges. For instance, there are 
positive residuals in the central, western, and eastern areas and negative residuals in the 
northern and southern parts. All these residual surfaces show approximate agreement with 
the distribution patterns. Thus, these modeled surfaces were used to adjust the potential



Remote Sens. 2023,15, 2435 16 of 26

surfaces; (i.e., CMRM surfaces) to obtain a reliable estimate of the spatial variability of 
monthly precipitation.

Figure 9. Spatial distribution of CMRMs-PCA (GT + CCF) residuals using the OK method (right 
maps), and the empirical semi-variogram of the CMRM's residuals and its fitting using the exponential 
variogram (Exp.) model (left panels).

3.6. Performance ofCM RM s and RK Models in the Prediction o f Precipitation

The RK's performance was compared to the CMRMs that used geographical and 
topographical (GT) factors as predictors and the CMRMs that incorporated the GT and 
CCF influences. The model validation indicated that the RK (GT + CCF) outperformed 
the single methods with an RMSE of <8 mm, a MAPE range of 5-15% , and an R2 range 
of 0.75-0.96. The present study showed that the GT variables explained 42-70%  of the
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total spatial variance ini precipitation. Incorporating CCF as a covariate significantly 
improved tine interpolation accuracy by 5-20% s with the biggest improvement in the March, 
May, and April models, respectively. On the other hand, the kriging of the CM RM s' 
residuals significantly improved the interpolation accuracy tty 12-28% , with the biggest 
improvements in the November, October, and April models, respectively (Figure 10).

r co rre la t io n  r! RMSE (mm.) MAPE(%) Co-variables contribution (%)

Figure 10. Assessment of the CMRMs versus the RK model in the prediction of monthly precipitation 
(r correlation R2, MAPE, and RMSE), and the covariables' contribution to improving; the RK model's 
accuracy (right panel).

Figure 11 shows the scatter plots of the observed monthly precipitation against the 
predicted precipitation for all months. The plots reveal more consistent prediction using 
the hybrid (RK) model, with an R2 of 0.9 and 0.993 for monthly and annual precipitation, 
respectively. This eonfirms ihat the hybrii method outperformr the single methods and that 
the CCF significantly improves the interpolation accuracy ior all months and at the annual 
scale. higure 12 shows the final monthly precipitation distribution using the RK method.

Jan

Feb

Mar

Apr

May

Sept

Oct

Nov

Dec

CM RM -SW

CM RM -PCs

RK

Observed prec. (mm) Observed total prec. (mm)

Observed prec. (mm) Observed prec. (mm)

Figure 11. Scatter plots of observed monthly precipitation versus predicted precipitation for all 
months using the CMRM and RK models.
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Figure 12. Final monthly precipitation models using the RK method at ~1 km resolution.

For a more detailed evaluation of the performance of the proposed models, the pre­
dicted precipitation surfaces by the models were compared with WorldCim, CHELSA, and 
TerraClimate monthly precipitation surfaces using the Taylor diagram. The results show 
that the single and hybrid models are better than the global models, indicating the high 
efficiency of the models. The WorldClim and TerraClimate show an r of 0.92, while the 
CHELSA shows a low accuracy with an r of 0.8 (Figure 13).
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Figure 13. Taylor diagram showing the performance of the models against WorldCim, CHELSA, and 
TerraClimate monthly precipitation surfaces.

4. Discussion

Precipitation is one of the crucial hydrological and meteorological factors that varies 
complexly in space and time. Knowledge about spatial precipitation patterns is key for 
understanding the changes in climate and hydrology at a global or regional scale [78]. 
Spatial precipitation pattern is also important for understanding ecosystem production, 
water-energy balance, and other service sectors. It is critical for meteorological and hydro­
logical monitoring on a daily basis to improve disaster preparedness and water resource 
management [97- 101]. Notably, spatial interpolation of precipitation has become a critical 
scientific subject of importance in many domains, including hydrology, hydrometeorology, 
ecology, and biodiversity [102- 105]. This study attempted to generate high-resolution 
precipitation datasets in a complex terrain by employing a hybrid interpolation technique 
merging conventional multivariate regression modeling and OK. The study considered 
several physiographic factors as covariates to increase the accuracy of interpolation. The 
tesults revaaled the technique's; abiliSy to replitate monthly precipitation patterns with an 
adjusted R2 in the tange o. 0.75 to 0.96 in different months (pooled R2 = 0.90). "The models' 
residunls wese normally d istfibuted, indic ating fhe model's interpolation capab ility.

