Universiti Teknologi Malaysia Institutional Repository

Dielectric, mechanical, and thermal properties of crosslinked polyethylene nanocomposite with hybrid nanofillers

Abdul Razak, Nurul Iman and Mohd. Yusoff, Noor Izyan Syazana and Ahmad, Mohd. Hafizi and Zulkifli, Muzafar and Wahit, Mat Uzir (2023) Dielectric, mechanical, and thermal properties of crosslinked polyethylene nanocomposite with hybrid nanofillers. Polymers, 15 (7). pp. 1-18. ISSN 2073-4360

[img] PDF
2MB

Official URL: http://dx.doi.org/10.3390/polym15071702

Abstract

Crosslinked polyethylene (XLPE) nanocomposite has superior insulation performance due to its excellent dielectric, mechanical, and thermal properties. The incorporation of nano-sized fillers drastically improved these properties in XLPE matrix due to the reinforcing effect of interfacial region between the XLPE–nanofillers. Good interfacial strength can be further improved by introducing a hybrid system nanofiller as a result of synergistic interaction between the nanofiller relative to a single filler system. Another factor affecting interfacial strength is the amount of hybrid nanofiller. Therefore, the incorporation amount of hybridising layered double hydroxide (LDH) with aluminium oxide (Al2O3) nanofiller into the XLPE matrix was investigated. Herein, the influence of hybrid nanofiller content and the 1:1 ratio of LDH to Al2O3 on the dielectric, mechanical, and thermal properties of the nanocomposite was studied. The structure and morphology of the XLPE/LDH-Al2O3 nanocomposites revealed that the hybridisation of nanofiller improved the dispersion state. The dielectric, mechanical, and thermal properties, including partial discharge resistance, AC breakdown strength, and tensile properties (tensile strength, Young’s modulus, and elongation at break) were enhanced since it was influenced by the synergetic effect of the LDH-Al2O3 nanofiller. These properties were increased at optimal value of 0.8 wt.% before decreasing with increasing hybrid nanofiller. It was found that the value of PD magnitude improvement went down to 47.8% and AC breakdown strength increased by 15.6% as compared to pure XLPE. The mechanical properties were enhanced by 14.4%, 31.7%, and 23% for tensile strength, Young’s modulus, and elongation at break, respectively. Of note, the hybridisation of nanofillers opens a new perspective in developing insulating material based on XLPE nanocomposite.

Item Type:Article
Uncontrolled Keywords:crosslinked polyethylene, dielectric properties, hybrid filler, hybrid nanocomposite, mechanical properties, thermal properties
Subjects:Q Science > Q Science (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions:Chemical and Energy Engineering
ID Code:106482
Deposited By: Yanti Mohd Shah
Deposited On:08 Jul 2024 07:48
Last Modified:08 Jul 2024 07:48

Repository Staff Only: item control page