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Abstract: In this paper, an improved gradient-based optimizer (IGBO) is proposed with the target 
of improving the performance and accuracy of the algorithm for solving complex optimization and 
engineering problems. The proposed IGBO has the added features of adjusting the best solution by 
adding inertia weight, fast convergence rate with modified parameters, as well as avoiding the local 
optima using a novel functional operator (G). These features make it feasible for solving the majority 
of the nonlinear optimization problems which is quite hard to achieve with the original version of 
GBO. The effectiveness and scalability of IGBO are evaluated using well-known benchmark functions. 
Moreover, the performance of the proposed algorithm is statistically analyzed using ANOVA analysis, 
and Holm-Bonferroni test. In addition, IGBO was assessed by solving well-known real-world 
problems. The results of benchmark functions show that the IGBO is very competitive, and superior 
compared to its competitors in finding the optimal solutions with high convergence and coverage. 
The results of the studied real optimization problems prove the superiority of the proposed algorithm 
in solving real optimization problems with difficult and indefinite search domains.

Keywords: gradient-based optimizer; improve gradient-based optimizer; metaheuristic; inertia; 
operator; engineering optimization problems

1. Introduction

In recent years, inform ation technology has had a deep im pact on hum an civiliza
tion [1]. D ue to this advancem ent, a m assive am ount of data needs to be analyzed, m ore 
com plicated real-w orld problem s need to be solved, and enhancem ent of the com puting 
efficiency of com puters is needed [2]. A rtificial Intelligence (AI) has been  a persistently 
hot topic to deal w ith this developm ent. AI refers to the sim ulation of hum an intelligence 
in  m achines that are program m ed to think like hum ans and m im ic their actions [3 ]. The 
term may also be applied to any machine that exhibits traits associated with a hum an mind 
such as learning and problem -solving. A I m ethods in M G  strategies contain  R easoning 
and Learning (RL) and Sw arm  Intelligence (SI) m ethods [4 ]. The SI-based algorithm s have 
attained significant popularity  am ong researchers and are considered one of the highest 
encouraging categories of A I especially  m etaheuristic algorithm s [5 ]. In general, m eta
heuristic optim ization algorithm s try to im itate the physical, biological, or even chem ical 
procedures that take place in  the environm ent. H ow ever, som e algorithm s depend on
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m athem atical theories [6 ]. The m ost generic ones are: Genetic Algorithm , which sim ulates 
D arw in 's theory of evolution [7], Sim ulated A nnealing (SA) algorithm , that is developed 
from the thermodynamic process [8 ], Particle swarm  optimization (PSO) algorithms, w hich 
simulate the behaviour of fish school or bird flock [9], Differential Evolution (DE) algorithm, 
that is applied in solving problem s and functions by  iteratively  im proving a candidate 
solution based on an evolutionary process [10], Teaching Learning-Based O ptim ization 
(TLBO), w hich is based on a teaching-learning process [11], Jaya algorithm , that based on 
the concept that tries to reach the best solution and tries to avoid failure to m ove aw ay 
from  the w orst solution [12], C uckoo Search (CS) A lgorithm , w hich  im itates the brood 
parasitism  conduct of som e cuckoo species in conjunction w ith the Levy flight conduct of 
certain birds and fruit flies [13], flower pollination algorithm (FPA) that brings its metaphor 
from the pollination in the flow ering cycle of som e plants in nature [14]. A frican Vultures 
Optim ization Algorithm  (AVOA) which im itates the nature of African vultures in foraging 
and navigation [15].

Gradient-based optim ization (GBO) is a new ly developed m etaheuristic optimization 
to solve optim ization problems. It contains search directions defined by the gradient of the 
function at the current point. G BO  algorithm  is m otivated by  N ew ton 's gradient proce
dure including tw o principal processes: grad ient search rule process and local escaping 
operator. The gradient-based approach uses the gradient search rule to improve exploring 
phenom ena and quickens the convergent rate of GBO to obtain the optimal position w ithin 
the search space. However, the local escaping process prevents GBO to avoid getting stuck 
into the local optim a [16].

In swarm-based algorithms, inertia w eight is a concept utilized to balance the influence 
of the current position and the attraction to the best-know n position in  the search space. 
This helps the algorithm  avoid getting trapped in local optim a and to explore the search 
space m ore effectively. The value of inertia w eight is typically  decreased over tim e to 
increase the exploration [17].

In general, the optim ization algorithm procedure steps, consist of param eter selection, 
variables (search agents), initialization, exploration, exploitation, random ization form ula 
of the step search, selection of step, and term inating condition [18]. Each search agent in 
the population interacts w ith  other agents to locate the optim al solution [19]. Generally, 
the sw arm -based algorithm s require som e com m on control param eters like population 
size and the num ber of iterations [20]. In addition, som e algorithm s have specific control 
param eters besides the general param eters, known as hyper-parameters. These parameters 
exist to im prove the perform ance of the algorithm  by tuning their values properly [2 1 ].

The search agents in a SI system  are designed to have sim ple rules. There is no 
central control to give order to how individual agents should perform  [22]. The agent's real 
performance is local, w ith a degree of arbitrary. However, the relations between such agents 
and the other param eters in the algorithm  take the edge of the occurrence of "in telligen t" 
to mim ic the global behavior, w hile the individual agents cannot find alone [23].

The m ajor contributions of this paper are listed as follow s:

• Utilizing modified inertia w eight in the original version of GBO to adjust the accuracy 
of the best solution. W hereas, the inertia w eight in optimization algorithm, gives more 
w eight to previous solutions in order to converge faster but also allows for exploration 
of new  solutions.

• M odified param eters are utilized in GBO to boost the convergence speed and provide 
the proper balance of global and local search capabilities.

• A novel operator (G) is introduced w hich supports the diversity search in the search 
space. W hereas, G applied to m ove search agents tow ard better solutions lead
ing to suitable perform ance both  in the global search and local search u sing new  
developed formula.

The prove the superiority  of the proposed IG BO , its perform ance is com pared w ith  
GBO, CS, DE, FPA, PSO, TLBO, and AVOA using a w ide range of benchm ark functions on 
a few real-world problem s.
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The rest o f the article is organized as follow s: In Section 2 background and related 
w orks are presented. Section 3 presents a brief description of the GBO w hile the proposed 
IG BO  is described in  Section 4 . Section 5 describes the benchm ark function and Section 6 
explains the real-w orld problem s. The obtained results and perform ance com parison 
using benchm ark functions against the different optim ization algorithm s are presented in 
Section 7 . In Section 8  the proposed IG BO  is em ployed to solve a challenging real-w orld 
optim ization problem  in the field of engineering. Finally, Section 9 sum m arizes the study.

2. Background and Related Works

The im provem ent of the optim ization algorithm  depends on the enhancem ent of the 
procedure steps or advancements of hybrid algorithms [24]. Every year there is competition 
in the algorithms on benchm arks function and real-world problems based on time, accuracy, 
and result to decide w hich  algorithm  is efficient [25]. There are different approaches to 
im proving algorithm s such as param eters tuning, opposite strategy, inertia w eight, chaos 
strategy, fuzzy logic strategy, adding new  operators, or m ulti-objective theory [ 2 6 ] .

A dding inertia w eight to ad just the accuracy and convergence speed tow ard the 
optim al solution [27]. There are different m ethods to im plem ent inertia such as fixed 
and arbitrary inertia w eights, and A daptive inertia w eights [28]. Tuning param eters to 
enhance convergence rate by m any approaches. For exam ple, w ith  fixed values that are 
appropriate to the search process, som e approaches gradually  change the param eters of 
operators through the problem  search process w hile, in som e approaches, the m echanism  
w ill update the param eter for som e instances of problem s. Som e of these m ethods aim  to 
develop an adaptive m echanism  to change the param eter value according to the search 
process [29].  A dding extra operators to balance exploration and exploitation and enhance 
diversity. There are different kinds of operators such as com parison/relational operators, 
stream  operators, subscript operators, function operators, and arithm etic operators [30].

