PERFORMANCE EVALUATION OF ELECTRICAL DISCHARGE MACHINE ON TITANIUM ALLOY USING COPPER IMPREGNATED GRAPHITE ELECTRODE

MOHD HALIMUDIN BIN MOHD ISA @ HAMID

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Mechanical - Advance Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MAY 2010

First of all, all the praises and thanks be to Allah S.W.T for His Love, This thesis is dedicated to my family,

To my beloved parent,

Maimunah Hj Abdullah,

My supportive wife,

Amizah Abdul

My wonderful brothers and sisters,

Hamnah Mohd Isa, Mohd Helmi Mohd Isa, Huda Mohd Isa Norhana Mohd Isa

And last but not least to all my relatives and my close friends

Thank you very much for your unstinting help and encouragement

May Allah bless all people that I love and it's my honor to share this happiness with

my love ones.

Sorry if I forgot to mention any name.

ACKNOWLEDGEMENTS

I would like to thank Allah Almighty for blessing me and giving me strength to accomplish this thesis. A special thanks and deep gratitude to my supervisor, Professor Dr. Safian Sharif who greatly helped in guiding and assisting me in every way throughout this entire project.

Many thank to all of the technicians and staff from KKTM Balik Pulau especially Mr Faiezem Ibrahim, Mr Asmar Suid, Mr. Ridwan Ramli, person in charge in Metrology Laboratory, Mr. Ashamudin Technician in Material Failure Testing and Mr. Mohzani lecturer from Department of Mechanical Engineering, USM and other technical staff for their cooperation and assistance me in the various laboratory tasks.

Lastly, I would also like to express my special thanks to my wife and my family members for their trust in me and continuously supporting me throughout this project. Less but not least, I would like to thank those who have contributed directly or indirectly towards the success of this study.

ABSTRACT

Electrical discharge machining (EDM) which is very prominent amongst the non conventional machining methods is expected to be used quite extensively in machining titanium alloys due to the favorable features and advantages that it offers. This thesis presents the EDMing of titanium alloy (Ti-6246) using copper impregnanted graphite electrode with diameter of 8 mm. The main purpose of this study was to investigate the influenced of various parameters involved in EDM on the machining characteristics, namely, material removal rate (MRR), electrode wear ratio (EWR), surface roughness (Ra) and overcut.

In this investigation, the machining trials were performed using a Sodick linear motor EDM sinker series AM3L The experimental plan for the processes were conducted according to the design of experimental (DOE) and the results were statistically evaluated using analysis of variance (ANOVA). Results showed that current was the most significant parameter that influenced the machining responses on EDM of Ti-6246.

Confirmation tests were also conducted for the selected conditions for each machining characteristics in order to verify and compare the results from the theoretical prediction using Design Expert software and experimental confirmation tests. Overall, the results from the confirmation tests showed that the percentage of performance was acceptable due to all results obtained were within the allowable values which was less than 15% of marginal error.

ABSTRAK

Proses pemesinan nyahcas elektrik (EDM) yang agak dominan di antara proses pemesinan bukan konvensional dijangkakan akan bertambah meluas penggunaannya disebabkan sifat-sifat dan kelebihan yang dihasilkan keatas bendakerja. Kajian yang dijalankan ini adalah mengenai pemesinan EDM *sinker* terhadap bahan aloi titanium (Ti-6246) dengan menggunakan *copper impregnanted graphites* yang berdiameter 8 mm sebagai elektrod. Tujuan utama kajian ini adalah untuk mengkaji kesan beberapa parameter yang terlibat dalam EDM proses terhadap kriteria pemesinan seperti kadar pembuangan bahan (MRR), nisbah kehausan elektrod (EWR), kekasaran permukaan (Ra) dan 'overcut'.

Dalam kajian ini, pemesinan yang dijalankan ke atas titanium dilakukan menggunakan *Sodick linear motor EDM series AM3L*. Ujian pemesinan untuk kedua-dua proses telah dinilai secara statistik menggunakan analisa variasi (ANOVA). Keputusan menunjukkan arus lektrik merupakan parameter yang paling signifikan yang mempengaruhi tindak balas pemesinan EDM ke atas Ti-6246.

Ujikaji pengesahan juga telah dijalankan bagi tujuan pengesahan dan perbandingan keputusan di antara nilai ramalan teori menggunakan perisian *Design Expert* dengan nilai yang diperolehi dari ujikaji. Secara keseluruhan, keputusan pengesahan ujikaji menunjukkan bahawa kesemua peratusan ralat perbezaan yang diperolehi berada di dalam lingkungan nilai yang dibenarkan iaitu peratus ralat kurang daripada 15%.

