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Location-Aided User Selection and Sum-Rate
Analysis for mmWave NOMA

Igbafe Orikumhi, Chee Yen Leow, and Sunwoo Kim

Abstract—In this paper, we propose a user selection scheme
based on location-aided interference prediction to reduce the
training overhead in a non-orthogonal multiple access (NOMA)
system. First, we cluster the users based on their location
information, enabling the use of non-orthogonal pilot sequence
within a cluster and orthogonal pilot sequence between different
clusters to reduce the uplink pilot training length. Secondly,
we exploit the location information in the computation of the
covariance matrices, enabling the prediction of the interference
between users. The predicted interference is employed to select
the set of users with minimum interference for uplink channel
estimation and downlink NOMA data transmission. Finally,
the achievable sum-rate of the massive multiple-input multiple-
output millimeter wave NOMA system is analyzed. The analytical
and numerical results reveal that the location information can
be exploited for user selection to reduce the effect of pilot
contamination, enhancing the uplink channel estimation and
downlink achievable sum-rate.

Index Terms— Location-aware communication, mmWave,
multi-user beamforming, NOMA, power allocation, user clus-
tering.

I. INTRODUCTION

THE increasing demand for mobile broadband has become
a major challenge in wireless communication. To address

this issue, millimeter wave (mmWave) communication has
been proposed for the fifth-generation (5G) networks due to
the large bandwidth available in this frequency spectrum [2].
However, the mmWave spectrum is known to suffer from
severe path-loss and low penetration, a challenge that has
led to the use of massive antenna arrays and directional
beamforming to compensate for the losses [3].
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The use of massive antenna provides numerous advan-
tages [4]–[8] such as (i) channel hardening effects which
result from averaging out the small scale fading, (ii) energy
efficiency improvement with directional transmission towards
the desired user equipment (UE) (iii) reduced interference
with the aid of narrow beam transmission, and (iv) increased
spectral efficiency by supporting a high number of UEs.
Moreover, the use of highly directional beams provides large
antenna array gains with small inter-beam interference. This
feature can be exploited to serve multiple UEs within each
beam or a cluster of beams.

Furthermore, the hardware cost and the number of radio
frequency (RF) chains in mmWave devices are usually much
smaller than the number of antennas which limits the number
of active UEs that can be served simultaneously. To support
a higher number of UEs in mmWave 5G networks, more
UEs can be multiplexed in the power domain using the
principle of non-orthogonal multiple access (NOMA) for a
given resource block (e.g., time/frequency) [9]. NOMA has
become a promising solution and has been studied for 5G
communications. mmWave NOMA allows multiple users to
share the same resource block by taking advantage of the dif-
ferent rate requirements of the UEs and the highly correlated
mmWave channels [10].

Although more bandwidth resource are available in
mmWave band, combining NOMA with mmWave is still
important for the following reasons: 1) The highly correlated
mmWave channel can potentially degrade systems perfor-
mance. But such correlation is ideal for application of NOMA.
2) The increasing growth of mobile device and mobile internet
services will soon dwarf the spectrum resource provided by
the mmWave band. Hence, the need for further improvement
of spectral efficient schemes. 3) The 5G system and beyond
are designed to support massive number of devices in a small
area, hence, combining NOMA and mmWave can improve
systems design and resource allocation.

The goal of NOMA is to maximize the system throughput
subject to the UEs individual rate constraints [11]. Specifically,
the NOMA scheduler estimates a set of system utilities at
each resource block by activating any subset of UEs. The
base station (BS) can then schedule the set of active UEs
in a resource block based on the individual UE’s quality of
service (QoS) [12]–[14]. In [14], a sort-based user scheduling
with partial channel state information (CSI) and power alloca-
tion (PA) strategy was proposed. In [15], the authors proposed
an optimal user scheduling and PA strategies for multi-beam
and multi-user mmWave NOMA system, where the authors
focused on the use of random beamforming to reduce the
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CSI overhead. A joint PA and beamforming algorithm is
proposed to maximize the sum-rate in a two-user mmWave
NOMA scenario in [16]. These methods [12]–[16] suffer
from large training overhead in CSI acquisition which in
turn decreases the achievable sum-rate or poor CSI due to
random beamforming. Unlike, [17], [18], where perfect CSI
are assumed and the training overhead is ignored, in this
paper, we seek to exploit the location information for user
interference prediction and pairing while minimize the training
overhead.

The challenges posed by high training overhead and random
beamforming are exacerbated using highly directional beam-
forming in massive multiple-input multiple-output (mMIMO)
systems. This is because the BS has to search over a large
angular space to estimate the channel of the UEs [19], [20]
before pairing the UEs for downlink transmission. In [21],
it was shown that the challenge of CSI acquisition at the
transmitter could be alleviated by increasing the number of
antennas at the BS. The idea is rooted in the law of large
numbers, which shows that asymptotic orthogonality between
the vector channels of the desired UE and that of a randomly
selected interfering UE can be achieved as the number of
antennas tends to infinity. Hence, by aligning the beam vectors
of a massive antenna BS with the channel of the desired UE,
interference can be suppressed. However, this conclusion only
holds in the absence of pilot contamination. Pilot contami-
nation arises because the available orthogonal pilot sequence
length is limited by the length of the channel coherence time,
leading to several UEs employing the same pilot sequence.

The existing literature on pilot decontamination methods for
time division duplex (TDD) MIMO systems can be grouped
into two broad categories: Pilot-based and subspace-based
approaches. In pilot-based approaches, each UE transmits
independent pilots to the BS in a non-overlapping fash-
ion [22]–[25]. In such settings, the frame structure is modified
such that the UEs transmit with orthogonal pilots or orthog-
onal times slot [24], [25]. In subspace-based approaches, the
second-order statistics of the desired user and the interfering
UE’s channel is exploited [26], [27]. Such methods utilizes
covariance-aided channel estimation [28]–[32]. Based on the
spatial correlation of the covariance matrices, UEs that are
spatially compatible can be identified with the use of non-
diagonal covariance matrices. In [33], a closed-form analysis
of the downlink achievable sum-rate exploiting the statistical
second-order channel covariance matrices is derived. In recent
studies, location information has attracted increasing research
interest. Recently, location-aided covariance matrix channel
estimation and pilot contamination avoidance in multiple cell
scenario [34], [35] have been studied. Studies have shown that
location-aided communication is a promising technology to
reduce CSI acquisition overhead [36]. In [37], the prior loca-
tion information of the UE is exploited to speed up the initial
access phase in a mmWave vehicular communication utilizing
adaptive channel estimation and beamforming. It is shown that
location-aided channel estimation and data transmission can
be greatly improved with reduced implementation complexity.
In [38], a location based MIMO-NOMA is proposed for low
complexity user selection. However, the proposed scheme

required additional radio resource (frequency, and time) to
obtain the channel state information of the user which is then
used for power allocation. Hence the location information is
not applied efficiently. Furthermore, studies [39], [40] have
shown that due to the height of the BS, the channel angle
spread observed at BS to the UEs is small. As a consequence,
UEs can be clustered based on the line-of-sight (LOS) angle
of departure (AOD) differences, where the AOD of the LOS
path can be acquired from the location information. Since
the difference between the AOD of UEs within the same
cluster may be small, we propose a location-aided interference
prediction based user selection in NOMA systems to improve
the channel estimation and minimize the effect of interference.