In the literature, many physiographic (elevation, slope, aspect, distance to coast, 
topographic variability, latitude, and soil type), atmospheric (wind and cloud cover), and 
biophysical (wetland, land use, and vegetation type) factors have been idnnti fie d that: affect 
precipitation at regional and global scales [17,18,22,90,106]. These factors interact with each 
other in complnx ways to define spafia1 variability in precipitation patferns. Therefore, 
incorporating these factors can improve the accuracy of the interpolation m et°od. The 
irfluence oa most o° these factors mairdy depends an the geography and cfimatic conditions 
of the region under study [90,107], However, some factors, such as e l a t i o n ,  cloud cover, 
and zonal wind, have significant influence on local rainfall variability In many cases, 
relevant data on all influencing factors are unavailable, so their proxies are used. For 
example, disj ance to a coast is often used as a proxy for wind speed as it usually detreases 
from the coast to fhe inland [108]. The present study also found the highesi correlation ot 
monthly precipitation with altitude, follow ef by longitude and distanca to tire seacoaet.
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Several studies showed a strong relationship between cloud cover and 
precipitation [109- 111]. For example, Zandi et al. [90] showed the influence of two MODIS 
cloud properties, cloud fraction and cloud effective radius, on precipitation in Iran's Al- 
borz and Zagros Mountain ranges. Sun et al. [110] showed a strong relationship between 
cloud-type frequency and precipitation in the United States. These studies suggest using 
cloud cover data to complement precipitation measurement in areas where rainfall data are 
scarce. While several studies have demonstrated a strong correlation between cloud cover and 
precipitation [111,112], the utilization of cloud cover data for interpolating precipitation has 
been very limited. Karger et al. [22] interpreted global precipitation at 1 km resolution using 
the MODIS CCF. Zandi et al. [90] employed cloud properties with five more environmental 
variables for precipitation interpolation over a complex terrain in northwest Iran. Geiss 
et al. [109] filled in radar precipitation missing data using cloud cover data as a predictor. The 
present study employed cloud cover data with other physiographic factors to improve pre­
cipitation interpolation accuracy. The study showed that incorporation of elevation, latitude, 
and distance to the seacoast with CCF as covariates significantly improved the interpolation 
accuracy. Several previous studies also suggested these factors as useful covariates for rainfall 
interpolation [113- 115].

This study showed a high positive correlation between precipitation and elevation. 
This is because of more precipitation at higher elevations due to orographic lifting and 
increased condensation at higher altitudes. In contrast, this study revealed a negative 
relation between precipitation with distance to the coast. This may be due to a nega­
tive correlation of distance to the coast with wind speed and cloud cover factor. Doran 
et al. [116] showed that rainfall-forming clouds are more common in coastal areas than 
inland. Yincan et al. [117] showed that cloud cover distribution is influenced by wind 
speed and coastal terrain. The present study also showed the seasonal variability of the 
correlation with distance to the coast. This is due to the seasonal variability of cloud cover. 
Prijith et al. [118] showed that cloud cover is generally higher in coastal areas, particularly 
during summer, suggesting a higher negative correlation. Generally, there is decreasing 
rainfall with increasing latitude in many regions. However, various factors can influence 
this relationship, which is not always straightforward [119]. For example, Yu et al. [120] 
investigated spatial precipitation distribution in the region of the Hengduan Mountains in 
China with latitude and showed a negative relationship.

The hybridization of multivariate regression and OK provides a flexible and accurate 
approach for spatial data analysis that can provide an improved representation of spatial 
patterns [121]. It combines the strengths of both multivariate regression and OK methods 
to produce more accurate results. It helps overcome the limitations of each method, such 
as the inability of multivariate regression to account for spatial autocorrelation and the 
limited ability of OK to capture complex spatial trends [122]. The hybrid technique allows 
the incorporation of additional spatial information, such as distance and directionality, to 
better capture spatial patterns in the data. This can result in a more realistic representation 
of the spatial distribution of the variable of interest [9]. Besides, this method can be tailored 
to the specific needs of the analysis by adjusting the parameters of the regression model and 
the kriging interpolation, indicating its greater flexibility [55,123]. Therefore, the hybrid 
method could replicate monthly precipitation patterns with high adjusted R2 when it was 
applied at a regional scale in this study.

5. Conclusions

This study accomplished its primary goal of developing a precise method to obtain 
continuous precipitation surfaces. This enabled us to integrate statistical tools with spatial 
interpolation techniques in modeling (multivariate regression with residual correction), 
resulting in a dataset for monthly precipitation at a fine resolution for a complex terrain. 
This study used hybrid interpolation techniques and determined the best approach for 
merging statistical methods (CMRM and PCA) with spatial geostatistical interpolation. 
As a result, this study and its outputs provide an adequate alternative to applying single
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methods and an alternative to using global grid data, which differ from each other in 
reliability and performance and might have biased outputs. This research contributed 
to resolving the issue of a shortage of precipitation data, particularly in complicated and 
distant terrains. The following important points can be summarized for this study:

• The optimal MODIS-CCF surface effects on monthly precipitation patterns are most 
significant at a horizontal scale of 7 km, and the maximum correlations are in April 
and March (r > 0.8, p < 0.05).

• The RK method outperforms the single methods, i.e., the multivariate regression 
models.
The geographical and topographical factors can explain 42-70%  of the total spatial 
variance in precipitation. Incorporating CCF as a covariate significantly improves the 
interpolation accuracy by 5-20% . The kriging of the CMRMs' residuals significantly 
improves the interpolation accuracy by 12-28%.
Both the single and the hybrid models are better than the global models (World- 
Cim, CHELSA, and TerraClimate) in estimating regional precipitation in terms of all 
statistical indicators.

Obtaining high-quality and high-resolution precipitation data remains very difficult 
due to the large spatiotemporal variability in precipitation and physical mechanisms. This 
study offered an objective method to improve interpolation and merge algorithms with 
remotely sensed data. Nonetheless, this study highlighted a significant problem that may 
require additional investigation and is a major research hotspot in regional climatic mod­
eling, including enhancing interpolation and integrating approaches to provide regular 
gridded meteorological data. We strive for an in-depth and holistic evaluation of merging 
satellite-derived precipitation products with cloud detection and cloud properties (water 
path, effective particle size, and optical thickness) observed by MODIS, using the observed 
data to improve interpolation quality. As a result, this field still requires further investi­
gation to improve the accuracy of interpolation before implementing this method using 
national and/or global datasets.
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