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Tis project aims to investigate the best machine learning (ML) algorithm for classifying sounds originating from the environment
that were considered noise pollution in smart cities. Sound collection was carried out using necessary sound capture tools, after
which ML classifcation models were utilized for sound recognition. Additionally, noise pollution monitoring using Python was
conducted to provide accurate results for sixteen diferent types of noise that were collected in sixteen cities in Malaysia. Te
numbers on the diagonal represent the correctly classifed noises from the test set. Using these correlation matrices, the F1 score
was calculated, and a comparison was performed for all models. Te best model was found to be random forest.

1. Introduction

Noise pollution is one of themost signifcant problems of the
modern world, caused by various sources such as industrial
noise, road noise, work noise, and human conversation. A
thorough study was conducted to predict the type of noise
that occurs based on a set of specifc predictors. Tis project
aims to predict the frequency with which diferent types of
noise occur in Malaysia. To achieve this goal, a dataset of 13
diferent features was used to predict the output column.
Exploratory data analysis was conducted to obtain an
overview of the data, followed by necessary data pre-
processing steps to feed the data to diferent supervised
learning algorithms. Te methodology adopted for noise
classifcation will be explained in this research.Te approach
used in this study is a comparative analysis of fve machine
learning algorithms, including decision tree “DT,” random
forest “RF,” logistic regression “LR,” K-nearest neighbor
“KNN,” and support vector machine “SVM.” Tese algo-
rithms have demonstrated excellent results in various felds,
which is why all of them were utilized to obtain the best
model. Te F1 score was used as the primary accuracy

measure as it represents a balance between recall and pre-
cision. Te objective of this study is to develop a machine
learning technique that can classify noise levels. A dataset of
873 audio samples was used to evaluate the efectiveness of
the technique, and the noise levels were tested against WHO
standards. Te dataset consists of 873 sounds that were
captured from various environments using https://
monitornoises.com [1], and the samples were categorized
into 16 diferent classes, including indoor, chatting, road,
industrial, wind, footsteps, and others. Te major contri-
butions of this paper are as follows:

(i) Create a classifer using machine learning technique
that can categorize environmental sounds and
soundscape map that can assist relevant agencies
and industries in decision and policy making to
mitigate noise pollution

(ii) Investigate possible machine learning algorithms
such as KNN, RF, SVM, DT, and LR for the sound
classifer

(iii) Evaluate the approach using a recorded dataset of
873 samples of environmental sounds
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2. Previous Work

As per Marjanovic et al., their research focuses on de-
veloping detailed maps of pollutants and noise to identify
urban areas that afect human health.Tey demonstrate how
a comprehensive framework is established, including sensor
calibration, data collection, and processing. Noise pollution
can cause negative health efects such as hearing loss, stress,
blood pressure fuctuations, migraines, sleeplessness, ner-
vous system disorders, productivity restrictions, and mental
health issues. To detect noise pollution and monitor its
impact on human health, a system combining a wireless
sensor network (WSN) with a body access network (BAN)
was developed.TeWSN and BAN networks allow scientists
to study the hazards of excessive noise and its efects on
people’s health [2].

A new technology has been developed by Kulkarni et al.
that can detect hazardous chemicals and loud noises. Tis
technology is a novel concept that can also detect air and
sound pollution. Te main purpose of this system is to
monitor the environment using two sensors, theMQ135 and
a microphone sound sensor. Te MQ135 sensor is used to
detect NH3, CO2, SO2, and other dangerous gases and sends
a signal to the control unit when a situation is detected [3].

Patil has presented Internet of Tings (IoT)-based so-
lutions to address these issues. Te system monitors vehicle
pollution and noise levels, and any readings that exceed a set
limit are immediately reported to the relevant authorities,
including the trafc department and environmental
organizations [4].

A smart city has been suggested by Sumithra et al. Using
sensors and modules, they were able to monitor a wide range
of environmental conditions. Te data are monitored and
sent to the cloud server using air and sound sensors. Cloud
storage is responsible for storing and analyzing the data that
is collected [5].

Zimmerman and Robson have developed a noise model
and data visualization tools to assist prospective home-
buyers. Te nighttime noise of residents is represented as an
ambient sound source, and the researchers aim to assess its
impact. Te fnal stage of the implementation attempts to
alert users via SMS. Te system has also been enhanced with
additional features. A quantitative study of the noise envi-
ronment is provided by the noise analysis output supplied
through SMS text messages when the peak value is reached.
Te noise model has been implemented via the creation,
calibration, and verifcation of a device. Te physical
propagation model is the frst approach for predicting noise
from a distance, using the distance between the sound source
and the predicted noise location point as well as the physical
qualities of the sound source. Several industrialized nations
have been doing extensive research on airport noise control
since the 1960s, including the FAA’s integrated noise model
(INM), UK’s aircraft noise contour (ANCON) model, and
Switzerland’s Fluglaerm (FLULA) program. Predicting
ambient noise has necessitated research on the spatial
propagation of noise. It is possible to design a noise dis-
tribution by using the propagation model of noise attenu-
ation [6]. Tere have also been investigations on the most

efective locations for noise monitoring stations [5]. Physical
propagation models are seldom used in investigations
looking at the temporal variance of urban noise.

Te factual methodology is the second type of noise
prediction strategy. Kumar and Jain [7] proposed an
autoregressive integrated moving average (ARIMA) model
for trafc noise time series prediction, even after just a few
hours of data. A larger time horizon is shown to be ideal
when examining the time series. Kumar and Jain [7] con-
ducted an analysis of long-term data from noise monitoring
and showed that the ARIMA approach is reliable for time
series modeling of trafc noise although diferent scenarios
require adjusting underlying parameters.

According to Prieto Gajardo et al. [8], a Fourier analysis
of trafc noise in the cities of Cáceres and Talca showed that
larger seasonal components and amplitude values are
consistent in diferent samples regardless of the city’s
measured weather and associated trafc fow, indicating that
urban trafc noise can be predicted. Regression models have
also been used to predict the noise level in specifc industrial
conditions by determining the dominant frequency limit.

Te machine learning approach is categorized as a noise
prediction method. To simulate trafc noise, a back-
propagation neural network is used. Prieto Gajardo et al. [8]
used a random forest regression approach to predict wind
turbine noise. Torija and Ruiz [9] were able to accurately
estimate the level of ambient noise using feature extraction
and machine learning approaches. However, arranging the
data is challenging due to the subtle diferences between the
32 input variables.

Several factors are considered in predicting ambient
noise, including historical and real-time monitoring data.
Van Den Berg et al. [10] found that integrating the rules or
patterns extracted from monitoring data with the acoustic
theoretical calculation model improves the prediction ac-
curacy of noise signifcantly. To better represent regional
noise levels and increase data-gathering efciency, certain
sampling procedures have been proposed while considering
the concerns of conserving resources. Based on the time
savings and the accuracy of the fndings, Zambon et al. [11]
have observed that a noncontinuous 5- to 7-day noise ob-
servation is adequate for long-term noise prediction.

