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A B S T R A C T   

A new environmentally friendly plan was created to make dihydropyrano [2,3-c]pyrazole structures without 
using metals. This plan involves combining ethyl acetoacetate, hydrazine hydrate, aldehyde derivatives, and 
malononitrile in a radical tandem Knoevenagel-Michael cyclocondensation reaction. We used metal-free meth-
ylene blue (MB+) to create special functions that respond to light. These functions can transfer electrons and 
energy in water at room temperature using light as a source of energy in the air. The amount of product made is 
pretty consistent (between 81 and 98 %, with an average of 91.8 %), and it gets made quickly (between 3 and 7 
min, with an average of 5.3 min). The important thing mentioned in the conversation is that the process can 
handle different types of chemicals while still being fast and giving good results. The results show that this 
special technique is a successful and easy way to get good results in just one step. Methylene blue is used with 
very little amount to make a chemical reaction happen. This leads to high amounts of product, saves energy, and 
is good for the environment. It helps use up all the starting materials efficiently, saves time by not needing to 
separate chromatography, and reduces waste. This photocatalyst is easy to use. This creates many different types 
of characteristics in the environment and chemicals that last a long time. The turnover number (TON) and 
turnover frequency (TOF) of dihydropyrano [2,3-c]pyrazole scaffolds were calculated. It is interesting that 
cyclization on a gram scale can be achieved, showing that this technique can be used in industries.   

1. Introduction 

The use of single electron transfer (SET)/photoinduced electron 
transfer (PET) pathways to form C–C and C-heteroatom bonds has 
proliferated in recent years. Various types of procedures require them, 
ranging from small to large. Technological advances have allowed the 
development of flow reactors [1] using visible light and light-sensitive 
dual electrochemical reaction processes [2], allowing the development 
of efficient reactions, environmentally friendly and more affordable. It is 

used in many medical procedures. The drug has been shown to have 
antimalarial effects and is very useful in the treatment of methemoglo-
binemia [3–5]. Having an absorbance of 664 nm and a molar absorbance 
(ε = 90,000) [6], the lifetime of the single group is τf ~ 1.0 ns for MB+. 
The 3MB+* triple has a much longer lifetime τf ~32 μs [7], making it 
much more stable [8]. In Scheme 1, methylene blue’s photocatalytic 
cycle is shown [8]. 

Therefore, inexperienced chemists do not forget to see irradiation as 
a dependable method to produce organic chemicals in an 
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Scheme 1. Photocatalytic cycling can be performed with MB + [8].  
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environmentally friendly manner [9,10]. 
Because of its organic and pharmacological activity, the systems that 

makeup pyranopyrazole have aroused the interest of biochemists and 
artificial natural chemists (Fig. 1) [11–15]. 

There are numerous options available [16–39]. In consequence, 
metal catalysts have been restricted, expensive reagents have been used, 
severe reaction conditions have been created, monotonous yields have 
been observed, environmental dangers have been created, and long re-
action times have been observed. As well, separating a homogeneous 
catalyst from a reaction mixture can be challenging. Lately, many sci-
entists in the fields of medicine, drug development, and materials have 
been interested in multicomponent reactions (MCRs) [40–58]. This is 
because it has many benefits compared to traditional linear synthesis 
methods, like being easy to do, good for the environment, efficient in 
using atoms, and able to create complex molecules in a few steps. During 
the current study, we examined photocatalysts [59–61] in green envi-
ronments, which used to be attempted and are currently under devel-
opment. Researchers demonstrate how cationic dye photo-redox 
catalysts can be used, which are low-cost and widely available. The 
photochemical mechanism above is used to produce methylene blue 
(MB+). The Knoevenagel-Michael cyclocondensation process takes place 
at rt and in a ventilated environment using visible light. We have 

successfully implemented an extremely efficient, cost-effective, and 
simple one-pot reaction. 

