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Te naturally fractured reservoirs are one of the most challenging due to the tectonic movements that are caused to increase the
permeability and conductivity of the fractures. Te instability of the permeability and conductivity efects on the fuid fow path
causes problems during the transfer of the fuids from the matrix to the fractures and fuid losses during production. In addition,
these complications made it difcult for engineers to estimate fuid fow during production. Te fracture properties’ study is
important to model the fuid fow paths such as the fracture porosity, permeability, and the shape factor, which are considered
essential in the stability of fuid fow. To examine this, this research introduced new models including decision tree (DT), random
forest (RF), K-nearest regression (KNR), ridge regression (RR), and LASSO regression model,. Te research studied the fracture
properties in naturally fractured reservoirs like the fracture porosity (FP) and the shape factor (SF).Te datasets used in this study
were collected from previous studies “i.e., Texas oil and gas felds” to build an intelligence-based predictive model for fuid fow
characteristics. Te prediction process was conducted based on interporosity fow coefcient, storativity ratio, wellbore radius,
matrix permeability, and fracture permeability as input data. Tis study revealed a positive fnding for the adopted machine
learning (ML) models and was superior in using statistical accuracy metrics. Overall, the research emphasized the implementation
of computer-aided models for naturally fractured reservoir analysis, giving more details on the extensive execution techniques,
such as injection or the creation of artifcial cracks, to minimize hydrocarbon losses or leakage.

1. Introduction

1.1.Background. Naturally fractured reservoirs are the result
of natural processes that present the diastrophism and
volume shrinkage that lead to fractures that have dispersed
as a consistently linked network across the reservoir [1]. Te
tectonic processes have evolved in reservoirs, fractured
reservoirs are frequently found in weak reservoir rocks with
poor porosity [2]. Due to that, the fracture is extended and

large, where it is often referred to as the large fracture [3]. If
the granular porosity is high but the rocks are fragile, the
fracture is relatively small and limited in quantity, often
referred to as microfractures [1]. Te naturally fractured
reservoirs are diferent from the conventional reservoirs
[4, 5]. In addition, the tectonic movements afected by the
behavior of the fracture during transfer and production of
the fuids fow due to the high conductivity and permeability
of the natural fractures [6]. Te conductivity and
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permeability of the fractures factor minimize the fracture
porosity of the fuids that cause low storage capacity [6]. In
contrast, the conductivity of the matrix increases storage
capacity with low permeability, which causes an increase in
the matrix porosity [7]. According to previous studies,
matrix porosity is higher than fracture porosity in the
naturally fractured reservoirs, which the fuids store in the
matrix [8].

Multiphase fow modeling in naturally fractured reser-
voirs has been considered an issue for petroleum reservoir
engineers [9, 10]. Warren and Root have shown a dual-
porosity model which presents multiphase behavior in
fractured reservoirs [11]. In the dual-porosity model, there
are two characteristic regions: matrix and fracture [12]. Te
naturally fractured reservoirs present one of the most dif-
fcult reservoirs in the petroleum industry due to the fracture
properties like permeability and porosity, where the natural
fracture permeability is higher than the matrix permeability
in a dual-porosity system [12]. Te hydrocarbons fow from
the matrix to the fractures and from these to the wellbore
where the fractures cannot store these fuids, which cause
fuid fow losses. An obstacle of the fuid fow can be seen in
Figure 1 [13].

Te motivation is always focused on developing a reli-
able mathematical model for modeling naturally fractured
reservoir properties such as fracture porosity (FP) and the
shape factor (SF). In the literature, ML models are one of the
technologies that contribute to the systematization of fuid
fow by forming speculative models based on hypotheses and
equations modeling the properties of petroleum fuids [14].
Hence, the focus of the current investigation is to test dif-
ferent versions ofMLmodels for the prediction of FP and SF.
Te models are built based on the characteristics of oil and
gas, such as matrix porosity, permeability, pressure, and
temperature.