Controlling urban noise can be based on a scientifc
foundation if the temporal volatility of noise can be pre-
dicted. In recent years, the exponential growth of ambient
noise data has been made possible due to advancements in
sound level meters and sensor networks. Although there
have been studies on noise measurement, prediction, and
control in the past, most of the data collected has been small.
With the newfound motivation to reconsider environmental
noise prediction, there is a need to explore better models and
methods for processing large amounts of noise data. A more
efcient method for predicting noise in the temporal domain
is required. However, few studies have investigated and
predicted the variation in noise over a single day [11].

In recent years, there has been a rapid development of
deep learning, which has proven efective in a wide range of
felds [12]. Deep architectures or multiple-layer structures
can identify a vast number of structures in a dataset [2].
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Deep learning has been developed as a result of artifcial
neural networks research. Te most prevalent models of
neural networks are multiple-layer perceptron, convolu-
tional neural networks, and recurrent neural networks. [13]
Te use of RNNs in time series analysis is a common ap-
proach for representing hidden states and capturing data
characteristics. However, simple RNNs sufer from the issue
of long-term dependencies and are not efcient in utilizing
past information collected over extended periods. To address
this problem, LSTM networks have been developed and
applied to various applications such as stock price pre-
diction, air quality monitoring, sea surface temperature
monitoring, fight passenger count monitoring, and auto-
matic speech recognition.Temodel’s efectiveness has been
demonstrated through its good performance in the
results [13].

Almehmadi [14] proposed a smart city architecture that
utilizes IoT technology to mitigate noise pollution by de-
signing noise detection end nodes as a component of the
noise pollution monitoring system (NPMS). Tis system is
able to locate the area, time, level of noise, and any related
events, to evaluate the proposed architecture. Additionally,
Zamora et al. [15] proposed using smartphones as envi-
ronmental noise-sensing devices. Terefore, they focused
their study on analyzing the impact of three diferent noise
calculation algorithms using various types of smartphones
and determining their accuracy when compared to a pro-
fessional noise measurement device.

In addition to the studies discussed previously, de Souza
et al. [16] conducted a study comparing quantitative and
qualitative results at university campuses. Tey conducted
on-site sound measurements at the Federal University of
Juiz de Fora (UFJF) in Brazil and distributed questionnaires
to 140 volunteers.Teir analysis revealed that the noise levels
at the campus did not meet national and international
regulations for an educational area.

Moreover, Wessels and Basten [17] designed fve aspects
of acoustic sensor networks for environmental noise
monitoring: hardware costs, scalability, fexibility, reliability,
and accuracy. Tese aspects led the researcher to create four
categories that can contribute to the feld of noise pollution
monitoring by addressing some of the challenges.

Additionally, Noriega-Linares and Navarro Ruiz [18]
have developed a low-cost sound sensor prototype based on
the Raspberry Pi platform for analyzing ambient noise. Te
device is connected to the cloud for real-time sharing of
results. Tests have demonstrated that the Raspberry Pi is
a powerful and cost-efective processing core for low-cost
devices. Moreover, other researchers have combined the
power of smartphones to detect noise pollution [19, 20]
instead of relying on an independent endpoint.

Alsouda et al. [21] presented a machine-learning
framework in their paper that can classify urban noise us-
ing a low-cost IoT device. Tey used a combination of su-
pervised and unsupervised methods, such as KNN and SVM,
to extract audio features. Te researchers collected 3,000
sound samples and tested their approach by estimating op-
timal parameter values for noise classifcation.Teir approach
achieved a noise classifcation accuracy of 85% to 100%.

Bountourakis et al. [22] aimed to develop methods for
automatic recognition and classifcation of discrete envi-
ronmental sounds, including those found in urban and rural
audio scenes. Teir study showed that the three algorithms
used, namely ANN, k-NN, and SVM, performed well in
terms of their recognition rate.

Sparke [23] aimed to investigate the capabilities of
machine learning models in identifying industrial and en-
vironmental noise sources.Te study’s initial results indicate
that these models are efective in the classifcation process,
and their source contribution assessments are consistent
with manually generated assessments.

Demir et al. [24] proposed a method for environmental
sound classifcation using deep features extracted from data
collected by a CNN model. Te model was trained with
images from the spectrogram, and the feature vector was
computed by considering the connected layers of the model.
To test the method, the feature set of the random subspaces of
the KNN ensembles was taken into account. Te experiments
showed that the proposed model achieved a classifcation
accuracy of 96.23% and 86.70%. Te existing literature on
noise pollution comprises a wide range of studies, but some of
them have their drawbacks. For instance, expensive hardware
sensors are commonly utilized, which can be unscalable and
unsuitable for noise classifcation. In contrast, this project
aims to utilize low-cost hardware to conduct noise classif-
cation and gather data [25].

Albaji et al. [26] have presented a machine learning
approach to monitoring and classifying noise pollution.
Both monitoring and classifcation methods have been
implemented in MATLAB. Te researchers have generated
code to monitor all types of noise pollution from the col-
lected data, and the machine learning algorithm was trained
to classify these data. Te ML algorithms showed promising
performance in monitoring diferent sound classes such as
highways, railways, trains, birds, airports, and more. Te
fndings suggest that machine learning “ML” can be efec-
tively utilized in monitoring and measuring noise pollution,
and improvements can be made by enhancing the methods
used to collect data. Tis could result in the development of
more machine learning platforms to create a relevant en-
vironment with less noise pollution.

Ali et al. [27] used an ML approach evaluated with
a dataset of only 4 sound samples grouped into four sound
classes. Tey used Mel-frequency cepstral coefcients for
feature extraction and supervised algorithms that are SVM,
KNN, Bagging, and RF. However, their research has some
limitations. Only four types of sounds were tested using four
ML algorithms, and the results were found to be less accurate
than initially reported after further investigation (73%, 89%,
91%, 90%). Additionally, the data used were not associated
with IP addresses and linked to incorrect locations.

Mishra et al. [28] created an RVFL which is a model
widely used for solving real-life regression and classifcation
problems. Unfortunately, it is not able to reduce the efects of
noisy data on the classifcation process. Tis paper presents
a new IFRVFLC, which aims to improve the RVFL network’s
performance in binary classifcation. Te training sample in
IFRVFLC is composed of a fuzzy number with
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a membership degree and a nonmember degree. Te dis-
tance from the training center is regarded as themembership
degree of the pattern. On the other hand, the nonmember
degree is determined by taking into account the total
number of adjoining points. Te performance of the
IFRVFLC model against various support vector machines
and kernels ridge regression was analyzed. Te results of the
study revealed that the proposed model is very user-friendly.
It is also compared with other models such as the intui-
tionistic fuzzy SVM and the RVFL networks.

Hazarika and Gupta [29] proposed a novel KRR model,
based on an afnity-based approach, to address the binary
CIL problem. Teir proposed model, AFKRR, considers the
afnity of the majority class data points of the training
samples and predicts its future performance. Tey evaluated
the AFKRR using various metrics, such as the area under the
curve (AUC), F-measure, and geometric mean, and com-
pared its performance with other similar models, including
support vector machine, afnity and class probability-based
fuzzy SVM, KRR, intuitionistic fuzzy KRR, and CIL models.
Te results showed that AFKRR performs well in some real-
world datasets when compared to the other models.