Because of the robustness of G BO , it is applied to solve quite com plex real-w orld 
problem s. The authors in [31] used G BO  to find the optim al design autom atic voltage 
regulator (AVR) using the G BO  algorithm . In [32], G BO  is used to calculate the reliability 
redundancy allocation problem of a series-parallel framework. In [33], GBO is em ployed in 
the estim ation of the param eters of solar cells and photovoltaic (PV) panels as an effective 
and precise m ethod. G BO  in  [34] is utilized in  the calcu lation of the Econom ic Load 
Dispatch (ELD) problem for different situations such as ELD w ith transm ission losses, and 
m ixed econom ic and em ission dispatch. In  [35], G BO  w as utilized w ith  Proton Exchange 
M em brane Fuel C ell to estim ate the optim al param eters of three d istinct kinds of PEM  
fuel cells. The scholars in  [36] used an ensem ble random  vector functional link m odel 
(ERVFL) incorporated w ith  G BO  to m odel the ultrasonic w elding of a polym eric m aterial 
blend. ERV FL-G BO  has the best outcom e w hich  indicates its high accuracy over other 
tested m ethods.

Despite the effective perform ance, GBO is trapped in local solution w hen conducting 
com plicated  non-linear functions, thus, it can decrease its accuracy. To overcom e these 
drawbacks, different variants of the GBO have been introduced. The researchers in [37] used 
a m ulti-objective GBO algorithm -based Weighted m ulti-view  Clustering (MO-GBO-W M V) 
to find the consensus clustering am ong different partitioning generated from  individual 
view s and compared this approach w ith some other methods to demonstrate the advanced 
ability  of this approach. In [38] introduced a m ulti-objective gradient-based optim izer 
(M O-GBO) to handle the best solution for m ore than one objective, w here needed. In [39], 
by  im proving the G BO  using Ca and C& w hich  are new  chaotic num bers generated by 
various chaos maps. Then IGBO is used to derive the param eters of PV modules. Similarly, 
in  [40] a novel random  learning m echanism  is designed to im prove the perform ance of 
GBO . A fter that, IG BO  w as utilized to extract param eters of four photovoltaic m odels. 
In [41], an improved gradient-based optimizer denoted by (CL-GBO) to build DNA coding 
sets that contain the Cauchy and Levy mutation operators, w hich are utilized as readers and 
addresses of the libraries. In [42] the goal w as to solve single and multi-Econom ic Emission
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D ispatch  problem s, using an elegant m ethod depending on m ix-object both  M anta ray 
foraging optim ization (M RFO ) w ith  G BO , nam ed (M R FO -G B O ) to avoid trapped into 
local optim a as w ell as accelerate the solution process. In [43] enhance the perform ance of 
Grey W olf Optim izer (GWO) by a new procedure to use GBO to produce a new algorithm 
called (G-G W O ). This com bination w as applied to im prove the algorithm 's exploitation 
and exploration and also added G aussian w alk  and Levy flight. These tw o are arbitrary 
operators utilized to increase the d iversity  search of exploration in the G -G W O . In  [44] 
m odified G BO  algorithm  using operator D  to im prove the stability betw een exploration 
and exploitation phases in the search process. Similarly, in [45] used binary search, which is 
an advanced type of search algorithm that finds and fetches data from a sorted list of items. 
It is called the binary G BO  (B-G BO ) algorithm . Then B-G BO  is used in feature selecting 
problem s of m achine learning and data m ining.

O ptim ization algorithm s have gained a surge in popularity  and have achieved sig
nificant attention from  both  academ ic and industrial fields. H ere the review  som e recent 
optim ization algorithm s. A rithm etic O ptim ization A lgorithm  (A O A ) has developed de
pending on w ell-know n A rithm etic theory [46]. In [47], the scholars introduced A quila 
O ptim izer (AO), w hich  m athem atically  m odels and m im ics the nature of aquila during 
the procedure of hunting the prey. D w arf M ongoose O ptim ization (D M O ) algorithm  is 
introduced in [48] w hich  sim ulate the team w ork behaviors of the dw arf m ongoose. The 
authors in [49] have developed Ebola O ptim ization search Algorithm  (EOSA) based on the 
propagation behavior of the Ebola virus disease. G azelle O ptim ization A lgorithm  (GOA) 
have presented in [50], w hich is inspired by the survival ability in their predator-dominated 
environm ent. The authors in  [51] have developed prairie dog optim ization (PD O ) algo
rithm , w hich  m im ic the behaviour of four prairie dog in  foraging and burrow  building. 
R eptile Search A lgorithm  (RSA ) has presented in  [52], w hich  is inspired by the nature 
of C rocodiles in hunting. The authors in  [53], introduced oppositional unified particle 
sw arm  gradient-based optim izer based on m ix of oppositional learning, unified particle 
sw arm  algorithm , and G BO  algorithm  to solve the com plex inverse analysis of structural 
dam age problem s. In [54], the scholars have developed social engineering particle swarm  
optimization algorithm, which consists of com bination of social engineering optimizer and 
particle swarm optimization to deal w ith structural health monitoring as objective function. 
H ow ever, this com bination of m ore than algorithm  m ay lead to slow er convergence and 
inaccuracy in som e optim ization problem s w here is the speed is compulsory.

Summarizing the previous studies, the GBO algorithm has superiority over all modern 
counterparts in  solving problem s in different fields. H ow ever, ordinary G BO  has som e 
lim itations such as:

G BO  w ill still be trapped into local optim a and suffer from  the im balance betw een 
exploitation and exploration, prem ature convergence, and slow convergence speed under 
som e circum stances due to incom plete judgm ent standard and operators.

The m ain function of the local escaping operator (LEO) phase algorithm  is to avoid 
the occurrence of local optim al stagnation, but only w hen the random num ber is less than 
0.5, it w ill enter the LEO  phase.

The form er GBO  does not identify  the optim al solution for discrete functions w hich 
have discrete search spaces and decision variables such as feature selection problems.

There is only one guidance tow ards the best solution during the updating process, 
w hich lim its the exploitation capability  and can lead to the propensity  of falling into the 
local optim al solution.

Form er G BO  does not have enough internal mem ory to save optimal solutions among 
all generations, w hich leads to a lack the population diversity. Moreover, the perform ance 
of the algorithm  is affected significantly by the space dom ain of the objective function. 
H ow ever, an intensive searching process m ay lead to the deterioration of m ultim odal 
objective functions.
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3. Original G radient-Based O ptim izer A lgorithm

G BO  w as inspired by  N ew ton 's gradient-based m ethod. It com bines concepts from  
gradient-based  and population m ethods to find solutions. G BO  uses tw o principles, the 
gradient search rule (GSR) and the local escaping operator (LEO). The G SR  im proves the 
exploration tendency and accelerates the convergence rate in the search space, w hile the 
LEO allows GBO to escape from local optim a [16].

M etaheuristic algorithm s such as GBO  usually generate several stochastic operators 
w ithout the dem and to drop data and depend on steady perform ance. G BO  m ainly uses 
two operators and a set of vectors to explore the entire search space [40].

3.1. Initialization

E very individual in  the w hole population is denoted as a vector for a sim ple im ple
m entation description, w hich can be defined as:

w here Xmin, and Xmax are the low er and upper lim its the variables X , and rand (0 ,  1 ) is an 
arbitrary num ber in the boundary [0 , 1 ].

3.2. Gradient Search Rule

ration feasibility  and enhance the convergence speed to find the optim al solution in  the 
search dom ain. G SR expression is represented as

w here norm  is a random  value chosen w ithin norm al distribution, xworst and xbest are the 
w orst and optimal solution in the whole search progress of optimization, Ax is the value of 
increase, and £ is an arbitrary num ber chosen from the boundary (0  to 0 .1 ).

To attain the balance betw een the exploration and exploitation phases and follow  the 
search feasibility developm ent, the GSR w ill be im proved depending on the m athem atical 
expression below :

w here rand(1 : N ) is an arbitrary value w ith  N  population, r1, r2, r3, and r4 (r1 =  r2  =  
r3 =  r4 =  n) are integers random  num bers chosen from  [1 , N]. rand  is a random  num ber 
betw een [0, - 1 ] ,  ftmin = 0.2, ftmax = 1.2, m  is the value of the current iteration, M  is the total 
iterations, and a  is a function based on ft.