1.2. Literature Review. Modeling of the naturally fractured
reservoirs is one of the challenges due to the generation of
the complex fractures and the conductivity factor of frac-
tures that afect fuids paths [15]. Although fractures covered
20% of world reserves, naturally fractured reservoirs rep-
resented the risk reservoirs in drilling, production, and
modeling processes due to fracture pressure that sometimes-
caused loss in hydrocarbons production [16]. Two studies
were conducted to investigate the naturally fractured res-
ervoirs functionally [11, 17]. Both studies relied on the
modeling of the naturally fractured, double-connected
system, which was divided into two areas, the matrix and
the fracture. Te authors concluded that the fracture is
central to the permeability of hydrocarbons and that the
fuid fows from the matrix to the fracture depending on the
geometric parameters of the fracture such as permeability
and porosity [18]. Li et al. [19] extended the study of fuid
leakage in areas of tectonic stress. To examine this, the
tectonic movements afected the fracture behavior, which
causes losses in the fuids of low-permeability formations.
Tis examined some of the factors afecting the leakage of
fuids by making a model for analyzing the leakage of fuids

in naturally fractured gas felds. Turn to Warren and Root
[11], the authors have provided a suitable solution to this
problem and were able to arrive at these parameters, the
actual shape, dimensions, and fuid fow properties of the
reservoir, where the same scenario had been adopted later in
[20, 21].

Two quadruple porosity models (QPM) that include
a triple-fracture network with a single matrix system were
presented by Dreier et al. [22] for naturally fractured res-
ervoirs (NFR). Te pressure-transient features of QPM are
analysed and evaluated using these models: Warren and
Root theory with various forms of matrix-to-fracture fow
regimes, wellbore storage, and skin are commonly employed
in well-test analysis, and the parameters storativity ratio and
interporosity fow coefcient are signifcant in describing
such reservoirs. Perez Garcia [23] improved the earlier
simulation-based investigations, relying mainly on the
Warren and Root equations as well as the Gilman model.
Te author came to the conclusion that the well-test data was
reliable but more investigations and development assump-
tions were required for fracture reservoirs.

In order to boost the productivity of naturally fractured
reservoirs, acid fracturing procedures are used. Te efec-
tiveness of the therapy is infuenced by a number of factors,
including treatment circumstances and reservoir charac-
teristics. It is possible to measure the efectiveness of acid
fracturing stimulations using a variety of methods [24]. Only
a few models, however, took into account the natural
fractures (NFs) present in the hydrocarbon reservoirs [25],
using an ML model. Hence, the goal of this work is to
develop an efective model to calculate the efcacy of acid
fracturing therapy in naturally fractured reservoirs. Tis
study estimates the increase in hydrocarbon production
brought on by the use of acid fracturing treatments and takes
into account the interactions between naturally occurring
and artifcially generated cracks. Te reservoir features and
treatment parameters of more than 3000 scenarios were
utilized to create and validate the artifcial neural network
(ANN)model [26].Te created model takes into account the
formation permeability, injection rate, natural fracture
spacing, and treatment volume as reservoir and treatment
characteristics [27]. To evaluate the efectiveness of the
model’s prediction, the percentage error and correlation
coefcient were also calculated. Te performance of acid
fracturing treatments can be predicted quite accurately using
the proposed model. Te testing datasets yielded a correla-
tion coefcient of 0.94 and a percentage error of 6.3%.

A novel ML model based on an improved learning
process was established to ofer a precise and timely forecast
for increased productivity [28]. In order to assess the validity
of the new equation, validation data were employed. A 6.8%
average absolute error and a 0.93 correlation coefcient were
obtained, demonstrating the excellent dependability of the
suggested correlation. Te originality of this work is in
creating a solid and trustworthy model to forecast pro-
ductivity gains from acid fracturing in naturally fractured
reservoirs. By ofering quick and accurate calculations, the
novel correlation can be used to enhance the treatment
design for naturally fractured reservoirs [29]. In order to
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estimate fracture permeability under complex physics, an
integrated workfow based on the ML model was proposed
(e.g., inertial efect) [30]. Te methodology is being used for
the frst time to scale up rocks [31]. Te suggested
model provides a practical and accurate replacement for
conventional upscaling techniques that can be quickly in-
tegrated into workfows for reservoir characterization and
modeling.

