Aun, Yichiet and Gan, Ming-Lee and Abdul Wahab, Nur Haliza and Guan, Goh Hock (2023) Social engineering attack classifications on social media using deep learning. Computers, Materials and Continua, 74 (3). pp. 4917-4931. ISSN 1546-2218
PDF
668kB |
Official URL: http://dx.doi.org/10.32604/cmc.2023.032373
Abstract
In defense-in-depth, humans have always been the weakest link in cybersecurity. However, unlike common threats, social engineering poses vulnerabilities not directly quantifiable in penetration testing. Most skilled social engineers trick users into giving up information voluntarily through attacks like phishing and adware. Social Engineering (SE) in social media is structurally similar to regular posts but contains malicious intrinsic meaning within the sentence semantic. In this paper, a novel SE model is trained using a Recurrent Neural Network Long Short Term Memory (RNN-LSTM) to identify well-disguised SE threats in social media posts. We use a custom dataset crawled from hundreds of corporate and personal Facebook posts. First, the social engineering attack detection pipeline (SEAD) is designed to filter out social posts with malicious intents using domain heuristics. Next, each social media post is tokenized into sentences and then analyzed with a sentiment analyzer before being labelled as an anomaly or normal training data. Then, we train an RNN-LSTM model to detect five types of social engineering attacks that potentially contain signs of information gathering. The experimental result showed that the Social Engineering Attack (SEA) model achieves 0.84 in classification precision and 0.81 in recall compared to the ground truth labeled by network experts. The experimental results showed that the semantics and linguistics similarities are an effective indicator for early detection of SEA.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | artificial neural network (ANN), cybersecurity, decision tree (DT) classifier, machine learning (ML), random forest classifier, Social engineering attack |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | Computing |
ID Code: | 106321 |
Deposited By: | Widya Wahid |
Deposited On: | 29 Jun 2024 05:57 |
Last Modified: | 29 Jun 2024 05:57 |
Repository Staff Only: item control page