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Software-defned networking (SDN) brings an innovative approach to networking by adopting a fow-centric model and re-
moving networking decisions from the data plane to provide them centrally from the control plane. A single centralized controller
is used in a traditional SDN design. However, the complexity of modern networks, due to their size and requirements’ coarseness,
has made using a single controller a source of performance bottlenecks. Similarly, the solution found by using multiple controllers
in distributed control planes brings forth the profound issue of interoperability, consistency, and the “controller placement
problem” (CPP). It is an NP-hard problem that deals with positioning controllers at optimum locations within the network and
mapping with resources at the data plane to meet quality of service (QoS) requirements. Over the years, the problem has received
signifcant attention from the research community, and many solutions have been considered. Tis paper ofers an in-depth
review of the proposals by providing an updated evolution of the problem concerning the application environment, design
objectives, and cost and controller type. Based on our fndings, new research ideas were identifed and discussed.

1. Introduction

Te support for a network of everything and many on-
demand applications and services ofered by diferent
multitenant cloud computing service providers had pushed
the Internet to evolve into a large and complex infra-
structure. A prior study reveals that the number of active
Internet devices demanding these services will rise from
26.66 billion in 2019 to 41 billion in 2027 [1]. Tis growth is
expected to exponentially increase to 125 billion by 2030 as
an average of 127 devices is connected to the Internet daily
[2]. Te signs of this have become more visible during the
COVID-19 pandemic. Tese devices can generate hetero-
geneous trafc in cyberspace to the tune of 800 ZBs. Most
trafc emanates from applications with conficting quality of
service (QoS) requirements. Communication is no longer
exclusive to client-server but involves machine-to-machine

(M2M). Managing these devices generating various trafcs
with diferent QoS demands is quite challenging in today’s
traditional networks.

As such, network design and management have become
much more difcult. Te integration of network control
logic and data forwarding entity is considered the major
drawback of traditional IP network architecture [3, 4]. Te
prohibition on customization in its proprietary glued net-
work devices makes network management, policy design
and innovation time-consuming, infexible, and prone to
error [1, 5]. Tese limitations drive the need for a new ar-
chitecture that can cope with current demand dynamics.
Software-defned networking (SDN) [6] is considered a
viable option to the traditional architecture because it breaks
the distributed vertical integration of network devices to
eliminate all their dependencies. Tis way, the SDN’s main
revolution to stimulate this possibility is the detachment of

Hindawi
Journal of Electrical and Computer Engineering
Volume 2023, Article ID 6466996, 33 pages
https://doi.org/10.1155/2023/6466996

mailto:ymnura@atbu.edu.ng
https://orcid.org/0000-0002-1222-1754
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6466996


the intelligence aspect of networking from layer three de-
vices and handing it over to a programmable controller.
Terefore, the role of these devices is limited to packet
forwarding based on the controller’s instructions [6]. Te
controller’s global view and access to network statistics
enable it to formulate policies to manage the devices fexibly.
In addition, the control plane creates, distributes, and en-
forces the network policies upon request by switches
whenever a new fowwith no corresponding rule entry in the
switch fow table arrives [7]. Te architecture of SDN was
initially designed to use a single centralized CP to respond to
all the events that emanate from the data plane [8]. Although
a single controller is sufcient to manage small-scale net-
works, it introduces overhead, scalability, and reliability
concerns due to high failure tendencies in large-scale net-
works. As such, multiple controllers have shown better
performance on large-scale networks. Terefore, it is im-
perative to use multiple controllers in a distributed archi-
tecture (dmCP) to address these issues. However, deploying
the multiple controllers also opens contemporary design and
performance challenges at the CP. Tese issues are associ-
ated with interoperability, consistency, and the controller
placement problem (CPP) [9].

Several eforts were made to ofer solutions to these
outlined issues [9–12]. Each has a peculiar application area,
parameters, and performance metrics. Te method(s) and
algorithm(s) proposed to have diferent degrees of strength
and weakness. Te state-of-the-art solutions ofered are
numerous and vary distinctively. Tis work undertakes a
review of these solutions to provide the research community
with an insight into these activities although some attempts
were made in the past to give this review as reported in
[4, 13–21]. However, most of these works focused their
studies strictly on CPP alone. Other essential design chal-
lenges are not considered. For example, the authors in [4]
studied CPP solutions focused on the controller’s capacity
and trafc conditions. Even at that, they did not consider
application environment and cost factors.

Te authors in [13] focused on SDN with multi-
controllers from a design logic perspective. Te paper
reviewed the proposed scalability, reliability, and load bal-
ance solutions. However, it did not consider issues associ-
ated with interoperability between the controllers. Jalili et al.
[15] reviewed the control plane deployment mode. Te
authors compared in-band and out-band solutions. How-
ever, optimization objectives, application environment, and
controller type were overlooked.Te work in [16] focused on
CPP design principles and architectures. But like [15], their
discussion coverage did not touch on optimization objec-
tives and the deployment environment. Tis aspect is par-
tially covered in [17–19] as the works categorized the CPP
solutions in terms of performance metrics such as latency,
reliability, cost, and a combination of many of these in a
MOO scenario. However, a controller type and other SDN
application areas, such as WSN or IoT, were not considered.
Te authors restrict their scope to CPP in DCN and WAN.
However, wireless scenarios were partially touched in [19].

Similarly, some techniques have applied deep learning
and machine learning techniques to integrate SDN with IoT;

however, these AI techniques are outside the scope of the
present document. On the other hand, Isong et al. [20]
considered optimization objectives such as latency, QoS, and
resilience. Additionally, they discuss various schemes for
solving the CPP and their limitations.Tey categorized them
into optimal and heuristic-based suboptimal solutions.
Furthermore, they underlined CPP application areas in
next-generation networks such as VANETs, IoT, and tele-
com. Lastly, the authors of [14, 21] conducted an in-depth
analysis of CPP solution strategies applied to optimize the
CPP performance metrics such as latency and reliability.
However, none of the papers [4, 13–21] considered inter-
operability and consistency issues among either homoge-
neous or heterogeneous controllers deployed in a dCP.
However, a survey of controllers for scalability, consistency,
reliability, and security is provided in [22]. However, it did
not consider CPP and interoperability. In other words, none
of the papers consider reporting how the multiple con-
trollers placed in the dCP interoperate or synchronize their
domain information via the EWi to arrive at a consistent
network state for efective service provisioning. Tese issues
and CPP are fundamental in designing a control plane with
multiple controllers in SDN.

So, unlike all these other articles, this study looks at how
homogeneous and heterogeneous controllers have been used
to solve CP design problems in csCP and dmCP. In dmCP,
the discussion covers issues on C-C interoperability, in-
formation synchronization problems for getting a consistent
global network view among the controllers, and CPP. Table 1
provides a comparison summary to bring out these difer-
ences. Te interoperability and consistency discussion fo-
cuses on the EWi and consistency properties, respectively,
while the one on CPP solutions is focused on design ob-
jectives, load balance application environment, and security.
Te key contributions of this research are summarised as
follows:

(i) A highlight of CP challenges with historical context
to trace the source of the problem that evolved into
CPP

(ii) Provide the most commonly used CPP mathe-
matical modelling and problem formulation
approaches

(iii) Indicate a diferent solution approach to pursue
through DP than the dmCP option

(iv) Provide a critical review of eforts to address dmCP
issues related to interoperability, consistency, and
CPP solutions proposed in both csCP and dmCP,
along with design objectives, the application envi-
ronment, and security

(v) Finally, the study identifes and discusses potential
future research directions

As shown in Figure 1, the rest of the paper is organized as
follows: Section 2 briefy overviews SDN and discusses its CP
design options and performance issues. Sections 3 and 4
discuss the challenges of interoperability and consistency in
dmCP and review the approaches proposed to address them,
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respectively. Section 5 presents a review of the state-of-the-
art solutions to CPP. Finally, the conclusion and future
research direction are provided in Section 6.

2. Overview of SDN

SDN comprises three (3) planes with two interfaces to
manage the communication between them, as shown in
Figure 2: the application plane (AP), the control plane (CP),
and the data plane (DP). Te communication between AP
and CP is managed through the northbound (NB) interface.
Te APs are a set of network applications such as network
virtualization, frewalls, intrusion detection systems (IDSs),
routing, QoS, and mobility management. Tese applications
are translated into high-level networking policies and ex-
posed to CP. Te CP is considered the network’s brain that
manipulates the network forwarding entities based on the
design of network policies. It is responsible for routing

Table 1: Comparison of related papers.

Ref CPP Controllers
interoperability via EWi

Controllers
consistency Study focused, scope, and solution classifcation

[4] √ X X Controllers’ capacity and trafc condition
[13] √ X X Te multicontrol plane from a design logic perspective
[14] √ X X
[15] In-band and out-band solutions
[16] Design principles and architecture
[17] √ X X Performance metrics, such as latency, reliability, cost, and MOO
[18] √ X X Performance metrics, such as latency, reliability, cost, and MOO

[19] √ X X Classify CPP based on optimization/performance objectives and
wireless environment

[20] √ X X Focused on the solution algorithms or approaches used to optimize
the well-known CPP performance objectives

[14] √ X X Performance metrics
[21] √ X X Taxonomy of CPP optimization
[22] X √ Scalability, consistency, reliability, and security

[23] X X √

Te paper focused on works of ensuring consistency at the DP device
forwarding state only. It did not cover works focused on CP with
multiple controllers. Where the controllers state whether consistent or
not at the time of installing the rules entries in the DP switch fow table

infuence network behaviour

Current
document √ √ √

Controller placement (for resilience, load balancing, application
environment, and security), heterogeneous controllers

interoperability, and consistency problems
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Figure 1: Organization of the review.
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Figure 2: SDN architecture.
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computation, networkmonitoring, balancing the load on the
network, enforcing security policies, and many more. Te
DP is released from all control functions and focuses on
forwarding trafc based on the decision made by the control
plane. Te CP manipulates the network’s behaviour by
installing fow rules in the DP fow table. It is a logical data
structure that stores the fow entries for each corresponding
trafc fow. Te communication between the CP and DP is
managed through the southbound interface. Protocol
Oblivious Forwarding (POF) [1] and Open vSwitch Data-
base (OVSDB) [6] are among the early southbound man-
agement protocol used in SDN. However, OpenFlow is
considered the most popular southbound standard. Over the
last decade, SDN has attracted interest from both academia
and industry in terms of research and deployment. Many
institutions widely apply it in data centre networks (DCN)
and wide area networks (WAN). It is also observed to be
infuencing the design of IoT [24] applications such as
VANET, WBAN [25], and next-generation technologies
such as 5G [26].

2.1. SDN Control Plane Design Options and Performance
Issues. Te CP of SDN can be designed with a single
controller (csCP) or multiple controllers (dmCP). While
csCP canmeet performance requirements in small networks,
it struggles to scale to large and dynamic network scenarios
due to high control message processing overhead. It also
exhibits reliability concerns because of the single failure
point (SPOF) because failure tendencies are higher when the
network is large. Figure 3 provides a visual representation of
performance issues in each design option. Te CP uses link
layer discovery protocol (LLDP) to discover the DP devices.
After the discovery, it is responsible for ensuring real-time
fne-grained maintenance of its state. For that, it monitors
the topology at regular intervals to collect network statistics
for the operation of network applications at AP. Some of the
activities it monitors are trafc arrival patterns, trafc types,
or topology changes due to events such as failures, which
have increased lately [27]. Tis enables it to recalculate new
instructions and install them on the switch’s fow table at DP
upon the occurrence of any of these events. It centrally
performs these functions reactively or proactively.

2.1.1. Centralize Single Control Plane: Performance Issues.
As the name implies, in csCP, a lone controller is confgured
to control the entire network. Te single controller centrally
manages all the devices at the DP (see Figure 4). Although it
can satisfy performance obligations if the network is of
average size, it easily sufers performance degradation if the
network begins to grow or span over a wide geographical
area. Table 2 provides the summarised features of some of
these controllers.

2.1.2. Scalability and Overhead. One of the performance
issues sufered by a CP designed with a csCP is its inability to
handle a network with DP devices extending to a geo-
graphically large area or rapidly generating a high number of

events. Te network’s diameter infuences the fow setup
time in SDN; the time tends to be higher when the switch is
further away from the controller. Furthermore, a network
can grow so that numerous fow setup requests from many
switches become a source of performance bottlenecks. Tis
is because the number of fow setup requests is directly
proportional to the number of switches, implying that the
overall cost to confgure a fow route for n-switches con-
cerning network load is about 94 + 144N. Te authors in
[28] report that a large network can have switches that can
generate up to 10 million fow requests per second. Tis is
beyond the capacity of a single controller, as some con-
trollers can only accommodate 6000 fow requests per
second [13].

On the other hand, a DCN might have a dynamic en-
vironment where high-volume network events are generated
rapidly within a short period. In such a situation, the csCP
sufers from communication and processing overhead that
can prolong response time, causing a serious delay that can
hurt some time-constrained applications. Tis is likely to
happen because the controller may not have adequate CPU,
memory, and bandwidth capacity to process and respond to
this many DP events [6].

2.1.3. Reliability: Single Point of Failure. A csCP is vul-
nerable to a single point of failure (SPOF) [29] because if the
single controller is down, all the switches under it will not
have another controller to fall back on. Tis is crucial, as it
will afect service availability and security if the network is
compromised under any attack, like a DoS attack by fooding
the network with numerous fake fow setup requests. Fur-
thermore, the singularity of the CPmakes it more vulnerable
to attacks such as spectrum sensing data falsifcation (SSDF),
also known as the Byzantine attack. And defence against
such an attack on an SDN controller is tough. If successful,
the adversaries will acquire full control of all network devices
and behave arbitrarily to disrupt the network. Te only
known defence against such a threat is a 3f+ 1 switch-to-
controller mapping.

Tere are two approaches to mitigating these challenges.
One of them is a DP modifcation approach in which some
levels of decision-making are relaxed and allowed to be taken
by the forwarding devices. Te other is to redesign the CP
with multiple controllers. Using the former approach,
DevoFlow [30] proposed decreasing the intercommunica-
tion rate between the CP and DP by implementing a
wildcard rules mechanism at switches. Te mechanism
empowers switches to be able to make some local routing
decisions involving matching mice fows. Tis frees up the
controller to focus solely on elephant fows. Tis way, sig-
nifcant overhead is reduced while in DIFANE [31], a dis-
tributed DP framework for handling all data packets is
proposed. In this architecture, if trafc fows that do not
resemble a precached rule arrive at an ingress switch, the
ingress switch is instructed to re-encapsulate the fows in
packets and redirect them to a designated switch with route
forwarding determination authority. Tis is done based on
rules for partitioning information. Te authority switch
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must deal with all packets in the data plane and update the
ingress switch to cache the decided rules locally. Te ap-
proach employs a link-state routing technique that detects
changes in network topology without the controller’s in-
volvement to curtail its trafc overhead. However, both
techniques violate the SDN basic principle of freeing DP
elements from any function but packet forwarding.

