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A B S T R A C T   

Many production and safeguard systems consisting of multiple components are susceptible to the cascading 
failures, where one possibility is that the failure of a component leads to more workloads of other components. 
Such loading dependence can result in failure propagation, make the systems more vulnerable and maintenance 
decision-makings more difficult. In this study, we develop a model for analyzing the propagation process of 
failures in loading dependent systems considering overloading states and degradation of components. The 
multinomial distribution is applied to characterize the probabilities of total numbers of failed- and overloading 
components, and probability distributions of different stop scenarios of cascading process are derived. A practical 
case in piping network is investigated to illustrate the analysis procedure, and to compare the effectiveness of the 
proposed model with those of the existing methods. Numerical analyses are conducted for evaluating the factors 
influencing the probability distributions of total number of failed- and overloading components, as well as the 
occurrence frequencies of different stop scenarios. It is expected that design and maintenance of loading 
dependent systems can be optimized with the support of this new cascading analysis approach.    

Notation 
n Total number of components in a system 
j Cascading generation j = 0,1, 2, …. 
d Initial disturbance amount 
Lmax Maximum workload on a component 
Lmin Minimum workload on a component 
li Initial workload on component i 
lf The additional load from a failed component 
lo The additional load from an overloading component 
lj Loading increments from all the failed and overloading 

component in the jth generation 
lij Workload on component i in the jth generation 
Cmax Maximum capacity of a component 
Cmin Minimum capacity of a component 
c0 Initial capacity of component i 
cd Capacity decrement of functioning component in every 

generation 
cj Capacity of every component in the jth generation 
rij The workload-capacity ratio of component i in the jth 

generation 
r* The overloading threshold for a component 
pf The probability for a component to fail 
po The probability for a component to overload 
pw The probability for a component to work normally 
Φ(x) The saturation function representing the probability 
nfj Number of failed components in the jth generation 
noj Number of overloading components in the jth generation 
nwj Number of working components in the jth generation 
sj The case of how many components are in each state in the jth 

generation 
u The total number of the failed components 
v The total number of the overloading components 
t Cascading time, and t = 0 when the cascading process starts 
R(t) The probability that the system is still working until time t 
Tj The duration of cascading process from the start to the jth 

generation 
F(J + 1)(t) The probability distribution function that all components fail 

in generation J at time t 
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1. Introduction 

Technologies bring more capabilities as well as more complexities to 
production, transportation, storage, and safeguard systems, which are 
currently composed of interacted subsystems and components. In a 
complex system, when one component fails, the failure may propagate, 
meaning to cause failures of other components. Each failed component 
further weakens system performance. We call this phenomenon as a 
cascading failure (CAF). CAF has been recognized as one of the usual 
causes resulting in the catastrophes of many modern technical systems 
[1], such as power grids system [2,3], industrial communication net-
works, railway networks [4], chemical clusters [5] and other complex 
network systems [6,7]. Typical events triggered by CAFs are blackout in 
American in 1996 [8] and massive blackout occurred in Italy [9] in 
2003, seriously shocks the normal functions of the society. The 
Fukushima nuclear accident generated by a tsunami and started by 
earthquake in 2011 and The Amazon Web Services outage in 2012 are 
also classical CAFs examples [6,10]. These CAF events occur because 
technical systems are composed of multiple components structurally or 
functionally dependent with each other. Loading dependent system is 
one of the typical systems with dependence, where all components share 
the overall workload on the system. 

Performance of a component always depends on its capacity and 
workload. In most cases, when the workload on a component is much 
higher than its capacity, a failure occurs. Then, the overall load on the 
system is re-distributed to the remaining functioning components whose 
workloads become higher, and these components become more 
vulnerable to failures. Such a re-distribution of workloads thus initiates 
a cascading process. For a loading dependent system, e.g., a wind farm, 
an energy station with several chargers, a piping network, and a medical 
center relying on several key devices, its performance can be related to 
the number of functioning components. If a cascading process starts, 
performance of such a system will degrade with less functioning com-
ponents. For an individual component, an increasing workload can 
result in an immediate failure or an overloading state [11,12]. In the 
latter situation, the increased workload does not exceed the capacity of 
the component but is higher than the normal. Another non-negligible 
factor is the natural degradation of components in a loading depen-
dent system, which has been studied in some research [13,14]. The 
degradation of components consists of their independent natural 
degradation and the degradation initiated by the conditions of other 
components [15], namely the capacity loss of components in our work. 
The performance of such an overloading component due to additional 
loads and capacity loss can thus be expected to deteriorate, and such 
degradation can shorten the lifetime of this component and affect the 
associated maintenance planning. For a loading dependent system, 
appropriate understanding on the overloading problems can be helpful 
to avoid the system-level failure or serious accidents. 

Several models can be found for analyzing CAFs, such as the sand pile 
model [16,17], the ORNL-PSerc-Alask (OPA) model [18], the CASCADE 
model [8,19], the branching process model [20,21], and the topological 
models from the complex network theory [22,23], etc. Moon et al. [24] 
have proposed a load-dependent cascading failure model to evaluate the 
resilience of small devices’ network to strategies for node removal by 
adopting the principle of sandpile process. Qi et al. [25] have estimated 
the joint distribution of two types of cascading outages with multi-type 
branching processes and tested with data generated by the AC OPA 
cascading simulations on the IEEE 118-bus system. Some methods based 
on the CASCADE model can be found in [16,26] for solving the 
self-organizing issue during cascading overload failures. The cascading 
process in a loading dependent system was first investigated by the 
CASCADE model [8,18], following an extended quasi-binomial distri-
bution. The classical CASCADE model calculates probabilistic cascading 
failure for the weakening of the system as the basic cascade proceeds due 
to loads transformation [18]. The branching process model [21], as 
approximation of the CASCADE model, describes the total number of 

failed components as a Poisson random variable. However, the afore-
mentioned cascading overload failure still refers to a failure mode 
induced by overloads, which is distinct from the notion overloading 
state as we proposed. To our best knowledge, most previous work fo-
cuses on direct failure spreading while ignoring the overloading phe-
nomenon and components degradation. 