CONTENTS

CHAPTER	TITLE	PAGE

DECLARATION	ii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
CONTENTS	vii
LIST OF TABLES	х
LIST OF FIGURES	xii
NOMENCLATURE	xiv
LIST OF APPENDICES	XV

1 INTRODUCTION

1.1	Overview	1
1.2	Background of Research	2
1.3	Statement of the research problem	4
1.4	Research Question	4
1.5	Objectives	4
1.6	Scope of study	5

2 LITERATURE REVIEW

2.1 Introduction	6
2.2 Electric Discharge Machining (EDM)	7
2.2.1 Principle EDM Spark Erosion	8
2.2.2 Machining Parameter	10

2.2.3 Electrode	10
2.2.3.1 Key Factors of Electrode Material Selection	11
2.2.3.2 Material Removal Rate (MRR)	11
2.2.3.3 Electrode Wear Rate (EWR)	11
2.2.3.4 Surface Roughness (SR)	12
2.2.3.5 Machinability	12
2.2.3.6 Material Cost	13
2.2.3.7Graphite Electrode	13
2.2.4 Flushing	14
2.2.5 Dielectric Fluid	17
2.3 Machining Characteristics	17
2.3.1 Material Removal Rate	17
2.3.2 Electrode Wear Rate, EWR	18
2.3.3 Surface Roughness, SR	19
2.4 Titanium Alloys and Their Machinability	20
2.4.1 Introduction	20
2.4.2 Classification of Titanium Alloys	22
2.4.2.1 Commercially pure (CP) titanium (unalloyed)	23
2.4.2.2 Alpha and near-alpha alloys	23
2.4.2.3 Alpha-beta Alloys	24
2.4.2.4 Beta alloys	24
2.4.3 EDM of Titanium Alloys	25
2.4.3.1 Machining Titanium Alloys with EDM	25
2.5 Design of Experiment (DOE)	26
2.5.1 Two-level Fractional Factorial Design	27
2.5.2 Response Surface Methodology (RSM)	28
2.5.3 Test of Statistical Significance	28

3 RESEARCH DESIGN

3.1	Introduction	30
3.2	2 Research Design Variables	30
	3.2.1 Response Parameters	31
	3.2.2 Machining Parameters	31
	3.2.3 Workpiece Material	32

	3.2.4 Electrode Material	33
	3.2.5 Machine and Equipment	34
3.3	Analysis	39
	3.3.1 Statistical Analysis	39
	3.3.2 Metal Removal Rate (MRR) Measurement	40
	3.3.3 Electrode Wear Rate (EWR) Measurement	41
	3.3.4 Surface Roughness Measurement	42
	3.3.5 Measurement of Hole Diameter	42
	3.3.6 Experimental Design	43

4 **RESULT AND ANALYSIS**

4.1 Introduction	46
4.2 Experimental Results	47
4.3 Result Analysis	48
4.3.1 Analysis Results for Material Removal Rate	, MRR 49
4.3.2 Analysis Results for Electrode Wear Rate, E	EWR 56
4.3.3 Analysis Results for Surface Roughness, SR	61
4.3.4 Analysis Results for Overcut	64
4.3.5 Analysis with Central Composite design	70

5 DISCUSSION

5.1 Introduction	86
5.2 Material removal rate, MRR	87
5.3 Electrode wear rate EWR	87
5.4 Surface roughness, SR	88
5.5 Overcut	89
5.6 White layer	89

6 CONCLUSIONS

6.1 Introduction	91
6.2 Conclusion	91

REFERENCES	93
APPENDICES	97

LIST OF TABLES

TABLE

TITLE

PAGE

2.1	Physical and mechanical properties of elemental titanium	21
2.2	Some commercial and semicommercial grades and alloy titanium	22
3.1	Machining parameters	31
3.2	The composition of Ti-6246	32
3.3	Mechanical Properties of Ti-6246	33
3.4	Typical Value for copper impregnanted graphite	34
3.5	Factor and level for EDM of Ti-6246	43
3.6	Two level full Factorial experiment with four factor and four center point	44
3.7	Experimental plan for EDM of Ti-6246	45
4.1	Experimental results for EDM of Ti-6246	47
4.2	ANOVA table for MRR in EDM process	51
4.3	ANOVA table for EWR in EDM process	57
4.4	ANOVA table for SR in EDM process	61
4.5	ANOVA table for Overcut in EDM process	65
4.6	Summary of significant factors in EDM experiments	70
4.7	Experimental plan for EDM of Ti-6246 (CCD)	71
4.8	Response results for EDM of Ti-6246 (CCD)	72
4.9	ANOVA table for response surface quadratic model for MRR in EDM of Ti-6246	73
4.10	ANOVA table after transformation for MRR in EDM of Ti-6246	74
4.11	Final ANOVA for EWR in EDM of Ti-6246	77
4.12	Final ANOVA for SR in EDM of Ti-6246	79
4.13	Final ANOVA for overcut in EDM of Ti-6246	81