Moreover, they may require a complex modifcation or
replacement of the SBi API, such as OpenFlow compliance
DP elements, which may increase the design cost. Alter-
natively, a technique in [32] uses a partitioning algorithm to
proactively generate wildcard rules and install them in the
switches to handle mice fow free of the controller. Te
technique performs the “action” of rewriting the server’s IP
address for packet forwarding to the egress port. On the
contrary, the approach in [33] proposed a technique that
modifed the packet handling process such that only the
packet that arrives frst is sent to the CP, while later packets
are handled locally. Tis is achieved via the blackhole
mechanism. In a similar approach, the authors of [34]
proposed a technique that reduces CP overhead via packet-
in fltering. It screens packets with duplicate information

and drops them. However, the techniques incur high packet
loss due to the architecture of the black hole mechanism and
fltering techniques, respectively, while the authors of [35]
proposed a scheme that reduces the number of control
messages between CP and DP using an out-of-band con-
troller to avoid hybrid architecture.

Conversely, Isyaku [36] proposed a technique that re-
duced CP overhead using fow timeouts and eviction
mechanisms. Te authors consider trafc characteristics to
select fows to evict from the fow table whose reinstallation
would cause the least overhead on the CP. Similarly, to
improve csCP scalability, ethane [37] and NOX [38] enhance
enterprise networks by allowing administrators to defne
policies such that mismatched requests pass through the
controller to have centralized control. However, both ap-
proaches sufer from SPOF and support a relatively small
network. Other approaches [39, 40] adopt parallelism-based
optimization using a multicore system and multithreading
to reduce fow setup latency in CP. On the other hand, the
authors of [41, 42] embraced routing scheme based-opti-
mization and entry aggregation with early match using the
hidden Markov model to scale and reduce the number of

Table 2: Comparison of controllers.

Controller Organization Language
Issue

Multi threading Capacity Flow request Interface
Consistency Reliability Scalability

NOX Nicira C++ High Low Low Yes Small 30 k/s X
POX Nicira Python High Low Low X Small X X
Maestro Rice uni X X X X X Small 300–600 k/s X
Ryu NTT lab Python X X X X Small 6 k/s OpenFlow
Floodlight Big switch Java High Low Low X Small 250 k X
Beacon Stanford Java X X X Yes Small 12.8m/s OpenFlow

Control Plane Design Options
Performance Issues

Single Control Plane (csCP)
Issues

Scalability and Overhead

Response Time

SPOF

Security, Disruption

Multiple Control Plane (dmCP) 
Issues

Consistency 

Synch Prob, overhead

Interoperability 

EWi comm Problem

CPP

Numbers, Placement, Mapping

Figure 3: Taxonomy of SDN control plane performance issues.

Data Plane

Centralize Single Control Plane (scCP)

Controller

Figure 4: Single control plane architecture.

Journal of Electrical and Computer Engineering 5



events processed by the CP. Te approaches aim to optimize
this process in terms of fowable.

2.2. Control Plane with Multiple Controllers. A CP with
multiple controllers is designed to solve the csCP limitations.
To achieve that, the csCP is modifed to deploy multiple
controllers in a distributed architecture to manage the
network. Figure 5 depicts an example of this design option.
Te dmCP uses a load-sharing mechanism to allocate the DP
switches among diferent controller instances as appropriate.
Te controllers communicate via east-to-west interface
(EWi) to synchronise their information for global network
knowledge. In addition, the interface provides a channel to
coordinate activities such as data transmission, leader se-
lection, failover, and load balancing among controllers.
Architecturally, the mCP with multiple controllers is
designed either as a logically centralized CP or a logically
distributed CP.

Te multiple controllers work together to perform the
functions of a single controller in a logically centralised CP.
Tis is accomplished by constantly synchronising their
network state and policies to provide a consistent network
view. However, intensive state synchronisation among
controllers to maintain a logically central CP can result in
signifcant bandwidth consumption and high latency in large
networks whereas in logically distributed CP, each controller
only has a view of the domain for which it is responsible; it
makes decisions for its local domain alone and only dis-
penses the information that is needed to other controllers.
Tis is as opposed to logically centralising designs where
each controller must have a global view of the entire network
to take decisions. Consensus algorithms are applied in most
distributed control plane designs to achieve eventual cor-
rectness and consistency [43].Te consistency level achieved
by these designs may be strong or weak. Strong consistency
requires that the state of each controller instance be repli-
cated and transmitted to all controllers through consensus.
Tis implies that an appropriate and consistent network
state is only achieved through consensus. Te procedure
introduces overhead and delays, limiting responsiveness,
and potentially resulting in suboptimal performance. While
the eventual consistency model omits consensus and assures
at least one delivery invariant, the approach only integrates
information as it becomes easily available and reconciles
updates when each domain knows them.Tis supports faster
reaction with the ability to handle higher update rates, but at
the cost of a temporarily inconsistent network view. Tus, it
may cause inappropriate network behaviours.

ONIX [44] is an example of these CP architectures with
distributed controller instances deployed on one or more
physical machines. Te control architecture of ONIX
maintains a global network view within a network infor-
mation base (NIB) data structure with two unique update
and distribution mechanisms. ONIS guarantees consistency
of network state using distributed locking and Paxos con-
sensus algorithms. It also incorporates replication and
transactional database modes to ensure that consistency
attend is reliable. In addition, it contains a distributed hash

table (DHT) mode that provides an extensive API to verify
the consistency. If you need a solution with high availability
and your network experiences frequent events, Onix is a
great option. However, despite all these consistency checks,
it lacks confdentiality and integrity mechanisms to ensure
secure state exchange among the controller instances.

Nevertheless, ONOS [45] and ODL [46] employed
stringent access control techniques and security services to
prevent repudiation and elevation of privilege risks if security
is crucial to you. ONOS [45], distributed control architecture,
operates diferent instances of foodlight controllers on
multiple servers, with each server responsible for a subset of
OpenFlow switches.Te controllers broadcast network events
using a publish/subscribe method, and intercontroller com-
munication is handled via various routes. ONOS leverages
Titan’s transactional semantics on top of Cassandra’s con-
sistent data store to ensure the consistency and integrity of the
network state. In addition, the secure mode (SM) of ONOS
provides protected access and granular control over internal
data structures and libraries.

OpenDaylight (ODL) [46] is another controller with
distributed architecture designed through clustering mul-
tiple controllers. ODL can keep a centralized, logical net-
work view using the Akka framework and the RAFT
consensus algorithm. Te consensus algorithm is incorpo-
rated to enable the clustered ODLs to achieve network
consistency. Te algorithm randomly selects one of the
cluster members to serve as the leader and then transmits all
the most recent data changes to that leader for update
processing. It is an open-source controller that can ac-
commodate various specialized security modules such as
secure network bootstrapping infrastructure (SNBI), AAA
service, and Defense4All. As a direct result, ODL can pre-
serve the integrity of the data, as such; it is recognized as one
of the most secure dCPs. Tese features facilitate SDN in-
tegration with conventional network architecture.

Similarly, like ODL [46], DISCO [47] is another hori-
zontally distributed CP architecture. But unlike ODL, it has
limited security mechanisms because of an inherent
Floodlight controller’s vulnerability. DISCO employs an
advanced message queuing protocol (AMQP) to design an
expandable dCP suitable for heterogeneous WASDN that
addresses concurrent control strategy inconsistencies in

Distributed Control Plane (dmCP)

Controller 1 Controller 2 Controller 3

EWi EWi

Data Plane

Figure 5: Multiple control plane architecture.
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multicontroller architecture. A single Floodlight instance of
DISCO is assigned to an autonomous domain. Te AMQP
helps it via an EWi to transmit information to other con-
trollers’ instances using publish-and-subscribe mode.
However, even though DISCO is suitable for a large network
under diferent administrative control like the Internet,
scalability and SPOF concerns still exist because of its one
controller instance per network domain strategy. Katta et al.
[48] proposed Ravana as an alternative to DISCO for fault
tolerance at both DP and CP. Ravana is a tripod-phase
replication procedure to preserve consistency of (1) DP
switches run time, (2) control interface, and (3) controller
instance runtime in a logically centralized CP architecture in
a master-slave design. Instead, of merely keeping the con-
troller state consistent in one phase, it considers the data
plane by incorporating a mechanism to guarantee switches’
state consistency. Ravana demands strong consistency
guarantees when processing the failure events to preserve
one exact semantic. Because the method is based on the Ryu
controller platform, it is susceptible to the same security
faws as the Ryu system itself [49]. Another alternate fault-
tolerant dCP with an additional transparency feature in
controller instance capacity is proposed in [50] as IRIS-
HiSA. Te architecture of IRIS-HiSA comprises an assem-
bled bunch of controller instances organized in a physically
distributed manner, with each instance having access to
network state information of the global topology. Controller
instances are activated by its session management module
when there is a failure or overload incident, and switches are
assigned to it as per its residual capacity. All the controller
instances shared their domain information in a publish-
subscribe procedure with consistency in all the controller’s
network knowledge being pursued using the Hazelcast
consensus algorithm.

Instead of using traditional topological partitioning for
diferential QoS provisioning, Hydra [51] is an alter-
nativedistributed CP architecture that divides a computer
network according to the functionality and role of network
control applications. So that network applications are con-
fgured on diferent distinct controllers. Hydra uses the Paxos
consensus algorithm for fault tolerance and consistency.
However, due to the functional slicing, communication be-
tween various applications across other partitions may en-
counter high latency. Conversely, Elasticon [52] is built with a
load measurement and an adaptation module to select load
adjustment via switch migration across controller instances in
the event of topology changes, making it ideal for adaptive load
balancing in dCP.

2.3. Distributed Control Plane Challenges and Design Issues.
Architecturally, the CP with multiple controllers is designed
either as a logically centralized or a logically distributed CP.
However, as summarised in Table 3, both designs face
challenges such as consistency, interoperability, and the
controller placement problem (CPP) (see Figure 6). Two of
these challenges are about ensuring that the behaviour of the
multiple controllers matches what is ofered by a single
controller. Indeed, this requires coordination to ensure

consistency and interoperability among the controllers.
However, ensuring this is a big challenge in SDN [43].

Meanwhile, consensus algorithms such as Paxos and
RAFT are being relied upon by many dCP to achieve a
consistent network state. However, the consensus algo-
rithms relied upon are observed to be theoretically un-
suitable and practically inefective because they inhibit
availability and incur extra latency, primarily when con-
trollers are distributed across a WAN [43]. Furthermore,
interoperability among the multiple controllers became even
more difcult due to the controllers’ heterogeneity. Te
other problems CP faces with multiple controllers is iden-
tifying the number of required controllers and their
placement position in the network topology. Tis problem is
called controller placement problem (CPP) [9].

2.3.1. Controllers Consistency Problem. Controller consis-
tency in mCP refers to its ability to always have a stable, up-
to-date global knowledge of all network states and policies.
Te update always aims to preserve one or more of the
following aspects: i.e., (1) network state like connectivity and
capacity, and (2) policy. Inconsistency in CP connectivity
can cause trafc blackholes (i.e., dead-end paths), isolation
or forwarding loops problems [54] (i.e., a situation where
trafc keeps going back and forth without proceeding to
destinations). Te latter can deplete switch bufers to the
extent of impairing availability in the network.

In contrast, inconsistency in capacity can cause transient
congestion and latency problems during updates [55]. And
lastly, consistency in policy ensures the requirements desired
by the operator, like path selection such as in Isyaku et al. [56],
ACL, and frewall are adhered to. Inconsistency in policy
updates might have security implications and QoS violations.
To avoid all these, the controllers must constantly share their
state, policies, and version info. However, achieving a con-
sistent global knowledge of an entire network by all controllers
is one of the most challenging tasks in dmCP, unlike in csCP
instances where global networks are easily acquired during
network policy updates. Te consistency in mCP covers three
aspects of SDN devices operations: (1) controllers’ uniform
state consistency, (2) consistency in switches’ fow tables rules,
and (3) controllers’ version update consistency [22]. Suppose
the rules’ update operation happens at the time of the version
update. In that case, there might be an ongoing transfer of
some packets of some fows, so at that time, they may be
forwarded by a mix of old and new rules, leading to incon-
sistency in packet forwarding decisions because status updates
might arrive late, which will cause jitter. Likewise, controller
overhead may appear due to the high frequency of syn-
chronization attempts. In contrast, state desynchronization at
intervals between two syncs could bring connectivity con-
sistency problems like forwarding loops and black holes [57].

2.3.2. Controllers Interoperability Problem. Similarly, it is
essential to note that information synchronization for global
view among the controllers is only made possible by an
efective EWi. However, the lack of unifed EWi makes
interoperability between diferent controllers a prominent
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problem in SDN. Hence, it is compounded even further
when dealing with heterogeneous controllers. Te moti-
vation for designing CP with heterogeneous controllers
can be seen from a security perspective to avoid the
common mode fault of homogeneous controllers [10].
Tus, providing an abstraction that can support the in-
tegration and interoperation between CP with heteroge-
neous controllers from diferent vendors as did to DP
elements by OpenFlow is a big challenge. Moreover, the
variations in data models among other controllers ham-
pered this collaboration [22].

2.3.3. Controllers Placement Problem. Another popular issue
confronting CP with multiple controllers is a controller
placement problem (CPP) [9]. To design a CP for any given
network topology, the CPP is formulated to fnd answers to
questions like how many controllers are needed for the
network. What are their optimum location in the topology?

And how can they be mapped with the DP devices to satisfy
the QoS requirements of the network? Te issues had re-
ceived substantial research attention as knowing the number
of controllers to use and where to put them is a prerequisite
to meeting QoS metrics and fault tolerance. For instance,
knowing answers to these questions is necessary to design
efcient dmCP for SDWAN and DCN where latency and
reliability are some of the most important performance
requirements.

3. Consistency Problem in Distributed
Control Plane

3.1. ProblemDescription. Network events such as the arrival
of a new fow, link, or node failure are considered. When
contacted, a controller will respond by designing a new rule
and multicast it as a packet-out message to all switches
involved to update their respective fow tables

Distributed Multiple CP 
Performance and Design Issues

Controllers Consistency Problem
Consistency & Info Synch Prob

CPP
Numbers, Placement & Mapping

Controllers Interoperability Problem
Heterogeneity Situation

Figure 6: Distributed control plane design challenges.

Table 3: Distributed control plane summary table.