Specifically, to reduce the intra-cluster interference caused
by pilot contamination from UEs within the same cluster,
an efficient location-aided interference prediction is proposed
which can effectively distinguish the users with different
AODs. To this end, we propose a location-aided interference
prediction scheme and user selection to reduce the training
overhead, intra-cluster and inter-cluster interference and the
channel estimation errors. Moreover, asymptotically, we prove
that the intra-cluster interference caused by the users with
non-overlapping AODs can be perfectly eliminated when the
number of BS antennas tends to infinity. For a finite number
of antennas and overlapping angular spread, we show that
the interference from UEs can be predicted from the loca-
tion information and hence, UEs with minimum inter-cluster
interference can be scheduled for uplink channel estimation
and downlink data transmission.

Our contributions are summarized as follows.
• Since the pilot length is limited by the channel coherence

time, we propose a location-aided interference prediction
based user selection for NOMA systems to reduce the
uplink training overhead, inter-user interference and intra-
cluster inference. By utilizing the subspace of the desired
UE and that of the predicted interfering UEs, we show
that as the number of transmit antenna becomes large, the
estimated channel of the desired UE with low training
overhead tends toward the estimated channel of the
scheme with optimal training length.

• Finally, we analyze the performance of the downlink
achievable sum-rate NOMA scheme while considering
the effect of channel estimation error, imperfect suc-
cessive interference cancellation (SIC), interference from
other UEs and location information error.

Notations and Organization

Throughout this paper, matrices and vector symbols are
represented by uppercase and lowercase boldface respectively.
A∗, AT , and AH represent the conjugate, transpose and
Hermitian transpose of the matrix A, respectively. The math-
ematical expectation and variance of matrix A is denoted as
E[A] and Var[A] respectively. tr(A) represents the trace of
matrix A. The Kronecker product between two matrices A
and B is denoted as A⊗B.

The rest of the paper is organized as follows. In Section II,
the location information, system description and channel
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Fig. 1. Design flow for proposed location-aided mmWave-NOMA.

model are described. In Section III, we present the proposed
UE selection based on location-aided interference prediction.
The uplink channel estimation and downlink NOMA transmis-
sion are discussed in Section IV, followed by the numerical
results and discussion in Section V, and finally, the paper is
concluded in Section VI. A summary of the proposed system
flow is presented in Fig. 1.

II. LOCATION INFORMATION, SYSTEM DESCRIPTION AND
CHANNEL MODEL

The proposed scheme relies on exploiting the location infor-
mation of the UEs. In this section, we present the method to
exploit location information and describe the communication
scenario.

A. Exploiting Location Information for User Grouping

With the recent advancement in localization and UE position
estimation techniques, we assume the BS has access to the
location information of the UEs. Such information can be ob-
tained at the initial access phase or by UE position estimation
(see [41] and reference therein). However, since the location
may not be perfect, we discuss the impact of location errors on
the proposed scheme. For analytical tractability, we assume a
slow fading environment such that the channel coherence time
is much larger than the signal duration. The assumption allows
the UEs to update the BS with their location information after
the initial access phase.

Let lBS = [xBS, yBS] denote the location of the BS and
ln,k = [xn,k, yn,k] denotes the location of the kth UE in the
nth cluster respectively. Based on the location information, the
BS can evaluate the AOD of the kth UE in the nth cluster as
follows

θn,k =
π

2
− arctan

(
xn,k − xBS

yn,k − yBS

)
, ∀k. (1)

The distance between the BS and the kth UE in the nth cluster
can be evaluated as dn,k = ∥lBS − ln,k∥2. Define the set of
predefined beam vectors as V = {v1, · · ·,vN} for N total
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Fig. 2. Proposed mmWave-NOMA downlink MISO scenarios with Kn

selected UEs for each cluster.

clusters where vn = a(ϕn) in which the discrete pointing
angles ϕn is defined as

ϕn = arccos

(
1− 2(n− 1)

N − 1

)
for n = 1, 2, · · ·, N, (2)

and a(ϕn) is the steering vector. In this paper, a uniform linear
array antenna with half wavelength antenna spacing is assumed
at the BS and the array response vector is given by

a (θ) =
1√
Nt

[
1, e−jπ cos θ, · · ·, e−jπ(Nt−1) cos θ

]T
, (3)

where Nt is the number of transmit antennas at the BS.
With the AOD of the kth UE obtained from the location

information, the BS can assign the UE to the best beam cluster
as follows

vn,k = argmin
v∈V

∥v − a(θn,k)∥22 , (4)

for n = 1, · · ·, N , k = 1, · · ·,Kn, where vn,k is the precoder
to the kth UE in the nth cluster.

B. System Description

We consider a mMIMO NOMA communication system
operating in the mmWave band. We assume a single BS with
Nt antennas serving a total of K UEs, each equipped with a
single antenna as shown in Fig. 2. We define PT as the total
power constraint at the BS, then PT can be expressed as

PT =
N∑

n=1

Kn∑
k=1

Pn,k, (5)

where N is the total number of beam clusters. We assume
that KT UEs are deployed in each cluster from which Kn UEs
subset are selected for uplink channel estimation and downlink
data transmission in the nth cluster and Pn,k is the power
allocated to the kth UE in the nth cluster. We assume that
N ≤ NRF, where NRF is the number of RF chains at the BS.
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C. Channel Model

The uplink channel between the kth UE in the nth cluster
and the BS is denoted as hn,k ∈ CNt . We assume the channel
consists of L multi-path components and can be modelled
as [15]

hn,k =
√

Nt

L∑
l=1

αl
n,ka

(
θln,k

)
, (6)

where αl
n,k ∼ CN (0, ρn,k) is the complex gain of the lth path

to the kth UE in the nth cluster and ρn,k = d−δ
n,k depends

on the large scale path-loss between the BS and kth UE
in the nth cluster with path-loss exponent δ. Given that the
location information is known, we assume that the channel has
an arbitrary AOD distribution but has a support [θmax

n,k , θmin
n,k ]

centered on θn,k obtained from the location information with
a probability density function (PDF) of p(θn,k).

Under the assumption of large number of antennas in
mMIMO mmWave systems, the number of paths to each UE
is small which gives rise to hn,k having a zero-mean Gaussian
distribution with a covariance matrix [35]

Rn,k = E
[
hn,kh

H
n,k

]
= ρn,k

∫
p(θn,k)a (θn,k)a

H (θn,k) dθn,k. (7)

To model the small-scale fading effects, we assume a LOS
link between the BS and the UE since the LOS component
typically dominates the mmWave wireless propagation. We
note from (7) that the covariance matrix depends on the small-
scale and large scale fading, where the large scale fading is
obtained from the location information and the small scale
is inferred from (6). Hence, the evaluation of the covariance
matrix is carried out via averaging over this effects. The
large scale is approximately constant over the coherence time
interval while the small-scale fading varies rapidly and is
handled by averaging the entries. In this paper, we exploit the
covariance matrix Rn,k for UE selection. Note that the user’s
channel covariance matrix is computed based on the location
information without the need of estimating the covariance
matrix directly.

To reduce the overhead in CSI acquisition, we assume a
scenario where the UEs within a cluster share the same pilot
sequence (non-orthogonal pilots) while employing orthogonal
pilots between different clusters. Hence, the goal of the BS is
to estimate the uplink channel of the desired UE in the nth
cluster in the presence of Kn−1 interfering UEs arising from
pilot contamination.

III. PROPOSED LOCATION-AIDED INTERFERENCE
PREDICTION BASED UE SELECTION

It is worth noting that the existing scheme assumes perfect
or partial CSI, thereby ignoring the cost of uplink channel
estimation and user selection overhead in NOMA system. In
this section, we propose a low overhead user selection scheme.
Given the location information, we predict the interference
between the UEs and exploit the predicted interference for
UEs selection.