4.14	An example of output from the point prediction tool EDM of Ti-6246	83
4.15	Analysis of confirmation experiments for MRR in EDM process	84
4.16	Analysis of confirmation experiments for EWR in EDM process	84
4.17	Analysis of confirmation experiments for SR in EDM process	84
4.19	Analysis of confirmation experiments for Overcut in EDM process	84

LIST OF FIGURES

TITLE

PAGE

2.1	Classification of EDM processes	7
2.2	Types of EDM processes	8
2.3	Spark gap	8
2.4	Phase of electrical discharges	9
2.5	Ignition of the first discharge	15
2.6	The particles created	16
2.7	The additional particle density	16
3.1	Sodick AM3L	35
3.2	Mitutoyo Formtracer CS-5000 surface roughness tester	35
3.3	Zeiss – Coordinate Measuring Machine (CMM)	36
3.4	Precisa Balance	36
3.5	Buehler automatic mounting machine	37
3.6	Grinder and Polisher	38
3.7	Optical microscope	38
3.8	Flowchart outlining the analysis steps undertaken	40
4.1	Pareto Chart for significant effect choosed (MRR)	49
4.2	Normal probability plots of residuals for MRR in EDM process	52
4.3	Residual vs predicted response for MRR in EDM process	52
4.4	Residual vs run number response for MRR in EDM process	53
4.5	Interaction between Peak Current (A) and Pulse on time (C)	54
4.6	Interaction between Peak Current (A) and Pulse on time (D)	54
4.7	Interaction between Pulse on time (C) and Pulse off time (D)	55
4.8	Perturbation plot for MRR in EDM process	56

4.9	Normal probability plots of residuals for EWR in EDM process	58
4.10	Residual vs predicted response for EWR in EDM process	58
4.11	Residual vs run number response for EWR in EDM process	59
4.12	Interaction between Peak Current (A) and Servo Voltage (B)	60
4.13	Interaction between Peak Current (A) and Pulse Off Time (D)	60
4.14	Normal probability plots of residuals for SR in EDM process	62
4.15	Residual vs predicted response for SR in EDM process	63
4.16	Residual vs run number response for SR in EDM process	63
4.17	Interaction between Peak Current (A) and Pulse On Time (C)	64
4.18	Normal probability plots of residuals for overcut in EDM process	66
4.19	Residual vs predicted response for overcut in EDM process	67
4.20	Residual vs run number response for Overcut in EDM process	67
4.21	Interaction between Peak Current (A) and Pulse On Time (C)	68
4.22	Interaction between Peak Current (A) and Pulse On Time (D)	69
4.23	Interaction between and Pulse On Time (C) and Pulse Off Time (D)	69
4.24	Normal probability plots of residuals for MRR in EDM process (CCD)	75
4.25	Residual vs predicted response for EWR in EDM process (CCD)	76
4.26	3D response surface for MRR in EDM process (CD) interaction	76
4.27	3D response surface for MRR in EDM process (AD) interaction	77
4.28	One factor plot for EWR in PMD-EDM process	78
4.29	One factor plot for Overcut in PMD-EDM process	80
4.30	Pulse off time (D) plot for Overcut in PMD-EDM process	80
4.31	3D response surface for Overcut in EDM process (CD) interaction	82
4.32	3D response surface for Overcut in EDM process (AD) interaction	82
5.1	White layer with lower pulse on current	90
5.2	White layer with higher pulse on time	90

LIST OF ABBREVIATIONS AND SYMBOLS

ANOVA	-	Analysis of variance
CCD	-	Central composite design
CMM	-	Coordinate measuring machine
EDM	-	Electro discharge machining
EWR	-	Electrode wear rate
EWW	-	Weight of electrode used
MRR	-	Material/metal removal rate
RSM	-	Response surface methodology
SR	-	Surface Roughness
Tm	-	Machining times
Wa	-	Weight of workpiece after machining
Wb	-	Weight of workpiece before machining
WRW	-	Weight of workpiece used
x1,x2, x3,	.,xk -	Input variables
α	-	Alpha phase
β	-	Beta phase

LIST OF APPENDICES

A	PP	E	ND	IX
11			1	1/1

TITLE

PAGE

A-1	Workpiece preparation plan	97
A-2	Actual workpiece preparation	97
A-3	Electrode preparation	98
A-4	Electrode and Workpiece for experiment	98
B-1	Program For hole makking on EDM die sinking (AM3L)	99
C-1	Experimental results for EDM of Ti-6246	
	(two level full factorial)	100
C-2	Experimental results for EDM of Ti-6246 (CCD)	101
D-1	Unmodified ANOVA table for MRR in EDM process	102
D-2	Box Cox Plot for MRR in EDM process	103
E-1	Ra reading for sample run 18	104
F-1	White layer for low and high MRR	105
F-1	White layer for low and high Ra	105
F-1	White layer for low and high Overcut	106
F-1	White layer for low EWR	106