Hazarika andGupta [30] highlight the challenge of handling
feature noise in biomedical datasets when classifying them using
machine learningmodels.Teymention that the RVFLmodel is
commonly used for classifcation and regression tasks, but its
performance is negatively impacted by noisy data. To address
this issue, the researchers propose a novel method to improve
the RVFL’s performance on noisy datasets.

Borah and Gupta [1] proposed an efcient classifcation
method called ACFSVM, which is based on the afnity and
class likelihood-based fuzzy vector machine. In their paper,
they introduced two diferent class probability-based ap-
proaches to tackle the class imbalance problem. Te frst
approach employs a cost-efective learning method, while
the second approach uses a novel probability equation to
adjust the class size. Tey reduced the sensitivity of various
samples to noise and outliers by using the afnity of each
sample to its class, which is obtained through the use of
a support vector machine. Te frst approach is to use fuzzy
membership values to transform the probability of class
interactions into a standard LS-SVM-type formulation. It
then introduces a new term to describe the efect of class
imbalance on the performance of the system. Te second
approach reduces the outlier and noise sensitivity of the loss
function of the frst method by truncating it at a specifed
score. Tis method also handles the outliers and noise
concerns at the optimization level.Te second approach is to
use a nonconvex structure as the basis for resolving the loss
function. Tis method is supported by the concave-convex
procedure. In order to evaluate the efectiveness of the two
approaches, a number of simulations have been conducted
on real-world and artifcial datasets.

3. Proposed Machine Learning Based
Approach for Noise Classification

In this section, fve supervised classifcationmethods that are
commonly used in the classifcation of various types of

objects are discussed.Tese include support vector machine,
KNN, decision tree, logistic regression, and random.

(1) Support Vector Machines (SVM): Support vector
machines are commonly used to solve classifcation
problems. A supervised algorithm is used for per-
forming such tasks.Te goal of the SVM algorithm is
to fnd the optimal hyperplane for training. It can
then divide the data into two classes. Tere are many
hyperplanes that can handle all the training data, but
the one that leaves the most margin between itself
and the nearest samples is the best choice [57]. Te
“support vector machine” (SVM) is a supervised
machine learning technique that may be used for
classifcation and regression tasks. It is, however,
largely employed in categorization difculties. Each
data item is plotted as a point in n-dimensional space
(where n is the number of features present), with the
value of each feature being the value of a certain
coordinate in the SVM algorithm. Ten, classifca-
tion is accomplished by locating the hyperplane that
best distinguishes the two classes. Te SVM algo-
rithm’s purpose is to fnd the optimum line or de-
cision boundary for categorizing n-dimensional
space so that fresh data points can be placed in the
proper category in the future. A hyperplane is the
optimal choice boundary.

(2) K-Nearest Neighbors (KNN): KNN is a relatively
easy algorithm to use in machine learning. It takes
into account the minimum distance between the
training points and the test point and then produces
a class mark for the test point depending on the class
of the nearby k-nearest neighbors. Te KNN is
considered a lazy algorithm, which means that it
does not take into account the training data points
before it tests. Tis means that the training phase of
the algorithm is very fast, and it can be used to reduce
the training task to memorizing the training points.
However, the testing phase of the algorithm is very
expensive, and it requires a lot of time to perform.
Furthermore, to store all of the training points, there
is a need for more memory. KNN is an acronym for
“K-nearest neighbors.” It is a machine-learning al-
gorithm that is supervised. Te method can handle
classifcation as well as regression problem state-
ments.Te sign “K” represents the number of nearest
neighbors to a new unknown variable that must be
predicted or categorized. Te KNN algorithm cal-
culates the distances between a query and all in-
stances in the data and then selects the K number of
examples closest to the query. It then proceeds to
vote for the most frequent label (in classifcation) or
average the labels (in regression). Being a non-
parametric method, K-NN does not make any as-
sumptions about the underlying data. Additionally,
it is referred to as a lazy learner algorithm because it
does not learn instantly from the training set. In-
stead, it stores the dataset and takes action during
classifcation. During the training phase, KNN
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algorithm saves the dataset and classifes it into
a category that is similar to the incoming data. It is
easy to create and comprehend, but it has the main
disadvantage of being signifcantly slower as the
amount of data in use increases.

(3) Decision trees (DT) are a supervised machine
learning technique that trains models using labelled
input and output datasets. Te method is primarily
used to solve classifcation issues, which involve using
a model to categorize or classify an item. Decision
trees are a form of predictive modeling that helps map
the various options or solutions to a specifc outcome.
A decision tree is made up of diferent nodes, with the
root node usually being the entire dataset in machine
learning. Each internal node represents a criterion on
a predictor. A leaf node, which contains the class label,
represents the endpoint of a branch or the fnal
outcome of a series of decisions. Te decision tree
does not branch further from a leaf node.

(4) Logistic regression is a common machine learning
algorithm that falls within the supervised learning
approach. It is used to forecast the categorical de-
pendent variable from a group of independent fac-
tors. It forecasts a categorical dependent variable’s
outcome. As a result, the conclusion must be cate-
gorical or discrete. It can be Yes or No, 0 or 1, True or
False, and so on, but instead of presenting the precise
values like 0 and 1, it presents the probability values
that fall between 0 and except for how they are
employed, and logistic regression and linear re-
gression are quite similar. Logistic regression is used
to solve classifcation problems, while linear re-
gression is used to solve regression problems. In
logistic regression, instead of ftting a regression line,
an “S” shaped logistic function is ftted, which
predicts two maximum values (0 or 1) while gen-
erally predicting the likelihood of an outcome. Te
curve of the logistic function refects the likelihood of
the various outcomes, and the one with the highest
probability is chosen as the output.

(5) A random forest is a supervised machine learning
algorithm that employs decision tree algorithms. It is
an approach for solving regression and classifcation
problems that uses ensemble learning, a technique
that combines several classifers to solve complex
problems.Te random forest algorithm is made up of
several decision trees. Te “forest” created by the
random forest algorithm is trained using bagging,
a meta-algorithm that increases the accuracy of
machine learning algorithms using an ensemble ap-
proach. Te algorithm determines the outcome based
on the predictions of the decision trees. It forecasts by
averaging or averaging the output of multiple trees.
Te accuracy of the output improves as the number of
trees increases. Random Forest (RF): Te random
forest algorithm is a type of decision tree that is related
to the bag of decision trees. It can be used to analyze
trees that are close to each other. Te RF seeks to fx

this issue by implementing a random forest that
considers only a subset of the features that are ran-
domly selected from the training subsets to determine
the optimal split at each node in a tree.Tis method is
diferent from the bag method, where all M features
are selected to split the nodes in a tree. Te random
forest algorithm belongs to the ensemble methods
family, and it is used to classify trees based on their
predicted characteristics. However, because it uses
many trees, it may take a long time to train.Tis is not
a signifcant concern because it only requires one
training session. Before training a machine learning
model, it is important to format the data in a way that
is simple to read and understand and to select the best
machine learning algorithm for classifying noise.
Figure 1 shows the proposed machine learning based
approach for noise classifcation.

