SIMULATION OF RIVER EMBANKMENT STABILITY: A CASE STUDY ON FAILURE AND REMEDIAL METHOD AT MUAR RIVER, PANCHOR, JOHOR

SITI NORAZELA BINTI HASAN

UNIVERSITI TEKNOLOGI MALAYSIA

ABSTRACT

The soil movement on failed slope had caused substantial failure of soldier pile wall at Muar River embankment, Panchor town, Johor. The existing retaining wall has totally collapsed during low tide period is due to insufficient embedded length of existing wall system and failure due to excessive deformation of the wall and slope sliding under backfilling surcharge and human and traffic activities. To facilitate investigating causes of the failure, a computer simulation of slope stability using SLOPE/W is performed to simulate slope condition before and after construction of the study area and to check the total displacement after the construction by using PLAXIS V8.2. The river embankment collapsed during low tide period thus, the calculated back analysis of factor of safety (FOS) is based on the different at every changes of water level. The result of simulation analysis established the fact that global soil mass had a lateral movement direction toward to installed soldier pile wall generates a combination of mobilized shear force and lateral pressure larger than the capacity or strength of the soldier pile wall. Furthermore, the simulation analysis deduces that the slope instability become greater as moisture or pore-water pressure in the slope increase or decrease in soil's shear strength. FOS determined is 0.966 during low tide period where the existing retaining wall has totally collapsed. Therefore there are 3 options of methods to be introduced to overcome the failure which are all the options introduced show the FOS ranging from 1.378 to 1.435. The anticipated settlement is in the order of 409mm over 25 years after construction.

ABSTRAK

Pergerakan bumi atas cerun telah menyebabkan kegagalan tembok cerucuk di Sungai Muar, Pekan Panchor, Johor. Tembok cerucuk awalnya telah mengalami kegagalan sewaktu air surut dan ianya berlaku disebabkan kedalaman tembok cerucuk yang tidak mencukupi serta mengalami pergerakkan yang disebabkan oleh beban dan aktiviti lalulintas di atasnya. Perisian SLOPE/W digunakan bagi menyiasat kegagalan sebelum dan selepas pembinaan dan manakala perisian PLAXIS V8.2 juga digunakan untuk menyemak pergerakan total selepas aktiviti pembinaan di kawasan tersebut. Oleh kerana tambakan mengalami kegagalan sewaktu air surut, analisis bagi nilai faktor keselamatan disemak berdasarkan pada setiap perubahan paras air. Keputusan analisis simulasi menunjukkan bahawa keseluruhan tanah mengalami pergerakan sisi menuju ke arah tembok cerucuk dan menghasilkan daya ricih dan tekanan sisi yang diaruh oleh pergerakan ini adalah lebih besar daripada kekuatan tembok cerucuk. Keputusan analisis ini juga mendapati bahawa kestabilan cerun akan terjejas dengan kenaikan tekanan air atau dengan penurunan kekuatan ricih tanah. Oleh yang demikian, nilai faktor keselamatan yang diperolehi sewaktu air surut adalah 0.966. bagi mengatasi masaalah keruntuhan tembok cerucuk ini, 3 jenis kaedah kerja pembaikan dikenalpasti dan dianalisa setiap satunya. Berdasarkan analisa yang dibuat, ketiga-tiga kaedah ini memberi nilai faktor keselamatan di antara 1.378 - 1.435. Manakala tanah mengalami pemendapan sebanyak 409mm bagi tempoh 25 tahun selepas pembinaan.

TABLE OF CONTENT

CHAPTER	ITEM	PAGE
	THESIS TITLE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLE	xii
	LIST OF FIGURE	xiii
	LIST OF SYMBOLS	xvii
1	INTRODUCTION	1

1.1	General	1
1.2	Problem statement	2
1.3	Objective and of Scope the Study	5
1.4	Limitation of the Study	5
1.5	Research Area	7

2 LITERATURE REVIEW

2.1	Introd	uction	8
2.2	Soft S	oil	9
	2.2.1	Soil Classification	9
	2.3.2	Characteristic of Clay Soil	9
	2.3.3	Problem of Clay Soil	10
2.3	Stabili	ity of Slope Embankment	12