CHAPTER 1

INTRODUCTION

1.1 Overview

The use of light, thin and compact mechanical elements has recently become a global trend. The search for new, lightweight material with greater strength and toughness has led to the development of new generation of materials such as titanium and nickel alloys, although their properties may create major challenges during machining operations. Having greater hardness and reinforcement strength, these materials are difficult to machine by the traditional methods. Although these materials can be machined conventionally, sub surface damages such as metallurgical alterations, work hardening, delimitation and microcracks and others can occur under certain circumstances which cause a detrimental effect on the performance of the machined component. Since the cost of using conventional machining is generally prohibitive, non-conventional machining such as electric discharge machining (EDM) and laser machining probably amongst the ideal technique in dealing with these materials.

Most titanium alloys and component design characteristics make them expensive to be machined and historically, titanium has been perceived as a material that is difficult to machine (Ezugwu, E.O and Wang, Z.M. 1997). Due to titanium's growing acceptance in many industries, along with the experience gained by progressive fabricators, a broad base of titanium machining knowledge is now exist. It was reported that commercially pure grades of titanium [ASTM B, Grades 1, 2, 3, 4] (ASM International, 1988) can be machined much easier than aircraft alloys.

Although titanium alloys is tough it can experienced sub-surface damaged during machining operations. Damage appears in the form of microcracks, built up edge, plastic deformation, heat affected zones and tensile residual stresses (Sharif, 1999; and Hong *et al.*, 2001). In service, these can lead to degraded fatigue strength and stress concentration.

Non-traditional machining of metal removal such as EDM expected to be used extensively years to come, because it's favorable results. It is particularly useful for rapid removal of metal of free form surface or complex shaped parts, thin sections, and from large areas down to shallow depths. This process has less damaging effect on the mechanical properties of the metal (Rival, 2005).

1.2 Background of Research

EDM is a non-traditional concept of machining which has been widely used to produce dies and molds. It is also used for finishing parts for aerospace and automotive industry and surgical components. This technique has been developed in the late 1940s (Norliana Mohd Abbas *et al.*, 2006).where the process is based on removing material from a part by means of a series of repeated electrical discharges between tool called the electrode and the work piece in the presence of a dielectric fluid (Norliana Mohd Abbas *et al.*, 2006).

This process is finding an increasing demand owing to its ability to produce geometrical complex shapes as well as its ability to machine hard materials that are extremely difficult to machine when using conventional process. EDM has proved its capability especially in the machining of super tough, hard and electrically conductive materials such as the new space age alloys (Rival, 2005). The process variables include not only the electrical but also non-electrical parameters, which have received quite a substantial amount of research interest.

Optimum selection of process parameters is very much essential, as this is a costly process to increase production rate considerably by reducing the machining time. Several researchers carried out various investigations for improving the process performance. As EDM is a very complex and stochastic process, it is very difficult to determine optimal parameters for best machining performance, i.e., productivity and accuracy (T. A. El-Taweel, 2009). Material removal rate, tool wear, surface finish and also overcut are most important output parameters, which influence the cutting performance. But these performance parameters are conflicting in nature. The higher the MRR, the better, whereas the lower the tool wear, the better. In a single objective optimization, there exists only one solution. But in the case of multiple objectives, there may not exist one solution, which is the best with respect to all objectives. In EDM process, it is difficult to find a single optimal combination of process parameters for the performances parameters, as the process parameters influence them differently. Hence, there is a need for a multi-objective optimization method to arrive at the solutions to this problem.

The published literature indicates that few studies have been reported for the optimization of process parameters in EDM. Therefore, this study is aims at investigating the best performance of various input process parameters in EDM diesinking process of Ti-6246. Further, no technology tables or charts are available for EDM of titanium alloy (Ti-6246) using copper graphite electrode. Therefore, it is imperative to develop a suitable technology guideline for appropriate machining of Ti-6246. Electrodes with copper graphite, peak current, servo voltage, pulse on time and pulse off time are considered as input EDM machining parameters. The process performance such as material removal rate (MRR), surface roughness (SR), overcut and electrode wear rate (EWR) were evaluated.

1.3 Statement of the research problem

How does a new developed electrode performed when EDM alpha beta titanium alloy Ti-6246 with respect to material removal, electrode wear, dimensional hole accuracy and surface finish.