Some practical challenges motivate the extension of the existing 
models on the issue of lacking the discussion about the overloading 
phenomenon and components degradation. For example, some pipes 
operating at higher pressures than expected might impose additional 
loads on other pipes in the same network. This kind of overloading state 
may occur due to their own degradation or other environmental factors 
and lead to loads transformation. The loading dependence induced by 
overloading components is thought to exert influence on the failure 
cascading process, though it is not as noticeable as that caused by failed 
components. The additional loads from overloading components and the 
natural degradation of components will undoubtedly promote compo-
nent degradation and affect the evolution of the cascading process. The 
component reliability and system performance will be overestimated if 
the influence of this type of loading dependence and components own 
degradation on the failure cascading process is discarded. If the state of a 
component or system is overestimated when performing maintenance 
activities, delayed or inadequate maintenance may follow. In such cases, 
a more precise, realistic model that accounts for overloading compo-
nents and component degradation supports maintenance decision 
makers in making more appropriate decisions. 

Therefore, a more practical method is needed for analyzing the 
performance of loading dependent system subjected to CAFs affected by 
overloading components. In this new model, we consider the situation 
that components degrade gradually and may become overloading. 
Whenever a component is overloaded, it might have a negative effect on 
the other functioning components in the loading dependent system. It is 
expected that the extended model can reflect the cascading process more 
practically and detect more information such as the effect of overloading 
phenomenon and components degradation which are ignored in the 
existing classical CASCADE models. 

The remainder of this paper is organized as follows. In Section 2, we 
describe the states transition mechanism in loading dependent systems 
and the algorithm of the classical CASCADE modeling, based on which 
some assumptions and algorithm of the CASCADE model are proposed. 
The model considering overloading components and three stop sce-
narios for cascading process are illustrated in Section 3. To illustrate the 
differences between the proposed model and classical model, an 
example of a piping system is provided in Section 4. In Section 5, we 
examine the variables affecting probability distributions of total number 
of failed and overloading components by discussing numerical results. 
Conclusions and future research directions are summarized in Section 6. 

2. Cascading failures and analysis models 

2.1. Loading dependence as a cascading mechanism 
CAFs occur when the failure or degradation of one component 

weakens reliability and availability of the remaining components [27]. 
In this study, we classify CAFs as direct- and indirect- ones. The 

Table 1 
Comparison between Direct and Indirect Types of CAFs.  

Category Direct Indirect 

Difference Driving force Sudden shock 
and damage 

Loading dependence 

Effects on 
components in 
sequence 

Failures or 
degradation 

Failures, degradation or 
overloading components 

Similarities Trigger One failure or failures 
Stop condition There are no more new failures  
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difference and similarities between two types of CAFs are listed in 
Table 1. A direct CAF occurs if the failure of a component or components 
directly induces damage to other ones or reduce their lifetime to some 
extent, while an indirect CAF often occurs due to loading dependence: 
The overall workload of the system is redistributed because some 
components exclude from normal operation. The loading dependence is 
resulted from the activities of loading balancing or loading sharing. 
Loading balancing is the practice of equally spreading the workload 
across distributed system nodes to optimize resource efficiency and task 
response time, which avoids a situation that some nodes are substan-
tially loaded while others are idle or performing little work [28]. 
Loading sharing system is the practice of spreading the workload in a 
way that some loads are sent to one node in the system while the 
remainder is routed to others [28]. Loading dependent systems suffer 
from indirect CAFs. 

2.2. CASCADE models 

2.2.1. Classical CASCADE model 
In this section, we present the mechanism of the classical nonstan-

dard CASCADE model in loading dependent systems and the failure 
mechanisms of cascading process. This model is the basis inspired by 
which we extend our model. In current research related to classical 
CASCADE model, states Working and Failed are characterized for a 
component in a loading dependent system. When the workload is higher 
than the failure threshold, a failure occurs. Load redistribution then 
further facilitates the cascading process until that no new failures occur. 
Some assumptions are made in this classical CASCADE model:  

1) The total number of components n in the system is finite.  
2) All components in the system are identical, exchangeable and 

nonrepairable.  
3) Each component in the system has two states: Working and Failed. 

The classical CASCADE model is proceeding as the following steps:  

Step 0. All components are normally working initially with random 
loads uniformly distributed in [Lmin, Lmax].  

Step 1. An initial outside disturbance to all components triggers the 
initial event followed by failure propagation. The initial failure 
is set as a trigger in generation 0 of a CAF.  

Step 2. Check states for each component. If the load of component i 
exceeds Lmax, then component i is failed. Otherwise, the 
component is working. Suppose that there are nfj failed com-
ponents in the jth generation. If nfj = 0, there is no more new 
failures in the jth generation, and the cascading process stops. 
The stop condition of cascading process is that all components 
fail or the loads of the unfailed components are less than Lmax.  

Step 3. Additional loads due to failed components in this generation are 
allocated according to the number of failed components and 
added to working components in next generation.  

Step 4. Go to the next generation and iterate from step 2. 

This cascading mechanism is shown in Fig. 1. According to the 
CASCADE algorithm, the failure cascading process is triggered by an 
outside disturbance and stops in the jth generation if there are no more 
new failures in generation j + 1. This cascading process can stop when a) 
all components fail (cascading process stops, system fails); or b) the load 
of the unfailed component is less than the failure threshold (cascading 
process stops, system does not fail). 

The classical CASCADE model is a tractable tool to capture the basic 
failure cascading process driven by loading dependence. However, the 
effect of some practical issues such as other states of components and 
components degradation on cascading property should be considered 
more. This encourages us to extend and improve the current classical 
models to tackle more practical problems. In practices, some compo-
nents are functioning in the overloading state, which is often under-
valued since the overloading components only seem to reduce the 
efficiency of the system. For example, the cascading process of a loading 
dependent piping network may vary if we consider not only the failures 
but also the overloading state of the pipelines, compared to the 
cascading process considering only the failures. Moreover, what about 
the impact on the cascading process when the inherent degradation of 
pipelines is also considered? This is also a subject we need focus on since 
most components may degrade naturally in reality, which should not be 
neglected. These practical problems will be addressed in the following 
sections. 