A. Location-Aided Interference Prediction for UE selection

Given a mMIMO scenario, the performance of the multi-
user channel estimation is dependent on the degree to which
the subspace of the covariance matrices of the desired UE
overlaps that of the other Kn − 1 UEs in nth cluster. In
this paper, we define the desired UE in the nth cluster as
the UE with the strongest channel coefficients to the BS. By
exploiting the covariance matrix Rn,k and the AOD obtained
from the location information, we can select a set of UEs
within a cluster to minimize intra-cluster interference. Hence,
the BS can estimate the channel of only the selected UEs in the
uplink channel. The covariance matrix, Rn,k is employed in
solving the spectral decomposition problem of the high-order
uniform linear antenna arrays. Let Rtop

n,k denotes the Toeplitz
assumption of Nt × Nt matrix [42]. Thus, we can define as
follows:

Definition 1: The covariance matrix Rn,k is an Nt ×Nt

Toeplitz matrix {Rn,k}i,j = ri,j for i, j = 0, 1, · · ·, Nt − 1
where ri,j = ri−j and ri,j is the ith row and jth column
element of {Rn,k}.

Proposition 1: The covariance matrix Rn,k is equivalent
to a circulant matrix Rcirc

n,k , i.e.,

Rtop
n,k ≈ Rcirc

n,k . (8)

Proof : Refer to Appendix A.
Remark 1: From proposition 1 and the assumption of

mMIMO at the BS (large Nt), the channel covariance matrices
obtained from the location information is a circulant matrix
Rcirc

n,k and can be decomposed as [43]

Rcirc
n,k = Un,kΣ

a+b
n,k UH

n,k, (9)

where Un,k ∈ CNt×bi is the eigenvector matrix, in which
bi ≤ ci, Σa+b

n,k ∈ Cbi×bi is an eigenvalue matrix and ci is
defined as

ci ≜
(
cos θmax

n,k − cos θmin
n,k

) D
λ
, (10)

where D is the antenna spacing and λ is the signal wavelength.
Assuming the support of the densities p(θn,k) of the kth

UE do not overlap with the density of other UEs in the same
cluster, we have

UH
n,kUn,k′ =

{
Ibi , for k = k

′

0, otherwise
as Nt → ∞. (11)

Since the covariance matrix Rcirc
n,k spans [θmax

n,k , θmin
n,k ],

then for any response a(θn,k) and a(θn,k′ ) for which
∥UH

n,ka(θn,k)∥ is greater than ∥UH
n,ka(θn,k′ )∥ (i.e.

∥UH
n,ka(θn,k)∥ > ∥UH

n,ka(θn,k′ )∥) indicates that a(θn,k′ )
causes less interference. Hence, in a finite antenna setting
where the span of the spatial angles from the desired UE and
other UEs may overlap, a(θn,k′ )HRcirc

n,k a(θn,k′ ) can be used
as a measure to predict the interference between user k and
user k

′
, where a(θn,k′ )HRcirc

n,k a(θn,k′ ) is given by

a(θn,k′ )HRcirc
n,k a(θn,k′ ) = a(θn,k′ )HUn,kΣ

a+b
n,k UH

n,ka(θn,k′ ).

(12)

To reduce the interference between the UEs, the set
of interfering UEs for which the predicted interference
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∥a(θn,k′ )HRcirc
n,k a(θn,k′ )∥ is small on the desired channel

(i.e., kth UE) is preferred. Hence, we result in selecting the
set of UEs for which the interference prediction is small for
uplink channel estimation and downlink NOMA transmission.
Note that the location-aided interference prediction for all the
users can be achieved from the location information without
the need for additional radio resources (frequency and time
resource).

B. Location-Aided UE Selection

The length of orthogonal pilots is usually limited by the
number of UEs and the channel coherence time. To this end,
we employ a non-orthogonal pilot sequence within a cluster to
reduce the system overhead while employing orthogonal pilots
between different clusters to aid channel estimation and reduce
inter-cluster interference. Since non-orthogonal pilot sequence
is employed within each cluster, the high channel correlation
between the UEs may impact the channel estimation. Hence,
we focus on exploiting the covariance matrices and the pre-
dicted interference in a cluster in selecting the set of UEs with
less interference.

To select Kn UEs in a given cluster n, we first determined
the desired UE, thereafter, Kn − 1 UEs with less interference
on the desired UEs are selected. In this paper, we refer to
the UE closest to the BS as the desired UE or the primary
user (PU). However, this assumption can be relaxed and other
UEs may be selected as the PU. The objective here is to exploit
the location information in selecting Kn − 1 UEs with less
interference on the PU, therefore the proposed scheme is still
applicable irrespective of the PU. Based on our assumption of
the PU, the desired UE can be determined as follows

k∗ = argmax
k∈{1,···,KT }

a(θn,k)
HRcirc

n,k a(θn,k), (13)

where KT is the total number of UEs in a cluster from which
Kn UEs are selected. Note that the desired UE is determined
from the correlation of the steering vectors and the covariance
matrices which are obtained from the location information.

Let K = {k′|k′ ̸= k∗, and k′ ∈ {1, 2, · · ·,KT }} be the set
of KT − 1 UEs order than the PU which are ordered with
ascending order of correlation. The set of Kn − 1 interfering
UEs from K that minimize the interference on the PU can
then be determined as

Kn−1 ={
argmin

k′∈K

Kn−1∑
k′

∥a(θn,k′)HRcirc
n,k a(θn,k′)∥

}
, (14)

where ∥a(θn,k′)HRcirc
n,k a(θn,k′)∥ corresponds to the predicted

interference between user k and user k
′
.

Given the desired UE and the set of Kn − 1 UEs with
minimum interference, the BS can then schedule the UEs for
uplink channel estimation. Note that UE selection complexity
is substantially reduced since the BS is not required to estimate
the covariance matrix of each UE before UEs selection, instead
of the steering vectors a(θn,k′) and covariance matrix Rcirc

n,k

can be directly obtained from the location information.

IV. UPLINK CHANNEL ESTIMATION AND DOWNLINK
ACHIEVABLE SUM-RATE ANALYSIS

The uplink channel estimation of the set of selected UEs and
the downlink achievable sum-rate are presented in this section.
In addition, we discuss the impact of location information error
on the downlink achievable sum-rate.

A. Location-Aided Uplink Channel Estimation

Note that while there may be more UEs within a cluster,
only the selected UEs are scheduled for uplink channel esti-
mation and subsequent downlink data transmission.

1) Uplink signal model: By selecting the desired UE and
the Kn − 1 UEs in each cluster with minimum interference
on the desired UE as shown in the previous section, channel
estimation can be performed. At the beginning of the coherent
time, all the selected UEs from each cluster transmit their
pilots sequence to the BS. The received Nt × T pilot signal
at the BS can be expressed as

YP =
√
TP

N∑
n=1

Kn∑
k=1

hn,kΦn +NP , (15)

where T is the pilot sequence length measured in symbol
duration, P is the pilot transmit power, NP ∼ CN

(
0, σ2

P I
)

is the Nt×T complex Gaussian noise at the BS, Φn ∈ C1×T

is the pilot sequence allocated to the UEs in the nth cluster.
Based on the received signal YP , the BS estimates the channel
of the UEs. However, selecting the best set of Kn UEs from
the KT UEs is required to improve the channel estimates,
hence, we proposed a location-aided interference prediction
scheme to select UEs with minimum interference.