2.3.1	Type of Slope	12
2.3.2	Mode of Failure	13
2.3.3	Factor of Safety	14
2.3.4	Soft Soil behavior under the	
	Embankment	15
	2.3.4.1 Settlement	15
	2.3.4.2 Lateral Movement	18
2.3.5	Slope Stabilization Method	23
Review	w of Slope Stability Analysis	24
2.4.1	Type of Analysis	26
	2.4.1.1 Method of Slice	27
2.4.2	Basic Requirements for Slope Stability	29
	Analyses	
2.4.3	Source of Uncertainty in Slope Stability	30
	Analysis	
	2.4.3.1 Parameter Uncertainty	30
	2.4.3.2 Model Uncertainty	31
	2.4.3.3 Human Uncertainty	31
2.4.4	Selection of Parameter and Its	
	Variability	32
2.4.5	The Use of Finite Element Software	
	Package	33
2.4.6	Computer Modeling	35
	2.4.6.1 PLAXIS	36

RESEARCH METHODOLOGY

3

2.4

3.1 Introduction 38
3.2 Regional Geology and Site Topography 40
3.3 Literature Review 43
3.4 Borehole with Standard Penetration 43 Test (SPT)

3.5	Vane	Shear Test	44
	3.5.1	Undrained Shear Strength	
		of Cohesive Soils – general	
		evaluation basic	45
3.6	Labor	atory Test	46
3.7	Mater	ial Properties	46
	3.7.1	Soil classification Test	46
	3.7.2	Particle Size Distribution	46
	3.7.3	Atterberg Limits	47
	3.7.4	Consolidation Test	47
	3.7.5	Triaxial Test – Unconsolidated	
		Undrained	48
	3.7.6	Sheet pile Wall	48
		3.7.6.1 Limit State design	49
		3.7.6.2 Fixed Earth Design	49
		3.7.6.3 Softened Zone	50
2.0	Matha	unation Madaling and Simulation	50
3.8	Mathe	ematical Modeling and Simulation	50
	3.8.1	Finite Element Program	50
	3.8.2	Features of PLAXIS	51
	3.8.3	Type of Soil Model	52

ANALYSIS AND DISCUSSION

4

4.1	Introd	uction	53
4.2	Failur	e Occurred – Case Study	55
	4.2.1	Ground Profile	55
	4.2.2	Evaluation of Geotechnical Parameters	57
	4.2.3	Factor of Safety	58
	4.2.4	Back Analyses	58
4.3	Reme	dial Method	69
	4.3.1	Option 1 - Continuous Sheet Pile Wall	
		with Tie Back System	70

	4.3.2	Option 2 - Geogrid Wall with Pilling	
		System	70
	4.3.3	Option 3 - Wellguard wall with Pilling	
		System	71
	4.3.4	Summarize of analyses using SLOPE/W	71
4.4	Analy	ses by PLAXIS	81
	4.4.1	Subsoil Profile and Ground	81
		Characteristic	
	4.4.2	Shear Strengths	82
	4.4.3	Laboratory Test Result	85
	4.4.4	Deformation Characteristics	87
	4.4.5	Soil Permeability	87
	4.4.6	Geotechnical & Structural	
		Parameters	88
		4.4.6.1 Sand fills for the	
		first 3m	88
		4.4.6.2 Very Soft Clay for the	
		next 5m	88
		4.4.6.3 Very Soft Clay	
		for the next 8m	88
		4.4.6.4 Soft to Stiff Sandy	
		Clay for the next 8m	89
		4.4.6.5 Very Stiff Clayey	
		Silt for the next 6m	89
		4.4.6.4 Structural Members	91
4.5	Seque	nce of Construction	92
	4.5.1	General Notes on Requirements	
		for the Reinstatement Works	96
4.6	Geom	etry of Model & Adopted Parameters	97

CONCLUSION AND RECOMMENDATIONS 99

5.2	Conclusion	99
5.3	Recommendations	100

REFERENCESS

APPENDICES

Appendix A – Site Plan and Borehole Location
Appendix B – Field Testing: Vane Shear Test Result & Borelog Records
Appendix C – Laboratory Testing (Summary)