3.1. Environmental Noise Dataset. An extensive collection of
information on the many kinds of noise recorded from
numerous sites makes up the environmental dataset that was
examined in this study. Te dataset contains crucial geo-
graphic information, such as the city’s name, longitude and
latitude coordinates, and where the noise was captured.
Tese specifcs make it evident where the noise was captured
and how it relates to other geographic places. Moreover, the
dataset comprises noise-related features such as LA50 and
LAeq, which aid in characterizing the noise and identifying
its type and intensity. Te research employed eighteen
diferent categories of environmental sounds to provide
clear and straightforward data. Each record in the dataset is
labelled with the source of the noise, such as chatting, human
children, footsteps, works, wind, and other sources, to fa-
cilitate easy comprehension. Tis dataset provides a well-
balanced representation of various types of noise recorded
from diferent locations, with almost equal numbers of
recordings for each classifcation. In summary, this dataset is
an invaluable resource for anyone interested in studying the
distribution and characteristics of diferent types of noise
captured from diferent locations. By conducting experi-
ments with various environmental sounds, researchers can
gain a better understanding of how this approach works.
Tis is especially important as noises from these sources are
prevalent in most Malaysian cities, as observed through the
data analysis. Table 1 shows the classes of the sounds used.

3.2. Data Preparation. Te Environmental Dataset used in
this study came from https://Monitornoises.com, a website
that collects information on the spatial distribution of
property indices throughout Malaysian cities. All data
produced by the https://MonitorNoises.com publisher are
available on their website. Te data are free and delivered
under the ODbL terms. Te dataset was initially in JSON
format, but a Python program was used to convert it into
a tabular form, which was then saved as a CSV fle. Te data
of https://Monitornoises.com are gathered via a mobile
application called NoiseCapture which is a free and open-
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source Android application that allows users to measure
and share the noise environment. Te data collected
through the app are available in an open format. Te re-
searchers downloaded the dataset related to Malaysia as
JeoJson Files and extracted the features related to each
noise record using Python and the Pandas library. Te
resulting data were saved as an Excel fle. Upon analysis, it
was discovered that there were no missing values in the
dataset, and null values did not need to be handled. Since all

features were in numeric form, only the target variable was
encoded, which was the label. Te label encoding technique
was used for the output column, which made it easier to
analyze the data. Te dataset is crucial since it provides
insights into the distribution and characteristics of various
noise types captured in diferent areas of Malaysian cities.
Te dataset is comprehensive and well-organized due to the
geographic information, noise-related characteristics, and
labelling of each record.

Json Noise Files

Data Cleaning

Noise Labeling

Labeled Data Test Data

Training Data

Decision Tree Logistic Regression Random Forest SVM KNN

Performance
Evaluation

Predictions Best Model New Noise Record

Figure 1: Proposed machine learning based approach for noise classifcation.

Table 1: Samples of sound.

No Classes Samples Duration (min)
1 Johor_mall_Chatting 44 128
2 Kedah_beach_Wind 39 44
3 Kelantan_Police Headquarters_Works 9 28
4 Kuala Lumpur_Human Children 23 73
5 Labuan_wind 35 93
6 Melaka_Restaurant_Chatting 22 43
7 Negeri Sembilan_Works 13 78
8 Pahang_stade_Footsteps & Chatting 71 49
9 Perlis_ Industrial 45 78
10 Perak_Cars_Road 32 95
11 Pulau Pinang_hotel park_Test 56 61
12 Putrajaya_Works 98 102
13 Sarawak_Test 76 88
14 Selangor_ Industrial 54 87
15 Trengganu_Road 43 72
16 Sabah_airoport_Indoor 213 4322
Total 16 classes/16 cities 873 5441
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3.3. Data Analysis. Te 209 records and 13 columns in the
dataset examined in this study contained diverse data re-
garding the noise levels observed at various places
throughout Malaysia. Te dataset contains geographic in-
formation on the locations where the noise recordings were
made, such as the city’s name, longitude, and latitude co-
ordinates. Te dataset contained various noise-related fea-
tures such as “LA50,” a statistical descriptor that represents
the sound level exceeded for 50% of the measurement pe-
riod, and “LAeq,” which measures the constant noise level
that would generate the same total sound energy over
a specifed period. Te records in the dataset were classifed
and assigned a label identifying the source of the noise, such
as conversation, wind, or other noise sources. Tis labelling
of the diferent types of noise captured in the samplemakes it
easy to categorize and analyze the data.

Before proceeding with any machine learning model, it is
essential to perform some critical data analysis steps to un-
derstand the data better. In this case, it is evident that chatting
noise is the most frequent, while children’s noise is less
common. Furthermore, the number of noises captured for each
of Malaysia’s cities was counted, as shown in Table 2, and it is
apparent that Sabah and Sarawak have captured more sounds.

4. Results

4.1. Band Levels. An ensemble model is a type of learning
algorithm that uses multiple learning methods to improve its
predictive performance. It can also be useful in improving

accuracy in certain cases. Figures 2 and 3 illustrate the band
levels of some of the noise samples captured over Malaysian
cities. Te band levels represent the output column and the
frequency of each class occurring in the output column. Te
pie chart in Figure 2 displays the frequency distribution of
each noise type. Te highest frequency is the chatting noise
type, followed by the indoor noise type. Te dataset had 209
entries categorized into chatting, human children, footsteps,
works, wind, industrial, test, road, indoor, motorbike,
lawnmower, motorway, bar, aircraft, alarm, gun, call wave,
and garbage truck. Te pie chart illustrates that each label
had about an equal proportion of records, with no particular
noise source dominating over the others. Upon closer in-
spection of the fgure, certain labels have a slightly lower
share than others. For example, call wave has the highest
proportion (6.898%), while footsteps have the lowest pro-
portion (4.437%). Overall, the pie chart reveals that the labels
are distributed rather evenly, indicating that each noise
source was captured approximately the same number of
times in the dataset.