Xn,d =  [Xn,1, Xn,2..........Xn,d], n =  1 ,2 ...........N; d =  1 ,2 ..........D

Therefore, the GBO size population is denoted by N  w ith the D-variables. 
So, the vector is created random ly and represented as below :

xn =  X min +  ran d (0 ,1 ) X (Xmax Xmin)

(1 )

(2 )

The G SR  operator is utilized in the gradient-based technique to enhance the explo-

GSR =  norm  X P1 X
2Ax X Xn

(3)

p i =  2 x  rand  x a  -  a  

Ax =  rand(1 : N ) X |step|

(4)

(5)

5 =  2 x  ran

(6 )

(7)

(8 )

(9)
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The step  is a mathematical equation, that signifies the step size, w hich is based on xbest 
and x £ , w hile p2 is represented by:

P2 =  2 X rand X a  — a  (10)

For m ore enhance of the exploitation of the surrounding area of xn, by using the 
direction of m ovem ent (DM ). The DM  can be determ ined by:

DM  =  rand X p2 x  (xbest — xn) (11)

The G SR  can be expressed as:

2Ax X xn
GSR =  rand X px X

(ypn — yqn +  e)

In w hich

ypn =  rand X I Ẑn+ l+  xn] +  rand X Ax I (12)

(13)yqn =  rand X ^ [zn+12+  xn] — rand X Ax^j

2Ax X xn
zn+1 =  xn — rand X ----------------------—  (14)

\ xworst xbest +  e /

C oncerning the G SR  and D M , Equations. The position X1jm at any iteration is calcu
lated using GSR and DM  as follows:

X1m =  xm — G SR +  DM  (15)

Full expression of X1m can be w ritten as

2 Ax xm
X1m =  xm — norm  X pj X ------------------------------------------------n----------  +  rand X p2 X (xm — x S )  (16)

n n P1 (ypm — yqm +  e) P2 ( r1 r2)

By substituting the position of the best vector (xbest) w ith  the current vector (x^) in 
Equation (1), the new  vector (X2jm) can be calculated as follows:

2Ax xm
X2m =  xbest — randn X px X ( pm _ -----mn+  e) +  rand X p2 X (x £  — x^J) (17)

(ypn yqn +  e)

based on the positions X 1m, X2 jm and the existing position (X ^ ), a t the next iteration, the
new  com ing solution (xjm+1) can be calculated as:

xm+1 =  ra X (rb X X1m +  (1 — rb) x  X2m) +  (1 — ra) X X3m (18)

w here ra and rb are arbitrary values w ithin the range [0 , 1 ].

3.3. Local Escaping Operator Process

The LEO operator provides an im portant feature of the GBO to escape local solutions 
and im prove the convergence rate. It helps the algorithm  escape from  local m inim a 
or saddle points, w hich  can trap the algorithm  and prevent it from  finding the global 
m inim um .

There are areas in the search space that can prevent the algorithm  from  finding the
global m inim um . The operator works by introducing random variations or perturbations to 
the m odel's param eters at each iteration. This helps the algorithm explore other regions of 
the param eter space and potentially discover a more optimal solution. As the optimization 
process continues, the am ount of noise added is usually reduced to allow the algorithm  to 
arrive at a m ore accurate result.
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By using several positions (X 1” , X 2 ” ), so LEO produces an optim al solution w ith ad
vanced performance (X ”Eo)- The pseudo code of the operator LEO is shown in A lgorithm  1.

Algorithm 1: Operator LEO

i f  rand < pr
i f  rand <  0.5

X” e o  — X” +1 +  f 1 X (U1 X Xbest -  U2 X x” ) +  f 2 X p1 X (U3 X (X2” -  X1” ) +  U2 X (x”1 -  x” ))/2
VW+1 _ VL
Xn — XLEO

else
X”EO — Xbest +  f1 X (U1 X Xbest -  U2 X x” ) +  f 2 X p1 X (U3 X (X2” -  X1” ) +  U2 x (x”1 -  x”2) )/2

VW+1   VL
Xn — XLEO

End
End

where pr  is a probability value, p r  = 0.5, the values f i ,  and f 2 are represent distribution arbi
trary values betw een [ - 1 ;  1], u1, u2 , and U3 are three random  num bers, created as follows:

[2  X rand if ^1 <  0.5 ...
u 1 — l 1 otherw ise (19)

— / ra"d  if ^  < 0  5  (2 0 )
[1  otherw ise

[ran d  if ^1 <  0.5 .....
u3 — { 1  otherw ise (21)

where rand is an arbitrary value in the range of [0 , 1 ], and n-1 is a random num ber from the 
interval [0 ,1 ]. The previous equations can be w ritten as:

u 1 — L 1 X 2 X Y 1 +  (1 -  L 1 ) (22)

u2 — L 1 X Y2 +  ( 1 -  L 1 ) (23)

u3 — L 1 X Y3 +  (1 -  L 1 ) (24)

w here y 1, y 2, and y 3 are equal to rand. L 1 is a binary  param eter w ith  a value o f 0 or 1. If 
parameter ^1 is less than 0.5, the value of L 1 is 1, otherwise, it is 0. To determine the solution 
xjm in Equation (25), the follow ing schem e is suggested.

/ xrand if M-2 <  0 .5
xm 
xp

xrand — Xmin +  rand (0, 1) X (X max Xmin) (26)

xkm — xpmranodtherw2 ise (25)

4. Im proved G radient-Based O ptim izer Algorithm

In this study, an Im proved gradient-based  optim izer (IG BO ) is introduced to solve 
d ifferent real problem s accurately. The m ain m otives for enhancing the original G BO  are
described in the follow ing sections.

4.1. Varying Inertia Weight

The inertia w eight concept w as introduced in  m any w orks of literature. D uring the
last few decades, researchers have developed m any inertias weigh strategies, and it has an 
im portant role in optim ization processes using population-based metaheuristic algorithms. 
It provides a good balance between the local search and the global search capabilities of the 
algorithm . A m athem atical equation is used to generate a new  inertia w eight [55].

In  this paper tim e-varying, inertia w eight strategy has been used in w hich the value 
of the inertia w eight is determ ined based on the iteration number. The linearly decreasing
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inertia w eight w as introduced by  m any researchers and w as show n to be effective in 
im proving the fine-tuning characteristic of algorithm s [28]. The w eight param eter w  is
com puted as follows:

,T . /M axltr — I t r \ 2
u (Itr )  — ( M axltr / * ( u max — ^min) +  u min (27)

w here cu(Itr): The inertia w eight at iteration Itr
u min: The minim um  inertia w eight (final), u max: The m aximum inertia w eight (initial), 

M axItr: Iteration by w hich inertial w eight should be at final.
D ifferent optim ization problem s need different Inertia boundary values. The need 

ju st to ad just set the m inim um  and the m axim um  boundaries ( u min, u max) w hich  are 
m entioned in som e literature such as (0 and 1), (—1 and 1), or (0.9 and 1.2). In  this study, 
for som e optim ization problem s the suitable values for umin and umax are 0.4 and 0.9 
respectively, and 0.8 and 0.2 for the other optim ization problem . In  each generation, the 
inertia w eight u (Itr )  is generated autom atically  using Equation (27) w ithin  the selected 
range [56] . In this study, the m agnitude of inertia w eight is selected by the trial-and-error 
technique, so ( u min =  0.8, u max =  1.2). Then Inertia w eight w ill be used in  the first 
position generated by  LEO.

So, the first position xm+ 1 can be defined as:

xm+1 =  u (I tr )  X ra X (rb x  X1m +  (1 — rb) x X2m) +  (1 — ra) X X3m (28)

The new  strategy holds the sim ple idea that the particles should visit m ore positions 
in the search space at the beginning and have better local search ability at the end.