LIST OF TABLES

TABLE	ITEM	PAGE
Table 1.1	Summarizes the soil investigation works	6
	that was carried out at site	
Table 2.1	Factor of safety	15
Table 2.2	Empirical correlation of lateral deformation on	
	21 embankments, (Tavenas et al., 1979)	21
Table 2.3	List of commonly used method of slice: assumption	
	concerning interslice force for different method of slice	27
Table 2.4	Characteristics of equilibrium methods of slope	
	stability analysis (Source: Duncan and Wright, 1980)	28
Table 2.5	Coefficient of Variation for Geotechnical Parameter	33
Table 3.1	Consistency of Clay versus N	44
	Source: Terzaghi and Peck, R.B	
Table 4.1	Interpreted Subsurface Profiles	55
Table 4.2	Geotechnical Parameters	57
Table 4.3	Recommended factor of safety for new slopes	
	(After Geotechnical Control Office, Hong Kong, 1984)	58
Table 4.4	Summarize of advantages and disadvantages of the	
	every option	69
Table 4.5	Summarize of analyses using SLOPE/W	71
Table 4.6	Drained Shear Strength Parameter	83
Table 4.7	Variation of Shear Strength and Deformation	
	Parameters	90
Table 4.8	Technical data for Sheet Pile Wall	92

LIST OF FIGURES

FIGURE	ITEM	PAGE
Figure 2.1	Uncertainties in Soil Properties	
	(Source: Christian, Ladd, Beacher, 1994)	16
Figure 2.2	Vertical displacement at the embankment	17
	toe versus relative embankment height	
	(Hunter and Fell, 2003)	
Figure 2.3	Vertical displacement beyond toe versus	17
	relative embankment height	
	(Hunter and Fell, 2003)	
Figure 2.4	Typical relation between maximum horizontal	19
	displacement, y_m and settlement, s under the	
	center of the embankment (Lerouiel et al., 1990)	
Figure 2.5	Lateral surface displacements at embankment	20
	toe versus relative embankment height	
	(Hunter and Fell, 2003)	
Figure 2.6	Maximum lateral deformation for the 3m	22
	control embankment at Muar Trial compared	
	with the selected empirical method	
	(Asrul Azam and Huat 2003)	
Figure 2.7	Maximum lateral deformation for the 6m	23
	control embankment at Muar Trial compared	
	with the selected empirical method	
	(Asrul Azam and Huat 2003)	
Figure 2.8	Uncertainties in Soil Properties	31
	(Source: Christian, Ladd, Beacher, 1994)	
Figure 3.1	Flow Chart of Study Methodology	39
Figure 3.2	Regional Geology	41
Figure 3.3	Site Topography	42
Figure 3.4	Fixed Earth Support	50

Figure 4.1	(Before failure condition) Soldier Wall are	53
	used and anchored to the pile size	
	150mm x 150mm	
Figure 4.2	Site location	54
Figure 4.3	Borelog	56
Figure 4.4	Existing slope profile before failure	60
	@ CH 250	
Figure 4.5	Original profile (full water level)	61
	@ CH 250	
Figure 4.6	Original profile (full water level)	62
	at chainage 250 with $FOS = 1.546$	
Figure 4.7	Original profile (water level – 1m)	63
	- CH 250	
Figure 4.8	Original profile (water level – 1m)	64
	@ CH 250 with FOS = 1.306	
Figure 4.9	Original profile (water level – 2m)	65
	@ CH 250	
Figure 4.10	Original profile (water level – 2m)	66
	@ CH 250 with FOS = 1.090	
Figure 4.11	Original profile (water level – 3m)	67
	@ CH 250	
Figure 4.12	Original Profile (water level – 3m)	68
	@ CH 250 with FOS = 0.966	
Figure 4.13	Option 1- Continuous Sheet Pile Wall	72
	with Tie Back System (Chainage 250)	
Figure 4.14	Option 2 - Geogrid Wall with Pilling	73
	System (Chainage 250)	
Figure 4.15	Option 3 - Wellguard Wall with Pilling	74
	System (Chainage 250)	
Figure 4.16	Option 1- Continuous Sheet Pile Wall	75
	Profile (Chainage 250)	
Figure 4.17	Option 1- Continuous sheet pile wall profile	76
	@ CH 250 with FOS =1.435	