2. Experimental 

2.1. Preparation of dihydropyrano [2,3-c]pyrazole scaffolds (5a-t) 

Methylene blue (0.5 mol%) was mixed with ethyl acetoacetate (1, 1 
mmol), hydrazine hydrate (2, 1 mmol), aldehyde derivatives (3, 1 
mmol), and malononitrile (4, 1 mmol) in H2O (3 mL) and stirred at rt 
under a white LED (18 W). TLC is used to screen the response. The 
ensuing product changed into sieved and washed with water after the 
reaction, and the crude strong changed into recrystallized from the 
ethanol without additional purification to present a pure compound. The 
goal was to find out if we could produce these chemicals at the gram 
scale or down to the level needed for pharmaceutical process R&D. One 
test used 50 mmol every of malononitrile, ethyl acetoacetate, p-tol-
ualdehyde, and hydrazine hydrate. The full response went smoothly and 
only took 4 min, with typical filtration techniques used to collect the 
product. This substance is spectroscopically pure, based on its 1HNMR 
spectrum. 

After evaluating the spectral data, the products had been classified 
(1HNMR). The Supporting Information file lists the spectral data and 
files for this manuscript. 

3. Results and discussion 

To begin, with no photocatalyst, have 35 % 5a at room temperature 
in 3 mL H2O for 15 min. To enhance the reaction, photocatalysts (Fig. 2) 
were all tested in the same framework. While receiving the corre-
sponding product acceptable 5a, this reaction progressed in 46–96 % 
yields (Table 1). By using 0.5 % mol MB+, the yield was increased to 96 
%. Table 2 shows that THF, DMSO, DMF, and toluene reduced product 
output. Reaction speed and productivity have been increased with 
EtOH, MeOH, H2O/EtOH (1:1), EtOAc, solvent-free conditions, and 
CH3CN. In H2O, the reaction is carried out with high yield and speed. As 
demonstrated in Table 2, a yield of 96 % was produced below the same 
conditions. Productivity is filtered by various light sources, showing the 
effect of white light. Furthermore, the improved settings are determined 
by adjusting the intensity of white LEDs. According to the researchers, 
the best results are obtained when using white LEDs (18 W) (Table 2, 
entry 4). Some substrates have been tested under the right conditions 
(Scheme 2). It is vital to observe that the addition of a benzaldehyde 
substituent no longer has an effect on the end result of the reaction 
(Table 3). Under the reaction conditions, the substitution of polarity and 
halides is allowed. The current reaction state has allowed the electron 
donor and electron-withdrawing groups to proceed well. Aromatic al-
dehydes were substituted for ortho, meta, and para for very high yields. 
Heterocyclic aldehydes follow the same reaction pattern (Table 3). 

There is information in Table 4 about turnover number (TON) and 
turnover frequency (TOF). As the TON and TOF numerical values in-
crease, the catalyst is used less, the yield increases, and as the value 
increases, the catalyst becomes more efficient. The preferred technique 
is shown in Scheme 3. Table 5 compares the catalytic execution of a few 
catalysts that have been detailed herein. 

Fig. 1. Pyranopyrazole rings that are biologically active.  

F. Mohamadpour et al.                                                                                                                                                                                                                        



Current Research in Green and Sustainable Chemistry 7 (2023) 100381

4

Fig. 2. In this procedure, photocatalysts had been tested.  
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Table 1 
For 5a production, a table of photocatalyst optimization is provideda. 

Entry Photocatalyst Solvent (3 mL) Time (min) Isolated Yields (%) 