Analysis of pressure-transient well tests is a crucial
technique for fguring out reservoir properties [32]. Due to
the analysts’ inexperience, the validity of the data from the
well-test analysis could be questioned [33]. A one-
dimensional convolutional neural network (1D CNN) was
tested to create an autonomous model for well-tested data
interpretation [34]. Both the associated parameters and the
type of curve can be automatically identifed by the model
[35]. Without adjusting the model architecture or using
hyperparameters, a combined automatic interpretation
model with four conventional well-test models were con-
ducted. According to the fndings, the 1D CNN model
outperformed the ANN model. Tree feld cases are used to
further validate the automatic interpretation model. Based
on the reported literature review, the current research was
inspired to develop a new methodology based on a soft
computing model that is associated with theoretical study in
the conditions of simulation data as well as being specialized
based on the assumptions [36]. Our paper focuses to solve
the fuids losses problem by modeling the fuids fow in the
fractured reservoirs through using machine learning tech-
nique. Tis paper depends on the two parameters which are
interporosity fow coefcient and storativity ratio to de-
termine the fuid fow behavior.

1.3. Te Objective of Tis Study. Te previous studies used
empirical methodologies and modern models such as ML
models for diverse oil and gas datasets. Tis leads to the
continuous issue in fuid fow paths due to the changes of the
fracture’s characteristic such as high conductivity and
permeability of fractures. In conjunction with modern
technology, the aim of this research is to make use of the
applicability of ML models for predicting the shape factor
and the fracture porosity. Te models evaluated the fuid
fow in the naturally fractured reservoirs. Predictive models
were established using fve diferent related input parame-
ters. Te assumption of the characteristics of the oil and gas
datasets allows theMLmodels to build more than one model
for the same datasets and compare them to get the best two
models. Te expected research outcome is to develop a re-
liable alternative technology for the petroleum industry
where it can participate in sustainability and management.

2. Data Descriptions

Tis study specializes in analyzing the fuid fow behavior in
naturally fractured reservoirs during production. Te actual
data consist of oil and gas data were obtained from Texas
feld.Te actual data take account of thematrix permeability,
fracture permeability, wellbore radius, interporosity fow
coefcient, and the storativity ratio as inputs while the
fracture porosity as outputs. To accomplish that, the study
changed the input and output of Texas feld data such that
storativity ratio, interporosity fow coefcient, matrix per-
meability, fracture permeability, and wellbore radius are
input data, while the shape factor and fracture porosity are
output data. Te conditions of input and output data were

ground shaking

ground failure

tsunamis

Surface fracturing

Due To Four
IssuesTectonic movements

Before Earthquake After Earthquake

Matrix system flow

Interporosity flow
coefficient Fluid flow in the

naturally fractured

Fluid flow in the
fractured system

Dual media flow model

Effect stress change

Fractured reservoirs
deformation change in the

conductivity and permeability of fractures

Fluids losses

Conductivity

Permeability

Two Parameters
effect on the fluids

flow losses

Earthquake occur

CausesCause

Figure 1: Fluid fow losses in the naturally fractured reservoirs.
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put as temperature 150 Fahrenheit, pressure 3,626 psi, and
matrix porosity 22% for oil and 15% for gas, radius 1,000 ft,
where these conditions are the same as Texas feld’s con-
ditions with some changes in the assumptions [23]. Tese
data are implemented on the basis that the fow is radial,
taking into account that there is no Darcy’s law and no skin
factor [37].

3. Machine Learning Methods

Tis section presented the utilized ML models adopted for
fuid fow data simulation. ML models are built to describe
the efect of the shape factor and the fracture on the
treatment of the hydrocarbon’s leakage. Five diferent types
of ML models were developed, including decision tree re-
gression, random forest regression, LASSO regression, K-N
neighbors’ regression, and ridge regression models. Figure 2
presented the fowchart of the conducted methodological
mechanism for this study.

3.1. Decision Trees Model. Decision tree regression (DT) was
developed by [38] as a powerful ML model for both classif-
cation and regression tasks [39, 40]. In the DT algorithm,
features (extracted from a specifc dataset) are arranged in
a symbolic tree-shaped manner, with terminal and internal
nodes representing leaves and splits, respectively [41]. A tree is
shaped by following a set of fundamental principles. Multiple
trees are combined to form a set of rules that can be used in the
prediction step. Te technique frst builds a tree from the
training dataset, after which it splits the original data into two
branches using a binary split procedure. Te new growth
branches are subjected to the separation process, and this is
continued when a new branch becomes inseparable, and the
accompanying node achieves the minimum size and evolves
into a terminal node [42]. DTR’s principles are easy to un-
derstand and follow a logical pattern that can be described as
a tree; this is a signifcant advantage of the DT over other
models. However, despite being quicker than other AI models,
DTR frequently is not the right choice for time-series problems
[43] because it frequently does not generate accurate results
when there are issues of nonlinearity or noisy datasets.