1.4 Research Question

- a. What are the machining parameters that influence the EDMing of Ti-6246 using copper impregnanted graphite electrode.
- b. What are the significant parameters that influence to the responce during EDM of Ti-6246.
- c. What correlations exist among the parameters and machining responses and also how to quantify.
- d. What mathematical model is suitable to represent the performance evaluation of EDMing Ti-6246.

1.5 Objectives

The objectives of the study are:

 a) To evaluate the performance of copper Impregnated graphite electrode when Electro-Discharge Machining Ti-6246 with respect to various machining responses.

- b) To determine the significant parameters that influences the machining responses during Electro-Discharge Machining of Ti-6246.
- c) To establish mathematical model for the MRR, EWR and surface finish during EDM of Ti-6246 using DOE approach.

1.6 Scope of study

- a) Machining responses to be investigated are material removal rate (MRR), electrode wear rate (EWR), surface roughness (SR) and overcut.
- b) Electro-Discharge Machining (Die sinking) AM3L SODICK will be employed.
- c) Alpha-beta alloy, Ti 6Al 2Sn 4Zr 6Mo (Ti-6246) will be selected as workpiece material.
- d) Copper impregnated graphite will be used as the EDM electrode.
- e) Kerosene will be used as the dielectric fluid.

QUALITY CHARACTERISTICS OF THIN-WALLED PLASTIC INJECTION PARTS

SHAHRIL BIN NOH

A thesis submitted in fulfillment of the Requirements for the award of the degree of Master of Engineering (Advance Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MAY 2010

Specially dedicated to my beloved and very important person in my life;

Noh bin Wazir@Yoon Mariaton Kamsiah binti Ibrahim Kabun bin Bani@Hj.Zawawi Zaiton binti Md. Dom Fahrunisak binti Kabun All my family and friends

ACKNOWLEDGEMENT

In the name of Allah, the most Gracious and most Compassionate

In the name of ALLAH S.W.T the Most Merciful for giving His blessing in giving me an opportunity to complete my thesis entitled Quality Characteristics Of Thin-Walled Plastic Injection Parts. I wish to express my sincere appreciation to my thesis supervisor, Prof. Madya. Hamidon bin Musa and my co-supervisor En. Rozaimi Bin Mohd Saad, for their encouragement, guidance and critics. Without their continued support and interest, this thesis would not have been the same as presented here.

My deepest gratitude also to my beloved parents and all my family for supporting me throughout the entire project and for helping me get through this study. To my beloved wife, who give me a real love, pray, support, continuous encouragement and patience. Last but not least to all my fellow friends that helped and encourages me throughout my journey.

Finally, many thank to Majlis Amanah Rakyat (MARA) for the financial support, BPL(K), management and all KKTM Balik Pulau staff who have involved directly or indirectly to the success of this research work.

ABSTRACT

The development of plastic injection product as consumer products, such as communication and electronic products have a tendency to be light, thin, short, and small. For example, a laptop computer product requires a smaller, variable and convenient style. Therefore, the shapes of laptop are changing and more features have to be tightly packed into smaller volume of the casing. In order to produce the casing, it must be thin-walled and also tough at a mean time. In plastic injection molding, the production of the thin-walled part is very difficult. It's hard, because melted plastic cannot easily fill the mold cavity. The most important problem in thin-walled parts is warpage. Therefore, this project was undertaken to study a thinwalled plastic product such as laptop lid casing, has quality characteristics during injection moulding process especially warpage and shrinkage. Software has been used to overcome this matter. The software can analysis and to predict quality of product after injection process. The software which be used were PRO/ENGINEER and Moldflow. PRO/E software is used for create model of product. Moldflow software is used for analysis and to predict result of quality product. This research used the classical experimental design with full factorial methods to determine the injection molding conditions, and the injection processes will simulate using the commercial software Moldflow. The product and mould design was designed by Pro/Engineer Software. Both molding conditions and factors were discussed regarding the degree of warpage of a thin shell part.