Figure 4.18	Option 2 - Geogrid wall with pilling profile	77
	@ CH 250	
Figure 4.19	Option 2 - Geogrid wall with pilling profile	78
	@ CH 250 with FOS = 1.437	
Figure 4.20	Option 3 - Wellguard wall with pilling profile	79
	@ CH 250	
Figure 4.21	Option 3 - Wellguard wall with pilling profile	80
	@ CH 250 with FOS = 1.378	
Figure 4.22	Plot the undrained shear strength versus	82
	depth from S.I works.	
Figure 4.23	Undrained shear strength of Port Klang	84
	marine clay (after Dr. Ting Wen Hui)	
Figure 4.24	S_u determined from the field vane	84
	shear test (VST) as a function	
	of the plasticity index (after Skempton)	
Figure 4.25	Water content plot	85
Figure 4.26	Plasticity Chart	86
Figure 4.27	Cold Formed Sheet Pile Wall	91
Figure 4.28	Cold Formed Sheet Pile Wall – Z Section	91
Figure 4.29	Install 6 meter continuous Sheet Pile as	92
	temporary protection	
Figure 4.30	Excavation and Backfill crusher aggregate	93
	as working platform	
Figure 4.31	Install 250mm dia. Spun Pile at 2m C/C	94
	and construct pile cap	
Figure 4.32	Lay a layer of Geogrid (GX 600/50)	94
	and backfill with sand	
Figure 4.33	Install 20m length continuous Sheet Pile Wall	95
Figure 4.34	Tie back 20m continuous Sheet Pile Wall with	95
	6m Sheet Pile Wall	
Figure 4.35	Finite Element Model	97
Figure 4.36	Model Connectivities (Mesh)	97
Figure 4.37	Mode & Magnitude of total displacement	98
	after construction	

xvi

LIST OF SYMBOLS

С	:	Cohesion of Soils
C_c	:	Compression Index
C_{v}	:	Coefficient of Consolidation
D	:	Total deformed clay thickness
Ε	:	Modulus of elasticity
G_s	:	Specific gravity
H_{nc}	:	Threshold height
Ι	:	Moment of inertia
Ip	:	Plasticity Index
m_v	:	Ceofficient of Volume Change
S	:	Settlement
S_u	:	Undrained Shear Strength
w_L	:	Liquid limit
W_P	:	Plastic Limit
Уm	:	Maximum Horizontal Displacement
σ_o	:	Initial total stress
σ_{vo} ,	:	Initial effective stress
γd	:	Dry unit weight

 γ_s : Saturated unit weight

CHAPTER I

INTRODUCTION

1.1 General

Evaluating the stability of the slope in soil is an important, interesting, and challenging aspect of civil engineering. Concern with the slope stability has driven some of the most important advance in our understanding of the complex behavior of soil.

Experience with the behavior of slope and often with their failure, has led to development of improved understanding of the changes in soil properties that can occur over time, recognition of the requirements and the limitations of laboratory and in situ testing for evaluating soil strength, developments new and more effective types of instrumentation to observe the behavior of slope, improved understanding of the principles of soil mechanics that connect soil behavior to slope stability, and improved analytical procedures augmented by extensive examination of the mechanics of slope stability analyses, detailed comparisons with field behavior and use of computers to perform thorough analyses.

This study will focus on riverbank slope failure and remedial method have been done and to analyze the failure before and after the construction. Although many mitigation works had been planned and designed prior to the construction of the project, there still exist many uncertainties associated with the material, spanning from it is complex origin. The emergence of development in construction industry has minimized the preferred site of geotechnical quality for construction although these sites are known

to reduce technical problems and thus the cost associated with their construction. By that, socio-economic and political considerations have forced the use of sites of lower quality and in particular, the sites covered by compressible soils. In developed country such as Malaysia, the chances to have good quality construction sites become rarer and it is necessary to choose sites that include compressible soils, especially for industrial structures and transportation projects. Therefore, the tasks to do constructions on these compressible soils have become a challenge for geotechnical engineers all over the world.

Soils with characteristics of low strength and compressible exist all over the world. One of the most significant problems arises because of its characteristics that are difficulties in supporting loads on such foundation. The problem arises with low strength is that it leads to difficulties in guaranteeing the stability of the structure on this type of soil. On the other hand, this type of soil also associated with high compressibility which leads to large settlements and deformations of the structure.

Clays, referring to the United Soil Classification System, are fine-grained soils with more than 50% by weight passing No.200 US Standard sieve (0.075 mm). Soft clay is defined as clay with shear strength below 25 kPa (Brand & Brenner, 1989). Soft soils have weak compressibility and known to engineers as very complex, problematic, and treacherous materials. That is why many structures constructed on soft clay experiencing failure.

Because of this, it is important to continue research effort on this problem in order to resolve the problems posed by construction on soft clay.