2.2.2. Multi-state cascade model 
In this section, we provide the mechanism of multi-state CASCADE 

model considering overloading components in loading dependent sys-
tems and the failure mechanisms of cascading process. For a component 
in a loading dependent system, it can actually have three states or per-
formance levels: Normally Working, Overloading and Failed. The per-
formance level can be determined by the ratio of workload to capacity r. 
When the workload is very highly, namely the ratio to capacity exceeds 
the failure threshold, a failure occurs. When the workload is higher than 
normal value, but the load/capacity ratio is still below the failure 
threshold, we regard the component is at an overloading state. We can 
also have a certain value of the load/capacity ratio as the overloading 
threshold, indicating that if the ratio is lower than this value, the 
component is Normally Working. In both Normally Working and Over-
loading states, a component is functioning, but it is inclined to fail when 
it is overloading. We use Functioning to denote the states of Overloading 
and Normally Working for short in this study. The failed and over-
loading components allocate loads to the functioning components dur-
ing cascading process. Note that the overloading components also 
allocate loads to themselves. Here we do not consider maintenance, and 
the component state is generally getting worse. The states transition 
during cascading process are illustrated by Fig. 2. 

Consider a technical system, some assumptions for our model are 
shown as below  

1) The total number of components n in the system is finite. 

Fig. 1. Failure cascading process and stop scenarios of classical CASCADE model.  
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2) All components in the system are identical, exchangeable and 
nonrepairable. 

3) Each component in the system has three states: Working, Over-
loading and Failed.  

4) The capacity of every functioning component degrades naturally as 
the cascading failure propagate. The value of capacity decrement in 
every generation is cd. 

We can set that the workload on components lies in [Lmin, Lmax], the 
capacity lies in [Cmin, Cmax], and the initial disturbance D lies in [Dmin,

Dmax]. When illustrating these parameters with a case of piping network, 
the workload can correspond to the flow rate through a pipeline, and the 
capacity is related with the failure limit and the expectation flow rate. 
An unexpected rise in flow rate is triggered by change of client 
requirement or work schedule, to lead to an initial disturbance. 
Furthermore, abrupt temperature fluctuations from the surroundings 
might affect workload via provoking an initial disturbance. These un-
desirable alterations should be observed since they are the driving force 
behind the start of the CAFs. The values of Lmin, Cmin and Dmin are 
generally 0 in practice, but the values of Lmax, Cmax and Dmax are not 
fixed. It is convenient for calculation to normalize the loads l and ca-
pacity c in [0, 1]. Based on the normalization of loads and capacity, if the 
initial disturbance d ≥ 1, all components fail, and the cascading process 
stops immediately. If the initial disturbance d = 0, every component is 
working well and there is no failure to start the failure cascading pro-
cess. Hence the following discussions assume that the range of d is 
normalized in (0, 1). 

The nonstandard CASCADE model [8,19,20] and Modified Normal-
ized CASCADE model [29] have been introduced for assigning work-
loads and initial disturbance to the components. Inspired by the existing 
CASCADE models, we reflect the cascading process in a similar way. To 
illustrate overloading state and capacity degradation, we introduce the 
quasi-multinomial distribution to model the three states of components. 
The extended multi-state CASCADE is modeled as the following steps:  

Step 0. All components are normally working initially with capacity c0 
= 1 and random loads li that are uniformly distributed in [0, 1].  

Step 1. An initial outside disturbance d to all components triggers the 
initial event followed by failure propagation. The initial failure 
is set as a trigger in generation 0 of a CAF.  

Step 2. Check states for each component. The performance level is 
represented by ratio of workload to capacity l/c. If the ratio ri of 
component i < r∗, then component i is working well. When the 
ratio ri of component i exceeds 1, the workload of the component 
will be more than its capacity could endure, so the component 
fails. Otherwise, the component is overloading. Suppose that 
there are nfj failed components and noj overloading components 
in the jth generation. If nfj = 0, there is no more new failures in 
the jth generation, and the cascading process stops. We define 
the stop condition of cascading process that if no new failures 
occur in one generation, the failure cascading process stops 
here, regardless of whether there would be more failures occur 
in subsequent generations.  

Step 3. The capacity of every functioning component decreases due to 
natural degradation, so we have the capacity of the component 
in the jth generation cj = c0 − j⋅cd and the load/capacity ratio of 
the component rij =

lij
cj
. The additional load due to each failure in 

this generation on every functioning component in next gener-
ation is lf. The additional load on every functioning component 
in next generation due to each overloading component in this 
generation is lo. It is natural that lo is considered smaller than lf. 
Additional loads lj = nfjlf + nojlo are allocated according to the 
number of failed and overloading components and added to 
every functioning component. Each functioning component is 
assigned an additional load value of lj.  

Step 4. Go to the next generation and iterate from step 2. 

This cascading mechanism is shown in Fig. 3. According to the 
CASCADE algorithm, if and only if there are no more new failed com-
ponents in generation j + 1, the cascading process stops in the jth gen-
eration. This is the only criterion for determining if the cascading 
process stops, regardless of whether there are still functioning compo-
nents in the system currently. We consider it as a new cascading process if 
the remaining components tend to fail after a period and there would be 
new generation 0. We shall clarify that the stop condition of cascading 
process is differentiated from the stop condition of system. The former 
one is determined by whether new failures occur at a certain generation, 
whereas the latter one is determined by the system reliability. In 
conclusion, the cascading process stops when all components fail, but 
not all components fail when the cascading process stops. Following the 
explanation of the stop condition of cascading process, we can charac-
terize three stop scenarios (scenarios of how the system works) when the 
cascading process terminates as follows. This cascading process can stop 
when a) all components fail (cascading process stops, system fails); or b) 
the load/capacity ratio of the functioning component is less than the 
failure threshold (cascading process stops, system does not fail). These 
two cases could be classified into three scenarios. In stop scenario 1, all 
components and the system already failed; in stop scenario 2, there exist 
some overloading components; in stop scenario 3, the load/capacity 
ratio of the functioning component is less than r* and all components 
work normally. 

