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ABSTRACT 

 

 

 

 

In this study, the cellular structures models of a porous medium containing a 

fluid flow phase within the pores or spaces of the solid matrix are investigated. A 

computational fluid dynamics of the three dimensional (3D) macro structures is 

developed from simple to complex model. Nine model variants are designed with 

different structure and geometry. To this end, the influence of cellular structure on 

the fluid flow, in terms of velocity, wall shear stress and pressure drop are 

investigated using the commercial FLUENT software. The acquired permeability 

values from obtained pressure drop and Darcy’s law are compared with permeability 

values calculated from Kazeny-Carman equation, there is a good agreement for 

permeability values for these two types of values which can validate the simulation. 
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ABSTRAK 

 

 

 

 
Dalam kajian ini, struktur sel sebuah model medium berliang, yang mengandungi 

fasa aliran bendalir dalam pori-pori atau ruagan matriks padu disiasat. Simulasi dinamik 

bendalir tiga dimensi struktur makro dibentuk dari sebuah model yang mudah, kepada 

sebuah model yang kompleks. Sembilan model dibentuk bengan struktur dan geometri yang 

berbeza. Pengaruh struktur sel pada aliran bendalir, dari sudut halaju, tekanan dinding ricih, 

dan susutan tekanan dikaji menggunakan perisian FLUENT. Didapati nilai ketelapan yang 

diperolehi dari susutan tekanan dan hukum Darcy, dibandingkan dengan, nialai ketelapan 

yang dikira dari persamaan Kazeny-Carman, mempunyai perkaitan. Nilai-nilai ketelapan ini 

boleh mengesahkan simulasi yang teloh dijalankan. 
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CHAPTER 1 

 

 

 

 

PROJECT OVERVIEW 

 

 

 

 

1.1 Background of the Problem 

 

 

Fluid flow in a porous medium is a common phenomenon in nature, and in 

many fields of science and engineering. Important flow phenomena include transport 

of water in living plants and trees, and fertilizers or wastes in soil. Moreover, there is 

a wide variety of technical processes which involve fluid dynamics in various 

branches of process industry. Fluid flow through a porous medium is essentially a 

two-phase problem that is composed of the flow of a fluid-phase and a solid matrix 

particle phase. However, for a matrix in which the pores are stationary, the solid 

matrix is assumed to be rigid and hence, it is usually assumed as a single-phase fluid. 

In many cases the porous structure of the medium and the related fluid flow are very 

complex, and detailed studies of these flows pose demanding tasks even in the case 

of stationary single-fluid flow. 

 

 

Fluid flow through a porous medium is applied in technological, environmental, 

and medical applications. A material must pass one of the following two tests in 

order to the qualified as a porous medium. It must either contain spaces filled with a 

fluid or be permeable to a diversity of fluids. A porous material has a specific 
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permeability, which is uniquely determined by the pore geometry and which is 

independent of the properties of the penetrating fluid. Practically all macroscopic 

properties of a porous media are influenced by the pore structure. Another important 

macroscopic parameter of the porous structure is the porosity that represents the 

empty space available for a fluid to pass. Porous media are often characterized in 

terms of "pore size distributions", but this does not provide a sufficient description 

for the calculation of important physical properties such as the permeability. A 

variety of models for the pore space geometry of porous media have been developed. 

However, simple models that can be used to calculate macroscopic physical 

properties have not yet been developed. On the other hand, due to the complexity of 

the geometry in porous media, accurate analytical solutions are difficult to obtain and 

it can be done with very few exceptions (Kaviany, 1995). 

 

 

The concept of porous media is used in many areas of applied science and 

engineering: mechanics (acoustics, geomechanics, soil mechanics, rock mechanics), 

engineering (petroleum engineering, construction engineering), geosciences 

(hydrogeology, petroleum geology, geophysics), biology, biophysics, material 

science etc. Transport of fluid, mass, and heat through porous media is a subject of 

interest that has emerged to be known as a separate field of research. The porous 

media has played a critical role in wide range of fields of science such as biomedical 

engineering and tissue engineering, biological membranes and bioreactors. The study 

of blood flow and perfusion bioreactor through the porous scaffold and other organs 

are the most advanced applications of porous media in biomedical engineering. 

 

 

 

 

1.2 Statement of the Problem 

 

 

The fluid flows through an inlet with a uniform velocity, passes through a 

cubic cellular structure and exits through the outlet. The rectangular channel with the 

modeled cubic cellular structure is shown in Figure 1.1. 
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Figure 1.1 Rectangular channel within cellular structure geometry for flow 

modeling. 

 

 

Many attempts have been carried out in order to simulate the fluid flow 

through a cellular structure such as simplified model structures, porous hollow 

sphere structures, open cell metal foam and human bones, respectively, are shown in 

Figure 1.2. This study investigates the characteristics of a fluid (liquid or gas) flow 

through a rigid, cellular structure. The use of a cellular structure in fluid-flow 

applications requires entire understanding of the behavior of the fluid flowing 

through the porous structure, in which the pressure gradient, velocity distribution 

through the cellular structure and shear stress are significantly required. Hence, in 

this present work the “Computational Fluid Dynamic” (CFD) analysis is used to 

model the flow through a cellular structure; to this end, modeling a flow in a 

rectangular channel, the pressure drop and the uniformity of the flow through a 

cellular structure can be determined using this method. The main purpose of this 

study is to apply the finite volume method for solving problems involving a fluid 

flow through cellular structures by means of the FLUENT software. FLUENT is 

used to model the flow of the fluid through cellular structure geometry which enables 

to analyze the flow field properties. 

 

 

 

 

 

 

 

inlet outlet 
𝑥 

𝑦 

z 

Cellular structure         
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Figure 1.2 (a) cubic arrays of pore circular cylinders, (b) Open-cell aluminum foam, 

(c) Cross section of metallic hollow sphere structures (Fiedler T, 2007), (d) 

Computed tomography scan of human bones (www.aurorahealthcare.org). 

 

 

 

 

1.3 Objectives of the Project 

 

 

The objectives of this study can be summarized as follows: 

 

1) To demonstrate the use of a commercial available computational fluid dynamics 

code, FLUENT, in simulating flow through cellular structures. 

 

2) To examine the effects of the cellular structure geometry on the fluid flow. Effects 

such as pressure drop etc. will be analyzed as a function of the cellular material 

characteristics. 

 

 

 

 

1.4 Scopes of the Project 

 

 

1) Generate and meshing the geometry of the cellular structure from a simple to 

a complex geometry. 

 

(a) (b)

) 

(c)  (d) 
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2) To investigate the fluid flow behavior for different cellular structures with 

different porosity by using the FLUENT software. 

 

3) Validation of obtained result by comparing with earlier research. 
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