2) Location-aided channel estimation: Given that
ΦnΦ

H
n = 1 and ΦnΦ

H
n′ ̸=n = 0 then by projecting YP

from (15) onto Φn, we obtain yP,n = YPΦ
H
n as

yP,n =
√
TP

Kn∑
k=1

hn,k + ñ, (16)

where ñ = NPΦ
H
n . The MMSE estimate of hn,k can be

derived from (16) as [44]

ĥn,k = E
[
hn,ky

H
P,n

]
E
[
yP,ny

H
P,n

]−1
yP,n, (17)

where

E
[
hn,ky

H
P,n

]
=

√
TPRcirc

n,k , (18)

E
[
yP,ny

H
P,n

]
=

Rcirc
n,k +

Kn∑
k′ ̸=k

Rcirc
n,k′ +

σ2
P

TP
I

 , (19)

and Rcirc
n,k is the covariance matrix of hn,k. Hence, the MMSE

estimate of the desired channel hn,k can be obtained as

ĥn,k =

Rcirc
n,k

TP

Rcirc
n,k +

Kn∑
k′ ̸=k

Rcirc
n,k′

+ σ2
P I

−1

yP,n.

(20)

Note that the MMSE channel estimate in (20) is degraded by
the interfering channel due to the effect of pilot contamination.
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B. Effect of mMIMO Array on the Channel Estimation

We seek to analyze the performance of the location-aided
covariance matrices used in the MMSE estimator in the
mMIMO regime with large antenna Nt. As previously stated,
we assume that the multipath components of the kth UE in (6)
are distributed according to the density p(θl,n,k) with bounded
support for some fixed [θmax

l,n,k, θmin
l,n,k]. Note that θn,k is

obtained from the location information, while θmax
l,n,k and θmin

l,n,k

are assumed to be the maximum and minimum angular spread
with mean θn,k and can be inferred from the localization
techniques used in practice. For instance, the localization error
bound of the global positioning system (GPS) could range
between 3–20 meters in open areas.

First, we examine the degradation caused by pilot con-
tamination on the channel estimates in the finite antenna
regime. From (11), the matrices Rcirc

n,k and
∑Kn

k′ ̸=k
Rcirc

n,k′ span
orthogonal subspace in the massive antenna domain. To this
end, we restrict ourselves to the asymptotic regime for large
Nt, hence, TP

∑Kn

k′ ̸=k
Rcirc

n,k′ can be decomposed as

TP

Kn∑
k′ ̸=k

Rcirc
n,k′ = BΣa+bBH , (21)

where B is the eigenvector matrix, such that BHB = I. Let
W denote the unitary matrix corresponding to the orthogonal
complement of the span of Un,k and B. Then the Nt × Nt

identity matrix can be decomposed into

I = Un,kU
H
n,k +BBH +WWH . (22)

Hence, as the number of antenna grows large and by
substituting (9), (21), and (22) into (20), we have

ĥn,k ≈ Un,kΣ
a+b
n,k UH

n,k

(
TPUn,kΣ

a+b
n,k UH

n,k +BΣa+bBH

+ σ2
PUn,kU

H
n,k + σ2

PBBH + σ2
PWWH

)−1
yP,n.

(23)

Due to the asymptotic orthogonality between Un,k, B and W,
the channel estimate in (23) is given by

ĥn,k ≈ Un,kΣ
a+b
n,k

(
TPΣa+b

n,k + σ2
P I
)−1

UH
n,kyP,n. (24)

We can simplify (24) as

ĥn,k =Un,kΣ
a+b
n,k

(
TPΣa+b

n,k + σ2
P I
)−1

(25)

×
(
TPUH

n,khn,k + ñ
)
. (26)

The channel estimate in (26) shows the fact that as the
number of antennas Nt → ∞, the estimated channel tends
to an interference-free channel provided that the span of the
covariance matrix of the desired channel does not overlap with
the span of the covariance matrices of the interference UEs.

With the assumption of orthogonal pilot sequence between
different clusters, the MMSE estimation of the nth PU’s
channel in the presence of Kn − 1 interfering UEs can then
be obtained as [43]

ĥn,k = ρ̃n,kyP,n, (27)

where ρ̃n,k =
√
TPρn,k/

(∑Kn

k=1 TPρn,k + 1
)

.

Proof : Refer to Appendix B.
By using the MMSE estimation principle of orthogonal-

ity [44], the downlink channel can be expressed in terms of
the channel estimate and channel estimation error as

hn,k = ĥn,k + En,k, (28)

where ĥn,k is statistically independent from the error En,k.
Finally, the element of ĥn,k and En,k are distributed as
ĥn,k ∼ CN (0, ρ̂n,kI) and En,k ∼ CN

(
0, (ρn,k − ρ̂n,k)I

)
respectively, where ρ̂n,k = TPρ2n,k/

(∑Kn

k=1 TPρn,k + 1
)

.

C. Downlink Achievable Sum-Rate

After estimating the channel of the selected UE, the BS
encodes the data of all the UEs for downlink data transmission
where the downlink channel is defined in (28). Note from (28)
that channel reciprocity is assumed for the downlink channel.
Here, we analyze the downlink achievable sum-rate.

1) Downlink signal model: In the downlink, the BS encodes
the signal for each cluster. The received signal at the kth UE
in the nth cluster can be expressed as

yn,k = hH
n,kvn,ksn + hH

n,k

N∑
n′=1,n′ ̸=n

vn′,ksn′ + nn,k, (29)

where sn =
∑Kn

k=1

√
Pn,kxn,k is the nth cluster’s super-

imposed signal, xn,k is the message signal of the kth UE
in the nth cluster and nn,k ∼ CN

(
0, σ2

n

)
is the complex

Gaussian noise at the receiver of kth UE in the nth cluster with
zero mean and variance σ2

n. Note that the first term in (29)
consists of the desired signal and intra-cluster interference to
the kth UE while the second term denotes the inter-cluster
interference. Since the full CSI is difficult to achieve in
practice, we have assumed a partial CSI, hence, perfect SIC
is not assumed in this paper.

Following the power domain NOMA principle [45], [46],
the UEs within a cluster employs the statistical knowledge of
the channel to performs SIC which enables the UE to mitigate
the effect of intra-cluster interference. Therefore, we assume
that the expected channel gains are ordered in descending
order as follows

E
[
|hH

n,1vn,k|2
]
≥ E

[
|hH

n,2vn,k|2
]
, · · ·,E

[
|hH

n,Kn
vn,k|2

]
.

(30)
For a given cluster n, the jth UE is capable of decoding
its signal after decoding and successively canceling out the
desired signal of the kth UE for ∀k > j where k, j ∈
{1, 2, · · ·,Kn}, while treating the respective signal for ∀k < j
UEs as interference. The decoding order discussed above can
be achieved by an optimal scheduling of the Kn UEs in the
nth cluster based on their effective channel [15].
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By assuming imperfect SIC and imperfect estimated CSI,
the received signal can be expressed as

yn,k =
√

Pn,kh
H
n,kvn,kxn,k︸ ︷︷ ︸

desired signal

+
k−1∑
k′=1

√
Pn,k′hH

n,kvn,kxn,k′

︸ ︷︷ ︸
residual intra-cluster interference after SIC

+

Kn∑
k′′=k+1

√
Pn,k′′

[
hH
n,kvn,k − E[hH

n,kvn,k]
]
xn,k′′

︸ ︷︷ ︸
residual intra-cluster interference due to imperfect SIC

+
N∑

n′ ̸=n

Kn∑
k=1

√
Pn′,khn,kvn′,kxn′,k + nn,k︸ ︷︷ ︸

inter-cluster interference

. (31)

Note that users 1, 2, · · ·,K with beam vn,1,vn,2, · · ·,vn,Kn

share the same beam with index n.