3. Quantitative analysis with the multi-state CASCADE model 

3.1. Total number of components in different states 

To start the cascade, initial disturbance d is assigned to each 
component. If there are components failed, the failure cascading process 
starts, followed by that the number of failed components increases and 
the functioning components decreases generally. The numbers of failed 
components, overloading components and normally working compo-
nents are nf , no, nw and nf + no + nw ≤ n. It is natural that n > 0 and nfj,

noj, nwj for j = 0, 1,… are restricted to nonnegative integers. The state of 
the component follows a multinomial distribution X ∼ PN(N : pf ,po,pw), 
determined by outside initial disturbance, additional loads from failed 
and overloading components, and overloading threshold of components. 
In each generation, the probability that there are nfj components failed, 
noj components overloading and nwj components normally working is 

P
[
X1 = nf , X2 = no,X3 = nw

]
= Cnf

n Cno
n− nf

pnf
f pno

o pnw
w (1)  

where pf ≥ 0, po ≥ 0, pw ≥ 0, pf + po + pw = 1. 
The probability of the total number of components in different states 

might be derived as follows: 
In generation 0, before the initial disturbance applied, the proba-

bilities that the component in different states depend solely on the 
random loads li. Then we could obtain pf = 0, po = 1 − r∗, pw = r∗. In 
generation 0, the cascading process has not been started yet since all 
components are functioning. 

After the initial disturbance d is applied in generation 1, the load of 
component i is li + d. But the capacity of each component is still c0 since 
the cascading process just started from this generation. After the 
cascading process begins, the capacity of components gradually 

Fig. 2. States transition of components.  
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declines. Similar to the load redistribution principle, the component 
capacity loss at this generation (generation 1) will be reflected in the 
next generation (generation 2). For generation 1, if the load/capacity 
ratio of a component exceeds 1, the component fails, we have li ≤ 1 and 
1 < li+d

c0
, and the probability that the component fails is the probability 

that li satisfies the constraints of the previous two equations. So, we 
could obtain the interval of li: c0 − d < li ≤ 1, and further we could easily 
achieve pf = 1 − c0 + d. The same holds applicable for the other two 
probabilities. According to our definition, if the load/capacity ratio of a 
component lies in [r*, 1], this component is overloading, which could be 
represented by r∗ < li+d

c0
< 1. Hence, we obtain the probability that the 

component in overloading state is po = c0(1 − r∗). When li+d
c0 

< r∗, the 
component works well, and the probability is pw = c0r∗ − d. The three 
probabilities are respectively pf = d, po = 1 − r∗, pw = r∗ − d in gener-
ation 1 based on that the initially capacity is normalized as c0 = 1. 

In the jth generation, the cascading process has already gone through 
some generations, the total number of failed components and the total 
number of overloading components could be calculated. Let sj = (nfj,noj,

nwj), Sj = (Nfj,Noj,Nwj) for j = 0,1,… and write 

uj = nf 0 + nf 1 + ⋯ + nfj and vj = noj (2)  

for j = 0,1,⋯. 
Each functioning component suffers additional loads ulf +vlo from 

failed and overloading components and total loads li + d + ulf + vlo. 
With the same principle for calculation of probability of components in 
different states in generation 1, we have li ≤ 1 and 1 < (li +d+ulf +vlo)
/cj for the case that the component fails, and the probability that the 
component fails is the probability that li satisfies the previous two 
constraint equations. So, we could obtain the interval of li: cj − (d +

ulf + vlo) < li ≤ 1, and further we could get pf = 1 − cj + d + ulf + vlo. 

The same holds applicable for the other two probabilities. Likewise, we 
could obtain the constraint equations of other two states after some 
generations: when r∗ < (li + d + ulf + vlo)/cj < 1, the component is 
overloading and the probability is po = cj(1 − r∗). When (li + d + ulf +

vlo)/cj < r∗, the component works well, and the probability is pw = cjr∗

− (d + ulf + vlo). 

Note that the total number of overloading components vj is not sum 
of noj in previous generations for j = 0, 1,… since the overloading 
components may fail in a cascading process. If we calculate the total 
number of overloading components by summing up the overloading 
components in all generations, the total number of failed components 
partially overlaps the total number of overloading components. We only 
use the number of the overloading components in latest generation to 
represent the total number of overloading components. Generalize the 
derivation and apply this distribution to normalized load-dependent 
case and we can obtain the distribution of the total number of failed 
components and overloading components. An extended quasi- 
multinomial distribution is applied as following on basis of extended 
quasi-binominal distribution introduced by Consul [19,30]. The 
quasi-binomial distribution is a small “perturbation” of the binomial 
distribution, whose mass probability function could be defined by P(X =

k) = Ck
np(p + kϕ)k− 1

(1 − p − kϕ)n− k. When extended to 
quasi-multinomial distribution, we also strictly follows the format of the 
distribution, as shown in Eq. (3). 

P[U=u,V=v]=

⎧
⎪⎪⎨

⎪⎪⎩

Cu
nCv

n− uφ(d)φ
(
pf
)u− 1φ(po)

vφ(pw)
n− u− v

,u=0,1,…,n− 1

1−
∑u=n− 1

u=0
P(U=u,V=v),u=n

(3) 

In Eq. (3), φ(x) is a saturation function representing the probability 

p = φ(x) =

⎧
⎨

⎩

0, x < 0
x, 0 ≤ x ≤ 1
1, x > 1

(4) 

We have Eq. (5) to calculate the distributions of the total number of 
components in different states.   

When we consider the accident risk, the number of failures is more of 
interest than number of overloading components. The equation to 
denote the distributions of the total number of failed components is Eq. 
(6). 

Fig. 3. Failure cascading process and stop scenarios of multi-state CASCADE model.  

P[U = u,V = v] =

⎧
⎪⎪⎨

⎪⎪⎩

Cu
nCv

n− uφ(d)φ
(
1 − cj + d + ulf + vlo

)u− 1φ
(
cj(1 − r∗)

)vφ
(
cjr∗ −

(
d + ulf + vlo

))n− u− v
, u = 0, 1,…, n − 1

1 −
∑u=n− 1

u=0
P(U = u, V = v), u = n

(5)   
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P[U = u] =

⎧
⎪⎪⎨

⎪⎪⎩

Cu
nφ(d)φ

(
pf
)u− 1φ

(
1 − pf

)n− u
, u = 0, 1,…, n − 1

1 −
∑n− 1

u=0
P(U = u), u = n

(6) 

In this CASCADE model, the system reliability could be calculated as 
Eq. (7) when considering the cascading time t, which could be discussed 
in further research. 

R(t) = 1 −
∑n− 1

j=0
P
(
Uj = n, Tj < t

)

= 1 −
∑n− 1

J=0
F(J+1)(t)⋅P[u= n]

(7)  

where R(t) is the probability that the system is still working until time t. 
Tj is duration of cascading process from the start to generation J. 
F(J+1)(t) is the probability distribution function that all components fail 
in generation J at time t. This equation is independent of the number of 
overloading components, as only failed components are typically 
included when investigating system reliability. 