Ref
Design Controllers

instance
Consistency
algorithm Strength Weakness

Challenges
LC LD Consistency Heterogeneity CPP

ONOS
[45] √ Floodlight Raft and

cassandra

SBi and NBi use TLS and
HTTS. It includes IDS
and library access
authorization

— Weak Y Y

ONIX
[44] √ ONIX Paxos

Adaptable to network
changes and good for

high-availability
networks

Insufcient
protection of
privacy and

confdentiality

Strong Y Y

ODL [46] √ OpenDayligh Akka and raft Arguably the most
secured Strong Y Y

DISCO
[47] √ Floodlight Interdomain

agents

Suitable for the
heterogeneous network

under diferent
administrative control

like the Internet

Scalability and
reliability persist. It
is also insecure

Strong Y Y

Ravana
[48] √ RYU

Two-phase
replication
protocol

Maintain DP and CP
consistency

Vulnerable to
spoofng, tempering,

DoS, and
repudiation attacks

Strong Y Y

IRIS-
HiSA [50] N/A Hazelcast — — NA Y Y

Hydra
[51] √ Floodlight Paxos Diferential QoS

provisioning

High comm latency
between diferent

applications
NA Y Y

Elasticon
[52] N/A Hazelcast Good load-balancing

strategy

Switch migration
overhead. It also
lacks security
measures

Strong Y Y

[53] ODL Fast paxos Strong Y Y
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asynchronously. However, there will be delays before all the
switches afect the update because of the asynchronism.
Tus, until the last switch afects the update, fows might be
controlled by a combination of old and new rules. In this
circumstance, diferent forms of invariant infringement,
such as a forwarding loop, frewall bypass, isolation, or
black hole, might be experienced in the network. Tis is
called the “consistent update problem.” Te challenge,
therefore, is to update the DP devices in a manner where no
single invariant is infringed. Te solution to the problem
has been approached in three ways. Te frst method
meticulously arranges the switch update sequence to
guarantee that no invariant violations occur [58]. Te
second method involves a 2-phase commit, i.e., marking
(tagging) any incoming packets at the ingress switch with a
unique identifer before processing them according to
whether they belong to a new or existing fow entry
[11, 59, 60]. Te third strategy has switches almost si-
multaneously switch over to the new fow entries, which is
made possible by using switches with clocks that perfectly
sync with one another [61]. In dmCP consistency, an issue
arises because even though the multiple controllers are
partitioned from each other, the DP devices they control
remain connected [62].

In this situation, as explained in 2.3.1, the controllers
synchronise their domain info with one another to update
their states, versions, and rules with the help of consensus
algorithms. Te update always aimed to preserve one or
more consistency properties, i.e., (1) connectivity, (2) ca-
pacity, or (3) policy. For instance, inconsistency in CP
connectivity can cause trafc blackholes (i.e., dead-end
paths) or forwarding loops problems (trafc keeps going
back and forth without proceeding to destinations). Te
latter can deplete switch bufers to impair availability and
connectivity.

Another instance is that inconsistency in capacity can
cause transient congestion and latency problems during
network state or policy updates. And lastly, in addition to
connectivity and capacity, inconsistency in policy up-
dates might have security implications or QoS violation.
For example, some networks might have a policy that will
enforce some fows to traverse through a frewall or
some fows to be routed via certain subpath because of
their QoS requirements. Terefore, such kind of policies
must necessarily be updated consistently throughout the
network.

Meanwhile, consensus algorithms such as Paxos and
RAFT are being relied upon by many dCP to achieve a
consistent network state. However, the algorithms are ob-
served to be theoretically unsuitable and practically inef-
fective because they inhibit availability and incur extra
latency, especially when controllers are distributed across a
WAN [43]. For instance, Paxos [7] involves a four-delay
state updating method: prepare-request, promise, accept-
request, and accept-response. In large-scale SDN, fow re-
quests can reach up to 11 million per second [63]. Every
request made may require a state change and consensus run;
this can hinder quick network reconfgurations and generate
a bottleneck on CP and DP.

Similarly, this might not be suitable for some use cases,
like in 5G technology, where you have a connection setup
requirement of <15–30ms for low latency applications [63].
Although RAFT has optimised Paxos [9], the core notion
remains. Besides, they are algorithmically complex and hard
to implement as they are aficted with errors. Additionally,
RAFT [43] is susceptible to Byzantine failures [64].

Furthermore, each aspect’s consistency can be either
weak or strong. Strong consistency requires that all con-
trollers’ instances states can only be replicated and propa-
gated through mutual consensus. After any state update, the
leader facilitates the confict-free distribution of state up-
dates to all. In contrast, the eventual (weak) consistency
model omits consensus and guarantees at least one delivery
invariant. Te selection of the consistency model utilized by
the replication process impacts the incurred synchronization
overhead in load, response times, availability, and the
processing order of commits.

Tis study classifes the proposed solutions to preserve
consistency among controllers in dmCP according to their
targeted objectives. We considered two consistency prop-
erties that reside inside the controllers to do the classif-
cation: i.e., (1) the network state update to preserve
“connectivity” and “capacity” properties and (2) the “policy”
update, which is a concern with network operation proce-
dure such as securities check and service diferentiation.

3.2. Network State (Connectivity and Capacity). In response
to network-changing events, controllers in dCP update their
knowledge to preserve and prevent (1) connection disrup-
tion and (2) network capacity violations. An inconsistent
connection can lead to issues such as black holes, isolation,
and forwarding loops problems that may deplete switch
bufers and limit network availability while congestion and
update delay can be caused by inconsistent controllers’
information on devices’ residual capacity [47].Terefore, the
following section reviews the research eforts to update
networks to maintain these consistency properties.

3.2.1. Controllers’ Consistency for Connectivity Preservation.
Mahajan and Wattenhofer [58] proposed update schedules
based on combinatorial dependencies that do not require
any packet tagging [60]. Tis will allow some updated
connections to become available soon. Te authors also
provide an initial algorithm that, given the current state,
swiftly updates routes in a loop-free way, with the controller
greedily trying to update as many nodes as possible.
However, the greedy operation of the algorithmmight lock it
up in local optimal. In another approach, Nguyen et al. [65]
designed EZ-Segway, as a distributed method for updating
network state consistently and swiftly while avoiding
anomalies such as loops, blackholes, and congestion. In EZ-
Segway, the controllers precompute any information nec-
essary by the switches before the update. Te data are sent to
the switches to implement the change using a combination
of direct message passing and partial knowledge. Tis
removes communication and calculation bottlenecks at the
CP. As such, it enhances the performance of update
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processes. However, using partial data to afect the update
may not guarantee loop and blackhole freedom in the
system.

In the rule replacement approach, Forester et al. [66]
suggest that a straightforward way to ensure blackhole
freedom is for a mechanism to install new or default
matching rules with higher priority and delete old ones to
avoid blackhole problems. However, implementing this
might induce a forwarding loop problem. Besides, the
techniques are also restrained by TCAM limitation con-
straints. In another work, Canini et al. [67] proposed a
solution based on principles of self-stabilization within a
bounded communication delay. Known as “Renaissance,”
the method manages multiple controllers’ connection and
communication outages without compromising perfor-
mance. Tis solution is an improvement over their previ-
ously proposed FixTag [68]. A wait-free technique that
tackles rules updates consistency problem via a transactional
interface. Zhou et al. [69] propose a consistency layer to
actively and passively snapshot the cross-domain control
states to reduce the complexities of service realizations to
ensure a consistent link state for max throughput and min
latency. Te technique adopts both reactive and passive
snapshots of a cross-domain layer in WAN to control a
consistent state of the network controllers.

In a diferent approach, Mizrahi and Moses [70] propose
a switches’ clock synchronising technique to update the
network in real time. Te method preserves loop freedom
and communication loss with perfect clock synchronisation
and switches execution behaviour. Similarly, in [71], Mizrahi
and Moses modify precision time protocol (PTP) to achieve
microsecond update accuracy in SDN. Tis is because the
normal network time protocol (NTP) lacks appropriate
synchronisation behaviour for SDN. Tis leads to an in-
crease in the number of messages necessary for time syn-
chronisation across the whole network. However, when two
unsplittable fows need to be swapped in the network with no
alternative paths available, the synchronized updates are
considered optimal, and the new fow paths can minimize
the induced congestion. Furthermore, despite these benefts,
clock synchronisation approaches do not prevent random
fuctuations in command execution time on switches. Tis
prompted the development of prediction-based scheduling
techniques [72].

3.2.2. Controllers’ Consistency for Capacity Preservation.
Panda et al. [62] investigate the extent to which CAP the-
orem trade-ofs apply to SDN with dCP. Tey examine
network consistency properties that require tenant isolation
and middlebox traversal for some trafc and prove that they
cannot be all enforced without losing availability. Te au-
thors posit that linearizability is typically unneeded for
ensuring efective enforcement of most network consistency
properties since the monitored policies typically have simple
correctness criteria. For this reason, in [43], Panda et al.
designed a simple coordination layer SCL that avoids
consensus algorithms like Paxos or Raft to achieve consis-
tency in dCP. SCL broadcasts all CP communication to

avoid the need for bootstrapping on the controllers. Te
approach has simplicity and eventual correctness, with a
higher response time advantage. However, it might give the
DP ovS conficting instructions because of the response time.
Hence, an implementation may consume higher bandwidth
and replacement of the topology discovery module of the CP
with the log provided in the controller proxy-SCL.

Also inspired by [62], Sakic et al. [63] and Bannour et al.
[73] develop adaptive, eventual consistent and self-adaptive
multilevel consistency models to solve blockage possibilities
in a highly consistent dCP, respectively. Tese models are
intended to facilitate developer implementation of numer-
ous application-specifc consistency models. In [63], Sakic
et al. integrate eventual consistency models with a novel
cost-based approach, where rigorous synchronization is
used for crucial activities involving many network resources.
At the same time, less critical changes are intermittently
transmitted across cluster nodes. However, these techniques
will sufer trafc separation overhead. Another study in [74]
proposed a fast and generic system that imposes custom-
izable network consistency during updates and information
synchronization. Te authors design a customizable con-
sistency generator (CCG) to act as a shim layer between CP
and DP, intercepting and scheduling real-time updates
issued by the controllers.Te authors useMininet to emulate
a fat-tree network with the shortest path routing and a load-
balancing application in a NOX. However, CCG might
require architecture modifcation and incur customization
overhead. Luo et al. [75] also argue that during the update
process, in-transit packets might misuse wrong versions of
rules, and “hot” links could be burdened due to the un-
planned update order. Even though earlier proposals like the
2-phase commit and CCG have provided generic and cus-
tomizable solutions to address the problem of misusing
rules, yet no fexible approach exists to avoid transient
congestion on hot links with varied user requirements such
as update deadlines, transient throughput, or loss. Motivated
by this, they thus proposed a customizable update planner
(CUP), to seek a solution to the problem. But just like CCG,
CUP too might incur customization overhead Aslan and
Matrawy published in [76] an adaptation technique that
chooses feasible values for the consistency level indicators
that satisfy a specifc application indicator. Te authors use
K-means online clustering to determine an appropriate
mapping between consistency level and application indi-
cator. In a similar approach, Zhang et al. [77] also propose
the current network state adaptive synchronization strategy
of controller information in dCP. Te authors formulate an
optimization problem concerning overhead and availability
constraints. Te controller’s roles are classifed as leader,
acceptor, and learner. However, the technique did not
consider fair load balancing among the controllers, which if
considered there is a possibility of reducing the synchro-
nization overhead further down.

Te 2-phase commits [60] process used to ensure per-
packet consistency can also be used to ensure per-fow
consistency to avoid congestion. While this approach re-
duces congestion, it is insufcient for full bandwidth
guarantees. Terefore, as demonstrated by Mizrahi and
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Moses [70], strategies that go beyond simple fow switching
are needed to ensure that the update does not impact the
network’s capacity constraints. Terefore, Hong et al. in [78]
established the standard model for capacitated updates as
part of their SWAN. It ofers an LP formulation for splittable
fows that, if satisfed, results in a migration plan with x
updates. It provides the foundation for Liu et al.’s zUpdate
[79], a technique for updating DCN with zero losses. Te
authors also demonstrate that consistent migration is doable
with ⌈1/s⌉ − 1 updates if all fow links have free capacity
slacks. However, for smooth migration, it is best to eliminate
some of the network’s background trafc or temporarily
limit its throughput if it contains noncritical trafc. Brandt
et al. [80] additionally ofered a method to distribute fows
over the network. Tey provided an algorithm that attempts
to produce slack capacity on all links, and they demonstrated
that splittable fow migration can always be solved in
polynomial time. Te core concept is to repeatedly divide
fows into new pathways until sufcient capacity is available
to use the algorithm of [78]. However, these techniques will
sufer from fow reassembling overhead at the destination.

In a diferent approach, Jin et al. [81] consider diferent
update timings of network switches to avoid congestion.
Tey construct a dependency graph of various updates and
send them out in a greedy fashion once the requisite con-
ditions are met. Flows are then slowed down when the
greedy way of going through the dependency graph leads to
a standstill. In a similar approach, Zheng et al. [82, 83]
examine the use of consistent timed updates to reduce
congestion in the context of fow migration and latency by
employing switch clock synchronization. Te authors pre-
sented chronus, a mechanism that allows for scheduling
individual node updates in SDNs at precise periods. It is
discovered that the strategy reduces transitory congestion
and conserves fow table space by reducing rule size by 60 per
cent. However, this reduction might be achieved at the cost
of some policy inconsistency.

Amiri et al. [84] also explore node-ordering as an al-
ternative to a 2-phase commit. With the fow version
numbers removed from the packet header (“marking”), they
ofer a technique that uniquely identifes fows based on their
source and destination. By omitting the 2-phase commit
procedures, the process minimizes complexity and over-
head. However, every node has an old and new forwarding
rule for every fow. Te difculty is determining the proper
sequence to apply these updates without causing congestion
or forwarding loops.

Another option proposed by Botelho et al. [85, 86] is the
use of distributed data storage such that applications on
controllers could scarcely be aware of any inconsistency.
Tis way, latency problems would not even arise. However,
the high memory requirement for the data store might not
allow it to work well with TCAM of openfow switches. In
contrast, Levin et al. show in [55] that load-balancers and
other distributed network functions can bypass weak
(eventual) consistency while still providing adequate per-
formance for production networks. Tey made their ob-
servation by experimenting with two-state distribution
trade-ofs between staleness and optimality and between app

logic complexity and robustness to control state. Tey
suggest similar investigation for other control applica-
tions such as routing and security. Tus, Guo et al. [57]
build on Levin et al.’s work by reducing synchronization
overhead using a load variance (LVS) technique. Unlike
the periodic synchronization (PS) technique, LVS incurs
less overhead because it gets activated only when the load
exceeds a particular threshold. However, you cannot rule
confict in state update distribution because of weak
consistency.

3.3. Controllers’ Consistency for Policy Preservation. Te 2-
phase commit approach proposed in [11, 60] by Reitblatt
et al. symbolizes the frst foundation work for most rule
updates’ techniques for consistency preservation in SDN. It
broadened the scope of consistency properties beyond just
network/forwarding to include policy ones. Te authors
emphasise the per-packet consistency (PPC) criterion,
which requires packets to be forwarded only on their old or
new paths during an update (never on both). Te concept
revolves around labelling packets at the ingress switch so
that either only all old or all new rules can be applied
consistently all over the network but not both.Tis way, the
problem of forwarding loops and inconsistent policy on
packets is avoided. Fayazbakhsh et al.’s fawtags use the
same principles [87] as Qazi et al. [88] to ensure network-
wide policy compliance with middlebox usage in SDN.
However, the technique is known to be memory hungry, as
it requires additional free memory slots. Tis is its major
drawback, considering how precious and expensive
memory is to an OpenFlow switch. Meanwhile, Katta et al.
in [59] designed a variant of the original technique to
addresses intending to address the limitation using in-
cremental 2-phase commit.Te input update is proposed to
be broken down into more minor updates that can be
executed sequentially without putting much pressure on
TCAM.