2) Achievable sum-rate analysis: In TDD mMIMO, the
uplink channels are estimated at the BS via pilots transmitted
by the UEs. To reduce the training overhead and preserve
the scalability of the mMIMO antenna array, pilots are not
transmitted in the downlink by the BS. Hence, the UEs do
not have access to instantaneous downlink channel coefficients
and therefore rely on statistical channel knowledge for signal
decoding. This in turn can be justified since the mMIMO
channel hardens when Nt grows large, and thus, the instanta-
neous downlink channel coefficients can be approximated by
the corresponding statistical counterpart.

From (31), the post-processed received signal can be rewrit-
ten when the kth UE in the nth cluster relies upon the statis-
tical CSI knowledge for decoding its desired signal as [47]

yn,k =
√
Pn,kE

[
hH
n,kvn,k

]
xn,k + nn,k. (32)

The effective signal-to-interference-plus-noise ratio corre-
sponding to kth UE can be defined as

γn,k =
Pn,k

∣∣∣E [hH
n,kvn,k

]∣∣∣2∑4
m=1 Im + σ2

n

, (33)

where the values of Im are given as

I1 = Pn,k Var
[
hH
n,kvn,k

]
, (34a)

I2 =
k−1∑
k′=1

Pn,k′E
[∣∣hH

n,kvn,k

∣∣2] , (34b)

I3 =

Kn∑
k′′=k+1

Pn,k′′E
[
hH
n,kvn,k

]
, (34c)

I4 =
N∑

n′=1,n̸=n′

K
n
′∑

k=1

Pn′ ,kE
[∣∣∣ĥH

n,kvn′ ,k

∣∣∣2] . (34d)

∆θn,k

θ∆

Estimated location

∆ln,k

Actual location

Fig. 3. Scenario showing the actual and estimated location of a single UE,
the angular spread θ∆, location error ∆ln,k , and the angular variance due to
location error ∆θn,k .

The expectation in (33) can be expressed as follows∣∣E [hH
n,kvn,k

]∣∣2 = Nρ̂n,k + ρn,k, (35a)

I1 = Pn,kρn,k, (35b)

I2 =
k−1∑
k′=1

Pn,k′ (Nρ̂n,k + ρn,k), (35c)

I3 =

Kn∑
k′′=k+1

Pn,k′′
√
Nρ̂n,k, (35d)

I4 = ρn,k. (35e)

Proof : The Proof is relegated to Appendix C.
From (33), it can be observed that the NOMA SNR is de-

graded by the impact of the residual intra-cluster interference
due to imperfect SIC, channel estimation error and inter-cluster
interference as defined in (31).

The sum-rate of the scheduled UEs, in the nth cluster can
be expressed as

Rn =
Tc − T

Tc

Kn∑
k=1

log2 (1 + γn,k) , (36)

where Tc is the channel coherence time and the derivation of
the interference terms are relegated to Appendix C. The total
sum-rate is expressed as

RT =
Tc − T

Tc

N∑
n=1

Kn∑
k=1

log2 (1 + γn,k) . (37)

Note that from the location information, the path-loss and
angle information are exploited for UE selection to reduce
the effect of intra-cluster interference. However, the impact of
location uncertainty (location errors) can further degrade the
channel estimation process and thereby degrade the downlink
achievable sum-rate performance. Hence, we study the impact
of the location errors on the system performance.

3) Downlink location-aided power allocation optimization:
To maximize the sum-rate in each cluster, we propose a power
allocation (PA) strategy that satisfies the minimum quality of
service of Kn−1 UEs order than the desired user determined
by (14), thereafter the BS allocates the rest of the power to the
desired UE determined by (13) in the nth cluster. The problem
can be formulated as
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R∗
n = max

Pn,Pn,k

Rn (38a)

s. t.
Kn∑
k=1

Pn,k = Pn, (38b)

N∑
n=1

Pn = PT , (38c)

Rn,1 ≥ 1

Kn
Rc

n,Kn
, (38d)

Rn,k =
1

Kn
Rc

n,Kn
, k = 2, · · ·,Kn (38e)

Pn,k > 0, ∀k, (38f)

where Rn,1 is the rate of the desired UE (PU), Rc
n,K is the

rate of the Knth UE in the nth cluster if it would be supported
by conventional beamforming [13] and it is expressed as

Rc
n,Kn

= log2

(
1 +

PT

∣∣hH
n,Kn

vn,k

∣∣2
Nσ2

)
. (39)

The constraint in (38b) ensures that the total transmit power
in the nth cluster is constrained to Pn. Unlike the other
Kn − 1 UEs, the rate of the PU may be greater than the
orthogonal multiple access rate as given by the constraints in
(38d) and (38e). The last constraints in (38f) ensure that useful
power is allocated to all the scheduled UEs in the nth cluster.
Finally, the total sum-rate over all N clusters can be expressed
as

R∗
T =

N∑
n=1

R∗
n. (40)

The optimal power allocation policy for the kth UE in the
nth cluster can be expressed as

Pn,k =
λb

(1 + µ)
∣∣∣hH

n,kn
vn,k

∣∣∣2 , (41)

where

b = ln(2) (Pn − Pn,k)
∣∣∣hH

n,kvn,k

∣∣∣2
+
∑N

n′ ̸=n Pn′,k

∣∣∣hH
n,kvn′,k

∣∣∣2 + σ2. (42)

Given the QoS constraints in (38b)–(38f), the allocated
power to the PU is given by

Pn,1 = Pn −
Kn∑
k ̸=1

Pn,k. (43)

Proof : Refer to Appendix D.

D. Impact of Location Error on the Sum-Rate

In practice, the BS may not have access to the actual
location information of the UEs as such information is subject
to various localization uncertainty. The accuracy of the loca-
tion information depends largely on the type of localization
technology used and also on the environment (outdoor or

indoor). Suppose a location error on the location information
of the kth UE and assuming the location error is isotropic
with variance ∆ln,k. The location error will translate into to
an error in the spatial domain AOD as shown in Fig. 3 and
expressed as [48]

∆θn,k =
∆ln,k

dn,k
√
2
, (44)

where
√
2 in (44) leads to the correct AOD variance and

accounts for the fact that the AOD depends only on ∆lk
orthogonal to the LOS direction. The error in AOD will also
lead to an error in UEs clustering. Moreover, for L = 1 and
a small location error, the AOD can be approximated by a
first-order Taylor series expansion as

a (θn,k +∆θn,k) ≈ a (θn,k) + ∆θn,kb (θn,k) , (45)

where b (θn,k) is obtained by taking the derivative of a (θn,k)
with respect to θn,k. By substituting (45) into (33), we obtain
the following

γn,k =
Pn,kg

2
n,k

∣∣∣E [a (θn,k)H vn,k

]∣∣∣2
I5 + g̃n,k

∑N
n′=1 Var

[∣∣∣b (θn,k)
H
vn′,k

∣∣∣2] , (46)

where gn,k =
√
ρn,kNαn,k, g̃n,k = Pn,kg

2
n,k

(
∆ln,k/2d

2
n,k

)
and

I5 =

Kn∑
k′ ̸=k

Pn,k′E
[∣∣hH

n,kvn,k

∣∣2]

+

N∑
n′=1,n̸=n′

K
n
′∑

k=1

Pn′ ,kE
[∣∣∣ĥH

n,kvn′ ,k

∣∣∣2]+ σ2
n, (47)

where the expectations in (46) and (47) can be evaluated as∣∣∣E [a (θn,k)H vn,k

]∣∣∣2 =Nρ̂n,k + ρn,k (48a)

Var
[∣∣∣b (θn,k)

H
vn′,k

∣∣∣2] =ρn,k (48b)

(48c)

I5 =

Kn∑
k′ ̸=k

Pn,k′(Nρ̂n,k + ρn,k)

+
N∑

n′=1,n̸=n′

K
n
′∑

k=1

Pn′ ,kρn,k. (48d)