3.2. Random Forest Model. Random forest model was frst
developed by [44], and since its introduction, it has been used
widely in many felds of science and engineering for pre-
diction purposes [45–47]. Te RF model is strongly advised
for scenarios with numerous input variables. Regarding
a random vector, RF is an individual uniform distribution to
each tree in the forest. Although RF is preferred when the
trees, eta, and mtry are of an appropriate size, the maximal
depth can be adjusted according to the complexity of the data
[48]. Te RF model in this study was built using library
(random forest). Te signifcant hyperparameters, such as
ntree, eta, max depth, and mtry, were set to 140, 4, 6, and 2
accordingly in order to reduce overftting issues. When re-
gression trees are built using distinct bootstraps for each tree,
the potential features in those trees can bemodeled using such
algorithms [49]. For the purposes of predicting the targeted

parameters, every tree in the forest was treated equally. Te
frst set was utilized for the growth of the trees and then for
the assessment of each tree’s classifcation error [50]. Te RF
prediction’s output is represented thus,

y �
1

ntree
􏽘

ntree

i�1
yi(x), (1)

where y� the average prediction output from the overall
number of trees and yi (x)� the trees’ discrete prediction for
output vector x. Model overftting was avoided by using the
ten-fold cross-validation procedure thrice. Te tree was
initially built for each predictor and was then followed-up
with its growth to ensure optimal weight and minimal
computed error. Te signifcance of the predictors, as well as
the self-adjusted growth of the selected trees, must be ranked
using the RF approach. Te RF model performed well across
all the response predictors based on the employed perfor-
mance indicators.

3.3. K-Nearest Neighbor Regression Model. Te KNR clas-
sifcation was developed as a relatively new technique for the
parametric estimation of unknown probabilities [51]. Te
KNR was mainly built for classifcation patterns with an
understanding of the K-nearest neighbor rule [52].Te KNR
concept relies on the distance between the distributions to
categorize each piece of data that contains the majority of
nearest neighbors [53]. Te prediction process of KNR
depends on the use of classifers and regression, wherein the
regression aspect uses previously processed data to predict
future data. Statistical methods, such as linear regression, are
typically used to process the regression; however, the use of
the linear regression method is limited only to some data-
bases. Tis study implemented regression for the prediction
of the fracture porosity and the shape factor based on gas and
oil flled data observations. Te problem with regression is
predicting the result of a preprocessed parameter using
a certain collection of independent variables. Te result can
be expressed as G�Gn if the KNR is performed using n
nearest neighbors. Ten, the average of the results is used to
determine the outcome. Te solution will then be given as

G �
Gn

2
. (2)

At that point, KNR prediction initiates the outcome of
the neighbor, and prediction can be done by determining the
Euclidean distance (ED) between the case point and the
query based on the existing dataset.

D(z, q) �

�������

(z − q)
2

􏽱

, (3)

where z represents the query point and q represents the case
point from the existing dataset.

3.4. Ridge Regression Model. In conditions whilst linearly
impartial variables are closely correlated, RR model is a way
of calculating the coefcients of a couple of regression
fashions [54]. It has been applied in diferent engineering
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and science domains and approved for its capacity. Amongst
diferent areas and patterns of the RR model, equations are
presented as follows [55]:

􏽢B � (X
T
X􏼑

− 1
X

T
y, (4)

where XT is the transpose of X. By contrast, the ridge re-
gression estimator to evaluate (􏽢B) the fracture porosity.

Mridge � X
T 􏽢X + KIp􏼐 􏼑

− 1
X

T
y, (5)

where Ip is the p× p identity matrix, and K> 0 indicates a large
number. Te form along the diagonal of I is known as a ridge.

3.5. Lasso Model. Lasso is a commonly used sparse re-
gression technique that relies on the sparse assumption for
parameter regularization [56]. It is an innovative method for
variable selection during regression tasks that operates by
minimizing the residual sum of squares under the condition
that the sum of absolute values of the coefcients is less than
a constant [57]. It was frst discussed in relation to least
squares. Te following is a summary of the basic Lasso
framework. Assume a sample of N cases with p variables and
a single outcome for each of theN instances. Consider that yi
is the response variable while xi � (x1, x2, x3, . . ., xnp). T
represents the covariate vector for the ith case, β� (β1, β2, . . .,
βp)T. Hence, Lasso is aimed to solve the regression problem
using nonlinearity functional properties.