Another technique is that software transactional net-
working (STN) was introduced by Canini et al. [89] to re-
solve concurrency concerns that occur from the concurrent
execution of control applications. Every policy update is
either fully implemented or does not afect any packet be-
cause the STN relies on all-or-nothing principles. Conse-
quently, this can lead to transitional delay. And to specify
actual policy composition principles, the authors deemed it
necessary to expand pyretic. In another efort, Canini et al.
proposed a consistent policy composition (CPC) technique
[68] for concurrent network policy updates. Te method
uses a replicated state machine, which ofers a transactional
interface to address the issue of conficting policy updates.
Te methods consistently match desired network behaviour
from the operator’s perspective. However, this is only
possible if switch ports allow atomic read,modify,and write
permission. Undoubtedly, this prerequisite is the weak se-
curity spot of the technique. Schif et al. [90] propose a
synchronization framework for policy updates based on
atomic transactions, implemented in-band, on the DP de-
vices. Te technique achieves consistency in the events of
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controller failure via publish/subscribe model. In the event
of any network-changing events, the controller will im-
mediately publicize the events to its coresources to update
their local information using standard OpenFlow protocol
[91]. But the technique has not been integrated with any
SDN controller.

Using a carefully calculated rule replacement sequence,
Vissicchio et al. [92] investigate how network policies can be
enacted on the OpenFlow switches based on per-packet
consistency (PPC). Tey use a greedy algorithm GPIA that
updates the fow table of switches in polynomial time to
discover a sequence of rule replacements per switch that
does not violate PPC. Te memory overhead of this method
is zero and can be implemented in a heterogeneous network
because of tag-free packets as in a 2-phase commit. Te
authors, nevertheless, hybridize both the 2-phase commit
and rule replacement approaches to propose FLIP in [93]. As
expected, the 2-phase commit in FLIP tainted its smooth
usage in hybrid SDN, and its complexity is not polynomial.
But FLIP is powerful as it can handle per higher number of
update incidence. In [94], Mcclurg et al. ofer another
method for preserving arbitrary network policies using rule
replacement order. Te paper models the update-consis-
tency properties as linear temporal logical formulas, which
can be used to generate updates that continue to uphold the
original properties automatically.

3.4. Summarised Insights. A distributed control plane up-
dates the states of its controllers to maintain a consistent
network view whenever network-changing events, such as
the arrival of a new fow, link, or node failure, occur. Te
update is always aimed at preserving one or more of the
following aspects of the network state: (1) connectivity, (2)
capacity, and (3) network policy. Te consequences of vi-
olating either of them cause black holes, forwarding loops, or
congestion problems. Diferent consistency strategies are put
forward according to diferent situations. Table 4 summa-
rises these strategies and the consistency property they
optimised. Tese consistency properties are interdependent,
i.e., every property must be preserved. Yet, none of the
existing platforms attempts to consider all three properties at
once; some only meet one or two.

Furthermore, based on these strategies, preserving
connectivity to ensure loop freedom is better understood of
the three because even straightforward greedy techniques
fare relatively well, as demonstrated in [66]. We also suppose
the problem can be minimised through adaptive and hybrid
idle-hard timeout allocation and fow eviction mechanisms
similar to [36] or with the approach as in [58]. However,
the greedy approach might not be suitable to optimize the
makespan metric because of the controller to switch in-
teraction rounds might be higher. So getting a logarithmic
time algorithm to optimize the makespan might require
some deep learning techniques as applied by Poularakis
et al. in [95–97] using some AI techniques like deep
learning. On the other hand, capacity consistency for
congestion freedom is stronger than connectivity con-
sistency for loop freedom [66].

Te 2-phase commits [60], dependency graph [81], and
rule replacement are the most widely used method to ad-
dress congestion. Tough [80] posits that splittable fow can
be solved in polynomial time, the authors of [84] show that
omitting it can reduce complexity and overhead. Regarding
network policy consistency, the two major techniques are
packet tagging to avoid rule mismatch using a 2-phase
commit and complete rule replacement. Each approach has
its merit and demerit; while the former comes at the cost of
switch memory consumption for algorithm simplicity, the
latter comes at the expense of high algorithm complexity
with the advantage of dealing with the problem heads on. So,
considering the TCAM limitation of OvS, the former might
not be a good approach [1].

Lastly, another insight is that most of the consistency
methods used by these works do not provide any security,
synchronization rate or when to synchronise. Tus, none of
the techniques factored the network application into play to
assess the impact of synchronization rate on their perfor-
mance. For instance, it has been shown that load balancers
can navigate weak consistency and still deliver good
performance.

4. Controller Interoperability/
Heterogeneity Problem

4.1. Problem Description. Interoperability across distributed
controllers in an SDN architecture requires an EWi, just like
the NBi and SBi, for communicating with the AP and DP. In
contrast to the broad adoption of standardized SBi with
initiatives like OpenFlow, there is no standard EW com-
munication interface between the controller in dCP [22].
Even at that, the gap has not received the requisite attention
from the research community to provide the needed in-
teroperability. But lately, there have been some fruitful study
attempts [60, 93–105]. And the existing solutions show
variation across a range of performance metrics. Some
approaches are mainly concerned with achieving state
synchronization in networks where the dCP comprises
homogeneous controllers and can’t coordinate the coexis-
tence of heterogeneous controllers from diferent platforms
[93, 94]. In other words, they have only solved the inter-
operability issue for a vendor’s unique SDN where all
controllers are of the same type. Because their EWi is private
and the data model is diferent, they do not interoperate to
share the same network. However, this interoperability is
crucial for the survival of the modern-day network for the
foreseeable future as SDN increasingly proves its advantages.
Fortunately, some EWi for dCP SDN networks that use
heterogeneous controllers have recently been proposed
[60, 95–105]. However, studies on SDN’s east-west interface
are still preliminary, and there are no established industry
standards yet.

4.1.1. Motivation for Heterogeneous Control Plane. Aside
from the scalability and reliability arguments for con-
structing CP with numerous controllers, the diferences in
processing capacities of each controller provide additional
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justifcations for designing it with heterogeneous controllers.
For instance, a Ryu [49] could only process 6 K requests per
second, a NOX [38] could process about 30K requests per
second, a Floodlight [98] could process about 250K requests
per second, and a Maestro [40] could process about 300K
requests per second. Terefore, controllers are chosen to be
included in a CP for efective resource utilization and cost
optimization based on their capacity relative to the DP
devices they coordinate. In addition, modern networks are
extremely complex, demanding the usage of specialist

services such as advanced VPN, deep packet inspection,
frewalling, and intrusion detection. As this list grows, the
necessity for techniques to implement new network regu-
lations increases. While many controller systems may
support several services, this is not the case for all of them. It
is also quite unlikely that a single controller vendor ofers the
performance gold standard for all services. Consequently,
network operators may be forced to choose between not
providing a service and making an expensive, disruptive, or
unworkable migration to a diferent controller platform.

Table 4: Comparison of related works on dmCP consistency.

Ref
Consistency aspect/properties

QoS metrics optimized Method/consensus model Weakness
Connectivity Capacity Policy

[43] X √ √ Consensus/convergence
time

Weak consistency with
simple coordination layer

Higher conficting tendency in the
distribution of state updates to all

nodes[55] X √ X Load balance Weak consistency
[57] X X √ Overhead Load variance (LVS)

[58] √ X X Forwarding loop Greedy, combinatorial
dependencies Correctness issues

[59] √ X √ Memory, inconsistency Incremental 2-phase commit Increased packet header tagging
overhead[11, 60] √ √ Violation, inconsistency 2-Phase commit

[63] X √ X Availability, scalability
delay

Adaptive weak consistency
using cost-based Critical trafc separation overhead

[65] √ X X Forwarding loops,
congestion, & blackhole

Direct message passing and
partial knowledge

Marking update decisions with partial
information

[66] √ X X Blackhole freedom Rule replacement with
default matching rule, greedy TCAM constraint, a forwarding loop

[68] √ X √ Conficting policy
updates

2-Phase commit, replicated
state machine TCAM constraints, tagging overhead

[70–72] √ √ X Loop freedom, loss,
congestion Clock synchronization Message overhead

[73] X X X Availability Adaptive weak consistency Application requirement separation
overhead

[74] X √ X Load balancing Customizable consistency
generator, shim layer

Architecture modifcation,
customization overhead

[75] X √ X Congestions, deadlines,
loss

Customizable update
planner Customization overhead

[76] X √ Synergy AP and CP Adaptive consistency, K-
means Incur customization overhead

[77] √ √ X Overhead, availability Adaptive consistency Adaptability overhead
[78] X √ X Congestion, throughput LP, splittable fow, fow

migration splittable fow
Flow reassembling overhead, fow

migration cost[79] X √ X Lost

[80] X √ X Congestion,
convergence

[81] X √ X Congestion Timed update, dependency
graph, greedy Policy consistency might be hurt

[82, 83] √ √ X Congestion, latency,
memory

Timed update, dependency
graph

[84] X √ X Congestion, complexity
&overhead Node-ordering

Prohibit e of 2-phase common thus,
there is a high tendency of mismatch

rule
[85, 86] √ √ X Latency Distributed data store High memory requirements
[87] √ X √ Security, inconsistency 2-PhaseCommit TCAM constraint, tagging overhead
[88] √ X √
[89] X X √ Inconsistent update All-or-nothing principles Transitional delay

[90] X X √ Failure Publish/Subscribe model.
Atomic transactions Not integrated with any controller

[92, 93] X X √ Per packet consistency
(PPC)

GA: 2-phase commit and
rule replacement (RR) TCAM constraint, tagging overhead

[94] X X √ Policies preservation LTLF, RR Transitional delay
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Each controller has unique performance characteristics,
even though services can be simply transferred between
them. Some controllers may have quick response times while
others are better suited for large-scale applications. It may be
advantageous to execute numerous services on multiple
controllers to align controller performance characteristics
with service requirements. Services that passively sample
packets in the network, for example, may need to increase to
keep up with the volume of network trafc, whereas services
that reactively insert fow table entries to route fows require
low response times.

Another motivation is security to avoid homogeneous
controller common-mode faults.Treats to network security
could occur on SDN composed of multiple homogeneous
controllers. For it is homogeneous, it indicates that their
designs have the same underlying functioning mechanism,
meaning that any potential vulnerabilities in one controller
would be refected in all the other identical controllers.
Consequently, if attackers could exploit one of these vul-
nerabilities, they would be able to execute malicious attacks,
such as a message leaks or DDoS, on the remaining con-
trollers to bring the whole network down. Tis might have
devastating consequences for the entire network. Tis
phenomenon is called the “homogeneous controller com-
mon-mode fault” (HC-CMF) [10]. Consider a scenario of an
SDN for which all the multiple controllers are homogeneous
(e.g., Floodlight), each of which manages the corresponding
SDN subnet. By exploiting CVE-2014-2304, a known faw in
an OpenFlow protocol for the Floodlight 0.9 version, an
attacker can easily crash the entire system after realizing it is
using Floodlight controllers in all the other subnets. So,
using the same vulnerability, the attackers can easily elim-
inate any number of backup foodlight controllers located on
the control plane. However, the network might be insulated
from this threat if the controllers deployed are heteroge-
neous because in practice, diferent controllers are suscep-
tible to diferent vulnerabilities. Tis is partly because the
heterogeneous controllers are independent of each other and
have no dependencies during runtime. Te same vulnera-
bility hardly occurs among controllers written in diferent
programming languages. For instance, NOX [38], Ryu [49],
and Floodlight [98] controllers are programmed in C++,
Python, and Java, respectively. Tese make the trigger
mechanisms of their vulnerabilities diferent. Tus, het-
erogeneous dCP is considered one of the best defences
against the “homogeneous controller common-mode fault”
(HC-CMF). Because it is almost impossible for an adversary
to make heterogeneous CP exhibit abnormal behaviour by
exploiting the vulnerability of only one of the controllers’
vulnerabilities, this is considered one of the motivations for
designing dCP with heterogeneous controllers.

4.2. EWi for Homogeneous Control Plane. In 2012, SDNi
[12] was introduced by Huawei as a multidomain SDNS
message exchange protocol. Te connection between con-
trollers is a mechanism for controllers to synchronise their
data. ODL employs SDNi to promote cross-domain com-
munication among its numerous controllers. Benamrane

et al. [99] proposed a communication interface for dis-
tributed control plane (CIDC) to synchronise the control-
lers’ information via the EWi. Te technique makes
provision for network managers to customize the control-
ler’s function by selecting from the following three com-
munication modes: (1) notifcation on (events or mode), (2)
service (e.g., load balancing, security etc.), and (3) full (both
mode and event). Te efectiveness of CIDC is tested in
simulated network confgurations that include the frewall
and load balancer services. But CIDC is only used for in-
teroperability between dCP that use Floodlights and ODLs.
Adedokun and Adekale [100] assert that they improved the
original CIDC system to create mCIDC. Nonetheless,
mCIDC’s architecture lacks a clear indication of where the
modifcation section should be located.

4.3. EWi for Heterogeneous Control Plane. One of the
earliest eforts to facilitate sharing network views between
diferent domains in amultidomain network was initiated by
Lin et al. [101, 102]. Te work proposed a high-performance
mechanism known as east-west bridge (EWBridge) with
support for controllers from diferent platforms enabled by
JSON. Te method specifed which pieces of information
should be shared and how. In addition, EWBridge provided
a method for protecting network privacy by hiding the
underlying hardware behind a virtual network. EWBridge
has been utilized in CERNET, Internet2, and CSTN
(CSTNET). Another efort came a year later by Dixit et al., in
FlowBricks [103]. FlowBricks is also a framework for
composing heterogeneous controllers on the same CP. Te
framework integrates the services implemented on the
heterogeneous controllers into the same network trafc.Tis
is motivated by the fact that no single controller has or can
provide the best-in-class implementation of all desired
network services such as VPN and frewall. FlowBricks is
implemented as a module in Floodlight. Yu et al. [104] also
introduced a Zebra architecture for consideration. Zebra is
divided into the HCM module for managing heterogeneous
controllers and the DRM module for managing domain
relationships. Zebra had recorded a remarkable improve-
ment in request completion time and scalability-related
metrics like throughput and latency. Te proposal’s authors
were optimistic that it would stimulate the interest of rel-
evant stakeholders, leading to further, fruitful research.

Meanwhile, Qi and Li in [105] point out that dealing with
heterogeneous controllers in a large network is very chal-
lenging to coordinate due to ununifed APIs. Tus, we
propose a controller management system that generates a
global network view with unifed APIs for both AP and DP
in a way that shields the heterogeneity of the controllers. Te
method comprises four (4) modules: heterogeneous con-
troller management (HCM), domain relationships man-
agement (DRM), a database, and front-end modules. Tey
used a fat-tree-based DCN topology split into three domains:
deployed Ryu, Floodlight, and Pox controllers, respectively.