ABSTRAK

Pembangunan produk suntikan plastik sebagai produk-produk pengguna, seperti produk komunikasi dan produk elektronik mempunyai satu kecenderungan akan dibuat sebagai ringan, nipis dan kecil. Misal nya, komputer riba memerlukan gaya yang lebih kecil, berubah-ubah dan berstail. Justeru, rekabentuk komputer riba akan berubah-ubah dan memberikan penampilan penutup komputer riba yang kecil dan menarik. Untuk menghasilkan penutup komputer riba, ia bukan sahaja perlu nipis tetapi kuat dan tahan lasak. Dalam pengeluaran untuk membentuk suntikan plastik, bahagian 'thin-walled' adalah sangat sukar. Ia adalah sukar kerana cecair lebur plastik tidak boleh dengan mudah memenuhi ruang acuan. Masalah paling utama dalam bahagian 'thin-walled' ialah kelengkungan. Penyelidikan ini telah dilaksanakan untuk mengkaji produk plastik 'thin-walled' seperti penutup komputer riba, yang mempunyai ciri-ciri kualiti semasa proses pengacuan suntikan terutama kelengkungan dan kecutan. Perisian telah digunakan untuk mengatasi masalah ini. Perisian tersebut boleh menganalisis dan meramalkan kualiti produk selepas proses suntikan. Perisian yang digunakan ialah PRO / ENGINEER dan Moldflow. PRO / ENGINEER adalah digunakan untuk mewujudkan reka bentuk produk. Perisian Moldflow adalah digunakan untuk menganalisis dan meramalkan hasil-hasil yang bermutu. Penyelidikan ini menggunakan rekabentuk ujikaji klasik dengan faktorial penuh bagi membentuk parameter suntikan acuan, dan proses-proses suntikan akan disimulasi dengan menggunakan perisian komersil Moldflow tersebut. Perbincangan lanjut mengenai parameter mesin yang menyebabkan kelengkungan akan dihuraikan pada topik yang berikutnya.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
	LIST OF ABBREVIATIONS AND SYMBOLS	XV
	LIST OF APPENDICES	xvi
1	INTRODUCTION	1
	1.1 Background	1
	1.2 Research Statement	4
	1.3 Problem Statement	4
	1.4 Objective Of Project	4
	1.5 Scope Of Project	5

LITERATURE REVIEW

2

2.1 Introduction	6	
2.2 Plastics Material		
2.2.1 Injection Moulding Processing Conditions	8	
2.2.2 Advantage	8	
2.3 Injection Molding	8	
2.3.1 Components	9	
2.3.1.1 Injection System	10	
2.3.1.2 Mold System	11	
2.3.1.3 Delivery System	13	
2.3.2 Warpage Problem	14	
2.4 Product Design	15	
2.4.1 Uniform Walls	16	
2.4.2 Voids And Shrinkage	19	
2.4.3 Warpage	20	
2.5 Moldflow		
2.5.1 The Benefits Of Predictive Analysis	23	
2.5.2 Optimize Warpage	24	
2.5.3 Reduce Warpage	25	
2.5.4 Mould Temperature (°C)		
And Melt Temperature	27	
2.5.5 Injection Time (S)	28	
2.5.6 Packing Pressure (Bar)	29	
2.5.6.1 Packing Methods	30	
2.5.7 Packing Time (S)	31	
2.6 Mould Design Software	31	
2.6.1 Easy Interfaces for Mould and Casting 33		
2.7 Previous Research		
2.8 Design of Experiment (D.O.E)		
2.8.1 When to Apply Design of Experiments 37		

6

2.8.2 What Is A Designed Experiment?	37
2.8.3 What Is A Process Diagram?	38
2.8.4 What Is A Factor?	39
2.8.5 What Is A Response?	40
2.8.6 Planning the Experiment	41
2.8.7 A Process Diagram for Injection	
Molding Experiment	43
2.8.8 An Orthogonal Array	45
2.8.9 Example Data	49
2.8.10 The Pareto Chart	49
2.8.11 The Main Effects Plot	50
2.8.12 Contour Plot	51
2.8.13 Summary	53

RESEARCH DESIGN

3.1 Introduction	54
3.2 Factorial Design	54
3.3 Fractional Factorial Design	55
3.4 Flow Chart of Classical Method	56
3.5 Factor Considered	57
3.5 Experimental Layout	57
3.6 Overall Evaluation Criteria	59
3.7 Methodology	60
3.7.1 Step Of Methodology	60
3.7.1.1 Step 1 : Product Drawing	60
3.7.1.2 Step 2 : Choosing The New Run In	
Moldflow	62
3.7.1.3 Step 3 : Mesh Model	63
3.7.1.4 Step 4: Select Best Gate Location	64
3.7.1.5 Step 5 : Selected Analysis Sequence	65

3.7.1.6 Step 6: Selection of Plastic Material	66
3.7.1.7 Step 7: Process Setting	67
3.7.1.8 Step 8: Run the Analysis	67
3.7.1.9 Step 9: D.O.E Analysis	68

4 RESULT AND ANALYSIS

4.1 Introduction	
4.2 Simulation Results	
4.3 Individual Response Analysis	
4.3.1 Warpage	73
4.3.2 Volumetric Shrinkage	79
4.3.3 Sink Index	
4.3.4 Shear Stress	90
4.4 Multiple Response Analysis	
4.5 Confirmation Test Run	
4.6 Mould Design	