Figure 3 depicts a pie chart presenting the percentage of
recordings used in the noise level experiment collected from
diferent Malaysian cities. Te chart provides an overview of
how the noise levels were distributed among various cities in
Malaysia. As per the data, the majority of the samples were
obtained from Sarawak, Sabah, and Perak, whereas the least
number of recordings were collected from Labuan, Treng-
ganu, Putrajaya, Kuala Lumpur, and Negeri Sembilan. Tis
implies that the noise level in these cities was either not as

Table 2: Some of data captured.
WeightingOverall LEQLmax Lmin L5L10 L20L30 L40L50L60L70L80

""L90"t (s)""""""""
Leq(dB)""0.091.0""1.091.0""2.0 91.0""3.0 91.0""4.091.0""5.091.0""6.0
91""7.091.0""8.091.0""9.0 91.0""10.0 91.0""11.091.0""12.091.0""13.0
91""14.091.0""15.091.0""16.0 91.0""17.0 91.0""18.091.0""19.091.0""20.0
91""21.091.0""22.091.0""23.0 91.0""24.0 91.0""25.091.0""26.091.0""27.0
91""28.091.0""""""""""

91 dB"91 dB91 dB91 dB91 dB91 dB 91 dB91 dB 91 dB91 dB91 dB91 dB91 dB
Weighting"Overall LEQ Lmax Lmin L5 L90 "t (s)L10 L20L30 L40L50L60L70L80

Leq (dB)" "0.0 60.3" "1.0 60.2" "2.060.8""3.060.5""4.060.3""5.060.6""6.060.6"
"7.0 60.9" "8.0 60.9" "9.060.6""10.060.8""11.061.2""12.061.2""13.062.0"

"14.0 61.5" "15.0 67.8" "16.069.0""17.071.0""18.072.6""19.073.0""20.074.1"
"21.0 74.2" "22.0 69.4" "23.066.4""24.067.3""25.069.3""26.069.6""27.069.7"
"28.0 69.6" "29.0 69.5" "30.069.7""31.069.8""32.069.6""33.069.7""34.069.4"
"35.0 69.5" "36.0 69.4" "37.069.5""38.069.1""39.069.3""40.069.6""41.070.0"
"42.0 69.6" "43.0 69.8" "44.069.0""45.069.1""46.069.2""47.069.3""48.069.8"
"49.0 69.6" "50.0 70.3" "51.069.8""52.069.9""53.069.8""54.069.8""55.070.3"
"56.0 70.1" "57.0 70.5" "58.070.0""59.069.9""60.070.4""61.070.3""62.069.6"
"63.0 70.4" "64.0 69.8" "65.069.6""66.069.7""67.070.0""68.069.7""69.080.0"
"70.0 77.2" "71.0 76.9" "72.078.0""73.078.5""74.078.1""75.078.3""76.078.3"
"77.0 79.5" "78.0 79.2" "79.077.8""80.078.0""81.077.8""82.078.0""83.078.1"
"84.0 76.7" "85.0 77.7" "86.076.8""87.076.6""88.076.5""89.076.7""90.076.7"
"91.0 76.8" "92.0 76.9" "93.077.0""94.077.3""95.077.1""96.076.7""97.076.9"

"98.0 76.9" "99.0 77.0" "100.077.1""101.077.1""102.076.9""103.077.1""104.077.0"
"105.0 77.2" "106.0 77.9" "107.075.2""108.069.4""109.067.3""110.068.8""111.070.4"
"112.0 69.1" "113.0 73.4" "114.080.0""115.081.5""116.086.0""117.089.5""118.088.2"

"119.0 83.3" "120.0 74.9""121.076.8""122.076.0""123.076.4""124.072.8""
76.4 dB 90 dB 58.8 dB 80 dB 78.2 dB77.2 

dB
76.7 
dB

73.6 
dB

70.3 
dB

69.868.9 dB 61.6 dB 69.5 dB
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signifcant or not as frequently recorded as in other places. It
is worth noting that the recordings were taken from a total of
16 distinct Malaysian cities, indicating the comprehen-
siveness of the study. Figure 3’s pie chart ofers important
insights into the distribution of noise levels across the na-
tion’s cities and aids in determining which cities have higher
levels of noise pollution.

4.2. Points. Te “Point” feature of the investigated dataset
was analyzed separately from other features. Figure 4(a)
displays the distribution of the “Point” feature, indicating
that it can range from a minimum value of 0 to a maximum
value of 4. Te distribution of “Point” values is multimodal,
with one peak between 0 and 1 and the majority of the values

concentrated in the range between 3 and 4. Figure 4(b) il-
lustrates the distribution of the “Point” feature for each of
the 16 class label categories. Te distribution for the classes
of humans and children was concentrated at a single point,
which was 0. In contrast, the “Point” value was relatively
consistent for all other classes. Figure 4(c) displays the
average value of the “Point” feature for each class. With the
exception of toddlers and humans, all classes had an average
between 1.5 and 2.0. Both toddlers and humans had an
average value of 0 for the “Point” feature. Meanwhile,
Figure 4(d) shows the median value and fve-point summary
of the “Point” feature for each class. Te median value of the
“Point” feature for all classes, except for toddlers and
humans, was between 1.5 and 2.0. Te median value of the
“Point” feature was observed to be 0 for both toddlers and
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Figure 2: Band levels.
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Figure 3: Number of noises over Malaysian cities.
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humans. Terefore, the study of the “Point” feature suggests
that the value of “Point” for adults and children in the
sample consistently had a value of zero.

4.3. Properties_q. Figure 5(a) shows the distribution of
“Properties q” values, ranging from 400000 to 500000. Te
distribution appears to bemultimodal, with a larger peak around
420000 and a smaller peak around 490000. Additionally, there is
a gap in the distribution between 450000 and 460000, indicating
a lack of records for “Properties q” values in that range. Fig-
ure 5(b) displays the distribution of “Properties q” for the class
labels “wind” and “chatting.” Te distribution for “wind” ap-
pears to be rather evenly, while for “chatting,” it is substantially
concentrated around 430000. Figure 5(c) presents the average
value of “Properties q” for each class label, indicating that all
classes have an average value above 400000. Finally, Figure 5(d)
shows the median value and fve-point summary of “Properties
q” for various class labels. Although the median values are
distributed among the diferent classes, some outliers can be
observed for certain class labels, such as conversation, road,
industrial, and footfall.

4.4. Properties.Cell_r. Figure 6 displays the plots for Prop-
erties. cell_r. It also uses bivariate analysis with properties
cell_q and other variables. Te dataset’s feature “cell r” was
examined separately from other features. Te distribution of
“cell q” is shown in Figure 6(a) and has values ranging from
5000 to 35000, with a uniform distribution. Figure 6(b) shows
the diference in distribution between the classes “wind” and
“conversing,” where the wind distribution is centered around
30000, while the talking distribution is uniform. Figure 6(c)
shows the average value of “cell q” for each class, falling
between 15000 and 30000. Te median value and fve-point
summary of “cell r” for various classes are shown in
Figure 6(d), indicating that the medians are dispersed across
a range of values. Te feature values are concentrated for the
classifcations “wind,” “footfall,” and “human.”

4.5. Properties.la50. In Figure 7(a), the feature “la50” is
examined and shown as a uniform distribution of values
between 40 and 110. Te comparison of the distributions of
wind and chatting in Figure 7(b) reveals that whereas the
distribution of wind is uniform, the distribution of chatting
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is concentrated at two places between 50 and 70.Te average
value of “la50” for several classes is shown in Figure 7(c),
with average values between 50 and 80. Te median value
and fve-point summary of “la50” for the various classes in
Figure 7(d) show that the medians are dispersed across the
classes with varying values and concentrated for classes such
as children, footsteps, and humans. Additionally, outlier
values are seen when talking and walking.