Another recent efort is Yu’s et al. [106] proposal of
WECAN. WECAN is designed to act as an EWi for con-
trollers in SDN dCP. It consists of three parts: (1) a controller
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selection management (CSM) module, (2) a cross-domain
management (CDM) module, and (3) a network informa-
tion collection (NIC) module. Te NIC provides a domain-
wide network state by aggregating data from controllers,
while CDM ofers a global network state by aggregating
domain data.Te CSMmodule determines themost efcient
controller for each network fow depending on domain-wide
and network states. As a result, WECAN enhanced network
latency and throughput compared to a single-controller
network like Floodlight or Maestro.

Hence, Almadani et al. [107] propose DSF, an adaptive
framework for the EWi design for heterogeneous dmCP to
synchronise topologies using a standardized communication
protocol. DSF has been tried out with both the ONOS and
Floodlight controllers. However, although the authors claim
that DSF can run on diferent platforms, the current version
of DSF only works on Java-based control platforms.

Te authors of MNOS [108] andMcad-SA [109] explore a
heterogeneous SDN control plane that can deal with security
challenges.Tey developed a dCP to counteract hijacking and
modifcation attempts. Particularly, a mimic cyberspace de-
fence (CMD) is included as the core concept underpinning
MNOS. By incorporating CMD into SDN controllers’ design,
they could produce an N-variant controller framework with
dynamic, heterogeneous, and redundant properties. Te
CMD protects the controllers against any backdoor, or
modifcation attacks, but not against attacks such as DDoS or
OpenFlow known vulnerabilities. And MNOS is only limited
to the variety of controllers used. Recently, Yi et al. [10] were
inspired by these works to formulate a secure aware het-
erogeneous CP (SQHCP) to optimize delay, resource utili-
zation, and failure rate in SDN with homogeneous controllers
due to common-mode fault (CMF). Te techniques involve
two steps: step one deals with determining the number of
heterogeneous controllers using a knapsack approach based
on dynamic planning to ensure tight control plane security.
Step two deals with network partitioning using the K-means
clustering algorithm. Te inclusion of heterogeneity in [10] is
security motivated. Because of the CMF of CP homogeneity,
attackers familiar with one controller’s vulnerabilities can
bring down the entire network. Tey got rid of the threat by
using heterogeneous controllers such as NOX, Ryu, Flood-
light, and ONOS in the network.

Similarly, Hoang et al. [110] have recently proposed
(SINA), an EWi, to guarantee the interoperability of a
decentralised and heterogeneous SDN system. A unique
consistency algorithm for an adaptive quorum-based replica-
tion mechanism is also provided. Te former shows that
SINA’s consistency strategy, active replication, based on
broadcasting, is valid. Te latter evaluates SINA’s Q-learning-
based quorum-based replication strategy. SINA achieves better
reading and writing latency and overhead than other well-
known interfaces. Despite its excellent consistency, active
replication overuses system resources (bandwidth, processing
capacity, etc.), which is one of its downsides. In similar work,
Moeyersons et al. [111] proposed “Domino” a pluggable
framework for managing heterogeneous SDN. Domino in-
corporates a microservice architecture allowing users to inte-
grate multiple SDN controllers.

4.4. Summarised Insight. All the techniques cited in Table5
ofer an EWi solutions of communication in dCP. Among all
the proposed techniques, only [10, 108, 109] addressed se-
curity issues related to hijacking, fow rule modifcation
attacks and a CMF. Furthermore, none of them provides
protections against such as DDoS or any known OpenFlow
protocol vulnerabilities. SDNi is an IETF initiative and is
already in use in production networks. However, as there is
no generally accepted specifcation for the east-west inter-
face, the growth of SDN is stymied in extremely large-scale
network settings.

5. Controller Placement Problem

5.1. Problem Description. Managing a large-scale network
with a single controller was inefcient due to its lack of
scalability and reliability; hence, CPP has emerged as a
fundamental research subject in SDN. Te idea was frst
conceived by Heller et al. [9]. For any given network, the
problem is determining how many controllers must be
employed in the network and (ii) where they should be
positioned on the network so that the impact of average and
maximum latency between controller and switch is reduced.
Te problem has been modelled over the years to consider
multiple factors, including reliability, load balancing, cost,
and security. As a result, we highlight the CPP’s mathe-
matical modelling and problem formulation, solution ap-
proaches, and design objectives in Sections 5.2–5.4.

5.2. Mathematical Modelling and Problem Formulation
Approaches. CPP is an NP-hard problem similar to a well-
known facility location problem (FLP) [129]. With FLP, the
controllers are treated as facilities, while switches are as
demand points. However, other mathematical techniques
such as Knapsack, Vertex Cover (VC), and Set Cover
Problem [130] are also reducible to CPP [131]. Furthermore,
techniques such as feld matching problem [132] are used in
[133, 134] and dominating set problem [135] in [136].

To formulate CPP, the network being considered is
modelled as graph G � (V, E, S) with V, S&E representing
the controllers, switches, and links, respectively. Suppose
you have n � |V|∀ v ∈ V as the number of controllers and
k � |S|∀ s ∈ S as the number of switches, the solution of the
CPP is to fnd the number n and the mapping of v ∈ V⟶ S

in the network. Every CPP solution is aimed to improve
network efciency as measured by QoS KPIs such as latency,
throughput, overhead, loss, response time. Accordingly, the
goal of any given CPP method is to optimize one or a
combination of these metrics subject to several constraints.
Table 6 summarises most of the widely used mathematical
symbols in CPP formulation.

5.3. Solution Approaches to Controller Placement Problem.
After the problem is formulated, many diferent solution-
seeking approaches can be applied to solve the problem. As
shown in Figure 7, for optimal solution, optimization ap-
proaches using linear programming (LP), integer linear
programming (ILP), binary integer programming (BIP),
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Table 5: Comparison of controller interoperability.

Reference
Design Motivation/objectives metrics test

Controllers used Method Weakness
HM HT Security Consistency Interoperability Capacity/

delay

SQHCP [10] X √ √ √ NA √
NOX, Ryu,
Floodlight,
ONOS

Knapsack, K-
means, GA

It has not been exposed
to practical network

scenario

SDNi [12] √ X √ NA NA √ NA IETF protocol
Did not describe how
messages are stored

and exchange
CIDC [99] √ X NA NA √ √ NA
mCIDC
[100] √ NOX, Floodlight NA No detail available

EWBridge
[101, 102] X √ NA √ NA √

FlowBricks
[103] X √ NA √ NA √ Difer versions

of Floodlight FlowBricks Not tested across
diferent platforms

Zebra [104] X √ NA NA √ √

HCM [105] X √ NA NA NA √ Floodlight, Ryu,
POX Unifed API

WECAN
[106] X √ NA NA NA √ Floodlight,

Maestro, Pox NA
It has not been tested
with popular DP like

OvS but PICA8

DSF [107] X √ NA √ NA √ Floodlight,
ONOS

Data-centric
RTPS Markov

chain

Lack of QoS profles for
C-C polling

MNOS [108] X √ √ NA NA NA
ODL, ONOS,
NOX, POX, and
Floodlight

Mimic layer

Cannot protect against
DDoS, OpenFlow
protocol known
vulnerabilities

Mcad-SA
[109] X √ √ NA NA NA NOX, POX,

Floodlight
Teory
analysis

SINA [110] X √ NA √ √ √ Faucet, ONOS,
ODL Q-leaning

Excessive use of
resources due to the
active replication for

consistency
Domino
[111] X X NA NA √ √ Ryu, Floodlight,

ONOS Plugging Require intensive
hardware modifcation

Table 6: Most commonly used CPP mathematical symbols.

Symbols Description
G � (V,E, S) Network graph
V Te set of multiple controllers
S Te data plane switches
E Control path
n Total number of controllers
k Total number of switches
d(v, s) Te shortest path between v ∈ V and s ∈ S

l(c) Number of switches under the controller vi

p Chances of failure
ρ Controller’s capacity
Δ S_C latency threshold

xi �
1 ifciexist
0 otherwise􏼨

Binary variable to indicate if a switch si is associated with a controller ci

yij �
1 ifvimappedcjexist
0 otherwise􏼨

Binary variable to indicate if a switch si is associated with a controller cj
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mixed integer linear programming (MILP), or quadratic
programming (QP) are used. Brute force methods can also
use when dealing with small data set on optimizer such as
CPLEX [137]. But for suboptimal solutions, heuristics, and
meta-heuristics algorithms such as simulated annealing (SA)
and evolutionary algorithm (EA) such as particle swam
optimization (PSO) and its variant NCPSO, genetic algo-
rithm (GA) and its variant NSGA-ii, KnEA, Firefy, Manta
Foraging Ray algorithms are usually used on expanded data
set. Similarly, random, greedy methods, game theory such as
Nash, nonzero sum and machine learning techniques are
also applied [17].

5.4. Controller Placement Problem Design Objectives.
Figure 8 illustrates the performance metrics for the CPP.
One of these metrics is controller-to-switch latency. Latency
has several causes such as propagation, packet transmission,
switch processing, controller processing, and controller
queuing latency [138]. Various CPP methods have
attempted to minimize the efects of one or more of these
delays. Reliability is another important metric that has been
studied extensively. In an SDN, failure might originate from
either the DP or the CP [139]. In the former, failure comes
from the forwarding devices or links; in the latter, failure
arises due to software or hardware. Existing works that

proposed resilient dmCP designed their techniques to
guarantee control path redundancy via multiple control
message paths. Others elect to shorten the length of the
control path. In contrast, others implement numerous
controllers, as shown in Figure 9. Tese proposals are
reviewed in Section 5.4.1 and summarised in Table 7. Next is
load balance, measured by synchronization, statistics col-
lecting, and fow setup overhead. Controllers’ maximum and
average loads are also measured. CPP with load-balancing
eforts is summarised in Section 5.4.2 and Table 8. Te
capacity and model of the controllers used impact CPP
design. Tis study classifed the CPP as capacitated, unca-
pacitated, homogeneous, or heterogeneous [58]. Section
5.4.3 provides the review of CPP when deployment and
application environments are considered.

In addition to DCN and WAN, SDN is widely used in
emerging technologies such as WSN, VANET, and IoTs.
Section (5.4.4) reviews these proposals, and Table 9 com-
pares them. Similarly, numerous CPP solutions have in-
corporated a cost component. According to [13], capital
expenditures (CAPEX) and operating expenses (OPEX) are
the two main ways in which cost is viewed in CPP. CAPEX
refers to the funding allotment for hardware components. It
is usually related to their sheer quantity and robust features
such as processing power and number of ports while OPX
addresses energy costs.
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Figure 7: Taxonomy of CPP solution approaches.
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5.4.1. Resilience Controller Placement. Control messages
are exchanged between CP and DP during the SDN update
operation. Te end-to-end transmission line for this ex-
change consists of one or more switches at the DP, a
controller, and a link. A loss of packets in the exchange
may occur due to congestion, a faulty component (con-
troller, switch, or link), or a security incident. In either
case, any loss in the control packets will devastate the
network’s behaviour. Several research eforts are made to
mitigate this problem by proposing a resilient dmCP
[140–143]. As shown in Figure 9, some of these eforts
proposed resiliency in dmCP by guaranteeing redundancy
in the control path via multiple paths. Similarly, there
have been some eforts to shorten the control path by
using fewer nodes along the path in order to reduce
probable failure points while others seek resillience in the
event of failure, by connecting switches to multiple
controllers [14]. Table 7 also provides a summary com-
parison of these techniques reviewed.

Hu et al. [140] initiated a novel reliability metric to
formulate a fault-tolerant CPP (FTCPP) as ILP. Te ob-
jective function aims tomaximize the expected percentage of
valid control paths, i.e., the logical links between DP to
controllers. Te authors proposed three (3) variant tech-
niques: random placement, brute force, and l-w-greedy al-
gorithm to solve the problem. Tey used networks from the
ITZ repository to validate the methods. However, the
proposed technique is not benchmarked against any other
previous study, perhaps because it is one of the pioneer’s
works on CPP with reliability.

For this reason, its performance cannot be substantiated
at the time, but it can be done now that diferent approaches
are available. Guo and Bhattacharya [142] adopt a partition
approach to achieve the triplet of reliability, scalability, and
security in SDN. By considering the interdependence net-
works cascading failure, they proposed a network partition
technique for controller placement. Simulation results show
that the expected network failure tendency is inversely pro-
portional to the average path length of the network. However,
the technique has not been evaluated on real topology rather,

and they used a synthetic method using the igraph library to
generate three diferent networks with a ring, binary tree, and
Erdos-Renyi random network topology for the evaluation.
Te approach in [143] used MIP to design a capacity-aware
CP technique. Te authors use two strategies to prevent
network outages with smooth failover plans in the event of
one. In the frst strategy, an assumption that a node is joined
to the controller via two separate control paths was made,
while in the second strategy, they assume that a node is linked
to multiple controller replicas via two separate paths. Te
efect of diferent topology sizes and the number of controllers
on the average path length is investigated using networks
from the SNDlib database.

Te work in [144] proposed two optimization models to
improve reliability in CP. Tey formulate a CPP under a
comprehensive network states (CPCNS) in the frst model.
While in the second model, they develop the problem for a
single link failure” (CPSLF). Ten, we proposed an optimal
CP algorithm and greedy algorithm to solve the two
problems. Teir motivation for adopting this approach was
to solve the 70% network failure experienced by a single link.
Another study [145] used a greedy algorithm to design a
technique for fnding multiple control paths for exchanging
control messages in SDN. Tey used a clustering-based
global optimization for fnding the shortest path among
them. For average reliability and minimum computational
complexity, a reliability factor is defned. Te authors in
[146] adopt the strategy of network partitioning to design a
distributed and reliable CP. Depending on the subnet size, a
formula for calculating the reliability of each network do-
main is proposed. Similarly, based on each subnet load,
controllers are distributed accordingly. Hence, the authors
considered the packet loss rate, and the node degree for the
assignment.Tey also designated a coordinator to detect any
nonactive node, so that an appropriate controller can be
relocated to take charge of the failed subnet.Te coordinator
considers the calculated reliability of the failed subnet and its
distance relative to the new controller before the realloca-
tion. However, all these techniques may have succeeded in
minimizing the length of the control path to minimize the
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Multiple Controller
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Multiple Control Path
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Figure 9: Resilience CPP design options.
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Table 7: Comparison of resilience aware controller placement.

Ref
Reliability aspect Metrics: path loss, failure rate, response time, latency, controller,

reliability, loss, load
Problem

formulation Solution approach
MCL MC MCP

[131] — — √ Controller, reliability LP Min-cover
[131] — — √ Controller, reliability LP Min-cover
[136] — — √ Latency, reliability ILP GA

[140] √ — — Path loss ILP Random brute and
greedy

[141] — — √ Response time ILP —
[142] √ — — Analytical Selection
[143] √ — — Failure rate, path loss MIL —
[144] √ — — Response time, failure rate LP Greedy
[145] √ — — NA GA
[146] √ — — Failure rate NA Bully
[147] — √ — Failure rate, latency, controller NA —
[148] — √ — Latency NA —
[150] — √ — Failure rate, latency Analytical Mathematical
[152] — √ — Failure rate, latency MILP SA
[112] — √ — Latency, controller ILP —
[153] — √ — Failure rate, controller and load NA Graph theory
[154] — √ — Latency NA MOO, KnEA
[155] — √ — Response time NA K-median
[156] — √ — Failure rate, load balance NA PAM-B, NSGAII
[157] — — √ Latency, loss Analytical K-critical
[151] √ — — Failure rate, latency Analytical Mathematical
[158] — √ — Latency Fuzzy integral AHP&, B-PSO
Minimizing control links, multiple controller: MC, multiple control path: MCP.