1.2 Problem Statement

There are many circumstances in slope, where the civil engineer must investigate the stability of slope by performing stability analysis. The construction on soft cohesive soil is increasing lately because there are too many suitable sites for construction or infrastructures or any other developments. The problems related to this type of soil are stability and settlement. Due to that the understanding of knowledge of engineering characteristic on soft clay are critical and should understand by people related to this field. The selection of construction method on this formation is restricted by cost, duration of completion and benefit.

The development in South East Asia had been so rapid that studying the soft clay is very important. However the study have been done mostly concentrated on major cities such as Kuala Lumpur, Singapore, Bangkok, Jakarta and others. Because of that the marine clay area in Muar, Johor are chosen in this study in order to develop the simulation analysis of slope stability for riverbank of Sungai Muar, Johor.

It is difficult to get samples from soft clay for laboratory testing, such as shear strength. Some of the tests take a long time to complete and also need a careful analysis. So correlations with basic properties play an important role to overcome this problem. Besides that, the correlation of shear strength with depth could also help the engineer to make prediction of the shear strength soil at certain depth below ground level.

Existing method of slope stability analysis using slice (Bishop 1955, Janbu 1957) are based on the limit equilibrium theorem. An implicit assumption in equilibrium analyses of slope stability is the stress-strain behavior of the soil is ductile, i.e., the soil does not have a brittle stress-strain curve (where the shearing resistance drops off after reaching a peak). This limitation result from the fact that the method provide neither information regarding the magnitudes of the strain within the slope, nor any indication about how they may vary along slip surface (Duncan,

1996). Besides it, the analysis only considered force and moment acting on the slice with total disregard to the deformation developed in the slice. Thus, it is not possible to obtain reliable result from the analyses of solely based on the method of slice (Terado et al., 1999).

Thus, in order to obtain a unique solution it is necessary to introduce extra conditions. Better analysis should therefore take into account the displacement and deformation of the slices, and also the stresses in the soil mass in determining the stability of slope.

In the other hand, the stability analyses are performed not only to provide a factor of safety once the soil properties are know, but also to establish field shear strength from the study of failures. It is rational to carry out the study determining what actually happened after an unexpected instability has occurred. It is therefore necessary to do some analyses in reverse, which is usually termed as 'back analyses'. The investigation is not mean to blame who or whom should be responsive to the failure but it collects valuable information that could be used in designing the remedial works as well as guidelines for further projects. The awareness of importance of back analysis has resulted in development of various methods. However the problem always arise in determining the suitable method of analysis and the way back analysis can be carried out.

Failures of slopes will cause economic loss to the community. In addition to the economic loss, sometimes there is loss of life too. There are many factors to cause failure of a riverbank slope and very often these factors are interrelated. In the design of a slope, stability analysis shall be carried out prior to the construction. When the analysis results indicate undesired low factors of safety, strengthening measures should be introduced. When a slope failed and remedial works are required, it is essential to carry out failure investigation to find out the possible causes. Suitable remedial design can only be carried out after knowing the causes of failure. Once the main causes of slope failure have been identified, the remedial design can be carried out to correct the problems. Failure investigations were carried out. The possible causes of slope failure were identified. Remedial measures adopted were based on the investigation results, the site conditions, comparison of the construction costs and technical knowledge of the remedial measure. The investigation is not mean to blame who or whom should be responsive to the failure but it collects valuable information that could be used in designing the remedial works as well as guidelines for further projects.

1.3 Objective and Scope of the Study

The objective of the study is:

- To determine the stability of the slope before and after the construction of Muar River at Panchor town, Johor.
- 2. To determine the total displacement after completion of construction on soft soil

Stability analysis of slope is carried out based on the computer modeling using SLOPE/W, limit equilibrium software and PLAXIS V8.2, a finite element package.

1.4 Limitation of the Study

The scope of the study includes several aspects as follows:

 Literature review on previous embankment failure cases including the problems, mode of failure, shear strength parameter obtain from the field test and laboratory test and factor of safety.

- (ii) To simulate, verify and modify the various construction stages in term of constructability, stability and cost-effectiveness, using relevant limit equilibrium method software such as SLOPE/W.
- (iii) The analysis also been conducted by using relevant finite element method such as PLAXIS. Stresses of the soil mass along the critical slip surface as well as the displacement and deformation are determined using the theory of finite element.