4.2. A daptive Parameters

The tuning of the param eters has a huge im pact on  the optim ization perform ance 
of the m etaheuristic approach [57]. For different problem s, they need different values of 
param eters; som e problem s need to enhance the d iversity and the convergence speed. In 
another aspect, som e optim ization problem s need to escape the higher level of d iversity 
search that m ay lead to rash convergence and decreased convergence speed [58]. GBO has 
very im portant param eters to find globally the best solutions. However, GBO uses a fixed 
and random  (rand) value. To escape the aw kw ard param eters and achieve fine-tuning, a 
new  param eter-setting-free technique is presented. The m echanism  delivers the issue of 
setting five key param eters inside GSR and LEO [59].

4.2.1. A daptive Param eters in GSR

The original G BO , the param eters ra and rb designed to have a random  m agnitude 
in  the interval betw een [0 ,1 ]. H ow ever, by  the tests, w e could find advanced optim al by 
g iving high value to ra and low  values to rb value w ithin  the dom ain [0 ,1 ] . T hat can be 
done by changing the values of these param eters w ith  m athem atical equations used in 
IGBO. These m athem atical equations extract the best values of the param eters, so w ith the 
increase in the num ber of iterations, the values of ra w ill raise using Equation (27), and 
the value of rb w ill decrease using Equation (28). T hat w ould help boost exploration to a 
larger extent and is likely to select the solutions from the entire feasible range [60]. Figure 1 
show  the visualization of adaptive param eters in GSR. The IGBO  proposed the follow ing 
equations to set the adjustm ent:

Itr (29)M axItr

rb = 1 — ( M a y  (30)
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Figure 1. Visualization of adaptive parameters in GSR.

So, the new  position at the next iteration xm+ 1 can be defined as:

xm+1 =  ( mUs) X ( ( ' — ( M i n ; ) )  * X1m'+ ( ' -  ( l -  ( m s e ) ^  aX 2 m ) +  ( 3 -  ^ ^ 7 X3m (31)

4.2.2. A daptive Param eters in LEO

Similarly, in standard G BO  the param eters Y 1, y 2 and y 3 set to have a random  value 
in the range betw een [0 ,1 ]. W hereas, to avoid the lonal optim a, these param eters tend to 
have different approaches to achieve that goal. The param eter y 1 is likely to increase its 
rate steadily along with the increase in iterations. In both param eters y 2 and y 3 tend to step 
down the values of them  gradually w ith the increase in iterations, to m ake the algorithm  
m odify the solutions to get the best one. The best solutions keep on adding the num ber of 
iterations until the last [61]. Therefore, the random ness equations of the param eters can be 
calculated as:

72

Y 1 =

=  ! - (

Y3

Itr
(32)

M axltr

(  IM ) (33)
\ M axltr )

( I t r  )
I M axltr /

(34)

So, LEO uses the three random  num bers u ^  u2, and u3, w ill be generated as follows:

(35)
- = i - - ( M a y + o - ^

u 2 =  l 1 x ( 1 - ( M | ; S ) ) + ( 1 - 1.1 ) (36)

u 3 =  L i X ( ^ — ( m s is ) )  +  (1  — 'L  a (37)

4.3. A daptive Operator G

Increasing the range of random  integers used in a special operator in optim ization
algorithm can assist the diversity and exploration of the search domain. This modification led
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to a higher probability of finding the optim al solution in the case of optim ization functions, 
and that depends on the nature of both the specific algorithm and optimization problem [62].

The operator G enhances the feasibility of the search in the search domain. Moreover, 
it im proves the balancing betw een exploration and exploitation processes to search for the 
global optim al solution by  increasing the G  value throughout iterations instead of being 
chosen as a constant value or random  betw een (0,1). Subsequently, the operating tim e of 
the proposed IGBO is decreased in contrast w ith the form er GBO [63].

This m ethod is enhancing the perform ance of optim ization algorithm s seeking to 
obtain the best solution and decreasing the search space. The convergence of the approach 
according to how  the m ovem ent of solutions in the search dom ain [64]. In  the G BO  
algorithm, the direction of m ovem ent (DM) is used to converge near the area of the solution. 
Therefore, the suggestion is to change the D M  random ly w ith extra values to discover more 
areas in the search dom ain [44]. H ence, the DM  of IGBO is utilized to be

DM  =  G X P2 X (xbest — xn) (38)

H ere, the value of the operator G changes significantly betw een specific limits.
The operator G can be expressed as

G =  g 1 +  ( (g 2 — g 1 ) *  (rand )) (39)

where g 1 and g2 are real num bers chosen in this study to be (1 and 10). This range selected
by  trial m ethod according to the nature of IG BO  algorithm  and nature of the selected
optim ization functions used in this research.

This operator im proves the search process by  discovering m ore areas in the search 
space. M oreover, it optim izes the balance betw een exploitation and exploration. The 
pseudo code of the IGBO algorithm  is show n in Algorithm  2.

Algorithm 2. Pseudo code of the IGBO algorithm

1 Step 1. Initialization
2 Assign values for parameters pr, £, u m;n, u max , g j , g2 and M
3 Generate an initial population X0 =  [x^ , xq,2, . . . ,  x0,d]
4 Evaluate the objective function value f(X|)), n =  1, . . . ,  N
5 Specify the best and worst solutions x ^ t  and xmorst
6 Step 2. Main loop
7 While m<M (iterations) do
8 for n = 1 : N (particles) do
9 for i = 1 : D (dimensions) do
10 Select randomly r1 =  r2 =  r3 =  r4 =  n in the range of [1, N]
11 Calculate the operator G using Equation (37)
12 Compute the direction of movement (DM) using Equation (36)
13 Gradient search Rule
14 Calculate the parameters ra and rb using Equations (27) and (28).
15 Calculate the position xnm,i+1 using Equation (29)
16 end
17 Local escaping operator
18 Calculate the parameters Y1, Y2 and Y3 using Equations (30)-(32)
19 Created random numbers u^ u2, and u3 using Equations (33)-(35)
20 if rand < pr then
21 Calculate the position xLmEO
22 At the next iteration calculate the new coming position Xnm+1
23 end
24 Update the positions x ^ t  and xmorst
25 end
26 m=m+1
27 end
28 Step 3. return xbmest
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5. Test Process

This process exam ines IG BO  and its counterparts w ith  benchm ark functions along 
w ith Friedm an rank, and Real-w orld problem s to verify their perform ance.

5.1. Param eter Settings

In all quantitative experim ents, the initial param eters of the com petitor algorithm s
w ere set according to the reference papers, as show n in Table 1 .

Table 1. Initial parameters of the competitor algorithms.

Algorithm Ref.
Parameter

Name Value

Probability Parameter (pr) pr = 0.5

Minimum Balance Parameter (fimin) fimin =  ° .2
IGBO Maximum Balance Parameter (fimax) m a * 1. 2

Inertia weights ("min, "max) {"min — °.7, 
"max =  1 .2 )

Probability Parameter (pr) pr = 0.5

GBO [16] Minimum Balance Parameter (fimin) ftmin =  ° .2

Maximum Balance Parameter (fimax) fimax =  1 .2

CS [13] Discovery rate of alien eggs/solutions (p) p = 0.25

DE [65]
Scale Factor (F) F 11 0. 5

Crossover Probability rate (Cr) .50.

u

FPA [66] Probability switch (p) p = 0.8

Cognitive Constant (C1 ) C1 = 2

Social Constant (C2) C2 = 2

PSO [67] Minimum Inertia weight ( " min) "min ° .7

Maximum Inertia weight (" max) "max = ° .9

Maximum Velocity (Vmax) Vmax = ° .° 02

Teaching factor (Tf) Tf =  1, 2

TLBO [65]
Teaching step (Ts) Ts chosen randomly 

between [0 , 1]

Probability parameter for selecting the first 
best vulture (Lj)

0^0.L(1

Probability parameter for selecting the 
second-best vulture (L2) 0.