Table 8: Comparison of controller placement with load balance awareness.

Ref
Approach Load balance optimization

objectives Problem formulation Solution approach Weakness
CCA SMA

[52] X √ Response time, throughput,
migration time NA 4-phase migration

protocol
Not support HetCP, CMF, controller

location, scalability
[112] √ X Latency, no of controllers ILP CPlex solver, High overhead at master controller, CMF

[113] √ X Setup time None Flow request
partition CMF, additional overhead at CP

[114] √ X Flow setup time, comm
overhead ILP Heuristic Master controller overhead

[115] √ X Overhead QIP Greedy No support HetCP, CMF

[116] √ X Setup time None Greedy CMF, imprecise controllers’ load
collection. Vulnerable

[117] √ X Latency, availability Graph theory’s
centrality stress

Heuristics, lattice
graph Not support HetCP, CMF

[118] √ X Response time NA Cluster vector High overhead at master, not support
HetCP, CMF

[119] X √ Flow setup time, utilization Markov chain Distributed hopping
algorithm Not support HetCP, CMF

[120] X √ Setup time Bin-packing Greedy algorithm Not support HetCP, CMF

[121] X √ Troughput, load
oscillation

Load informing
strategy Inhibition algorithm Heterogeneous interoperability problem,

CMF

[122] X √ Latency, saturation attack 3-D Earth mover
model Heuristics Controller location, not support HetCP,

CMF
[123] X √ Efective controller load LP, graph theory Heuristic Not support HetCP, CMF

[124] X √ Setup time, overhead,
latency ILP TOPSIS, heuristic Not support HetCP, CMF

[125] X √ Response time, throughput Game theory Game theoretic Not tested on a production network, does
not support HetCP, CMF

[126] X √ Overhead, response time NA Heuristic Not support HetCP,CMF

[127] X √ Failover, throughput, loss Mathematical Heuristic Prolong end-to-end RTT, not support
HetCP, CMF

[128] X √ Response time, throughput Mathematical Heuristics Not support HetCP, CMF
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possible failure points, but the shortest path selectedmay not
be the best path in terms of other QoS metrics like band-
width. Although control messages may not have a high
bandwidth demand, if there are many requests, the shortest
path with limited bandwidth may be overloaded, causing a
high response time and subsequent failure.

In contrast tominimizing the control path length to ensure
CP reliability, other techniques assign switches to multiple
controllers for redundancy [112, 147–154]. For instance,
Tanha et al. in [147] proposed a technique that maps each
switch on DP to one primary and multiple levels of backup
controllers. Sridharan et al. in [148] designed an algorithm for
mapping switches to multiple controllers in a distributed
controller architecture. Te algorithms distribute fow setup
requests among the multiple controllers to minimize the
controller’s response time and satisfy the elastic constraints.
Te outcome reveals that increasing the network budget in-
creases the network’s resilience level. Te work in [149]
switches is assigned to a primary and backup controller(s) to
prevent controller failures. Killi and Rao [150] propose a
technique for controller placement that minimises worst-case
latency in the event of controller failures.Te authors assumed
that switches have a failure-foresight ability. Tis means that
the switches are aware of the current state of the controllers.
Te authors employ LP to mathematically formulate a reliable
and capacitated aware CPP that can withstand the failure of up
to (k− 1) controllers. Te technique is evaluated using net-
works from ITZ. However, the authors did not consider the
average latency between the switch to controller and controller
to controller. Terefore, in [151], Killi and Rao proposed

another mathematical model that investigates the worst-case
latency in the event of single-link failure. Tey formulate a
reliability-aware CPP as an ILP to determine the expected
percentage of control path loss. Te authors develop a greedy
algorithm to solve the reliability problem. Te aim is to fnd
answers to the questions: Howmany of themwill be enough to
maximize reliability if controllers are carefully placed?
However, the greedy approach cannot guarantee an optimal
solution to the problem. Tus, a diferent problem variant is
formulated in [152] as capacitated next controller placement
(CNCP) strategy. CNCP’s failure-foresight assumption of
switches made in [150] is relaxed. Tey also assign multiple
controllers to each switch to ensure redundancy in the event of
controller failure. Te problem is expressed as a MILP, and a
simulated annealing algorithm is designed to solve it heu-
ristically. Te technique is also tested on ITZ networks. Perrot
and Reynaud [112] propose another resilient controller
placement strategy in which switches are assigned to 1+
controllers for redundancy against possible controller failures.
Te problem is formulated as an ILP with the authors as-
suming that the probability of the controller’s failure is the
same. Reference [153] proposed a delay-guaranteed, capacity-
aware CP for SD-WAN.Te authors consider a controller-to-
controller node failure to design a resilient and capacitated
aware CP (RCCP) using a master-slave (M/S) model that can
restore network operation in the event of failure. Tey
deployed the technique on networks at ITZ for validation.
However, the technique is lacking in inclusiveness and fex-
ibility concerning adaptability to delay-sensitive applications
and their service level agreements (SLAs). Conversely, the

Table 9: Comparison of deployment environment aware controller placement.

Reference Environment
Objective metrics

Trafc Problem
formulation

Solution
approachFailure

rate Troughput Latency No of
controllers Load Loss RT

[164–166] LTE/5G — — — √ — — — Voice,
videos

Bin packing
MIQCP

Greedy
heuristics

[167] — — — — √ — — Dynamic ILP, random
Waypoint Nash game

[124, 168, 169] LTE/5G Wi-
f — — — √ — — √ MILP 2-stage

stochastic
[170, 171] Wi-Fi — √ — — — — — LP Heuristic
[172] WSN/BAN — — — — — — — LP Analytical

[173] VANET — — √ — — — — Mathematical Game
theory, GA

[174] LTE/5G — √ — — — — Use cases

[175] WSN/BAN — — — — — — — Static Experiments Proof of
concept

[176, 177] — √ √ — — — — Dynamic MAP Experiment

[178, 179] Wi-Fi √ √ √ — — — — MOOP, LP SAGA
heuristics

[180, 181] WSN/BAN — — √ — — √ — Mathematical Sector divide
routing

[25] WSN/BAN —- — √ — — — — Mathematical Greedy

[182] LTE/5G Wi-
Fi — — √ — — — — — PoC

[183] LTE/5G — √ √ — — — — Comparative PoC

[184] LTE/5G Wi-
Fi √ √ — — — — — Stochastic K-

Median
SA, ray-
shooting

PoC: proof of concept, SA: simulated annealing.
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work in [155] proposed a method for dealing with CP failure
recovery using a backup controller selection algorithm that
minimizes average failure recovery time free of load oscillation
caused by switch migration. To design the proposed tech-
nique, they consider QoS requirements as well as controller
activation costs. Te authors assume that fow requests have
the same processing time. However, this assumption cannot
be true because of fow variability and diferent controller
capacities. In another technique, Hu et al. [154] proposed a
solution, arguing that the inappropriate selection of slave
controllers to handle the additional load of switches whose
master controller is down can lead to what they described as
“controller chain failure.” To this end, they designed an
adaptive slave controller assignment (ASCA) technique to
avoid it. ASCA has three modules, namely, the selecting slave
module, the assignment slave module, and the adaptive ad-
justment module. Te problem is formulated as an ILP with
the objective to minimize load variance diference (LVD).
Tis is done such that a lower value of LVD can be selected to
get better fault tolerance and load balancing performance.
Tey used KnEA to design heuristics to solve the problem.
And the solution has been shown to be efective in avoiding
the chain failure of controllers. However, the migration of the
afected switches to the slave controller is not done with
respect to the type of fow coming out of these switches, and
this can have QoS violation consequences. It lacks a clear
explanation of how the load distribution afects the queuing
delay. It also did not show the diferences in controllers’
utilization due to load diferences. Lastly, Bannour et al. [156]
proposed two-stage novel context-based techniques that
cover load imbalance and latency metrics to optimize re-
sponse time in the event of failure. Tey created an infor-
mation-gathering mechanism in stage I to collect and
transmit topology information to the placement algorithm in
stage II. Te information is used by the cluster leader election
scheme to select a leader. Te followers send their cluster’s
neighbourhood latency status to their respective leaders to be
used for synchronization and global topology building.
Among the leaders, one is designated as the “hyper leader,”
responsible for building global logical topology and running
the Dijkstra algorithm. In stage II, a partition aroundmedoids
(PAM-B, aka the “k-Medoid method”) is used to partition
switches intoK clusters of controllers, whose quality is gauged
based on the average distinction of all nodes to their nearest
medoid. Ten, NSGAII is used to optimize the solution.

One drawback of these methods is maintenance costs.
Deployment costs include the purchase price and ongoing
operating costs of network devices such as controllers and
switches. Tis consists of the cost of purchasing and in-
stalling the controllers into the network and the cost of
connecting the controller to the switch. In addition, energy
costs are an operational expense.

Terefore, in a diferent approach to deploying multiple
controllers, some techniques choose to deploy various
control path instead. Te multiple paths guarantee at least
two disjoint paths connecting DP and CP, which protect the
control path against single link and node failures by
switching to an alternate path. One example of this approach
is proposed by Muller et al. [141] where a proactive capacity-

aware CPP solution called survivor enhances CP resilience to
failure and recovery. Survivors use the path diversity ap-
proach to ensure the redundancy of transmission paths
between the CP and DP. Tis way, an auxiliary connection
between the two planes is usually assumed to be available.
Te redundancy reduces connection loss by 66%. Survivor
also adds a mechanism that periodically checks the con-
troller’s load concerning its capacity to avoid overload.

Te work in [157] proposes a novel, reliable controller
deployment mechanism using a K-critical technique.Tey aim
to construct a robust control layer that considers network
characteristics such as interference while selecting appropriate
controllers. Te paper earlier proves how and why choosing
only the shortest control path is an inefcient way of enhancing
control layer load and robustness. Similarly, Zhong et al. [131]
defned two metrics for checking control path reliability by
looking at how many switches may lose connection with their
controllers when a single-link failure occurs. Ten, we for-
mulate a problem that can fnd a controller’s neighbourhood
minimum coverage area in the network. Furthermore, it
keeps a list of backup links if a link fails due to unforeseen
circumstances. Te goal is to increase dependability and si-
multaneously reduce the number of controllers required. In
addition, the study proposes a heuristic based on particle
swarm optimization that begins with all switches as con-
trollers and then generates a nearly optimal solution that is
practicable. However, both [131, 141, 157] do not account for
the switch-to-controller delay, intercontroller latency, or
controller load (s).

(1) Summarised Insight. All the techniques that minimize the
length of the control path may have succeeded in reducing
the possible failure points, but the shortest path selected may
not be the best path in terms of other QoS metrics like
bandwidth. Although control messages may not have a high
bandwidth demand, if there are many requests, the shortest
path with limited bandwidth may be overloaded, causing a
high response time and subsequent failure. Terefore, it is
important to minimize the number of potential failures
while optimizing the QoS parameters for optimal perfor-
mance. As a result, taking into account other QoS metrics in
relation to the total number of fow requests is necessary in
order to reduce the number of potential failure points. As for
the multiple controllers or multiple control path approaches,
one drawback is the signifcant initial investment and on-
going maintenance costs. Deployment costs include the
purchase price and ongoing operating costs of network
devices such as controllers and switches. Tis includes the
cost of purchasing and installing the controllers into the
network and connecting the controller to the switch. Energy
costs are operational expenses.

5.4.2. Load Balance Aware CPP. Te task of fow request
handling at CP had made it a source of performance bot-
tleneck [159]. As a result, various works proposed CPP
solutions to balance load across the CP. Tere are two
approaches to achieving this objective. A controller clus-
tering approach (CCA) and switch migration approach
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(SMA) are discussed in Sections 5.4.2.1 and 5.4.2.1, re-
spectively. Table 8 shows the summary comparison of each
technique proposed under this category.

(1) Controller Clustering Approach (CCA). Te controller
clustering approach (CCA) can be considered a proactive
approach to dCP load balancing in SDN. In CCA, one
controller is designated as super while others as subordinate.
Te super coordinates the functions of the subordinate and
balances the load across them centrally.

BalanceFlow [113] is a typical CP load balancing using
CCA. It is based on a hierarchical deployment of controllers
with one of them adopting a super role, which reallocates
fow setup requests to others in the event of trafc changes. It
uses the multicontroller feature of OpenFlow 1.2 to regulate
the process. Te controllers maintain and synchronise their
load information periodically via an EWi. Te method has
the advantage of fexible tuning of fow requests by each
controller without introducing extra latencies. However, it
introduces additional overhead on the CP. An approach
[114] formulated CPP as ILP to regulate controllers’ number
and location and their assignment to switches in dynamic
trafc conditions. Te objective function of the ILP seeks to
optimize the weighted sum of statistics collection, syn-
chronization, fow setup, and reassignment costs. Te au-
thors design a scheme comprising three monitoring,
reassignment, and provisioning modules. Tey proposed
two algorithms using a GA and SA based on the knapsack
problem and meta-heuristic approaches. Although the
simulated annealing method takes more time, it was proven
more efective than the greedy strategy. In the paper [115],
the authors propose an innovative framework known as
MDCP with an objective to minimize overhead. Te authors
formulate the problem as measurement-aware CPP, which
considers synchronization and communication costs.
MDCP is designed to be application-agnostic, cost-efective,
and lightweight. To avoid computational complexity, a
discrete approximation algorithm and a connectivity
ranking algorithm are developed to obtain the desired
placements. Experiments were carried out on 240 network
topologies to validate the technique. Te results reveal a 40%
reduction in CP overhead. Furthermore, Selvi et al. in [116]
propose a cooperative load balancing scheme for hierar-
chical controller deployment (COLBAS) similar to [113].
COLBAS is a low-cost greedy algorithm in which controllers
release their load regularly and coordinate with one another
to achieve LB. However, this COLBAS strategy is only
centred on implementing LB for distributed controllers
without any security considerations for the distributed
controller architecture. In addition, the algorithms incor-
porated into these designs may not be precise enough to
collect the controllers’ load. Periodic collection of control-
lers’ loads may also result in resource waste. In static ap-
proaches [117], we attempted to minimize the burden on
switches using the concept of stress centrality to specify the
weight of each node based on the number of edge-disjoint
paths.Tis way, the authors proposed a controller placement
algorithm to alleviate the burden. Te algorithms run in
polynomial time to compute the appropriate placement

position of the controller. Network topologies from ITZ are
used for validation on the simulator running FloydWashall
algorithm. However, one major limitation of the suggested
technique is that it can only be used for intracluster con-
troller placement or single-controller networks. Similar to
BalanceFlow and COLBAS, Sufev and Haddad [118] pro-
posed a cluster vector (CV) approach to achieve load bal-
ancing in CP. Te authors simplify the load balancing
operation by defning a self-label CV, which contains ad-
dresses of controllers in the same cluster. It breaks the
dependency of slave controllers on the super as in Balan-
ceFlow [113] by designing high-level operations and low-
level operations in the controllers. Te CV is built into every
controller so that a regular controller can discover the ad-
dress of another regular controller in an inherently reliable
way. In this method, standard controllers can poll other
standard controllers to gather load data.