Proof : Please refer to the Appendix C.
The location error further reduces the SINR by the second

term in the denominator of (46). This factor increases with
increasing error variance. The performance of the proposed
scheme may also be degraded with large errors in the location
information. However, we show that the performance of the
proposed scheme is robust to small degrees of errors in the
location information. Moreover, with increasing advancements
in localization techniques, the assumption of small location
errors in the proposed scheme can be justified.
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Algorithm 1: Proposed location-aided interference
prediction and user selection
Input: Location information lBS, ln,k, AOD

distribution p(θn,k)
Output: UE set Kn cluster beam vn,k

Initialize Evaluate the covariance matrices;
for Cluster = 1, · · ·, N do

Assign UE to cluster from (4);
Interference prediction and UE selection;
for UE k := 1, · · ·,KT do

Predict interference by each UE by evaluating
(12);

Evaluate Kn = {k∗,Kn−1} from (13) and (14);
end
Evaluated the kth UE uplink channel estimation
from (20);

Evaluated the kth UE power allocation (41);
Evaluate the downlink achievable sum-rate from
(34) and (45);

end

TABLE I
SIMULATION PARAMETERS.

Parameters Value
Simulation area 200× 200 m
BS position lBS = [0, 100]
Path-loss exponent δ = 2.75
Frequency 28 GHz
Pilot length N
Antenna spacing λ/2
Number of paths L = 3
BS total transmit power PT

Total deployed UE per cluster KT = 10
Transmit power to each cluster Pi = PT /N
Pilot transmit power P = PT /10
Noise variance σP = 1, σn = 1
Channel coherence time Tc = 196

Finally, the per cluster and total sum-rate can be evaluated
by substituting (46) into (36) and (37), respectively, where the
expectation in (46) are evaluated in Appendix C. The proposed
location-aided interference prediction and user selection is
summarized in Algorithm I.

V. NUMERICAL RESULTS AND DISCUSSION

In this section we discuss the simulation setting and present
the simulation results of the proposed scheme. The efficacy
of the proposed scheme is evaluated and compared with
existing scheme such as the optimal estimation scheme with
no inference and also the random UE selection schemes. In
addition, the proposed scheme is compared to the UE selection
scheme with partial CSI acquisition in [14].

A. Simulation Settings and Performance Metrics

In this section, we present the simulation results to show the
efficacy of the proposed scheme and its impact on the NOMA
transmission scheme. The basic simulation parameters are
presented in Table I. Note that the the simulation parameters

in Table I may affect the the simulation result in various ways,
however, the trend of the results remains the same since all
UEs are subject to similar conditions. The transmit power to
each UE (Pn,k) in a cluster is designed based on the NOMA
optimal PA strategy in [15]. The transmit SNR is defined
as SNR = PT /σ

2
n. In this simulation, KT = 10 UEs are

deployed in each cluster from which Kn UEs are selected
for NOMA transmission. Throughout the simulations, we set
the number of clusters N = 2 and UEs per cluster Kn = 3,
the location error variance ∆θn,k is set to 10 degrees except
stated otherwise. We consider two types of AOD distribution
namely; (i) uniform and (ii) Gaussian distributions.

1) Uniform distribution: The AODs are uniformly dis-
tributed over [θn,k − θ∆, θn,k + θ∆], where θn,k is the mean
AOD and the θ∆ is depicted in Fig. 3.

2) Gaussian distribution: In this setting, the AODs of all
the paths are i.i.d. Gaussian random variables with mean θn,k
and standard deviation σ. Such distribution is also unable to
provide non-overlapping AOD support. However, the proposed
scheme provides some improvement by exploiting the location
information.

We consider two performance metrics in this paper. The first
metric is the normalized channel estimation error expressed as

ek = 10 log10

( ∑N
n=1 ∥hn,k − ĥn,k∥22∑N

n=1 ∥hn,k∥22

)
, (49)

where hn,k and ĥn,k correspond to the channel of the desired
channel and its estimate respectively. Note that we focus only
on the error of the desired UE from each cluster. The second
performance metric is the achievable sum-rate defined in (37).

In addition, we also compare the achievable sum-rate of the
proposed scheme with the orthogonal multiple access (OMA)
scheme. The achievable rate of the OMA UE is given by

ROMA
n,k =

Tc − T

KnTc
log2

(
1 +

Pn|ĥH
n,kvn,k|2

E|(hH
n,k − ĥH

n,k)vn,k|2 + σ2
n

)
,

(50)
where 1/Kn is due to the fact that the OMA scheme results
in a multiplexing loss of 1/Kn and hH

n,k − ĥH
n,k denotes the

channel estimation error.

B. Mean Squared Error of Uplink Channel Estimation

1) MSE of channel estimation with uniformly distributed
AODs: In Fig. 4, we compare the MSE of the proposed
scheme with the random UE selection scheme (i.e., without
interference prediction) and the optimal UE selection scheme
with optimal training lengths. For the plots with random UE
selection, the desired UE is selected as given by (13) while
the Kn − 1 UEs are randomly selected. From the figure, it is
observed that pilot contamination can degrade the performance
of the channel estimation if UEs are not properly scheduled
within a cluster as shown from the plots with random UE
selection. On the other hand, when UEs are selected based on
the predicted interference, the proposed scheme achieves close
to the performance of the scheme with optimal training length
as the number of antennas grows large. Furthermore, with a
large angular spread, a non-overlap between the desired and
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Fig. 4. Comparison of MSE of proposed location-aided interference prediction
based UE selection and random UE selection versus number of antennas with
uniformly distributed AOD θ∆.
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Fig. 5. Comparison of MSE of location-aided interference prediction based
UE selection and random UE selection versus number of antennas, Gaussian
distributed AOD with variance σ.

interfering UEs multi-path is achieved. In addition, as the num-
ber of antenna increases the channel estimation approaches the
scheme with optimal training length much faster and the pilot
contamination is quickly eliminated.

2) MSE of channel estimation with Gaussian distributed
AODs: The MSE of the proposed scheme is compared with
the scheme with optimal training length and the random UE
selection scheme with Gaussian distributed AODs in Fig. 5. It
is observed from the plots that for Gaussian distributed AODs,
non-overlapping AODs can not be guaranteed. In addition,
by sharing the same pilot sequence, the interference between
the UEs increases which leads to a poor channel estimate for
the random UE selection schemes. When Fig. 4 is compared
with Fig. 5, it is observed from the Gaussian distributed AOD
in Fig. 5, that the performance of the estimation error is
relatively low due to the non-boundedness of the Gaussian
PDF. Nevertheless, when the angular spread of the UEs
increases (i.e. σ = 20 degrees), the proposed scheme achieves
close to the scheme with optimal training length channel.
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Fig. 6. Comparison of MSE of proposed scheme versus number of antennas
with different levels of location errors and uniformly distributed AOD θ∆ =
10 degrees.

3) Effect of location error on the channel estimation:
In Fig. 6, the impact of location information error on the
channel estimation is presented. In this figure, the location-
aided covariance matrices is computed based on the location of
the UEs. Hence, with an error in the location information, the
misalignment of the covariance matrices of the true location
and the estimated location affects the channel estimates. It is
observed that the proposed scheme is robust to small levels of
location uncertainty (up to 10 m) which is within the bounds of
a commercial GPS receiver. When the location error is large,
a poor channel estimate is achieved due to the fact that the
channel used for the estimation may be different from the
true channel. Moreover, a much higher number of antennas is
required to achieve a performance close to the scheme with
optimal training length for large location errors.

C. Downlink Achievable Sum-Rate

In this section, we consider the proposed location-aided
schemes with interference prediction and compare its perfor-
mance with several state-of-the-art schemes.