4.6. Properties.Laeq. Te distribution of the feature “laeq”
can be observed in Figure 8(a), with most values ranging
between 40 and 110. Te distribution of this feature is uni-
form, with a median of around 70. Te diference in distri-
bution between wind and chatting is depicted in Figure 8(b),
with chatting having a concentrated distribution at two spots,
the frst one being around 55 and the second one being
around 70. Te average value of “laeq” for the various classes
is depicted in Figure 8(c) as ranging between 50 and 80. Te
median value and fve-point summary of “laeq” for several
classes are given in Figure 8(d), withmedians showing a range
of values and a concentration of values for the human, kid,
and footstep classes. In the cases of talking, taking a test, and
taking steps, outlier results are seen. Tis feature’s behavior is
discovered to be extremely similar to the “la50” feature.

4.7. Properties.Iden. Figure 9 displays the plots for
Properties-iden and uses bivariate analysis with Properties-
Iden and other variables. Te frst plot shows the data
distribution of “Properties. iden” via a histogram. Since it
consists of numeric variables, a histogram is applied to
display the frequency distribution. All values are concen-
trated at a single point of 0.0, and there are no other values.
Te second graph shows the density of points per wind/
chatting which is the same for each value of “Properties.
iden” and hence follows a rectangular curve. Te third graph
shows the frequency distribution of each noise type with
respect to Properties. iden in the form of a barplot. Te
fourth graph shows the boxplot of each noise type with
Properties. iden. Te boxplot shows that each noise type

contains only the value zero. All in all, it can be concluded
that the values are very constant in “Properties. iden” and
not signifcant in the analysis.

4.8. Properties.Measure_Count. Te distribution of the
feature “measure count” is shown in Figure 10(a). According
to the histogram, most of the values for this feature fall
between 0 and 1500, with a notable peak at around 0. Te
histogram shows another bar around the number 5500. Te
diference in distribution between wind and conversation is
shown in Figure 10(b). Te distribution of wind appears to
be bimodal, with peaks at 0 and 1000. Te distribution of
talking, on the other hand, is characterized by a long peak at
around 0 and shorter peaks between about 0 and 2000 as well
as at about 5000. Te average value of “measure count” for
diferent classes is shown in Figure 10(c), with the majority
of the classes having averages between 0 and 100. Te av-
erages are slightly higher, at about 300, 450, and 300, re-
spectively, for wind, conversation, and children. Finally,
Figure 10(d) displays the median value and fve-point
summary of “measure count” for several classes. Te me-
dian values for most classes are around 0, but there are some
anomalous values in conversation.

4.9. Properties.First_Measure_Epoch. Te distribution of the
characteristic “frst measure epoch” is shown in Figure 11.
Te feature has a bimodal distribution, as shown in part (a)
of the fgure, with peaks around 1.55 and 1.65, andminimum
and maximum values of 1.5 and 1.65, respectively. In part
(b), the distributions of wind and chatting are compared.
Both distributions display a pattern that is somewhat bi-
modal for the wind and singularly modal for the chatting.
Te average value of the feature for each class is shown in
part (c), and it is discovered that the averages range between
1.5 and 1.6. Part (d) displays the median value and fve-point
description of the feature for several classes, with certain
classes, such footsteps and humans, having more condensed
distributions than others. Additionally, there are few outliers
in the distribution of the feature for footsteps.
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Figure 6: Plots for properties.cell_r. (a) Properties.cell_r. (b) Properties.cell_r. (c) Noise type. (d) Noise type.
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Figure 7: Plots for properties.la50. (a) Properties.la50. (b) Properties.la50. (c) Noise type. (d) Noise type.
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Figure 8: Continued.
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4.10. Properties.Last_Measure_Epoch. Te distribution of
the feature “last measure epoch” is examined in Figure 12(a).
Te range of values for this characteristic is determined to be
1.5 to 1.65, with two peaks forming a bimodal distribution at
1.55 and 1.65. Similarities may be seen between the distri-
butions of the wind and chatting classes, with the wind class
exhibiting a somewhat bimodal pattern as opposed to the
chatting class’s singular modal distribution as shown in

Figure 12(b). Te average value of the “last measure epoch”
for each class is illustrated in Figure 12(c), and it can be seen
that the average value for each class ranges between 1.5 and
1.6. Te median value and fve-point summary of the “last
measure epoch” for various classes are shown in
Figure 12(d), indicating that the median value can difer
signifcantly depending on the class, with some classes
having a more concentrated distribution than others. Te
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Figure 8: Plots for properties.laeq. (a) Properties.laeq. (b) Properties.laeq. (c) Noise type. (d) Noise type.
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Figure 10: Plots for properties.measure_count. (a) Properties.measure_count. (b) Properties.measure_count. (c) Noise type. (d) Noise type.
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Figure 11: Plots for properties.frst_measure_epoch. (a) Properties.frst_measure_epoch. (b) Properties.frst_measure_epoch. (c) Noise
type. (d) Noise type.
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Figure 12: Plots for properties.last_measure_epoch. (a) Properties.last_measure_epoch. (b) Properties.last_measure_epoch. (c) Noise type.
(d) Noise type.
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distribution of the persons and footprints classes is quite
concentrated, and there are some outliers in the footprints
class as well. Te feature “frst measure epoch” is observed to
exhibit behavior that is similar to this behavior, and both
features appear to do so.

4.11. Latitude. Te distribution of the feature “latitude” is
shown in Figure 13(a). Te graphic illustrates the feature’s
minimum and maximum values, which are 1.5 and 6.5, re-
spectively. With two peaks situated at 3 and 6, it appears to be
a bimodal distribution.Te diference in distribution between
wind and conversation is shown in Figure 13(b). While the
distribution of talking is homogeneous, that of wind has
a peak and concentration at about 6. Te average value of
“latitude” for each class is shown in Figure 13(c).Te range of
averages across all classes is between 3 and 6. Te median
value and fve-point summary of “latitude” for various classes
are shown in Figure 13(d). With wind, footsteps, and humans
having highly concentrated distributions and several outliers
as well, it can be seen that the median value of the features
difers signifcantly among diferent classes.

4.12. Longitude. Te distribution of the feature “longitude” is
shown in Figure 14(a). Te fgure displays a bimodal dis-
tribution with a larger peak around 100 and a smaller peak
around 115. Additionally, the feature has a minimum value of
100 and a maximum value of less than 120, as shown in
Figure 14(b). Te distribution of wind and chatting is
compared in the same fgure. It is observed that chatting has
a peak and concentration at around 100 while the distribution
of wind is uniform. Figure 14(c) displays the average value of
“longitude” for each class, and it is clear that the average value
for every class is higher than 100. Figure 14(d) demonstrates
the median value and fve-point summary of “longitude” for
several classes. As can be observed, the distributions of
footsteps and people are quite concentrated, while the median
value of the feature difers substantially between classes.Tere
are also outliers in certain classifcations, including road,
industrial, and footfall.

After performing exploratory data analysis, the corre-
lation heatmap was examined, and various classifcation
models were used to predict the types of noises.