(2) Switch Migration Approach (SMA). Te switch migration
approach is a reactive way to restore load balance across
controllers in dCP as it only comes into play when the load
imbalance occurs. SMA posits that whenever a controller is
down, or the load of one controller exceeds its capacity, all or
a portion of the load of that controller will be transferred to
another controller. Tis way, the controller’s memory and
CPU availability and resilience can be enhanced to amplify
its swift response to any request switch might make [13].

Elastic distributed controller (ElastiCon) proposed by
Dixit et al. [52] is the pioneer load balancing approach
that uses SMA. ElastiCon is a dmCP designed to grow
dynamically or shrink concerning trafc changes. It has
three modules: load measurement, load adaptation de-
cision, and action modules. Te LMM keeps track of the
load of each controller. It collects and sends the load
information to the LADM which then determines load
allocation among controllers. Based on the load adapta-
tion module, the AM carries out a load balance sequence,
like identifying the immigrant switch. Te target con-
troller then migrates the switch to achieve the required
load balance.

However, the proposed scheme could not provide clear
information on the controller location that can reduce CP
latency and the key challenge of resilient architecture. Also,
the authors of [119] explore SM with network utility opti-
mization for scalable CP within the constraints of limited
resources. Te authors formulate the problem as NUM and
develop a distributed hopping algorithm (DHA) to address
it. However, the scheme sufers from high migration costs
and frequent load shifting. For this reason, a trade-of be-
tween migration costs and load balance rate is considered in
[120] to design an SM decision-making (SMDM) scheme.
Tey formulated the SM procedure as a bin-packing
problem and applied a greedy algorithm to fnd an optimal
solution.

Similarly, in Wang et al. [121], an SMA based on load
informing strategy (LILB) was developed. Each controller
actively and periodically synchronises its load information
with the other controllers to detect load imbalance. Te
algorithm then traverses load measurement, load informing,
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decision, and SMmodules to restore load balance at CP with
maximum throughput and minimum load oscillation.
Nevertheless, the algorithm may be susceptible to CMF [10]
because it does not accommodate heterogeneous controllers.
Tus, the authors in [122] combined an SMA with security
features to protect important controllers against DDoS and
eavesdropping via load relief by adjusting load diferences
among the controllers. Tis is a fexible SMA designed using
a 3D-EMD algorithm. Nonetheless, the specifc CMF [10]
vulnerabilities are still unaddressed in the proposed strat-
egies as it doesn’t support heterogeneous controllers in the
system. Also in [123], Tarai and Shailendra tackled chal-
lenges of poor resource utilization and wastage owing to load
imbalance and security in deploying IoT devices for smart
cities using SMA. As such, they formulate the problem as LP
to obtain the initial device placement. Subsequently, they
develop an SMA to minimize migration costs in the event of
load imbalance. Te limitation of this scheme is that the
immigrant switches and destination controller selection did
not adhere to trafc engineering principles. In contrast, the
solution proposed by Sahoo et al. [124] uses a multicriteria
decision-making procedure called “the technique for order
preference by similarity to an ideal solution” (TOPSIS) to
facilitate the selection of the target underutilised controller
that immigrant switches will be reassigned in their proposed
framework for load balancing in SDN control plane while a
zero-sum game theory is used in [125] to help choose an
immigrant switch(es) from an overloaded controller(s) and a
recipient controller for the migration. To do this, the re-
cipient controllers take the role of players in the game, while
the immigrant switches serve as commodities. Numerical
results reveal that the technique can relieve controllers from
heavy loads beyond their capacities. However, despite its
apparent speed, game theory is probably not well suited for
usage in a wide-area SDN. Similarly, solving the SMP re-
quires a lengthy time to reach the optimal result (which may
not be acceptable under a dynamic trafc distribution) or
generates heuristic solutions that are inadequate in migra-
tion performance. In the event of multiple controllers
overload, instead of relieving their load one-by-one via
independent SM execution, the authors of [126] proposed an
SMCLBRT technique that executes the operation of all the
afected controllers at a time to minimize time. To improve
the selection of outmigration controllers, they consider
response time delay in addition to the current load. How-
ever, because of the strategy’s emphasis on switch migration
by several controllers simultaneously, it is resource-intensive
andmight lead to congestion. And in a closely similar idea to
[126], Mahjoubi et al. [127], in their proposed LBFT tech-
nique, grouped all the immigrant switches after their
identifcation and migrated them all at once to restore load
balance. Te scheme is efective in terms of failover recovery
time and packet loss but at the expense of RTT. However,
like the other proposals, trafc fow classifcation is not
considered in terms of its uniqueness.

One common shortcoming of these reviewed CPP so-
lutions with load balancing mechanisms using a switch
migration approach is their failure to accommodate het-
erogeneous controllers in their proposed design. In other

words, the solutions only support homogeneous controllers.
However, as explained in the section, this might have se-
curity vulnerabilities such as “homogeneous controller
common-mode fault.” (HC-CMF) [10]. Any potential vul-
nerabilities in one controller would be refected in all
identical controllers. If attackers could exploit one of these
vulnerabilities, they would be able to bring the whole net-
work down. Tis might have devastating consequences for
the entire network. However, the network might be insu-
lated from this threat if the controllers deployed are
heterogeneous.

Apart from these works, many other methods like
[128, 160–163] have presented various load balancing so-
lutions at dCP employing a switch migration approach
without necessarily resolving a CPP to get the initial CP to
DP mapping.

(3) Summarised Insight. Based on this review, we may de-
duce some possible defciencies in CCA: memory, CPU, and
bandwidth limitation may reduce the performance of the
centralized “super controller.” First, the super controller
collects load information periodically and routinely ex-
changes a large number of messages with other controllers,
resulting in a decrease in system performance. Second, there
is the possibility of SPOF. Tus, if the super controller fails,
the entire technique for load balancing fails. Tis com-
promises the availability of distributed controllers. Tird,
each load balancing operation necessitates two network
transmissions: one for collecting load and one for giving
commands. In such a scenario, the aggregated load data may
be outdated, and the command may lag behind the actual
load status. Similarly, none of the methods considers that
network entities would have diferent processing needs
based on characteristics such as fow table size, queue size,
and fows request variability.

Furthermore, the inability to accommodate heteroge-
neous controllers in their proposed designs is one crucial
shortcoming with security threat implications shared by all
these CPP solutions with load balancing mechanisms either
using the CCA or switch migration approach. Tis means
that the solutions can only be used with homogeneous
controllers. However, security faws and vulnerabilities like
the “homogeneous controller common-mode fault” (HC-
CMF) are possible, as detailed in Section 4.1.1. HC-CMF
posits that any security faws in one controller would be
present in every other controller of the same model. A
successful exploit of even a single vulnerability might
compromise the entire network. Tis could have far-
reaching efects on the network as a whole. However, if the
installed controllers are heterogeneous, the network may be
protected from this threat. Moreover, the designs presented
in these publications achieve load balancing across con-
trollers by switching the controller’s function over the
switch. However, they do not consider the possibility that
each controller may have a unique routing strategy; moving
the switch directly could disrupt ongoing operations. Finally,
fow classifcation is ignored when switches are reallocated,
which can compromise the quality of service for some trafc
types.
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5.4.3. Deployment and Application Environment Aware CPP.
As summarised and compared in Table 9, several approaches
have been proposed to address the CPP while considering
deployment or application environment.

For e.g., the works in [164–166] proposed a framework
for fow processing-aware CP that considered data fow
processing and control applications. Te framework aims to
support SDN architecture deployment in DenseNets. A
fexible fow processing-aware controller placement frame-
work (FlexFCPF) places and fexibly reassigns controller
devices to manage the future wireless network efciently.
Tey formulate the problem as a mixed integer quadratic
constrained program (MIQCP) for which they design a
heuristic using a greedy approach. Te study in [185] ad-
vocates the integration of the SDN concept in managing the
emerging 5G technology because in 5G, you will be con-
fronted with huge carrier aggregation and dynamic band-
width provisioning. Tus, optical integration with the
wireless at both the front haul and back haul is eminent.
Terefore, elastic optical networking is necessary at the core
to optimize resource allocations and utilization centrally.
Similarly, massive MIMO and digital beamforming mech-
anisms require a lot of computing power in the 5G tech-
nology. In this vein, SDN will come handy in providing agile
and fexible distributed management of 5G from a cen-
tralized controller. As such, [167] joined the vision of in-
tegrating the novel 5G technology with SDN. For this to
happen, it will involve the separation of control and user DP
functions of the evolved packet core (EPC) of the 5G
technology. Tis will give birth to serving packet gateway
controller S/PGW-C and packet data gateway-user S/PGW-
U. Te authors focused on the placement problem of the
serving gateway controller (SGW-C) in a 5G network. As
such, they made a trade-of between minimizing the SGW
relocation rate and trafc load balance among the under-
lying SGW-C virtual network functions (VNFs) in the
problem formulation. Tey formulate the problem as an ILP
optimization model and apply game theory using Nash
bargaining game and the threat point techniques to obtain
a fair solution aka (Pareto optimal). Another work [174]
proposed a hybrid hierarchical architecture of multiple
SDN controllers to manage 5 G networks.Te architecture
is designed as a federating unit of multiple subnetwork
controllers, with each focusing on a single subsection of
the network but centrally coordinated by a hierarchically
superior controller. Te architecture is made up of a global
controller module, area controller module, and user
equipment (UE) with publisher/subscriber, routing, and
topology modules. Tey integrate a data distribution
service (DDS) on the publisher and subscriber module on
the ODL controller at each control level. Tey experiment
with three (3) diferent use case scenarios to check the
functionality of the architecture performance. Similarly,
the authors of [183] also harvest the potential of SDN to
enhance the management of 5 G technology. Tey inte-
grate the logically centralized-physically distributed LC-
PD SDN CP architecture in the management of a 5 G
network. Tey conduct experiments on Mininet to
demonstrate how LC-PD architecture can optimize the

overall output of 5 G network quality of services (QoS).
Tey provide proof of concept experimental results and
recommendations to adopt SDN LC-PD CP architecture
in 5 G technology.

Other technique in [168] introduced two approaches for
CPP formulation and assignment to switches in a wireless
and wired SDN environments. In the frst approach, they
investigate the controller’s average response time when the
connection between the controllers and switches is wired,
while in the second approach, they consider per-link
response time constraint using chance-constrained sto-
chastic programming (CCSP) when the transmission links
between the controllers and the switches are wireless.
Other approaches [168] study a CPP in cellular networks,
factoring the uncertainties of user mobility to propose a
C3P2 and CPPA, respectively. Is a static and dynamic joint
stochastic CP and evolved node B (eNB) controller as-
signment method to minimize the number of controllers
required to manage the eNB in the cellular network
concerning response time, probability, request rate, and
user mobility. Other works [170, 171] simulate a 6-Queue
system with Bernoulli arrival processes of diferent rates
to investigate the optimality of their controller placement
techniques in wireless networks concerning throughput
under delayed channel state information (CSI). Tey
model the problem in static and dynamic controller po-
sitions to track how the delay in CSI afects the network’s
throughput. With this, they were able to characterize the
variability in the throughput in diferent regions to allow
them to defne network policies that best stabilize the
system for all trafc dynamics.

In wire sensor network (WSN) environment, an ap-
proach in [172] applied SDN principles for energy-efcient
resource allocation. First, they formulate an LP optimization
problem to minimize the energy consumption of sensor
nodes concerning quality-of-service constraints. Afterwards,
they propose a software-defned centralized adaptive band-
width and power allocation scheme (CABPA). Numerical
analysis suggests a positive result of the scheme. While in a
VANET environment, the techniques proposed in [173] use
SDN for load balancing. First, they investigated an optimal
rebating strategy to balance latency and cost in VDVNs.
Tey formulated a mathematical model of the problem.
Ten, they proposed a two-stage game (IGA) to optimize the
rebating strategy to balance the latency and the cost based on
metaheuristics genetic algorithm to solve it.

Trough simulation, the number of packets transmitted
through cellular lines positively correlates with the rebate
ratio and the other parameters. Another approach [175] also
demonstrates how SDN can be deployed in the management
of IoT and WBAN applications. Te authors emulate SDN
functionalities on Mininet with a personal digital assistant
PDA acting as the OpenFlow switches under the central
control of the programmable SDN controller. Tey measure
deployment complexity and network overhead. Te author
concluded that the approach is simple, reliable, and cost-
efective. As such, the authors of [176, 177] accept the
recommendation of [175] to propose an architecture to
support the application-specifc requirements of WBAN,
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named SDWBAN. Unlike classical SDN, a novel HUBsFlow
is designed to replace OpenFlow as the SBi protocol in the
architecture. In another efort, the authors of [180, 181]
proposed an SDWBAN framework that allows centralized
administrative controls of incoming data trafc to give
fexibility for trafc diferentiation of sensitive data with
deadline constraints from normal data that require only the
best efort in WBAN applications. In a similar health-related
application, the authors of [25] applied SDN to optimize the
routing of medical emergency packets in the WBAN ap-
plication. Using mesh topology, the SDN controller is placed
on defning the best forwarding node while considering
propagation delay and intrabandwidth.

Recently, the authors of [182] conducted a proof-of-
concept experiment for using a multicontroller for het-
erogeneous wireless networks. Terefore, to that end, the
authors of [184] proposed a novel technique to tackle the
WCPP in a heterogeneous wireless network environment of
Wi-Fi and 4GLTE-U. Te method aims to improve the
throughput, link failure rate, and transparency of the SBi in
cases where hybrid providers coexist to choose from as link-
layer technologies. Te problem of determining the place-
ment of LTE-U and Wi-Fi-based controllers is modelled as
an optimization problem, and two heuristic algorithms are
proposed to fnd its solutions.