1) Effect of uniform and Gaussian distributed AODs on the
achievable sum-rate: In Fig. 7, the achievable sum-rate is
presented with N = 3 clusters and Kn = 3 UEs per cluster.
The performance difference between the proposed scheme,
the interference free channel estimation scheme with optimal
training period T and the randomly selected UE scheme can
be observed from the figure. When Kn UEs are randomly
selected, without taking the intra-cluster interference and pilot
contamination into account, the system achievable sum-rate
degrades especially in the high SNR region which indicates
that the degradation is mainly due to interference from other
UEs. On the other hand, the proposed scheme does not only
improve the channel estimation by reducing the effect of
pilot contamination but also improve the achievable sum-
rate by selecting UEs with less interference for the NOMA
transmission. Finally, the figure reveals that for a distributed
Gaussian AOD angular spread, non-overlapping support can
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Fig. 7. Comparison of the achievable sum-rate of the proposed scheme with
random UE selection versus SNR with θ∆ = 10 degrees and σ = 10 degrees.
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Fig. 8. Achievable sum-rate versus SNR of various schemes with optimal
pilot sequence length T with uniformly distributed AODs θ∆ = 10 degrees.

not be guaranteed and hence, a performance gap is observed
with the uniformly distributed AOD scheme.

2) Comparison of achievable sum-rate of proposed scheme
with conventional schemes: Fig. 8 shows the efficacy of the
proposed scheme over the exiting NOMA and OMA schemes
with respect to the achievable sum-rate. Similar to Fig. 7,
the number of cluster N = 3 and the number of NOMA
users Kn = 3. It can be observed that the proposed scheme
outperforms the existing NOMA and OMA schemes. We note
that the proposed scheme also requires less training sequence
length T = N . This is due to the fact that the BS is
able to select the best set of UEs based on the correlation
between the covariance matrix of the UEs obtained from the
location information and the steering vectors in the direction
of the UE’s AOD. The advantages of this selection are in
two folds: 1) Firstly, it requires less training overhead since
UEs in a cluster can employ the same training sequence
while orthogonal pilot sequence can be employed between
different clusters, 2) secondly, UEs with less interference can
be selected for uplink channel estimation thereby causing less

TABLE II
COMPARISON OF THE COMPLEXITY OF TRAINING OVERHEAD.

Scheme Overhead
Optimal training N ×KT

Training for random UE selection N ×Kn

Optimal training with proposed scheme N ×Kn

Proposed training overhead with the proposed scheme N

TABLE III
COMPLEXITY OF TRAINING OVERHEAD.

Scheme Complexity
User paring without CSI O(NKT )Kn

User paring with partial CSI O(N)Kn

User paring with perfect CSI O(N)Kn

Training overhead with the proposed scheme O(N) +KT

pilot contamination on other UEs.
When the training sequence length is increased from T = N

to T = KnN the channel estimation error improves, however,
the detrimental effect of the training overhead can be observed
on the proposed scheme’s achievable sum-rate. When com-
pared with the optimal UE scheduling scheme in [15], the pro-
posed scheme is observed to achieve better performance due
to the reduced training overhead. However, with the training
overhead of T = KnN , the OMA scheme achieves better per-
formance compared with the proposed scheme with T = KnN
due to the impact of residual interference. A comparison of the
training overhead for the proposed scheme and other schemes
are presented in Table II. From the table, it is observed that
the proposed scheme and the random UE selection scheme
achieves less training overhead, however, the proposed scheme
exploits the location information to determine the best set of
UEs with less interference to be scheduled for uplink channel
estimation. Hence, the performance improvement over the
random UE selection and other existing schemes. Note that
the improvement of the proposed scheme over the existing
schemes is in the fact that the UE paring and training over can
be reduced by predicting the interference between UE pairs
from the location information. The predicted interference can
be used to selected the set of UEs to be paired while existing
scheme rely on computationally complex method for channel
state information estimation of the UEs before UE pairing.

Furthermore, the location information of the UEs can be
exploited to improve the OMA scheme by reducing the
training overhead required for the uplink channel estimation.
Overall, the non location-aided schemes require more training
overhead to achieve better channel estimates which decreases
the time for data transmission. Hence, a low achievable sum-
rate can be observed. Finally, we show that for a NOMA
scheme with T = N training sequence length and randomly
selected UEs, the achievable sum-rate is worst due to intra-
cluster interference.

3) Impact of location error on the achievable sum-rate: In
Fig. 9, the effect of location error on the achievable sum-rate
is presented with N = 3 and Kn = 3. The location error is
translated into the spatial domain as given by (44). We note
that perfect location information may not always be achieved
in practice. From the figure, it is observed that as the deviation
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Fig. 9. Achievable sum-rate versus SNR of proposed scheme with varying
level of location error with uniformly distributed AODs θ∆ = 10 degrees.

of the angle information increases the achievable sum-rates
degrades. Note that the channel and covariance matrices used
in the estimation of the desired UE’s channel are based on
the location error. Hence, under high location uncertainty, the
channel will be quite different from the true channel which
may lead to an overlap on the span of the covariance matrices
between UEs. In addition, it may also result in beamforming
uncertainty and consequently degrade system performance.
However, with a small angular deviation, the channel can
still be recovered when the span of the covariance metrics
is sufficiently large.

Finally, we present the computational complexity of the
proposed scheme in Table III. The MMSE operation, and SIC
is similar for each of the schemes after user selection, hence,
the complexity analysis for the MMSE and SIC operations
are omitted from the analysis. From the table, it is worth
noticing that the proposed scheme has a linear computational
complexity (O(N) +KT ) compared to the existing schemes
with exponential complexities, the performance is improved
due to the interference prediction between the users. This
makes the proposed scheme relevant in realistic applications,
thanks to the appealing low computational cost.

VI. CONCLUSION

In this paper, we proposed a user selection scheme based on
location-aided interference prediction for mmWave mMIMO
NOMA systems. The proposed scheme is exploited for uplink
channel estimation and downlink NOMA transmission. In
addition, the impact of large mMIMO arrays on the channel
estimation and the downlink NOMA achievable sum-rate is
also analyzed. We show that although pilot contamination
in CSI acquisition can degrade the performance of NOMA
system, the challenge can be alleviated by predicting the
interference from other UEs on the desired user given that the
location information is available at the BS. In addition, it is
observed that for a small deviation on the true location, a good
channel estimate can be achieved especially in the mMIMO
domain. The proposed scheme is found to reduce channel

estimation error, intra-cluster interference and consequently
improve the achievable sum-rate of NOMA scheme.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: From the definition 1,

r−j = aj + bj and j = 0, 1, · · ·, Nt − 1, . (51)

and
rNt−j = aj − bj , j = 1, · · ·, Nt − 1, (52)

From (51), we obtain, a0 = b0 = r0/2 for j = 0. When
j = 1, · · ·, Nt − 1, aj and bj can be obtained from (51) and
(52) as

aj =
r−j + rNt−j

2
, bj =

r−j − rNt−j

2
(53)

Using definition 1 and (53), the channel covariance matrix,
Rtop

n,k is given by

Rtop
n,k = circ[aj ] + scirc[bi−j ]j,i=1

= An,k +Bn,k,
(54)

where An,k is an Nt × Nt circulant matrix and Bn,k is
an Nt × Nt skew circulant matrix whose element is b−j =
−bNt−j for j = 1, 2, · · ·, Nt−1 [49]. We observe that in (54),
the matrices An,k and Bn,k are symmetric or Hermitian, if
Rtop

n,k possesses that property. Hence, we apply eigenvalue
decomposition method of An,k and Bn,k matrices as