(NL(

A parameter that determines the disruption 
of the exploration and exploitation 
phases (k)

(k =  2.5)

AVOA [15] A parameter to determine the probability of 
selecting the mechanisms in the exploration 
phase ( p1)

.6)0.p(1

A parameter to determine the probability of
selecting the mechanisms in the exploitation (p2 =  0.4)
phase of the first part (p2)

A parameter to determine the probability of
selecting the mechanisms in the exploitation (p3 = 0 .6 )
phase of the second phase (p3)
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5.2. Benchm ark Test Functions

The quality of optim ization algorithms is com m only exam ined by using conventional 
standard literature benchm ark functions [6 8 ] . There are various categories of these test 
functions. T hat variety  in  functions, to achieve the best representation of a w ider range 
of real-w orld large-scale optim ization functions and com pare various m etaheuristic algo
rithm s w ith m ore convenience and flexibility [69]. Som e optim ization algorithm s, besides 
the IG BO  algorithm , w ill be tested u sing different benchm ark functions, w hich  are cate
gorized into tw o groups: (i) U nim odal benchm ark functions in  Table 2 , (ii) M ultim odal 
benchm ark functions in Table 3 . In every table, (Dim) denotes the num ber of dimensions of 
the functions, w hile the low er and upper bounds of the variables are denoted by (Range), 
and the global m inim um  of the function is represented by ( fmin)  [70].

Table 2. Unimodal benchmark functions.

f. No. Name Dim Range fmin
F1
F2

Sphere
Schwefel's 2.20

30
30

[ - 100 , 100] 
[ - 100 , 100]

0
0

F3 Schwefel's 2.21 30 [ - 100 , 100] 0

Table 3. Multimodal benchmark functions.

f. No. Name Dim Range f min

 ̂
IT 

'"O

Qmg
Alpine N. 1 
Xin-She Yang N. 
1

30
30

30

[-500 , 500] 
[ - 10, 10]

[ -5 ,5 ]

0
0

0

F7 Salomon 30 [ - 100 , 100] 0

F8
Xin-She Yang N. 
2

30 [ - 2  pi, 2 pi] 0

F9 Penalized 30 [-5 0 , 50] 0

5.3. Statistical Analysis

In this section, m easurem ent criteria and statical tests are applied to prove the signifi
cance of the IGBO algorithm  different from the others. These tests are analysis of variance 
(ANOVA), and H olm -Bonferroni test. These two statistical tests were conducted on results 
obtained by every algorithm  from 5 0  independent runs w ith 1 0 0 0  iterations each.

5.3.1. M easurem ent Criteria

To evaluate the results five m easured criteria w ere used. These m easurem ents w ere 
the w orst, best, m ean, m edian, and standard deviation (SD) [16].

5.3.2. W ilcoxon Signed-Rank Test

It is a non-param etric statistical test, w hich utilized to evaluate if there is a significant 
difference betw een two correlated sam ples or repeated m easurem ents on the same sam ple. 
It is em ployed to determ ine w hether there are a statistically  significant difference tw o 
related sets of observations.

5.3.3. Friedm an Rank Test

The Friedm an test is a non-param etric statistical test established by M ilton Fried 
m an [64]. The test m akes a com parison am ong the m ean ranks in  the related groups 
and identifies how  the groups differed. M oreover, tells you w hich  group of data w as 
rated best versus w orst. The Friedm an test is w idely  supported by  m any statistical soft
w are packages [65] . IBM  SPSS softw are has been used in this w ork to calculate Friedm an 
Rank Test.
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6. Evaluation of the Igbo A lgorithm  on Real-W orld Engineering Problem s

In this section, three real-w orld design problem s are tested. The results obtained 
by  IG BO  w ere com pared w ith  those of d ifferent w ell-know n optim izers suggested in 
previous studies. The population and the m axim um  num ber of iterations were 30 and 500, 
respectively, for all problems.

6.1. Three-Bar Truss Design Problem

This engineering problem  illustrates the truss's form  and the forces applied to the 
structure as it is explained in  Figure 2. This problem  has tw o design param eters (x\, x2). 
The purpose of this problem  is to m inim ize the total w eight of the structure. It also has 
various constraints, such as deflection, buckling, and stress [15]; m athem atically  stated 
as follows:

M inim tze Fitness ( " )  =  ( =y [ x A1 +  xA2j  x  l (40)

Figure 2. Three-Bar Truss Design. 

Subjec t to:

g i  ( "

g2 ( "

yU^At +  x A2

V^xAi +  2 xA1xA2 

xA2

efmxAx +  2xa\x a i 

1

P - c r < 0  

P - c r  < 0 ,

g 3 "  =  ^ --------------- P  -  c  <  0 ,
'  ' y i xA2 +  xA1

where, 0  <  xAi ,  x A2 <  1 , l =  100  cm , p =  2 -k m̂̂, x  =  2 cm=

(41)

(42)

(43)

6.2. I-Beam  Design Problem

It is also a difficult engineering structure optim ization problem . The objective of 
this structure is to reduce the vertical deflection of the I-beam  so that the design problem  
identifies the optim al geom etric param eters related to the cross-section as displayed in 
Figure 3. The design variables in this problem are: length (h or X1), height (l or X2 ), and the 
thicknesses (tw or x3 and tf or x4 ) [71]. This optim ization problem  and its constraints are 
explained in the equations as follows:

Considering : X =  [x1,x 2, x3, x4] =  [h ,l,tw,t f ]

5000
M inim ize Fitness

12tw (h — 2tf ) 3 +  6 lt3 +  2ltf j

(44)

(45)2



Processes 2023,11,498 14 of 26

1
I t .

'W

Figure 3. I-beam design . 

Subject to:

g2 (x) =

g ^ x )  =  21tf +  tw(h -  2 tf) < 3 0 0  

180000xj
+

15000x2
<

(46)

(47)
tw(h -  2tf) 3 -- 2ltf [4t2 +  3h(h  -  2 tf)] (h -  2tf) f f  +  2tfl3

The variables are subject to: 10 <  h <  8 0 ,1 0  <  l <  50, 0.9 <  tw < 5 ,  0.9 <  tf <  5

6.3. A utom atfc Voltage Regulotor Design Problem (AVR)

AVR is one of -tire real-world problems w hich the researchers tried to solve in different 
aspects [72]. Moreover, AVR is one of the m ain com ponents in any pow er system  w hich is 
used to control the outcom e's voltage under different conditions of the operating process. 
The objective function of AVR is to estimate the optimal parameters of the Fractional Order 
Proportional Integrator D erivative (FOPID) controller [73]. The m athem atical representa
tion of all the AVR parts using Laplace transform ation. The output transfer function of all 
parts of IGBO-based FOPID controlling in the AVR system is shown in Figure 4 . Moreover, 
the parts are the FOPID  controller, amplifier, exciter, generator, and sensor [74].

g fo p id ( s ) =  k p +  K js  L +  K d s ^  

K a
G A (s) — 1 +  STa

r  (s) -  K e
E( ) 1 +  s t e

G r  (s) -  

Gs (s) -

K r
1 +  S T r

K s 
1 +  s t S

(48)

(49)

(50)

(51)

(52)

Figure 4. IGBO-based FOPID-AVR FOPID controller.
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7. Results and Analysis

The param eters of IGBO and other algorithms are selected according to the subsection 
param eter settings. Then, they have been tested and executed using the MATLAB (R2021a) 
desktop com puter running W indow s 10 Enterprise 64-bit w ith  an Intel ® Core TM (Santa 
Clara, CA, USA) i5-8500 C PU  processor and 8.00 GB RAM . All results are stored based on 
50 population sizes and 50 independent runs w ith  1000 iterations for every run, then the 
results are com pared using the obtained results.

In benchm ark test functions, the results found by IGBO are compared w ith seven well- 
known algorithms (GBO, CS, DE, PSO, FPA, TLBO, AVOA). In addition, the results of IGBO 
in real-world problem s are com pared w ith the result of the sam e counterpart algorithm s.

7.1. Benchm ark Test Functions Results

This section describes the results of IG BO  and the chosen algorithm s u sing variant 
benchm ark functions. Further, the results computes and compares the descriptive statistics 
in term s of best, w orst, m edian, m ean value, and standard deviation of all the algorithm s. 
The best result for each function is highlighted in boldface.