1 – H2O 15 35 
2 Methylene blue (0.2 mol%) H2O 10 83 
3 Methylene blue (0.5 mol%) H2O 5 96 
4 Methylene blue (1 mol%) H2O 5 96 
5 Alizarin (0.5 mol%) H2O 5 51 
6 Phenanthrenequinone (0.5 mol%) H2O 5 49 
7 Rose bengal (0.5 mol%) H2O 5 76 
8 9H-Xanthen-9-one (0.5 mol%) H2O 5 55 
9 Acenaphthenequinone (0.5 mol%) H2O 5 53 
10 Rhodamine B (0.5 mol%) H2O 5 74 
11 Xanthene (0.5 mol%) H2O 5 46 
12 Erythrosin B (0.5 mol%) H2O 5 68 
13 Riboflavin (0.5 mol%) H2O 5 71 
14 Fluorescein (0.5 mol%) H2O 5 65  

a Reaction conditions: ethyl acetoacetate (1 mmol), hydrazine hydrate (1 mmol), benzaldehyde (1 mmol), and malononitrile (1 mmol) in H2O, as well as a white LED 
(18 W) and a variety of photocatalysts, were utilized at room temperature. 

Table 2 
Visible light and solvent optimization table for 5a synthesis is provideda. 

Entry Light Source Solvent (3 mL) Time (min) Isolated Yields (%) 

1 White light (18 W) EtOH 5 73 
2 White light (18 W) MeOH 7 58 
3 White light (18 W) EtOAc 8 61 
4 White light (18 W) H2O 5 96 
5 White light (18 W) H2O/EtOH (1:1) 5 81 
6 White light (18 W) CH3CN 5 69 
7 White light (18 W) – 7 63 
8 White light (18 W) THF 25 30 
9 White light (18 W) DMSO 15 28 
10 White light (18 W) DMF 25 34 
11 White light (18 W) toluene 15 26 
12 White light (10 W) H2O 5 83 
13 White light (12 W) H2O 5 91 
14 White light (20 W) H2O 5 96 
15 Blue light (18 W) H2O 5 88 
16 Green light (18 W) H2O 5 83 
17 – H2O 35 trace  

a Reaction conditions: at room temperature, ethyl acetoacetate (1 mmol), hydrazine hydrate (1 mmol), benzaldehyde (1 mmol), and malononitrile (1 mmol) were 
added to MB+ (05 mol%). 

Scheme 2. Synthesis of compounds.  
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Table 3 
This photocatalyst manufactures dropyranopyrazole scaffolds using photoexcited methylene blue as a photo- 
redox catalyst. 
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Table 4 
Calculate TON and TOF.  

Entry Product TON TOF Entry Product TON TOF 

1 5a 192 38.4 11 5k 192 38.4 
2 5b 194 48.5 12 5l 190 47.5 
3 5c 182 36.4 13 5m 184 30.6 
4 5d 188 31.3 14 5n 166 23.7 
5 5e 190 47.5 15 5o 196 65.3 
6 5f 194 48.5 16 5p 190 38 
7 5g 184 36.8 17 5q 196 49 
8 5h 172 24.5 18 5r 168 24 
9 5i 170 24.2 19 5s 172 28.6 
10 5j 162 23.1 20 5t 190 38  

Scheme 3. It has been presented as a mechanistic technique.  
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4. Conclusion 

Based on the results, we found that the excited state of metal-free 
MB+ can be used to make a certain kind of chemical; dihydropyrano 
[2,3-c]pyrazoles. We can make these chemicals by combining ethyl 
acetoacetate, hydrazine hydrate, aldehyde compounds, and malononi-
trile together using a reaction that involves single-electron transfer 
(SET)/energy transfer (EnT). This reaction is done in water and air at-
mosphere and at room temperature. We use visible light as an energy 
source to make this reaction happen in a sustainable way. The main 
things to notice about this eco-friendly plan are that it uses very little 
catalyst, works well, has safe conditions for the reaction, uses renewable 
energy, and doesn’t need any harmful solvents. This method showed 
that it can be used on a large scale and can be repeated to get the same 
results. The reaction got faster and didn’t need to use any separation 
technique anymore. For creating the drug molecule, the reaction was 
easily increased to a larger amount of 50 mmol. The way model sub-
stances reacted in larger amounts showed that their reactions could be 
increased without changing the result. We added visible light as a source 
of renewable energy in this chemical reaction. This discovery could have 
applications in areas like polymer chemistry, medicine, and materials. 
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