5. Classification Models

Figure 15 illustrates the correlationmatrix, which depicts the
degree to which each predictor variable is correlated with the
others. Te primary objective of this project is to predict the
“Label,” which serves as the target column. To examine how
the features are related to the Label, it has been encoded into
a numeric column, and its correlation with other predictors
is shown in Figure 16. Correlation indicates the extent to
which changes in one variable are associated with changes in
another variable. A correlation matrix is a table that displays
the correlation coefcients between multiple variables. Each
cell in the table represents the correlation between two
variables. A correlation coefcient is a value between −1 and
1 that measures the strength and direction of a linear

relationship between two variables. A coefcient of 1 implies
a perfect positive correlation, a coefcient of −1 implies
a perfect negative correlation, and a coefcient of 0 implies
no correlation. Simply put, a correlation matrix is a tool that
aids in understanding the relationship between various
variables. In a correlation matrix, the variables are listed on
both the x-axis and y-axis. Each variable appears only once
on the x-axis and once on the y-axis. Te values in the table
cells, also known as correlation coefcients, correspond to
the relationship between the two variables listed on the
corresponding row and column. For instance, if the cor-
relationmatrix contains the variables A, B, and C, the top left
cell of the matrix would show the correlation between
variable A and variable B, and the cell below it would display
the correlation between variable A and variable B, and so on.
Te diagonal of the matrix, from the top left to the bottom
right, would be 1 because the correlation between a variable
and itself is always 1. Figure 16 shows a correlation matrix
where the diagonal values are all one. Tis is because the
features are compared to themselves and have a perfect
linear relation with themselves. Te red values indicate
a negative correlation, meaning that an increase in one
feature results in a decrease in the other. Conversely, the
green values indicate a positive correlation. Te scale on the
right side, ranging from −0.2 to 0.8, shows the gradient of
colors used to understand the nature of the correlation
between features. Dark colors represent high negative cor-
relations, light colors represent high positive correlations,
and medium-range colors indicate low or no correlation.

5.1. For Performances. Figure 17 shows a sample code of the
train-test split that was used. Te dataset was divided into
two parts: X (input features) and Y (output column). 80% of
the data was used for training, while the remaining 20% was
used for testing. Te random state was set to 42 to ensure
that the same set of samples was chosen for the training and
testing dataset each time the code was executed.

5.2. ShowMetrics (y_test, preds). Since this is a classifcation
problem, the metrics under consideration are given as
follows:

(1) Confusion matrix
(2) Accuracy
(3) Precision
(4) Recall
(5) F1 score

A brief description of each of these metrics is given as
follows.

5.2.1. Confusion Matrix. A confusion matrix summarizes
the prediction outcomes of a classifcation problem using
count values divided by class. It displays both correct and
incorrect predictions made by the classifcation model,
providing information on the types of errors made. Tis
breakdown is a solution to the limitation of relying only on

16 Journal of Electrical and Computer Engineering
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Figure 13: Plots for latitude. (a) Latitude. (b) Latitude. (c) Noise type. (d) Noise type.
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Figure 14: Continued.
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classifcation accuracy. Te confusion matrix is a table used
to evaluate the performance of a classifcation algorithm. In
a multiclass confusion matrix, each row represents predicted
instances in a class, while each column represents actual

instances in a class. Te matrix’s cells show how many times
predicted instances were classifed as actual instances. Tis
matrix can be used to compute various evaluation metrics
such as precision, recall, and accuracy.
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Figure 14: Plots for longitude. (a) Longitude. (b) Longitude. (c) Noise type. (d) Noise type.
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5.2.2. Classifcation Accuracy. As the name suggests, clas-
sifcation accuracy is simply the measure of how many
predictions made by the model are correct (accurate). It is
a relatively simple and easy to understand measure but can
often be quite misleading especially when the output classes
occur with varying frequencies and the output classes are not
balanced in the dataset.

5.2.3. Precision. Precision is a measure of a machine
learning model’s performance since it measures the accuracy
of a positive prediction provided by the model. Precision is
calculated by dividing the number of true positives by the
total number of positive predictions (i.e., the number of true
positives plus the number of false positives).

5.2.4. Recall. Te recall is computed as the ratio of positive
samples that were properly categorized as positive to the
total number of positive samples. Te recall of the model
assesses its ability to recognize positive samples. Te more
positive samples are identifed, the larger the recall.

5.2.5. F1 Score. Te F1 score is a crucial assessment statistic
in machine learning that combines accuracy and recall to
summarize a model’s prediction efectiveness. Both high

accuracy and recall are desirable, but there is a trade-of
between the two. It is not practical to maximize both pre-
cision and recall simultaneously. As accuracy increases,
recall decreases and vice versa. In Figure 18, diferent models
are shown with sets of accuracy and recall values. Te F1
score combines these two measures into a single statistic,
which ranges from 0 to 1. Te closer the F1 score is to 1, the
better the model’s performance.

5.3. ConfusionMatrix. A confusion matrix is a table that is
used to defne the performance of a classifcation algo-
rithm. In a multiclass confusion matrix, each row rep-
resents the instances in a predicted class while each
column represents the instances in an actual class (or vice
versa). Te cells in the matrix show that the number of
times instances of a predicted class were classifed as
instances of an actual class. Tis matrix can be used to
compute various evaluation metrics such as precision,
recall, and accuracy. Te confusion matrix in Figure 19
above illustrates the overall performance of the model. A
classifcation report is used to measure the quality of
predictions from a classifcation algorithm. How many
predictions are true and how many are false? More spe-
cifcally, true positives, false positives, true negatives, and
false negatives are used to predict the metrics of

Figure 16: Train test split code.

Figure 17: Performances code.
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a classifcation report. Furthermore, the confusion matrix
in Figure 19 illustrates the overall performance of the
model. Te classifcation of road and industrial noises is
less accurate than other categories.Te goal is to maximize
the values on the diagonal axis, as shown in red. Te
diagonal elements have the same label on the x- and y-
axes, indicating that the predicted label matches the true
label. Te value circled in yellow is correctly predicted, as
it has the label “works” on the y-axis and “industrial” on
the x-axis. Te scale on the left side of the matrix displays
the maximum and minimum values, which range from
0 to 20. Values above 17.5 are displayed as green, and the
frst value of the matrix exceeding 17.5 is marked in the
yellow box.

5.4. Relation between Cities and Noise Types. To investigate
the relationship between each noise type and the city where
the noise is captured, a bar plot of the two variables is plotted
as shown in Figures 20 and 21. Tese fgures illustrate the
relationship between each noise type and each city. It is
possible that the type of noise captured may be related to the
city in which it is recorded.

Figure 20 shows the noise type distribution for each city.
As it can be seen, the chatting noise type occurs in almost all
of the cities, and hence, it can be inferred that this type of
noise occurs with the highest frequency.

Figure 21 gives an overview of each noise type with
properties in cell R. Te works noise occurs with the highest
frequency as can be seen from the histogram “correlation
matrix” in Figure 22 as follows.

6. Algorithms

Tis research falls under the category of classifcation
problem that can be addressed by using classifcation al-
gorithms for supervised learning. Terefore, fve distinct
supervised learning algorithms were used to classify the data.
Te results of these algorithms are discussed in the sections
mentioned previously.