Jabatan Pengairan dan Saliran (JPS) had commissioned Kumpulan IKRAM Sdn Bhd to undertake soil investigation for detail study, while the JPS undertake the design of the failure of the embankment of Sungai Muar, located at Pekan Panchor, Johor based on the soil investigation. Field works for the investigation were carried out by IKRAM Engineering Services Sdn. Bhd, IKRAM Selatan from 23 April 2008 to 26 April 2008, understanding supervision by Kumpulan IKRAM Sdn Bhd and JPS. However the laboratory test was completed on 28 August 2008. Geotechnical investigation to perform the Standard Penetration Test (SPT), carry out the provision of disturbed, undisturbed sample and monitoring of ground water, in-situ Vane Shear Test to determine the undrained shear strength of cohesive soil and to carry out Laboratory Test on disturbed and undisturbed sample. The test locations are shown in the site plan as shown in **Appendix 1**. Thus the result of field testing as attached in **Appendix 2**.

The **Table 1.1** summarizes the soil investigation works that were carried out at site. The works were carried out in accordance with JKR specification.

Investigation works	Quantity			
23 April 2008 - 26 April 2008				
Boreholes	4 nos			
Vane Shear Test (sampling in borehole)	4 nos			
26 April 2008 - 28 August 2008				
Laboratory testing	Refer Appendix 3			

Table 1.1: Summarizes the soil investigation works that were carried out at site

Field explorations that are carried out using the Boring plant type 'YWE' which is capable of boring and drilling to the depth required which was 30m deep. These boring rings are also suitable for advancing the borehole, sampling, in-situ testing such as vane shear test and rock drilling in accordance with the relevant specification of each of these operations.

The methods for advancing the borehole were rotary boring, continuous sampling rotary drilling or a combination of these methods. When undisturbed sample were taken, a reasonably clean hole was provided and the portion of soil to be sampled was not unduly disturbed. Disturbed sample were obtained by means of split spoon samplers, which equipped with flap retainer or other attachments necessary for cohesion less soil. The maximum amount of soil sample obtained was such that the quantity is sufficient to carry out various classification tests. The vane shear test results as attached in **Appendix 4**.

Soil sample were collected in the form of undisturbed. About 40mm of the soil were removed from the top and bottom of the thin-wall sampling tube. Then the ends of the tubes were filled with non-shrinking microcrystalline wax before sending to the laboratory. Laboratory test that was carried out are as listed below:

- (i) Moisture Content
- (ii) Atterberg Limit
- (iii) Particle size Distribution
- (iv) Unconsolidated Undrained Triaxial Test
- (v) Consolidated test 1D
- (vi) Visual and Manual examination

1.5 Research Area

This study presents the failure of embankment of Sungai Muar located at Pekan Panchor Muar, Johor.

REFERENCES

- Liew, S.S., Gue, S.S. & Liong, C.H. Geotechnical investigation and monitoring results of a landslide failure at southern peninsular Malaysia (Part 2 : Back analyses of shear strength and remedial works).
- Bromhead, E. N. (1992). The stability of slope, second edition, Blackie Academic & Professional.
- C.S. Chen & C.S. Lim. Some Case Histories of Slope Remedial Works
- Roy Whitlow 2001. Basic Soil Mechanics
- J.Michael Duncan and Stephen G. Wright, 2005, Soil Strength and Slope Stability.
- Gue See-Sew & Cheah Siew-Wai. Geotechnical Challenges In Slope Engineering of Infrastructures
- Braja M. Das. Fundamental of Geotechnical Engineering 1999
- Braja M. Das. Priciple of Foundation engineering Fifth edition 2004
- F.H Kulhawy and P.W. Mayne (Cornell University, New York). *Manual Estimating* Soil Properties for Foundation Design
- Kulhawy, F.H, Duncan, J.M and Seed H.B. Finite Element Analysis of Stress and Movement in Embankment During Construction.
- Bjerrum, L., Embankment on Soft Ground , Proceeding, ASCE Specialty Conference on Performance of Earth and Earth Support Structure, Vol. 2, Lafayette 1972, pp1-54
- B. Indraratna. Performance of Test Embankment Constructed to failure on Soft Marine Clay (1992)

Dr. W.H. Ting and Dr. C.T. Toh. Property of Some Soft Soil Deposit in Malaysia (1986), Proceeding Seminar on Geotechnical Development in Malaysia.