4. Results and Discussion

In this section, the results of the adopted ML models were
presented based on the radial fow in the fuid modeling of
fracture reservoirs. Radial fow was concerned with the
analysis of the fow of fuids along a radius. Te volume for

the wellbore radius is not large enough to cover themodeling
of an entire well by ML models. Te present results provide
a slight improvement over the previous results of the data
provided by Perez [23].

One of the most popular graphical presentation on the
predictability evaluation is the scatter plot between the actual
observations and the predictive models results, which was
adopted here for assessment. All models were developed
based on the predictability and interoperability of fuid fow
losses. Te modeling results for the DT model for the gas
fow were reported in Figure 3 (Figure 3(a): fracture po-
rosity, and Figure 3(b): shape factor). Te DTmodel attained
a determination coefcient (R2 ≈ 0.80) for fracture porosity
and R2 ≈ 0.94 for the shape factor. Tis was formed in
harmony with the established previous research of [23]. Te
modeling of Perez’s data is assumed to be actual if our results
build on the predicted data. On the other hand, the results
for the oil fow characteristic are given in (Figure 4(a):
fracture porosity (R2 ≈ 0.93) and Figure 4(b): shape factor
(R2 � 0.94)).

In the same manner, the scatter plots for the other ML
models are (i.e., RF “Figure 5: gas fow and Figure 6: oil
fow,” KNR “Figure 7: gas fow and Figure 8: oil fow,” RR
“Figure 9: gas fow and Figure 10: oil fow” and Lasso
“Figure 11: gas fow and Figure 12: oil fow”). Te superior
prediction accuracies were observed for the gas fow fracture
porosity using the Lasso model over the testing phase with
(R2 ≈ 0.97). However, gas fow shape factor prediction
achieved using KNR (R2 ≈ 0.96). It is true that all models
relative accomplished their results over (R2 � 0.85) as an
indicator for acceptable results. However, the motivation
here is to target the more accurate model which is relatively
near to the factual feld observations with R2 ≈ 1. For the oil
fow, the fracture porosity and shape factor were predicted
accurately using the Lasso model.
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Equation
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Figure 3: Te decision tree model scatter plots for the testing phase of the gas fow: (a) fracture porosity and (b) shape factor.
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Figure 4: Te decision tree model scatter plots for the testing phase of the oil fow: (a) fracture porosity in oil system and (b) shape factor.
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Figure 5: Te random forest model scatter plots for the testing phase of the gas fow: (a) fracture porosity in oil system and (b) fracture
porosity.
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Figure 6: Te random forest model scatter plots for the testing phase of the oil fow: (a) fracture porosity in oil system and (b) shape factor.
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Figure 7:TeK-nearest regressionmodel scatter plots for the testing phase of the gas fow: (a) fracture porosity in oil system and (b) fracture
porosity.
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Figure 8: Te K-Neighbor regression model scatter plots for the testing phase of the oil fow: (a) fracture porosity and (b) shape factor.
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Figure 10: Te Ridge regression model scatter plots for the testing phase of the oil fow: (a) fracture porosity and (b) shape factor.
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Figure 11: Te Lasso model scatter plots for the testing phase of the gas fow: (a) fracture porosity in oil system and (b) fracture porosity.
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Figure 12: Te Lasso model scatter plots for the testing phase of the oil fow: (a) fracture porosity and (b) shape factor.
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Figure 13: Taylor diagram presentation for the gas fow fracture porosity and shape factor prediction using diferent machine learning
models.
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Figure 14: Taylor diagram presentation for the oil fow fracture porosity and shape factor prediction using diferent machine learning
models.
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It is even better to explore more logical and scientifcally
acknowledged graphical presentation of the developed ML
models [58]. A graphical based on root mean square error
(RMSE), correlation, and standard deviation was generated
in Figures 13(a) and 13(b) “gas fow presented in the form of
fracture porosity and shape factor” and Figures 14(a) and
14(b) “oil fow presented in the form of fracture porosity and
shape factor.” Based on Figure 13(a), the KNR model pre-
sented the closest coordinate to the actual observation of gas
fow fracture porosity. However, the prediction of gas fow
shape factor was visualized using DT and KNR “relatively
close coordinates” (Figure 13(b)). In Figure 14(a), Lasso
models indicated nearer location for the fracture porosity;
on the other hand, both models Lasso and RF showed
relatively closer prediction performance for the shape factor
of the oil fow (Figure 14(b)).