The results of IG BO  for unim odal benchm ark functions are com pared w ith  other 
algorithm s in Table 4. IG BO  algorithm  obtained the low est value in the results in  the 
functions (f1, f2) excluding the function (f3). This show s that IG BO  has least variation  in 
results of com pared to the com petitor's algorithm s. H ence, IGBO is a better choice.

Table 4. Unimodal Benchmark Functions Results.

. No Statistics IGBO GBO CS DE FPA PSO TLBO AVOA
Best 0 3.16E-281 1.02 x 0-17 4.29 x 10-12 1.75 x 0+04 5. 1 3 x 0-13 7.08 x 1 0-180 2.67 x 10-261

Worst 0 3.45 x 10-267 1.33 x 0+03 9.24 x 10-11 4.53 x 0+04 9.39 x 0-11 3.49 x 1 0-176 3.41 x 10-258
f1 Median 0 1.47 x 10-272 2.77 x 0-10 2.83 x 10-11 2.69 x 0+04 9.84 x 0-12 4.60 x 1 0-178 1.35 x 10+260

Mean 0 1.43 x 10-268 3.18 x 0+01 3.20 x 10-11 2.79 x 0+04 2.07 x 0-12 3. 19 x 1 0-177 1.92 x 10-259
Std 0 8.54 x 10-270 1.90 x 0+02 1.83 x 10-11 6.25 x 0+03 2.23 x 0-11 2.71 x 10-178 1.96 x 10-125

Best 0 7.07 x 10-140 3.78 x 0-07 1.10 x 10-06 3.18 x 0+02 1 .44 x 0-06 4.81 x 10-89 9.34 x 10-137
Worst 0 5.95 x 10-134 5.10 x 0+02 4.15 x 10-06 7.83 x 0+02 3.37 x 0-04 3.59 x 10-87 1.16 x 10-111

f2 Median 0 5.91 x 10-137 2.33 x 0+00 2.04 x 10-06 5.64 x 0+02 6.6 1 x 0-06 5.91 x 10-88 7.70 x 10-121
Mean 0 6.62 x 10-135 2.79 x 0+01 2.15 x 10-06 5.73 x 0+02 2.63 x 0-05 8.23 x 10-88 2.32 x 10-113
Std 0 1.51 x 10-134 7.85 x 0+01 6.28 x 10-07 8.34 x 0+01 6.28 x 0-05 6.91 x 10-88 2.34 x 10-116

Best 1.67 x 10-121 3.87 x 10-130 1.05 x 0+01 8.88 x 10-01 7.81 x 0+01 9.33 x 0—03 9.66 x 10-73 8.52 x 10-120
Worst 3.12 x 10-85 7.71 x 10-123 6.06 x 0+01 1.81 x 10+00 9.22 x 0+01 4.73 x 0-02 1.58 x 10-70 2.52 x 10-121

f3 Median 1.62 x 10-111 1.04 x 10-125 2.57 x 0+01 1.24 x 10+00 8.68 x 0+01 1 .78 x 0-02 1.03 x 10-71 1.58 x 10-123
Mean 1.62 x 10-267 3.37 x 10-124 2.79 x 0+01 1.26 x 10+00 8.63 x 0+01 1 .95 x 0-02 1.66 x 10-71 9.28 x 10-122
Std 3.35 x 10+00 1.81 x 10-123 1.23 x 0+01 2.35 x 10-01 3.10 x 0+00 7.96 x 0—03 2.39 x 10-71 2.72 x 10-121

Table 5 illustrate p-values obtained from  W ilcoxon rank-sum  statistical test w ith  5% 
accuracy. By looking at the results, it is evident that IGBO has achieved excellent results with 
significant differences between the proposed IGBO approach and other optimization methods.

Table 5. Wilcoxon Signed Ranks test for unimodal benchmark functions.

IGBO vs. GBO CS DE FPA PSO TLBO AVOA

Z -2 .097 -4.486 -5.170 -4 .867 -6.245 -1.743 -3.341
p-values 6.21 x 10 -05 9.04 x 10-12 5.56 x 10-16 3.55 x 10-14 1.29 x 10-17 3.49 x 10-19 2.70 x 10-09

By exam ining the results o f unim odal functions using Friedm an m ean ranking test, 
it is obvious that the proposed IG BO  algorithm  perform ed better than other counterpart 
algorithm s and had been able to achieve the appropriate score of 3.826 in Friedm an test as 
it is clear from Figure 5 .
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Friedm an M ean Rank Test

5

A lgorithm s

Figure 5. Friedman Mean rank test for unimodal functions.

M ultim odal benchm ark functions are com plicated tasks to test the exploration ability 
of the optim ization algorithm s to find the m ain optim al region of search domain.

The results of IG BO  for m ultim odal benchm ark functions are com pared w ith  other 
algorithm s in Table 6 . A nalysis of the results of this table show s that IG BO  w ith  its high 
exploration power, has provided the global optim al for (f4, f5, f6 , f8 ), w hich indicates the 
more effective perform ance of IGBO.

Table 6 . Multimodal Benchmark Functions Results.

f. No Statistics IGBO GBO CS DE FPA PSO TLBO AVOA
Best 5.54 x 10-14 7.80 x 10—11 2.93 x 10—16 430.3679 2.39 x 10+10 5.92 x 10—10 2.71 x 10—20 1.26 x 10—06

Worst 6.29 x 10—09 31.783 73,933,906 1186.599 1.67 x 10+11 6.82 x 10—07 r.88 x 10—12 8.9331
f4 Median 2.91 x 10—12 2.3485 0.0000138 874.0392 7.87 x 10+10 1.01 x 10—08 1.70 x 10—17 1.68 x 10—05

Mean 2.17 x 10—10 3.863 14,822,130 815.4393 8.37 x 10+10 3.22 x 10—08 1.84 x 10—14 0.40381
Std 9.48 x 10—10 5.3199 10,455,346 146.055 3.49 x 10+10 9.65 x 10—08 4.07 x 10—13 1.6162
Best 1.83 x 10—158 5.60 x 10—145 2.60 d 10—08 0.021702 28.1595 1.78x10—08 1.75 x 10—90 9.80 x 10—127

Worst 5.54 x  10—149 1.80 x  10—134 36.36 0.028265 53.1178 4.85 x  10—06 5.15 x 10—88 8.90 x 11—116

f5 Med ian 2.67 x  10—154 1.20 x  10—139 5.8848 0.025524 44.5526 2.11 x  10—07 5.67 x 10—89 3.20 x 11—122

Mean 1.44 x  10—152 4.20 x 10—136 8.6883 0.025537 44.4585 4.57 x 10—07 5.57 x 10—89 1.90 x 10—117

Std 7.63 x  10—150 2.50 x  10—135 8.7131 0.001555 5.0097 8.49 x 10—07 2.90 x 10—89 8.29 x 10-91

Best 5.54 x  10—129 5.00 x 10—116 6.31 x 10—11 0.02 x 10—10 256,086.14 0.002556 4.71 x 10—55 1.01 x 10~86

Worst 5.54 x  10—119 2.58 x  10—60 79, 748,031 5.21 x 10—08 1.74 x 10+10 1.4607 1.78 x 10—13 8.67 x 10—03

f6 Median 5.54 x 10—125 4.00 x 10—100 0.72962 2.20 x 10—09 52,558,177 0.046811 1.41 x 10—28 4.51 x 10—65

Mean 5.54 5.22 x  10—62 16,042,024: 5.65 x  10—09 487,357,738 0.12426 2.90 x 10—15 8.27 x 10—53

Std 5.54 x  10—14 3.64 x  10—61 11,276,834 9.88 x  10—09 244,656,464 0.25385 2.52 x 10—14 7.53 x 10—08