5 CONCLUSION 110

5.1 Conclusion	110
5.2 Recommendations for Future Work	112

REFERENCES

116

114

69

LIST OF TABLE

Table No.	Title	Page	
2.0	Material Properties	7	
2.1	Finding of Previous Research	34	
2.2	Factor and corresponding level	46	
2.3	Design Matrix	47	
2.4	Design Matrix	47	
2.5	Design Matrix	48	
2.6	Completed Data	49	
3.1	Selection of the controllable factors and levels	57	
3.2	Experiment layout of full factorial designs	58	
3.3	Properties of PC/ABS	66	
4.1	Selection of the controllable factors and levels	70	
4.2	Experimental Plan	71	
4.3	Experimental Result	72	
4.4	ANOVA table for warpage	74	
4.5	Warpage Optimization Data	78	
4.6	ANOVA table for volumetric shrinkage	79	
4.7	Volumetric Shrinkage Optimization Data	84	
4.8	ANOVA table for Sink Index	85	
4.9	Volumetric Shrinkage Optimization Data	89	
4.10	ANOVA table for Shear Stress	90	

4.11	Volumetric Shear Stress Optimization Data	95
4.12	Data for OEC calculation	96
4.13	Result for OEC	97
4.14	ANOVA table for OEC	98
4.15	OEC Optimization Data	103
4.16	An example of the set goals for OEC Optimization	105
4.17	Possible solutions for OEC Optimization	105
4.18	An example of output from the point prediction	
	Tool	106
4.19	Analysis of confirmation experiments for OEC	106
4.20	Actual result analysis of confirmation	
	experiments for OEC	106
4.21	Analysis of confirmation of experiments for	
	Warpage	107
4.22	Analysis of confirmation experiments for	
	Volumetric shrinkage	107
4.23	Analysis of confirmation experiments for	
	Sink Index	107
4.24	Analysis of confirmation experiments for	
	Shear Stress	108
5.1	Optization of Response by Number of Run	111

LIST OF FIGURE

No.	Title	Page
1.1	Moldflow Analysis of Injection Moulding Product	3
2.1	Injection Moulding Machine	9
2.2	A single screw injection-molding machine for	11
	thermoplastics, showing the plasticizing screw,	
	a barrel, band heaters to heat the barrel,	
	a stationary platen, and a movable platen	
2.3	A typical (three-plate) molding system	12
2.4	(a) Two-plate mold (b) Three-plate mold	13
2.5	Delivery System	13
2.6	Warping	17
2.7	Transition of Wall Thickness	18
2.8	Coring to Eliminate Sinks	18
2.9	Gusseting to Reduce Warping	19
2.10	Boss Design to Eliminate Sinks	20
2.11	Warpage caused by Non-Uniform Wall Thickness	21
2.12	Moldflow Logo	22
2.13	Filling Analysis	24
2.14	Optimize Warpage	25
2.15	Reducing Warpage	26
2.16	Effect increasing mold temperature	27

2.17	Packing Method Graph	30
2.18	Pro/Engineer Modelling	32
2.19	Process Diagram	38
2.20	A Process Diagram for an Injection Molding Experiment	44
2.21	Tree Diagram	46
2.22	Example of Pareto Chart	50
2.23	Example of Main Effects	50
2.24	Contour Plot for this example	52
3.1	Flow Chart of DOE Methodology	56
3.2	Formulation of OEC	59
3.3	Laptop Lid Casing	61
3.4	Analysis Methodology Flow Chart	61
3.5	Creating a project name	62
3.6	Selecting the Mesh type	62
3.7	Mesh Window	63
3.8	Mesh Model of Product	64
3.9	Gate Location Window	64
3.10	Analysis Sequence Selection	65
3.11	Selection of Plastic Material	66
3.12	Process Setting Window	67
4.1	Half-Normal % Probability Plot for Warpage	75
4.2	Pareto Chart for Warpage	76
4.3	Interactions factor plot for warpage for BC and BD	77
4.4	Interactions factor plot for warpage for CD	77
4.5	Half-Normal % Probability Plot for Vol. Shrinkage	81
4.6	Pareto Chart for Volumetric Shrinkage	82
4.7	Main effect interaction plot of BC and BD	83
4.8	Main effect interaction plot of CD and CE	80
4.9	Main effect interaction plot of DE	80
4.10	Half-Normal % Probability Plot for Sink Index	86
4.11	Pareto Chart for Sink Index	87

4.12	Main effect interaction plot of BD and BE	88
4.13	Main effect interaction plot of DE	88
4.14	Half-Normal % Probability Plot for Shear Stress	92
4.15	Pareto Chart for Shear Stress	93
4.16	Main effect interaction plot of BC	93
4.17	Main effect interaction plot of CD and CE	94
4.18	Half-Normal % Probability Plot for OEC	100
4.19	Pareto Chart for OEC	101
4.20	Main effect plot of D and E	101
4.21	Main effect interaction plot of BC	102