3.2. Distributions of stop scenarios 
In the previous subsection, the probability that there are nfj compo-

nents failed, noj components overloading and nwj components normally 
working in the jth generation is 

P
[
X1j = nfj, X2j = noj,X3j = nwj

]
= Cnfj

n Cnoj
n− nfj

pnfj
f pnoj

o pnwj
w (8) 

However, in the cascading process, the sojourn probability of com-

ponents in different states is not constant as the failure propagates and 
loads are reallocated. Since the workload of components is mounting 
due to loading dependent and the capacity of components is decreasing 
due to natural degradation gradually, the probability of the number of 
components in different states should be recalculated after each gener-
ation according to the loading increments. It is convenient to use 
equations of αj = φ(pfj), βj = φ(poj), γj = φ(pwj) for calculating in the 
subsection. 

In generation 0, pf0 = 0, po0 = 1 − r∗, pw0 = r∗, and we could obtain 
αj = 0, βj = 1 − r∗, γj = r∗ for j = 0. 

In generation 1, with the initial workloads given as described in step 
0 and the initial disturbance applied as in step 1, the CASCADE algo-
rithm starts. In step 2, for a loading dependent system considering 
decreasing capacity, the probability that the initial disturbance triggers 
one component fails or overloads in generation 1 is α1 = φ(1 − c0 + d), 
β1 = φ(c0(1 − r∗)), γ1 = φ(c0r∗ − d), and could be written as α1 = φ(d),
β1 = φ(1 − r∗), γ1 = φ(r∗ − d) since c0 = 1. The probability that there are 
nf0 failed components and no0 overloading components is 

P(S0 = s0) = P
[
X1 = nf 0, X2 = no0,X3 = nw0

]

= Cnf 0
n Cno0

n− nf 0
αmf 0

0 βmo0
0 γ(

n− nf 0 − no0)
0

(9) 

In the jth generation, the capacity of each functioning component 
decreases due to natural degradation after several generations, and the 
additional loads are accumulated and added to each functioning 
component as cascading process proceeds. Additional loads from failed 
components in generation j-1 to the functioning components in the jth 
generation is nf(j− 1)lf . Additional loads from overloading components in 

generation j-1 to the functioning components in the jth generation is 
no(j− 1)ld. The additional loads from failed and overloading components 
could be assigned to the functioning components including itself in 
generation j + 1. 

lj = nf (j− 1)lf + no(j− 1)lo (10) 

For loading dependent system considering capacity decrement of the 
components, we have 

αj = φ
(

1 − d − u(j− 2)lf − v(j− 2)ld − cj + lj

1 − d − u(j− 2)lf − v(j− 2)ld

)

,

βj = φ
(

cj(1 − r∗)
1 − d − u(j− 2)lf − v(j− 2)ld

)

,

γj = φ
(

cjr∗ − lj

1 − d − u(j− 2)lf − v(j− 2)ld

)

(11)  

for j = 2,3,…, and u− 1 = 0, v− 1 = 0. 
The probability that the number of failed components and over-

loading components in every generation follows (s0, s1,…sj) until the 
jth generation is given by Eq. (12).   

Suppose that cascading process stops in the jth generation and d+
u(j− 1)lf + v(j− 1)ld ≥ cj, then all components fail in the jth generation. 
Cascading process stops according to stop scenario 1. In this case 

P
[
Sj+1 = sj+1|Sj = sj,…, S0 = s0

]
= 1 (13)  

for nf(j+1) = 0. 
Suppose that cascading process stops in the jth generation and d+

u(j− 1)lf + v(j− 1)ld < cj, meaning to satisfy the stop scenarios 2 or 3. In 

addition, the loads of functioning components are uniformly distributed 
in [d+u(j− 1)lf +v(j− 1)ld, cj] conditioned on n − uj not have failed in gen-
eration j + 1. The probability that there are no(j+1) overloading compo-
nents and nw(j+1) normally working components is given by Eq. (14). 

P
[
Sj+1 = sj+1

⃒
⃒Sj = sj,⋯, S0 = s0

]
= Cno(j+1)

n− uj βno(j+1)
j+1 γnw(j+1)

j+1 (14) 

Table 2 
Load of components in an example of classical CASCADE model.  

j 1 2 3 4 5 Loading 
increments to 
next generation 

Notes 

0 0.75 0.5 0.45 0.25 0.9 / Initial workloads 
1 0.95 0.7 0.65 0.45 1.1 0.1 Initial disturbance 

d added; 5 fails 
2 1.05 0.8 0.75 0.55 / 0.1 1 fails 
3 / 0.9 0.85 0.65 / 0 No new failure 

occurs, and the 
cascading process 
stops  

P
[
Sj = sj,…, S0 = s0

]
=

n!
nf 0!no0!nw0!

αnf 0
0 βno0

0 γnw0
0

(n − u0)!

nf 1!no1!nw1!
αnf 1

1 βno1
1 γnw1

1 ⋯
(
n − u(j− 1)

)
!

nfj!noj!nwj!
αnfj

j βnoj
j γnwj

j (12)   
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Multiplying Eqs. (12) and (14) we could obtain Eq. (15) to verify the 
distribution for the stop scenarios.   

In case cascading process stops according to stop scenario 1, all 
components fail in the jth generation. In the case cascading process stops 
with stop scenario 2, some components (or all functioning components) 
are overloading in the jth generation, and the number of failed com-
ponents in generation j + 1 is 0. In case cascading process stops ac-
cording to stop scenario 3, there are still n − uj components normally 
working well in the jth generation, and the number of failed components 
in generation j + 1 is also 0. 

4. A practical case with model comparison 

In this section, we apply both the classical CASCADE model and the 
proposed multi-state CASCADE model to a generic petrochemical piping 
network for comparing their effectiveness in the analysis of cascading 
failures due to loading dependence. We consider a part of a piping 
network system consisting of 5 gas pipes. Each pipe is designed with a 
failure limit of 20 m/s and expectation flow rate 16 m/s. Fouling would 
emerge inside the pipe as the pipe transfers gas, increasing the pressure, 
reducing the gasses throughput, and lowering system operation effi-
ciency, which is the process we called natural degradation. The volume 
of gas transported in the pipes is the indicator of working load, and the 
capacity of the pipe is determined by the degree of fouling. If one pipe 
stops functioning due to exogenous disturbance, sudden changes in 
temperature for example, other pipes share the workload of the failed 
pipe. 