Te modeling results further assessed using some sta-
tistical metrics based on the perfect ft of goodness (i.e.,
determination coefcient (R2) and Kling–Gupta efciency
(KGE)) and absolute error indicators (i.e., root mean square
error (RMSE) and mean absolute percentage error (MAPE))
[59]. Tables 1 and 2 reported the modeling results for the gas
fow fracture porosity and shape factor, respectively. By
examining all the performance metrics of the Table 1, it
clearly appears that performing more than two or more
statistical indicators can give more informative results of the
adopted ML models. Although the Lasso model revealed the
superior correlation value, the KNRmodel gave the minimal
value for the MAPE metric in which by validating with KGE
metric, it is clearly a valid model for prediction superiority
for the fracture porosity of gas fow. On the other hand,
Tables 3 and 4 presented the modeling results of the oil fow
fracture porosity and shape factor, respectively. Over the
testing phase, the KNR model reported the best modeling
results for the fracture porosity and shape factor prediction
based on the multiple metrics evaluation.

Based on the performance metrics in Tables 1–4, mod-
eling superiority for the attained prediction results distributed
between RF, KNR and Lasso models. Indeed, this is a factual
thing for the ML models behavior through the learning

process in which depending on the howmuch capacity can be
attained during the learning mechanisms of the models. Tis
can be elaborated also due to the distribution of the fracture
points in one line which prove that the fracture conductivity
factor has a big impact oil than gas [60]. Generally, the radial
fow is distributed as parabolic that points of fuids spread
systemically due to the shape factor in gas fow [61].

5. Conclusions

Reliably predicting distributed fuids fow in the naturally
fractured reservoirs is achievable using ML models applied
to a group of oil and gas datasets of Texas feld calibrated
with the fracture porosity and shape factor data.Te fracture
porosity and shape factor respond to the distinct charac-
teristics of fractures such as conductivity and permeability
factor in diferent ways. Te results of this study lead to the
following conclusions:

(i) When the fracture characteristics variables were
used collectively in the trained models, it was de-
fnitively determining the suitable type of fow for
oil and gas (pseudosteady state fow or radial fow).

(ii) Based on the fve available input variables, the
following two output variables are shown to be most
efective when used in combination to predict the
movement of the fuids in the naturally fractured
reservoirs. Tese input variables are matrix per-
meability, fracture permeability, wellbore radius,
interporosity fow coefcient, and storativity ratio,
while the output variables are the fracture porosity
and shape factor.

(iii) ML models confrmed their potential in predicting
the ail/gas fow fracture porosity and shape factor.

(iv) Some limitations were observed that sometimes ML
models cannot work well in the development of the
behavior of the naturally fractured reservoir char-
acteristics due to their instability in one pattern as
same as conventional reservoirs and this causes it
difcult to predict.

Table 1: Te calculated performance metrics for the gas fow
fracture porosity over the testing phase.

Model R2 KGE RMSE MAPE (%)
DT 0.811 0.826 0.001 10.1
RF 0.938 0.851 0.001 6.4
KNR 0.955 0.937 0.001 4.1
RR 0.898 0.803 0.001 8.9
Lasso 0.974 0.779 0.001 7.7

Table 2: Te calculated performance metrics for the gas shape
factor over the testing phase.

Model R2 KGE RMSE MAPE (%)
DT 0.949 0.972 0.003 4.7
RF 0.918 0.91 0.004 5.8
KNR 0.961 0.975 0.003 2.8
RR 0.919 0.774 0.004 6.7
Lasso 0.773 0.617 0.007 11.7

Table 3: Te calculated performance metrics for the oil fracture
porosity over the testing phase.

Model R2 KGE RMSE MAPE (%)
DT 0.934 0.948 0.003 3.7
RF 0.94 0.938 0.003 4.1
KNR 0.896 0.927 0.004 1.9
RR 0.95 0.666 0.005 5.8
Lasso 0.992 0.819 0.002 3

Table 4:Te calculated performancemetrics for the oil shape factor
over the testing phase.

Model R2 KGE RMSE MAPE (%)
DT 0.949 0.94 0.003 3.5
RF 0.971 0.977 0.002 2.3
KNR 0.896 0.928 0.004 1.9
RR 0.95 0.666 0.005 5.8
Lasso 0.992 0.819 0.002 3
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