LIST OF ABBREVIATIONS AND SYMBOLS

PC/ABS	-	Polycarbonate-Acrylonitrile-Acrylonitrile-Butadine-Styrene
ANOVA	-	Analysis of variance
CAD	-	Computer aided design
CAE	-	Computer aided engineering
C.I.	-	Confidence interval
Deg.	-	Degree
DOE	-	Design of experiment
OEC	-	Overall evaluation criteria
P.I.	-	Prediction interval
Pro-E	-	Pro-Engineer
QC	-	Quality characteristic
SE	-	Standard deviation
Sec.	-	Seconds
W	-	Weighting
$ \mathbf{X} $	-	Absolute value for reading
$X_A \dots X_D$	-	Sample Reading Value of response
$X_{A1}X_{D1}$	-	Worst reading value of response
$X_{A2} \dots X_{D2}$	-	Best reading value of response
Y	-	Response
α	-	Alpha phase

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A-1	Result of Warpage	116
A-2	Result of Volumetric Shrinkage	116
A-3	Result of Sink Index	117
A-4	Result of Shear Stress	117
A-5	Moldflow Log file	118
B-1	Core and Cavity Insert	119
B-2	Mould Design	119
B-3	Mould Opening	120
B-4	Mould Assembly Drawing	121
C-1	Schedule for Project	122

CHAPTER 1

INTRODUCTION

1.1 Background

The development of plastic injection product as consumer products, such as communication and electronic like portable computers and mobile telephones, etc., has had the trend for products to be light, thin, short, and small.

In plastic injection molding, the production of the thin walled parts is very difficult. It's hard, because melted plastic cannot easily fill the mold cavity. Because of this, the most important problem in thin walled parts is warpage. Reducing warpage to improve the quality of a part with a thin walled is becoming increasingly more important. The part which is produced by using injection molding method does not have the desired shape or uneven shrinkage and dimensions, because of the warpage problem.

The best way to reduce the warpage is by changing the geometry of parts, or by changing the plastics material, or modifying the structure of molds, or adjusting the process conditions. In fact, optimizing process conditions is the most feasible and reasonable method.

Besides that in the mould design process, there are also some matters that must be paid to attention, there is for the mould design can result a product with high quality. The matter that often occur is after a mould have made, product which result from the mold, it have low quality. It is because design of the mold is not perfect enough. Another matter which influences the quality of product is the setting of injection machine. The setting of injection machine included temperature of melt, temperature of cold, injection pressure, and etc. Wrong and not exactly enough of setting on the injection machine will result a product with not good enough quality.

To overcome this matter, a software can be used. This software can analysis and to predict quality of product after injection process. Besides that, the software can predict the optimal setting of injection machine. The value of setting for injection machine that is resulted from the software could be used for actual injection machine, so will be gotten a product with high quality. In this research, the case study is laptop lid casing. Software which be used were PRO/ENGINEER and Moldflow. PRO/E software is used for create model of product. Moldflow software is used for analysis and to predict result of quality product.

Figure 1.1: Mould Process of Injection Moulding Product

1.2 Research Statement

Quality characteristics such as warpage, shrinkage and others are the problem that can be control in any injection molding process. The experiment will reduce the problem and understand the whole quality characteristics behavior. Finally we can easily make selection of control parameter through quality characteristic properties.

1.3 Problem Statement

- A thin-walled plastic product such as laptop lid casing has quality characteristics during injection moulding process especially warpage and shrinkage.
- The part which is produced by using injection molding method does not have the desired shape and dimensions, because of the warpage problem. This can be reduced by selecting suitable parameter using computer simulation.
- The decrease in the thickness also weakens the strength of the thin-walled part. This problem can be solved by choosing the appropriate material for the durability.

1.4 Objective Of Project

- To study the influence parameter in injection moulding on quality of plastic products that made from PC/ABS material.
- To determine the impact of processing parameter on the plastic product due to simulation analysis and principle experiment by using classical method (D.O.E.)
- To identify the significance factors on the single and multiple quality characteristics (OEC) on plastic products by adopting ANOVA analysis
- To improve the performance characteristics and combinations characteristic of products produced by optimizing the processing parameter.
- To produce the mould design due to the product studied

1.5 Scope Of Project

In this study one sample model can be used to be investigated. Plastics parts that has been investigated in this study namely 'laptop lid casing' as thin-walled part by injection moulding analysis and made from PC/ABS as material. Moldflow (MPI 6.1) software for injection moulding analysis and Design Expert for design experiment will be employed. Part and mould designing by using Pro/Engineer WF4.

Processing parameters that use in studied are mould temperature, melt temperature, injection time, packing pressure and packing time. Than the response or quality characteristics that were carried out are warpage, volumetric shrinkage, sink index, shear stress for single responses and combination of each single responses called OEC (Overall Evaluation Criteria) for multiple response.