It is possible to use the classical CASCADE model to study the 
cascading failure in such a system. According to the classical CASCADE 
model, the components fail or normally working during the cascading 
process without degradation. We normalize the workloads and capacity 
to [0, 1]. The initial loads of components are randomly valued in [0, 1]. 
Assume that the initial disturbance d = 0.2, loading increments from 
failed components lf = 0.1 without losing generality. Table 2 and Fig 4 
show the changes of the workloads of all components and the cascading 
process. The loading increments in this model depends on the number of 
the failed components, the load of which exceeds 1. The failure 
cascading process ends in the third generation with components 1 and 5 
failed, and the system is still working. 

The classical CASCADE model investigates the loading dependence 
due to malfunction of some pipes. The congestion due to filth accumu-
lation, which is inevitable during system operation, also require addi-
tional gas on the remaining functioning pipes. The extra gas speed up 
fouling of functioning pipes and let them undergo accelerated degra-
dation. When the gas is transferred in the pipe at a rate more than the 
expectation flow rate 16 m/s but under the failure limit of 20 m/s, we 
think the pipe is overloading since the workload exceeds its expectation 

capacity. We could consider that there is the overloading threshold r* =
0.8. In one specific circumstance, we can assume that the value of 
overloading threshold is constant. However, when the component de-

grades, it stores less capacity, hence a lower workload will overload the 
component with the same overload threshold. Some pipes become 
overloading with excessive workloads, and their performance suffers 
severely, which is why overloading components need to be addressed in 
the proposed model. Based on the assumption about the initial loads, 
initial disturbance, and loading increments from failed components 
when using classical CASCADE model, the loading increments from 
overloading components lo is set to be 0.05 without losing generality. In 
addition, assume that the capacity decrement of functioning component 
in every generation cd = 0.01. The load/capacity ratio r of components 
and cascading process are listed and performed in Table 3 and Fig 5. The 
loading increments in this model depends on the number of the failed 
components and overloading components. The capacity of the func-
tioning components decreases in every generation. Using this model, 
load/capacity ratio r is utilized to determine states of components. When 
the failure cascading process stops in the fourth generation, all compo-
nents fail, and the system fails. 

From the example, we can see that the system and the pipes function 
in radically different states under the same circumstances. The 
cascading process of classical CASCADE model ends in the third gener-
ation, but the system continues to function. The cascading process of the 
proposed multi-state CASCADE model stops in the fourth generation, 
and all components fail. Furthermore, we can see that the load/capacity 
ratio values in Table 3 are generally bigger than those in Table 2 (if we 
consider the component capacity in the example in Table 3 to be con-
stant at 1). This implies that the components in multi-state CASCADE 
model operates in somewhat worse state than those in classical 
CASCADE model. The primary difference between the two conclusions is 
that the degradation of components and the effects of overloading 
components are considered, which is more compatible with how the 
system works in engineering industry. In practice, if we neglect com-
ponents degradation and the influence of overloading components, we 
may overestimate the performance of components and the system, 
negatively affecting maintenance decision making. 

5. Model parameter analysis 

The model proposed can be used to analyze the cascading process in 
a large complex system with loading dependence. These systems can be 
wind plants, power systems, piping networks, key medical devices, road 
systems, etc., where the system performance is related to the number of 
functioning components. To investigate the usefulness of this CASCADE 
model in the optimization of controllable variables in design and oper-
ation, this section examines several examples of the effects with varying 
parameters of CASCADE distribution on failures and stop scenarios of a 
general loading dependent system. 

Fig. 4. Failure cascading process of a piping system using classical CASCADE model.  

P
[
Sj+1 = sj+1,⋯, S0 = s0

]
=

n!
nf 0!no0!nw0!

αnf 0
0 βno0

0 γnw0
0

(n − u0)!

nf 1!no1!nw1!
αnf 1

1 βno1
1 γnw1

1 ⋯
(
n − u(j− 1)

)
!

nfj!noj!nwj!
αnfj

j βnoj
j γnwj

j ⋅Cnf (j+1)
n− uj βno(j+1)

j+1 γnw(j+1)
j+1 (15)   
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5.1. Effect of initial disturbance 

This subsection illustrates the change of CASCADE distribution as the 
initial disturbance varies by comparing the probabilities of total 
numbers of failed and overloading components. We consider a system in 
which the number of components n = 100. Without losing generality, we 
firstly assume that the overloading threshold of a component is r* = 0.8, 
the loading increments from failed and overloading components are 
respectively lf = 0.005, and lo = 0.001. The changes of probability dis-
tributions of total numbers of failed and overloading components are 
observed with different initial disturbance d = 0.001, 0.01, 0.05, 0.1. 

The probability distributions of total numbers of failed and over-
loading components are calculated and shown in Figs. 6 and 7. The 
nodes on the surfaces in Fig. 6 denotes the probabilities of total numbers 
of failed and overloading components of numerical results. When the 
initial disturbance increases, the workloads of components tend to 

exceed the failure threshold, which is the reason the value of u grows up. 
For d = 0.001, the initial disturbance value is relatively small, causing 
only a small number of failures. The low number of failed components 
also results in fewer additional loads to drive the cascade process. The 
cascading process ends quickly when there are still some functioning 
components, and the system is still operating (stop scenario 2). The short 
cascading process leads to that only few nodes can be observed to 
compose a surface in Fig. 6(a), which is more like a folded plane. As 
d increases, the number of obtained nodes in Fig. 6(b), (c) and (d) 
gradually rises, the surface becomes smoother and shows obvious peaks. 
This peak represents the highest probability of a scenario with a certain 
total number of failed components and a certain total number of over-
loading components in this case. The phenomenon that all components 
fail emerges in Fig. 6(d), indicating that stop scenario 3 occurs. 