7. Prediction Models

Te evaluation of classifcation performance relies heavily on
evaluation metrics, with the most common measure being
accuracy. Te accuracy of a classifer on a particular data set

Figure 18: Metrics (y_test, preds) code.
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Figure 19: Confusion matrix.
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is represented by the percentage of test data sets that were
correctly identifed. However, since accuracy is often in-
sufcient in a text mining approach, additional metrics are
necessary to assess the classifer’s performance. In this
context, a confusion matrix is a crucial measurement tool. A

confusion matrix is a combination of the following
measures:

(i) TP (True Positive) represents a number of data
correctly classifed
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(ii) FP (False Positive) represents the number of correct
data misclassifed

(iii) FN (False Negative) represents numbers of in-
correct data classifed as correct

(iv) TN (True Negative) is the number of incorrect data
classifed the results related to those metrics are
presented in the next section

A model is created to predict the label of a given re-
cord. After the model is trained, test records are used to
evaluate the model’s performance. For these test records,
the actual labels (also known as true labels) are known,
and the model predicts a label (i.e., the predicted label).
Ideally, the predicted label should be the same as the true
label, but this is not always the case. In the results, such as
in the decision tree, this scenario is present. Te number
on the diagonal represents the correctly classifed noises
from the test set. Te F1 score is calculated from the
confusion matrix, and a comparison is performed for all
models.Te random forest was found to be the best model.

In Figure 23, the resulting confusion matrices of each
algorithm are illustrated. It can be seen that the perfor-
mance of decision trees, KNN, and the random forest is
better than the rest as they have predicted most types of
noises correctly. Te F1 score is a measure of a model’s
accuracy that balances precision and recall. In a multiclass
classifcation problem, where there are more than two
classes, each class is treated as a binary classifcation
problem. Te F1 score for each class is calculated, and
then, an average is taken for all the classes to get the
multiclass F1 score. It ranges between 0 and 1, where 1 is
the best score possible and 0 is the worst. It is particularly
useful when comparing models with an imbalanced class
distribution. Moreover, Figure 23 also illustrates the
resulting confusion matrix predictions of each algorithm.
It can be seen that the performance of decision trees, KNN,
and the random forest is better than the rest as they have
predicted most types of noises correctly.

Te F1 score as shown in Figure 24 for each class is
calculated using the following formula:
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Figure 23: Prediction tables of DT, KNN, LR, RF, SVM: (a) decision tree, (b) KNN, (c) logistic regression, (d) random forest, and (e) SVM.
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F1 � 2∗
(precision∗ recall)
(precision + recall)

, (1)

In calculating the multiclass F1 score, precision is ob-
tained by dividing the number of true positives by the sum of
true positives and false positives, while recall is obtained by
dividing the number of true positives by the sum of true
positives and false negatives. To determine the multiclass F1
score, the F1 score for each class is calculated, and the
average of all the class F1 scores is then taken. Te average
can be determined by taking themean or the harmonic mean
of all the F1 scores. Te harmonic mean is a better option
when some classes have a low F1 score because it gives more
weight to the lower values.

8. Models Comparison

After running all models, we got the following matrices for
a diferent model in terms of their accuracy, precision, recall,
and F1 scores as shown in Figures 25 and in 26.

By creating a null hypothesis (H₀) and an alternative hy-
pothesis (H₁) based on our problem (comparing classifers).

H₀: the classifers are equal
H₁: the classifers are diferent

Our comparison is made using two tests: Friedman and
Nemenyi. Friedman is the frst test and if H₀ is rejected (H₁ is
accepted), Nemenyi is used to know the best classifer. Here,
we have fve classifers, SVM, logistic regression, K-NN,
decision tree, and random forest. To make the Friedman test,
we choose four evaluation metrics to be our reference.
Should we reject H0 (i.e., is there a diference in the means)
at the 95.0% confdence level? True. We will reject the null
hypothesis (H₀). So, we will proceed for Nemenyi to know
the best classifer (Rank).

In the Nemenyi test, we need to get the diference be-
tween mean rankings (average row of ranking table) among
all the classifers (comparing pairs of classifers). We got the
following table for Nemenyi scores as shown in Figure 27.

To our classifers, random forest and K-NN obtained
higher rankings.Te table shows the Holm-adjusted p values
and signifcance (sig) for the comparisons between random
forest and other models. Te comparison between random
forest and logistic regression yielded a Holm-adjusted p
value of 0.014602, indicating a statistically signifcant dif-
ference. Similarly, the comparison between random forest
and SVM resulted in a Holm-adjusted p value of 0.021871,
also indicating a statistically signifcant diference. On the
other hand, the comparison between random forest and
decision tree produced a Holm-adjusted p value of 0.292201,
which is not statistically signifcant. Tis suggests that there
is no substantial diference between random forest and
decision tree. Likewise, the comparison between random
forest and k-NN resulted in a Holm-adjusted p value of
0.823063, indicating no statistically signifcant diference.
Terefore, based on this comparison, we cannot confdently
claim that random forest is superior to k-NN. Overall, based
on these Holm-adjusted p values, random forest demon-
strates statistical superiority over logistic regression and
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SVM, but there is no signifcant diference between random
forest and decision tree or k-NN. Based on our analysis, our
classifers, random forest and K-NN, achieved higher
rankings. We discovered signifcant diferences when
comparing our top-ranked model, random forest, with the
remaining models, logistic regression, and SVM. Terefore,
we can confdently conclude that random forest outperforms
both logistic regression and SVM. We found that logistic
regression and SVM are signifcantly diferent, and we can
say the random forest is better than logistic regression and
SVM as seen in Figure 28.

9. Discussion and Analysis

A comparative analysis was conducted, revealing that K-
nearest neighbors (KNN), random forest, and decision tree
algorithms performed the best in terms of accuracy, as in-
dicated by the confusion matrix. Te F1 score, which is
a measure of a model’s accuracy that balances precision,
recall, and speed, was evaluated. According to the fgure, DT
has the best speed, surpassing RF and KNN by 0.12% and
0.29%, respectively. Te F1 scores of diferent models were
assessed, and it was discovered that RF, KNN, and DT
obtained the highest scores, around 0.95. On the other hand,
LR and SVM had relatively lower F1 scores of 0.28 and 0.25,
respectively.

10. Conclusion

It is evident from the study that noise pollution is a pressing
issue that should be taken into account when planning
townships or developing smart cities. Hence, this study
investigates the environmental sound for noise pollution

assessment. Te study presents six diferent types of pa-
rameters used for monitoring 16 types of noise pollution
data. Machine learning (ML) algorithms, including RF,
KNN, DT, SVM, and LR, are used for noise monitoring and
classifcation in Python. Te results show that Python ma-
chine learning prediction results are more accurate. A
comparison is made for all models from the correlation
matrices results calculated. Te random forest (RF) model is
found to be the best with an accuracy of 100% and the fastest
computation time of 0.952381. RF is an ensemble of DT that
can handle large amounts of data and reduces overftting,
making it a suitable choice for ML classifcations. Terefore,
it is recommended to use RF as the fnal model for this
classifcation problem.
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