Best 0.1997 1.00 x 10—1301 4.4226 0.29987 13.3581 2.2929 0.29987 0.3271
Worst 1.1327 1.00 x 10—101 17.0238 0.40037 22.4805 4.3929 2.58987 1.86584

f7 Median 0.199873 3.40 x  10—120 1.4499 0.31895 17.8066 2.9999 0.39884 2.7881
Mean 0.234792 1.80 x 10—102 8.8499 0.33611 17.8965 3.0799 0.46187 0.847516
Std 0.03587 1.30 x 10—101 2.9535 0.040328 1.9846 0.51627 0.014142 0.048512
Best 1.015 x 10—12 3.51 x 10—12 2.64 x 10—11 7.13 x 10—11 5.64 x 10—11 3.51 x 10—12 2.79 10—11 9.01 10—12

Worst 8.72 x 10—12 3.45 x 10—12 1.05 x 10—11 2.32 x 10—11 1.05 x 10—11 60—0X.712. 1.12 10—10 3.58 10—11

f8 Median 2.29 x 10—12 3.47 x 10—12 1.73 x 10—11 2.65 x 10—11 2.87 x 10—11 6.54 x 10—10 6.02 10—10 7.18 10—11

Mean 2.68 x 10—12 3.49 x 10—12 1.82 x 10—11 2.73 x 10—11 2.95 x 10—11 8.40 x 10—10 7.01 10—10 8.17 10—11

Std 5.29 x 10—13 1.68 x 10—13 1.48 x 10—12 1.28 x 10—12 7.45 x 10—13 6.57 x 10—07 7.08 10—10 6.84 10—12

Best 1.52 x 10—18 9.45 x 10—06 161—0X4.2 9.53 x 10—12 2.63 x 10—5 1.52 x 10—18 6.29 10—24 1.40 10—10

Worst 2.55 x 10—14 0.10393 8.93 x 10—08 2.42 x 10—10 0.21576 1.5588 1.45 10—18 3.31 10—09

f9 Median 5.19 x 10—17 3.40 x 10—05 3.29 x 10—11 5.25 x 10—11 2.14 x 10—03 0.10367 6.62 10—22 9.63 10—10

Mean 9.97 x 10—16 0.004205 1.46 x 10—10 6.66 x 10—11 0.014017 0.17841 8.04 10—20 1.16 10—09

Std 151—0X.813. 0.020548 0.005938 5.15 x 10—11 6.72 x 10—02 0.28147 2.69 10—19 7.09 10—09

N on-param etric W ilcoxon sign rank test has archived significant results w hen it is 
applied on m ultimodal benchm ark functions, w hich shown in Table 7 . The post hoc analysis 
confirm s the effectiveness of the proposed m ethod and it is statistically significant.
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Table 7. Wilcoxon Signed Ranks test for multimodal benchmark functions.

IGBO vs. GBO CS DE FPA PSO TLBO AVOA

Z -4.189 -4.803 - 7 .  574 -7.861 -3.986 -8.956 -5 .122
p-Value 1.23 x 1CT11 1.34 x 10-12 3.62 x 10-15 1.82 x 1 0 - 17 6.9(3 x 10-09 8.48 x 10-18 1.0545 x 10-13

The obtained Friedm an test results for m ultim odal functions are sown in Figure? 6 . The 
overall rank demonstrates; that IGBO algorithm  is superior to its counterparts. It obtained 
the low er value w ith 3.193.

Friedman Mean Rank Test

g g T i f l  E B E S 3 *wm

DE FPA

Algorithms

Figure 6 . FriedmanMean rank test for multimodal functions.

To identify  the nature of the algorithm s w ith  the functions, Figure 7 show n the 3D  
design, w hich allow s for a m ore visual and intuitive understanding of tine function 's 
behavior an d properties. The convergence curve is demonstrated in Figure 8 , the evaluation 
of convergence capabiiity shows the robustness of IGBO against different algorithm s.

Figure 7. 3D design of the functions.
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Xin-She-Yang N-2 Function 

Figure 8 . Convergence curve of the functions.

7.2. Comparison o f  Com putational Time

The modifications to improve original GBO, make it able to find optimal from the entire 
feasible range w ith  the proper balance of global and local search capabilities M oreover, 
they effect to boost the convergence speed of IG BO  com pared to its counterparts. Each 
algorithm  runs 1 0 0 0  iterations and the average of the elapsed time is considered a  criterion 
for com putational tim e. The proposed algorithm  needs less tim e to find the best solution 
m easured in seconds. Table 8  illustrates the com parison of com putational tim e betw een 
IGBO  and other algorithm s.

Table 8 . Comparison of computational time between IGBO and other algorithms.

Benchmark Elapsed Time (s)

Test Functions IGBO GBO CS DE FPA PSO TLBO AVOA

Unimodal
functions 6.2186 7.9960 12.6258 8.2360 11.1468 9.05327 9.6487 8.9960

Multimodal
functions 19.5034 20.6731 21.6094 22.1904 22.6831 20.0217 23.536 21.8772

7.3. Result o f  Real-W orld Problems

This part show results of the param eter values of the m axim um  function evaluations 
(M FEs), that com pare the proposed IG BO  algorithm  against counterpart algorithm s. A ll 
algorithms are used to solve real-world problems as mentioned before, with 50 num bers of 
population and 30 runs containing 1000 iterations.
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7.3.1. Three-Bar Truss D esign Results

T a b le 9 show s the results of the com parative algorithm s for solving the three-bar 
truss design problem , and Figure 9 shows the convergence curve and best positions of the 
three-bar truss design using IGBO.

Table 9. Comparison of best solutions for the three-bar truss design.

Optimal Cost IGBO GBO CS DE FPA PSO TLBO AVOA

MFEs 30,000 30,000 30,000 30,000 30,000 00,000 30,000 30,000

Best Weight 263.8258 263.9861 264.1753 264.6827 265.1275 227.8643 266.9777 7 26247..5.22421. 2

Variables x(2)
0.78868
0.40825

0.78869 
0.40825

0.78677
2.41366

0.78878
0.40825

0.76868 
0.40825

.7660.77688650.76 

.. 060.24208310.. 0
0.78071 

6020 .4080.1.5062
2 0.07.876677876

0.40832

C o n v e rg e n c e  c u rv e B e st positions

Ite ra tion

Figure 9. Convergence curve and best positions of three-bar truss design using IGBO.

The non-param etric W ilcoxon sign rank test has achieved significant results w hen 
applied to three-bar truss problem , as dem onstrated in  Table 10. M oreover, In  Friedm an 
test, IG BO  algorithm  lias achieve d the sm allest rank com pared 'with other intelligent 
optimizotion algorithms. These tests confirm the effectiveness of the proposed method and 
it is statistically significant.

Table 10. Wilcoxon and Friedman tests for three-bar truss problem.

Test Type

Wilcoxon Friedman

Z p-Value Mean Rank Overall Rank

IGBO vs. — - - -
IGBO - - 1.233 1
GBO 3.014 1.66 x 10-23 2.862 2

CS -3.682 7.45 x 10-29 4.355 4
DE -5.062 3.08 x 10-35 6.509 5
FPA -7.608 5.21 x 10-39 8.680 7
PSO -6.853 7.94 x 10-36 9.754 8

TLBO -7.911 6.18 x 10-41 7.953 6
AVOA -3.849 9.21 x 10-34 3.561 3
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7.3.2. I-Beam  D esign Results

Table 11 shows the results of the comparative algorithms for solving the I-beam  design 
problem , and Figure 10 show s the convergence curva and best positions of I-beam  d isign  
using IGBO.

Table 11. Comparison of the best solutions for I-beam design.

Optimal Cost IGBO GBO CS DE FPA PSO TLBO AVOA

MFEs 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000

Best Weight 0.013069 0.013074 0.013175 0.01593 0.013082 0.013075 0.013096 0.013075

(h) 79.98 80 80 80 80 80 80 80
(b) 49.99 50 50 50 50 50 50 50

Variables ■■(tw) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0 .90.2
(tf) 2.32179 2.32179 2.32181 2.32179 2.32181 2.32179 2.32179 2 2.372.11771902

C o n v e rg e n c e  c u rv e  B e s t  p o sitio n s

Ite ra tio n  D ecision  v a ria b les

Figure 10. Convergence curve and best positions of I-beam design using IGBO.