Fig. 7 integrates the five surface to illustrate the variation tendency 
better. Fig. 7(a) illustrates the trend of a lower overall probability 

Table 3 
Load/capacity ratio of components in an example of multi-state CASCADE model.  

j 1 2 3 4 5 Loading increments to next 
generation 

Capacity of the functioning 
components 

Notes 

0 0.75 0.5 0.45 0.25 0.9 / 1 Initial workloads/ Initial capacity 
1 0.96 0.71 0.66 0.45 1.11 0.15 0.99 Initial disturbance d added; 5 fails 
2 1.12 0.87 0.82 0.61 / 0.2 0.98 1 fails 
3 / 1.08 1.03 0.82 / 0.25 0.97 2 and 3 fail 
4 / / / 1.09 / 0.15 0.96 4 fails; the system fails; the cascading process 

stops  

Fig. 5. Failure cascading process of a piping system using multi-state CASCADE model.  

Fig. 6. Total number of failed and overloading components with different d. (a) d = 0.001. (b) d = 0.01. (c) d = 0.05. (d) d = 0.1.  

Fig. 7. Integration of probability distributions with different d. (a) Three-dimensional profile. (b) p-u profile. (c) p-v profile.  
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distribution of total numbers of failed and overloading components. 
Fig. 7(b) verifies the conclusion that there is a critical value of u that 
maximizes the probability. As d increases, this peak value of probability 
gradually decreases. In addition, the probability distribution range 
corresponding to u gradually shifts to the direction that u becomes larger 
when d becomes larger. It could also be observed from Fig. 7(c) that for 
different d, the number of overloading components is basically 
concentrated from 15 to 25, and the probability peak decreases gradu-
ally as d increases. Besides, the peaks of probabilities for u and v both 

show approximate power law behavior near the peak value. 
Overall, when the initial disturbance value is small, the number of 

failed components is small, but the maximum probability of its occur-
rence is large. When the initial disturbance value is large, more com-
ponents fail, but the maximum probability of its occurrence is small. The 
initial disturbance can be sudden shock or short-term increase in flow. 
Since the initial disturbance is an external factor, it is difficult to be 
controlled in system design, but we can still obtain some managerial 
implications, such as avoiding disturbances that can directly trigger 

Fig. 8. Total number of failed and overloading components with different lf. (a) lf =0.0001. (b) lf =0.0005. (c) lf =0.001. (d) lf =0.005.  

Fig. 9. Integration of probability distributions with different lf. (a) Three-dimensional profile. (b) p-u profile. (c) p-v profile.  

Fig. 10. Total number of failed and overloading components with different lo. (a) lo =0.0001. (b) lo =0.0005. (c) lo =0.001. (d) lo =0.005.  

Fig. 11. Integration of probability distributions with different lo. (a) Three-dimensional profile. (b) p-u profile. (c) p-v profile.  
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failure of components. In practices, such efforts can lead to high cost to 
ensure that none of the components in the system fail. In addition, it is 
unwise to ignore outside disturbances due to the low probability of 
occurrence that many components fail. When the system can accept a 
certain range of number of failed components, we can get an acceptable 
external disturbance value accordingly. In a bridge system, for example, 
the value of a sudden increase in traffic caused by holiday trips can be 
limited to an acceptable range to ensure long-term good operation of the 
system. During inspection, if the external disturbance is lower than this 
value, we do not need take more actions. 

5.2. Effect of loading increments 

To compare the effects of two kinds of loading increments, we use 
different values of lf and lo for different configurations in this subsection. 
To match the configurations with reality, lo cannot exceed lf. For the case 
that n = 100, we set d = 0.05, r* =0.8. Firstly, we evaluate the loading 
increments lf as: 0.0001, 0.0005, 0.001, and 0.005 when fixing lo =

0.0001. Then, we set lf = 0.005, and observe different loading in-
crements lo as 0.0001, 0.0005, 0.001, and 0.005. 

Figs. 8 and 10 respectively describe the probability distributions of 
total numbers of failed and overloading components under different 
settings of parameters lf and lo. It can be found that such changes have 
little influence on the shape of the surface. From integration results in 
Figs. 9 and 11, surfaces cannot be easily differentiated when lf and lo 
varying from 0.0001 to 0.001, while the surface apparently changes 
when lf and lo assumed to be 0.005. A reasonable explanation can be 
provided that when the loading increments are small, the effect of their 
changes on the probability distributions could be ignored, but when it 
reaches to a certain value, it still can affect the probability distributions 
of total numbers of failed and overloading components. This conclusion 
recommends that more attention should be paid to the timely mainte-
nances of overloading components in practice. It is also worth 
mentioning that the probability distributions range of the number of 
overloading components is almost same as in the previous section. 

Actually, the values of two kinds of loading increments could be 
impacted by management or strategies. Given that an initial failure has 
already been triggered, we try to avoid subsequent failures by devel-
oping a more rational strategy for workload distribution, that is, to 
manage how much workload should be reallocated to which component 
during system operating. Generally, the loading increments are not fixed 
in the design period, hence the measures to manage workload distri-
bution would be preferred. Taking a road system as an example, when a 
road section cannot be used or gets blocked due to overloading, other 
roads will bear more traffic and pedestrian flow, or in other words, bear 
additional workloads. This kind of additional workloads can be adjusted 
by taking current limiting and reasonable diverting measures. 

5.3. Effect of overloading threshold 

The overloading state of components has been introduced in the 
proposed extended multi-state CASCADE model, accompanying with the 
new parameter overloading threshold considered to distinguish the state 

of overloading components from normally working components. Here 
we discuss the influence of this new parameter. Consider that the 
overloading threshold r* varies from 0.6 to 0.9 as shown in Figs. 12 and 
13, in which n = 100, d = 0.05, lf = 0.005, lo = 0.001. 

The shape and trend of each surface are still consistent with our 
previous discussion: each surface has an obvious peak, and the 
approximate power function law appears near the peak. In addition to 
this, the similarities and differences of the surfaces deserve more dis-
cussions. In Fig. 12, the probability distributions of total numbers of 
failed and overloading components, as well as the shape and trend of the 
surfaces are roughly same. The curved surfaces in Fig. 13 gradually shifts 
in the direction of v decreasing, as the overloading threshold increases. 
Different from the previous discussions, the distribution range of the 
number of failed components are almost same in this example, 
concentrated in 0 to 20, and the probability peaks when the overloading 
threshold r* is 0.9. The results indicate that change of the overloading 
threshold mainly affect the probability distribution range of the number 
of overloading components but can barely affect that of failed compo-
nents. It should be noted that even though the probability distribution 
range of the number of failed components is slightly affected by the 
overloading threshold, the maximum probability value ascends as the 
overloading threshold value increases, which demonstrates that as the 
overloading threshold value increases, it would be easier for compo-
nents to fail. 