5.4.4. Security Aware CPP. Driven by the future of the In-
ternet, the solution in [186] proposed a decentralised SDN
framework that supports both the physical and logical dis-
tribution of CP. D-SDN incorporated a security requirement
of identity based cryptography (IBC) which requires a trusted
third party (TTP) for secret key generation to the defnition of
the hierarchy of controllers. Te feature is compatible with
Internet organizational and administrative structures. It
supports administrative decentralization and autonomy to
enhance the integrated security feature. For proof of concept,
the authors experiment with two use cases of network capacity
sharing and public safety service. Te mechanism in [187]
presents a secure and reliable design of SDN using a cloud-
based multiple CP. It is dynamic and uses isolated instance
mapping of controller resources in a cloud using a Byzantine
mechanism. But the architecture aims to minimize the
number of controllers required to be mapped to satisfy the
security requirement of each switch. Tey model the problem
as controller assignment in fault-tolerant SDN (CAFTS). Tis
is done concerning the controller capacity and control of
message latency. Te Byzantine mechanism ofers architec-
tural security features. Leveraging on the visualization of
controllers’ replicas via Byzantine fault-tolerance protocol, the
authors proposed a cost-efective requirement frst assignment
algorithm to solve the CAFTS. It signifcantly reduces CAPEX
of the CP as revealed by the experiments. Zhou et al., in [122],
combined the SM technique with security features to protect
signifcant controllers against DDoS by reliving overloaded
controllers’ load and eavesdropping by adjusting the load
diferences among the controllers. Tey consider two types of
security breach tactics of adversaries. Te frst is a recon-
naissance attack in which the hacker tracks controller trafc,

and the second is a saturation attack through IP spoofng. To
mitigate these attacks, the authors proposed a fexible SM
model designed using a 3D-EMD algorithm. But the scheme
incurred high computation time and lacked a fow classif-
cation module to help give diferential treatment to fow with
QoS requirements. Te approach in [123] tackled the CPP
with security in a heterogeneous WAN.Tey addressed issues
of delay and resource wastage due to load imbalance, fault
tolerance, and insecurity in deploying IoTdevices for the smart
city via SM.Tey formulate the problem as LP to get the initial
controller placement. Later, we designed an optimization al-
gorithm to minimize migration costs in the event of load
imbalance when the network evolved. A consensus protocol is
integrated to address malicious security issues. Te limitation
of this scheme is that the immigrant switches and destination
controller selection did not adhere to trafc engineering
principles. Tey did not classify trafc fow according to their
characteristics concerning types, variability, QoS requirement
etc. Defending against a spectrum sensing data falsifcation
(SSDF), Byzantine attack on an SDN controller is incredibly
difcult. If successful, the adversaries will acquire full control
of all network devices and behave arbitrarily to disrupt the
network. Protection against such a threat requires a 3f+1
mapping of a switch to a controller, which has the conse-
quence of overload. In [149, 188], the authors propose a
novel primary-backup controller mapping and remapping
approach in which a switch is mapped to only f + 1 pri-
mary and f failover controllers in the event of a simul-
taneous Byzantine attack. Tey formulate two separate
minimization problems of primary and backup controller
mapping (PBCM) and remapping (PBCR) as ILP, re-
spectively. Tey then design two heuristics MINCON and
MINRUS to solve the problem for large-size networks.Te
performance study shows that the optimal mapping re-
quires up to 50% fewer controllers compared to an
existing scheme and the heuristics perform within 8% of
the optimum, see Table 10 for a summarised comparison
of these techniques.

6. Open Issues and Future Study

Te research presents several EWI communication, con-
sistency, and CPP solutions for the various use cases in SDN.
Despite this, there is a pressing need for more inquiry into
the issues, as many concerns remain unresolved.Tis section
pointed out some of the problems left unsolved and ofered
suggestions for new lines of inquiry.

6.1. Resources Utilization Related Issues in dmCP Controller
Placement. Adaptive and fair resource allocation-based
controller placement is desirable to cope with today’s net-
work’s dynamic nature and trafc variability. Many of the
existing CP approaches with load balancing bias used net-
work partition and controller clustering. Terefore, they are
proactive and static in their resource mapping with no
provision to adjust to any possible trafc changes. Te few
works in corporate trafc dynamics use SM or controller
reallocation (CR) mechanism to restore load distribution
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fairness. Tey track controllers’ overload using a threshold
value.Terefore, the approaches can be described as reactive,
as they only occur when load imbalance occurs. Te SM
trigger in these solutions is a speculative fxed threshold
parameter that lacks any experimental reference [126].
Depending on the threshold size, it may lead to premature or
delayed detection, thus leading to network instability. Also,
the reactive nature of the approach can cause a delay in the
load balance restoration process. Furthermore, there is a
migration cost to consider. For example, load oscillation
problems may surface if an inappropriate switch or con-
troller is selected. In addition, controller chain failure might
occur if switches are not properly mapped to the appropriate
controller. Terefore, it will be interesting to explore TE
prediction principles to avoid the highlighted issues while
addressing fair load distribution in a dynamic environment.

6.2. CAPTeory Issues in dmCP. It is difcult to collectively
achieve the three aspects of consistency, availability, and
partition tolerance, i.e., the CAP theorem, in the dmCP of
SDN. Designers of SDN with partition requirements must
deal with performance trade-ofs in choosing a consistency
level in their designs. You will be confronted with the choice
between having weak (eventual) consistency for high
availability or strong consistency at the expense of avail-
ability. A weak consistency can assure you of the availability
of network resources, but it will lead to state staleness in the
network, causing abnormal application behaviour. However,
with strong consistency and correct adherence to all network
policies, you will pay a steep price for network unavailability.
Most current CP works in large-scale networks that sacrifce
one for the other. Terefore, it will be interesting to consider
adopting a hybrid approach by merging these conficting
levels of consistency to strike a balance and look for the
optimum trade-of between consistency and availability.

6.3. Heterogeneity of Controllers in dmCP Controller
Placement. Another design challenge in SDN dmCP is in
the placement and interoperability of heterogeneous con-
trollers from diferent vendors. Here, you will be faced with
both CPP and knowledge-sharing problems, where you will

deal with controllers’ instances’ consistency and compati-
bility. Overcoming these challenges might require a generic
and all-inclusive standardization of the SBi, NBi, and EWBi.
Te motivation for these can be seen from many perspec-
tives. First, a homogeneous CP poses a possible security
vulnerability from a security perspective, considering the
controllers possess a common-mode fault, aka a common
vulnerability point. If adversaries are familiar with the
vulnerabilities of one controller, they can easily bring down
the entire network under the common vulnerability of the
controllers. Second, interoperability between diferent
controller platforms and traditional IP networks can sig-
nifcantly encourage and simplify the universal adoption of
SDN commercially. So far, very few studies have looked in
this direction. As a result, conducting additional research in
this area will be a worthwhile contribution.

6.4. Security Aware Controller Placement. Given that the
control of a network in SDN is centralized via the controller,
all transactions that involve the CP ought to be considered
critical, as any disruption owing to a successful attack can be
catastrophic to the business. Hence, the CP is susceptible to
several security threats like the man-in-the-middle attack
(MITM), DoS and DDoS attacks, saturation attacks, control
packet snifng and tempering, CP isolation, and IP spoofng.
Tis can be attributed to vulnerabilities such as weak au-
thentication, incomplete encryption, and information dis-
closure. Terefore, it will be a signifcant contribution to
designing a CPP scheme that incorporates security measures
such as role-based authentication, DDoS blocking applica-
tion (DBA), secure socket layer (SSL), locator ID separation
protocol (LISP), the strong message authentication code
(MAC) algorithm, or content-oriented networking archi-
tecture (CONA) in their solution. Unfortunately, to the best
of our knowledge, we have not come across any solution
with these features.

6.5. CP with Mobility Tolerance in Wireless Environment.
Te architecture of the current mobile networks sufers from
the same complexities as the traditional network. Fortu-
nately, the concept of “software-defned mobile networking”

Table 10: Comparison of related works on dmCP security.

Reference

Attack type Metrics
Problem

formulation
Solution
approachSnifng Byzantine DDoS Other Failure

rate Troughput Latency
No
of
CL

Compromised Loss

[186] √ — √ — √ — — — — Cryptography AKA

[187] — √ — — — — √ √ √ — Byzantine, bin
packing

VMs based
IaaS

[149] — √ — — √ — √ √ — √ ILP Heuristics

[123] — √ — — — — — — — — LP, RR
consensus

Byzantine
principles

[122] — — √ — — — — — — — SM 3D-EMD
[188] — √ — — √ — √ √ — √ ILP Heuristics

[10] — — — √ √ — √ — — — Knapsack K-
means, GA HCP
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(SDMN) is expected to be instrumental in modifying the
architecture of the current LTE, the emerging 5G, and the
IoTframework for applications such asWBAN and VANET,
respectively. However, despite the SDMN architecture’s
potential in resource and mobility management, it cannot be
fully utilized until the fundamental issue of CP design that it
has raised is resolved. In addition to determining the
number and placement of controllers in the network, CPP in
SDMN must determine the best controller position com-
patible with a dynamically changing topology. Likewise, it
must work in harmony with “on the fy” ubiquitous and
heterogeneous networks and handof support to diferent
radio access networks. Second, in SDMN, controllers will
heavily rely on statistics that may include user metadata
received from APs, BST, and even UEs for mobility and
location tracking. Tese have security and privacy concerns,
as the information can be exploited for mischievous pur-
poses. In addition, these factors will refect on aspects such as
problem formulation and solution methodologies. Tus, the
privacy issues and spatiotemporal changes in system pa-
rameters required in the algorithms will pose additional
intrinsic challenges that further complicate the problem
model. Terefore, research in this direction is still open to
contributions.

7. Conclusion

SDN architecture is structured in a way that makes the
controller the most important component for its smooth
and efcient operations, as every decision is made by it.
For this reason, the design and operation of the CP are
confronted with some challenges that need signifcant
attention to facilitate the adoption of SDN. Tese chal-
lenges might be specifc to an application scenario. Several
solutions have been proposed over the years to address
these challenges. Tis paper critically reviews the pro-
found issues associated with interoperability, consistency,
and CPP in control plane design with multiple controllers.
Te discussion touches on a wide range of issues, covering
the origin of the problem, alternate solutions found at the
DP, its evolution, and the state-of-the-art solutions
proposed to address them. Te objective is to provide an
updated evolution of the problem concerning the solu-
tions proposed to guide future research directions. To
accomplish this, we begin with a brief overview of SDN
fundamentals and then narrow it down to the subject
matter, where we discuss the source of the problem. Te
proposed solutions were then reviewed based on their
application environment, controller type, and optimiza-
tion objectives. Te fndings of the critical review reveal
that a substantial number of solutions were proposed with
diferent degrees of strengths and weaknesses concerning
their optimization objectives. Tus, based on that, certain
future research directions were pointed out and briefy
discussed.
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controller placement for designing a distributed SDN control
layer,” in Proceedings of the 2014 IFIP Networking
Conference, Trondheim, Norway, June 2014.

[158] W. Ren, Y. Sun, H. Luo, and M. Guizani, “A novel control
plane optimization strategy for important nodes in SDN-IoT
networks,” IEEE Internet of Tings Journal, vol. 6, 2018.

[159] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A
roadmap for trafc engineering in SDN-OpenFlow net-
works,” Computer Networks, vol. 71, pp. 1–30, 2014.

[160] Y. Xu, M. Cello, I. C.Wang et al., “Dynamic switch migration
in distributed software-defned networks to achieve con-
troller load balance,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 3, pp. 515–529, 2019.

[161] Z. Li, Y. Hu, T. Hu, and P. Wei, “Dynamic SDN controller
association mechanism based on fow characteristics,” IEEE
Access, vol. 7, Article ID 92661, 2019.

[162] K. S. Sahoo and B. Sahoo, “CAMD: a switch migration based
load balancing framework for software defned networks,”
IET Networks, vol. 8, no. 4, pp. 264–271, 2019.

[163] M. Priyadarsini, J. C. Mukherjee, P. Bera, S. Kumar,
A. H. M. Jakaria, and M. A. Rahman, “An adaptive load
balancing scheme for software-defned network controllers,”
Computer Networks, vol. 164, Article ID 106918, 2019.

[164] S. Auroux and H. Karl, “Flow processing-aware controller
placement in wireless DenseNets,” in Proceedings of the 2014
IEEE 25th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communication (PIMRC),
pp. 1294–1299, Washington, DC, USA, September 2014.

[165] S. Auroux and H. Karl, “Efcient fow processing-aware
controller placement in future wireless networks,” in Pro-
ceedings of the 2015 IEEE Wireless Communications and
Networking Conference (WCNC), pp. 1787–1792, New
Orleans, LA, USA, March 2015.

[166] S. Auroux and H. Karl, “Flexible reassignment of fow
processing-aware controllers in future wireless networks,” in
Proceedings of the 2015 IEEE 26th Annual International
Symposium on Personal, Indoor, and Mobile Radio

32 Journal of Electrical and Computer Engineering



Communications (PIMRC), pp. 1850–1855, Hong Kong,
China, August 2015.

[167] A. Ksentini, M. Bagaa, and T. Taleb, “On using SDN in 5G:
the controller placement problem,” in Proceedings of the 2016
IEEE Global Communications Conference (GLOBECOM),
Washington, DC, USA, December 2016.

[168] M. J. Abdel-Rahman, E. A.Mazied, A.MacKenzie, S. Midkif,
M. R. Rizk, and M. El-Nainay, “On stochastic controller
placement in software-defned wireless networks,” in Pro-
ceedings of the 2017 IEEE Wireless Communications and
Networking Conference (WCNC), pp. 1–6, San Francisco, CA,
USA, March 2017.

[169] M. J. Abdel-Rahman, E. A. Mazied, K. Teague,
A. B. MacKenzie, and S. F. Midkif, “Robust controller
placement and assignment in software-defned cellular
networks,” in Proceedings of the 2017 26th International
Conference on Computer Communication and Networks
(ICCCN), pp. 1–9, Vancouver, BC, Canada, July 2017.

[170] M. Johnston and E. Modiano, “Controller placement for
maximum throughput under delayed CSI,” in Proceedings of
the 2015 13th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), pp. 521–528, Cambridge, MA, USA, 2015.

[171] M. Johnston and E. Modiano, “Controller placement in
wireless networks with delayed CSI,” IEEE/ACM Transac-
tions on Networking, vol. 25, no. 3, pp. 1775–1788, 2017.

[172] Y. Zhang, Y. Zhu, F. Yan, W. Xia, and L. Shen, “Energy-
efcient radio resource allocation in software-defned
wireless sensor networks,” IET Communications, vol. 12,
no. 3, pp. 349–358, 2018.

[173] C. C. Lin, H. H. Chin, and W. B. Chen, “Balancing latency
and cost in software-defned vehicular networks using ge-
netic algorithm,” Journal of Network and Computer Appli-
cations, vol. 116, pp. 35–41, 2018.

[174] A. Llorens-Carrodeguas, C. Cervello-Pastor, I. Leyva-Pupo,
J. M. Lopez-Soler, J. Navarro-Ortiz, and J. A. Exposito-
Arenas, “An architecture for the 5G control plane based on
SDN and data distribution service,” in Proceedings of the
2018 5th International Conference on Software Defned
Systems, SDS 2018, pp. 105–111, Barcelona, Spain, April 2018.

[175] F. Sallabi, A. Ain, and A. Ain, “Managing IoT-based smart
healthcare systems trafc with software defned networks,” in
Proceedings of the 2018 International Symposium on Net-
works, Computers and Communications (ISNCC), vol. 31,
pp. 1–6, Rome, Italy, June, 2018.

[176] M. Cicioglu and A. Calhan, “SDN-enabled wireless body area
networks,” in Proceedings of the 2018 6th International
Conference on Control Engineering and Information Tech-
nology CEIT 2018, pp. 25–27, Istanbul, Turkey, October 2018.
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