An,k = Ua
n,kΣ

a
n,kU

aH
n,k, Bn,k = Ub

n,kΣ
b
n,kU

bH
n,k (55)

where Ua
n,k and Ub

n,k are the Nt ×Nt unitary matrices that
satisfy Ua

n,kU
aH
n,k = NtI and Ub

n,kU
b
n,kU

bH
n,k = NtI, the

diagonal matrices are Σa
n,k = diag{Σa

n,k,1, · · ·,Σa
n,k,Nt

} and
Σb

n,k = diag{Σb
n,k,1, · · ·,Σb

n,k,Nt
}. By substituting (55) in

(54) and decomposing, we obtain the following

Rtop
n,k = An,k +Bn,k

= Ua
n,kΣ

a
n,kU

aH
n,k +Ub

n,kΣ
b
n,kU

bH
n,k

= Ua
n,k(Σ

a+b
n,k ⊙A0)U

aH
n,k

≈ Rcirc
n,k ,

(56)

where A ⊙ B denotes the Hadamard product of ma-
trices A and B, Σa+b

n,k = Σa
n,k + Σb

n,k and A0 =

Ua
n,kdiag{1, ωNt−1, · · ·, ω1}UaH

n,k = UaH
n,kU

b
n,k, where ω =

2jπ/Nt.

APPENDIX B
PROPERTY OF Rcirc

n,k

Another important property of Rcirc
n,k is the fact that as the

number of antennas Nt → ∞

Rcirc
n,k ≈ E

[
hn,kh

H
n,k

]
. (57)

From the laws of large number, it follows that when Nt is
large, and the channel coefficients are i.i.d., then the channel
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vectors between the users and the BS become pairwisely
orthogonal [43] such that

1

Nt
hH
n,khn,k → ρn,k, as Nt → ∞. (58)

Multiplying Rcirc
n,k by yP,n, we obtain

Rcirc
n,k yP,n ≈ hn,k(

√
TPρn,k + 1), (59)

Therefore, (59) can be considered as a characteristic equation
for the covariance matrix Rcirc

n,k . As a consequence hn,k is
the eigenvector corresponding to the

√
TPρn,k+1 eigenvalue

of Rcirc
n,k . By exploiting this property in (26), we obtain the

channel estimates in (27).

APPENDIX C
DERIVATION OF THE INTERFERENCE TERMS IN

EVALUATING THE ACHIEVABLE SUM-RATE

Here, we evaluate the expectation and variance in (33) and
(34a)–(34d). Starting from (28) and exploiting the following
properties of Gaussian random variables [50]

E
[
zHn zn′

]
=

{
N, n = n

′

0, otherwise,
(60a)

E
[
|zHn zn′ |2

]
= N2 +N, (60b)

E
[
ET
n,kvn,k

]
= 0 for k ∈ {1, · · ·,Kn}. (60c)

The expectation of E
[
|ĥH

n,kvn,k|2
]

can then be derived as

E
[
|ĥH

n,kvn,k|2
]
=

ρ̂n,k
N

E
[
|zHk zk|2

]
= (N + 1)ρ̂n,k. (61)

Next, we derive the expectation of E
[
hH
n,kvn,k

]
by substi-

tuting (28) as follows

E
[
hH
n,kvn,k

]
= E

[
ĥH
n,kvn,k + En,k

Hvn,k

]
=

(√
ρ̂n,k/NE

[
|zHn zn|2

]
+ E

[
En,k

Hzn

])
=
√
Nρ̂n,k. (62)

By exploiting the property defined in (60a), we evaluate
E
[
|hH

n,kvn,k|2
]

as follows

E
[
|hH

n,kvn,k|2
]

= E
[
|ĥH

n,kvn,k + En,k
Hvn,k|2

]
= E

[
ĥH
n,kvn,kv

H
n,kĥn,k

]
+ E

[
En,k

Hvn,kv
H
n,kEn,k

]
= E

[
|ĥH

n,kvn,k|2
]
+ E

[
En,k

HEn,k

]
E
[
zHn zn

]
/N2

= (N + 1)ρ̂n,k + (ρn,k − ρ̂n,k)

= Nρ̂n,k + ρn,k. (63)

The variance Var
[
hH
n,kvn,k

]
can be evaluated as

Var
[
hH
n,kvn,k

]
= E

[
|ĥH

n,kvn,k|2
]
−
∣∣∣E [ĥH

n,kvn,k

]∣∣∣2
= N ˜ρn,k + ρn,k −N ˜ρn,k = ρn,k. (64)

Finally, E
[
|ĥH

n,kvn′,k|2
]

for n′ ̸= n can be derived as

E
[
|ĥH

n,kvn′,k|2
]
= E

[
ĥH
n,kzn′zHn′hn,k

]
/N

= E
[
ĥH
n,khn,k

]
E
[
zn′zHn′

]
/N2 = ρn,k.

(65)

By substituting the results from (62), (63), (64), and (65) in
(34a) to (34d), the achievable sum-rate can be evaluated.

APPENDIX D
POWER ALLOCATION

To determine the optimal PA to each UE in a cluster, we
rewrite (29) in terms of the instantaneous SINR as

γn,k =

Pn,k

∣∣∣hH
n,kvn,k

∣∣∣2
(Pn − Pn,k)

∣∣∣hH
n,kvn,k

∣∣∣2 +∑N
n′ ̸=n Pn′,k

∣∣∣hH
n,kvn′,k

∣∣∣2 + σ2

,

(66)

where Pn is the power allocated to the nth cluster. Note that
the power allocation is carried out at the BS to enable the UEs
perform SIC after the received signal. Our goal therefore is to
optimize the power allocated to the kth UE in the nth cluster
such that the system sum-rate is maximized.

To this end, we form a Lagrangian from (38a)–(38f) as
follows

L(PT , λ, µ) =

Kn∑
k=1

log2 (1 + γn,k) + λ

(
Kn∑
k=1

Pn,k − Pn

)
+ µ (log2 (1 + γn,k)− log2 (1 + γ̄)) , (67)

where λ and µ are the Lagrange multipliers and

γ̄ =
PT

∣∣hH
n,Kn

vn,k

∣∣2
Nσ2

. (68)

The constraints are Karush-Kuhn-Tucker (KKT) conditions
for optimizing the power allocation. For a fixed Lagrange
multiplier, the problem is a standard optimization problem
with the KKT conditions.

∂

∂Pn,k
L(PT , λ, µ) = 0 (69)

The optimal power allocation policy for the kth UE in the nth
cluster can be expressed as

Pn,k =
λb

(1 + µ)
∣∣∣hH

n,kn
vn,k

∣∣∣2 , (70)

where

b = ln(2) (Pn − Pn,k)
∣∣∣hH

n,kvn,k

∣∣∣2
+
∑N

n′ ̸=n Pn′,k

∣∣∣hH
n,kvn′,k

∣∣∣2 + σ2. (71)
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while the dual variable can be updated with gradient descent
method as

λ(l + 1) =

[
λ(l)− ϵ1(l)

(
PT −

N∑
n

Kn∑
k

Pn,k

)]+

µ(l + 1) =

[
µ(l)− ϵ2(l)

(
Rn,k − 1

Kn
Rc

n,Kn

)]+
(72)

where l is the iteration index. ϵ1(l) and ϵ2(l) are positive step
sizes at iteration l. Based on an appropriate step size, the
iteration converges to an optimal solution to problem (38a).
Hence, with the QoS constraints given in (38b)–(38f), the
power required to guarantee the downlink throughput can be
iteratively obtained from (72), while the allocated power to
the PU is given by

Pn,1 = Pn −
Kn∑
k ̸=1

Pn,k. (73)
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