Table 12 show s W ilcoxon sign rank test and Friedm an m ean rank test for I-beam  
problem . W ilcoxon test has produced significant outcom es w hen used on I-Beam  D esign 
results. Furtherm ore, the overall ranking using Friedm an test proved that IGBO algorithm 
is superior to other algorithm s.

Table 12. Wilcoxon and Friedman tests for I-beam problem.

Test Type

Wilcoxon Friedman

Z p-Value Mean Rank Overall Rank

IGBO vs. - - - -
IGBO - - 2.617 1
GBO —5.231 1.27 x 10—31 4.108 3

CS —8.573 7.95 x 10—41 7.247 8
DE —9.161 2.66  x 10 —46 4.976 4

FPA —7.042 3.81 x 10—37 5.862 6
PSO —6.268 5.91 x 10—33 5.354 5

TLBO —7.843 1.78 x 10—38 6.059 7
AVOA —6.715 2.04 x 10—34 3.865 2
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7.3.3. Autom atic Voltage Regulator D esign Results

Due to the novelty perform ance and advanced a b ility in  tuning, the proposed study 
optim ization of ihe AVR system contains a  FOPID controller. Figure 11- shows step response 
of tine AVR-based IGBO -FO PID  controller.

Figure 11. Step response of AVR-based IGBO-FOPID controller.

The FOPID  param eters estim ated at the end of the IGBO  search process are show n in 
Table 13.

Table 113. Optimieed FOPID parameters.

Parameter Value

KP 1.508478
KI 0.992512
L 1.051341
K D 0.6211713
M 1.219410

The transfer function m odel for the proposed GBO-based AVR system  w ith the incor
poration of optim ized variables is given in the equation below:

Vref (s) _  0.032251s3'5208 +  3.2251s2.570r +  0.19585s23513 +  19.585s13513 +  0.05625ds +  5.6251
Vm (s) _  0.0004s5.3513 +  0.0454s4.35l3 -a 22555s33513 +  3.2251s2.5708 +  1.51s23513 +  20.585s13rl3 +  5.6211

(53)

To validate the effectiveness of the proposed optimal AVR design, its dynam ic response 
is compared w ith that of the previously designed AVRs under identical operating conditions 
as show n in  Figure 1 2 .

Figure 12. Comparison of proposed AVR design with other methods.



Processes 2023,11,498 22 of 26

Table 14 provides the quantitative evaluation of the dynamic response based on some 
of the very im portant dynam ic response indicators such as percentage overshoot, settling 
tim e, and peak time.

Table 14. Dynamic response evaluation of proposed GBO-based AVR design.

PID/FOPID 
Tuning Method

Peak Value 
(Pv)

Percentage
Overshoot
(%Mp)

Rise Time 
(tr)

Peak Time 
(tp)

Settling 
Time (ts)

IGBO-FOPID 1.084 8.36 0.0899 0.176 0.932(Proposed) 
GBO-FOPID [31] 1.110 11.3 0.0885 0.16 0.653
JOA-FOPID [74] 1.130 13.2 0.0827 0.1750 0.453
SSA-FOPID [75] 1.15 15.5 0.0981 0.209 0.551
DE-PID [76] 1.3285 32.8537 0.1516 0.3655 2.6495
PSO- PID [76] 1.3006 30.0634 0.1610 0.3824 3.3994
ABC-PID [76] 1.2501 25.0071 0.1557 0.3676 3.0939
BBO-PID [77] 1.1552 15.5187 0.1485 0.3165 1.4457
PSA-PID [78] 1.1693 16.93 0.1438 0.3159 0.8039

Conversely, Table 15 describes stability criterion  results w ith  the best AVR design- 
based algorithm s. The stability indicators are Phase M argin (PM ), D elay M argin (DM ), 
Bandw idth  (BW ), and Phase G ain  (PG ). As can be seen from  the proposed G BO  tuned 
FOPID-AVR provides the m ost stable design among the considered AVRs w ith the highest 
PM  and BW  values.

Table 15. Comparative AVR designs are based on stability evaluation indicators.

PID/FOPID-Tuning Method PM DM BW PG

IGBO-FOPID (Proposed) 95.9 0.0866 19.3 0.971
GBO-FOPID [31] 91.1 0.0753 21.27 1.2
JOA-FOPID [74] 90.3 0.0765 20.60 1.24
SSA-FOPID [75] 89.3 0.0910 17.01 1.21
DE-PID [76] 58.4 0.0920 12.8 4.2
PSO- PID [76] 62.2 0.1030 12.182 3.75
ABC-PID [76] 69.4 0.111 12.879 2.87
BBO-PID [77] 81.6 0.122 14.284 1.56
PSA-PID [78] 79.69 0.115 14.636 1.68

In summary, the results of the real w orld  problem s, dem onstrate that IG BO  can deal
w ith  d ifferent challenging problem s and various com binatorial optim ization problem s. 
Thus, IG BO  is the m ost pow erful optim ization algorithm  w ith  the low est com putational 
costs and high convergence speed to get the optim al solution.

8. D iscussion

In this section, a com prehensive understanding of the perform ance of the proposed 
IGBO algorithm  and its significance in com parison to the other algorithm s studied in this 
m anuscript. The key findings from this study are sum m arized as follows:

• The initial com parison that w as made betw een IGBO and several state-of-the-art algo
rithms such as GBO, CS, DE, FPA, PSO, TLBO, and AVOA using unimodal benchm ark 
functions w ith  dim ensions of 30. W hereas, the optim ization based on 50 population 
sizes and 50 independent runs w ith 1000 iterations for every run. the proposed IGBO 
algorithm  dem onstrated outstanding perform ance in m ost cases.

• The second com parison betw een IG BO  and the sam e its cou nterparts' algorithm s 
using the m ultim odal benchm ark functions along w ith  30 d im ensions. The results 
revealed a rem arkable perform ance from the version of IGBO.
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• The im plem entation of evolutionary algorithm s com petitors to several real-w orld 
constraint m echanical design optim ization problems. The IGBO algorithm  has shown 
great perform ance w hen applied to solving real-w orld constraint optim ization prob
lem s, and as such, it has been  successfully  utilized to address autom atic voltage 
regulator design.

It is w orthw hile to m ention that, despite the excellent optim izing capability  of the 
IG BO  algorithm , there are som e lim itations associated w ith  the proposed IG BO  such as 
solutions for the optim al tem porary spatial-variation constraint sample are very difficult to 
achieve and comparatively greater computational complexity than its com peting algorithms.

9. C onclusions and Future Works

In this m anuscript, an Im proved G radient O ptim ization (IG BO) algorithm  has been 
presented for solving real-w orld engineering and optim ization problem s. The proposed 
IG BO  perform ance w as exam ined using benchm ark test functions to verify  its effective
ness. To validate its superior optim ization capabilities, its perform ance is com pared w ith 
the seven m ost w idely  used m etaheuristic-based optim ization algorithm s. The results 
dem onstrate that the proposed algorithm  is better than its com peting algorithm s in term s 
of achieving the m ost optim al solution to the benchm ark functions and real-w orld  engi
neering designs. M oreover, the statistical test analysis show s that the IGBO algorithm  has 
better perform ance than its original version. In addition, the solution to three real-w orld 
problems was also examined and compared with other w ell-known algorithms to justify the 
perform ance of the proposed IGBO algorithm. The optim ization results showed that IGBO 
has a h igh exploration ability in the scanning search dom ain, escaping local areas, and 
finding the m ain optimal area. IGBO is superior than the seven com petitor algorithms and 
provides far m ore com petitive optim ization results in solving unim odal and m ultim odal 
benchm ark functions. M oreover, IG BO  perform ance in evaluating three design problem s 
show ed its high ability to solve real- w orld optim ization problem s.

Finally, m ulti-objective and binary forms of IGBO m ay be established as future works 
for solving m ulti-objective and discrete optim ization problem s. In addition, the utilize 
of a chaotic m ap in every iteration w ill im prove the perform ance to avoid local optim a 
and accelerate convergence. Furtherm ore, using IGBO for solving real-world optimization 
problem s in different applications and dom ains can be another valuable future work.
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