The above results can provide references for practical system engi-
neering design and operation. In a loading dependent system where the 
overloading components also influence the failure propagation, the 
overloading threshold should be a moderate value, neither not too high 
to make failures occurring easily, nor too low to prompt too many 
overloading components. The practical overloading threshold is a crit-
ical value beyond which the component operates in poor conditions and 
requires maintenance action. It could be controlled through providing 
different expectation values of safety margin in design. For a component 
designed with a failure limit of 200 MPa and normally working under its 
design expectation stress, it is overloading below the failure limit but in 
excess of the design expectation stress. Its threshold is 0.8 when 
expectation stress set to be 160 MPa and is 0.7 when expectation stress 
set to be 140 MPa. Apart from design in practical, some guidance could 
be provided during operation. For a repairable loading dependent sys-
tem, periodical inspections and imperfect repair could be carried out 
during operation to restore the performance of overloading components 
under the threshold. 

5.4. Stop scenarios and occurrences 

In the previous analysis, we only consider the probability distribu-
tions of the total number of failed and overloading components in the 
meantime when the cascading process is not stopped yet. We now 
explore the stop scenarios of the cascading process and their possibilities 
of occurrences. 

It has been summarized in previous examples that the initial 
disturbance d has a relatively large impact on the number of failures, and 
the number of failures largely determines how the system operates when 

Fig. 12. Total number of failed and overloading components with different r*. (a) r*=0.6. (b) r* =0.7. (c) r* =0.8. (d) r* =0.9.  
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the cascading process stops, which is the so-called stop scenarios. Be-
sides, the case that all components fail only occurs in Fig. 6(d), denoting 
that stop scenario 3 only happen in this configuration. Therefore, only 
the initial disturbance d is changed to conduct the investigation in this 
section. 

Suppose n = 100, r* =0.8, lf = 0.005, lo = 0.001, and we perform 100 
numerical calculations respectively for each d from 0.005 to 0.5 and 
examine how many times every stop scenario occurs. According to 
classification of stop scenarios in Section 2.2.2, there are three kinds of 
stop scenarios that may occur when the cascading process stops for each 
d. The dots in the results plotted in Fig. 14 show the occurrences times 
for three stop scenarios per 100 calculations for each d, denoting their 
possibilities of occurrences for each d. The sum of occurrences times of 
three stop scenarios is thus 100 for each d. The findings could be briefly 
summarized as follows: The cascading process of the system basically 
stops according to the stop scenario 2 if there is no sufficient initial 
disturbance. As the initial disturbance is larger, stop scenarios 1 and 3 
are more likely to appear. More specifically, if the initial disturbance is 
small, the system is generally still working and there exist some over-
loading components when the cascading process terminates. When the 
cascading process stops, the possibility of the system being in one of two 
other stop scenarios grows as the initial disturbance increases: the sys-
tem fails (stop scenario 1), or the system is running with all the 
remaining components working normally (stop scenario 3). 

The difference between stop scenarios 1 and 3 is that the mounting 
trend of the occurrences of stop scenario 3 emerges earlier than that of 
stop scenario 1, which indicates that stop scenario 1 occurs with a larger 
initial disturbance. The occurrence times of stop scenario 1 ascends at a 
gradually increasing rate, while the occurrence times of stop scenario 3 
initially rises rapidly, then tends to stabilize, and even shows a slight 
downward trend at the end of the trendline. Since the system stops 
running only when the stop scenario 1 occurs, the trendline of stop 

scenario 1 also reflects the failure probability variation of the system. 

6. Conclusion remarks and future works 

In this paper, we have developed a novel probabilistic model, multi- 
state CASCADE, with the extended quasi-multinomial distribution, for 
loading dependent systems with CAFs where the cascading process 
could be affected by overloading components. Three cascading process 
stop scenarios are identified and interpreted. The contribution of this 
work lies in the involvement of overloading components and degrada-
tion of components, extending the existing studies. The results of the 
practical case indicate that the performance of components and the 
system would be overestimated if we neglect components degradation 
and the influence of overloading components. The proposed model can 
provide a more accurate characterization of the cascading process of the 
multistate loading dependent systems. Consequently, we can help 
maintenance crew and managers to make more reasonable maintenance 
policies. The more precise information regarding the performance of 
components and the system serves as the backbone to improve the 
decision-making process when people consider maintenance optimiza-
tion for a loading dependent system with CAFs. For example, the interval 
between maintenance activities can be shortened to ensure that proper 
maintenance actions are performed on time, or that overloading com-
ponents can be also considered when taking maintenance actions. 

In addition, numerical examples are given to illustrate the proposed 
model by analyzing the influencing factors of the probability distribu-
tions of total numbers of failed and overloading components. The find-
ings in the numerical cases have shown that the initial disturbance and 
loading increments affects the probability distributions. More failures 
may occur as the initial disturbance and loading increments increase, 
but the maximum values of probability distributions decrease. A novel 
finding is that the overloading threshold affects the probability 

Fig. 13. Integration of probability distributions with different r*. (a) Three-dimensional profile. (b) p-u profile. (c) p-v profile.  

Fig. 14. Occurrences of three stop scenarios.  
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distribution range of number of overloading components rather not the 
failed components. For stop scenarios of cascading process, system al-
ways operates when there are still normally working and overloading 
components (stop scenario 2) if the initial disturbance is quite small. As 
the initial disturbance increases, the cascading process tends to stop in 
scenarios 1 and 3. 

The proposed model will encounter some issues which may be worth 
to investigate in the future. Firstly, since our proposed model is still 
limited in the multi-component system in simple configuration, further 
investigations on multi-state CASCADE model for k-out-of-n system and 
engineering application are stimulated. Secondly, it may demonstrate 
the necessity and practical significance of the model more intuitively to 
apply a practical example with maintenance activities included. Thirdly, 
a comparison with other models, such as modeling the situation of three 
states and a finite number of components by a Markov chain with 
transition probabilities, is suggested in our future work. 
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