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This paper presents the dynamic modeling of the gradient flexible plate system using System Identification
method based on autoregressive with exogenous input model structure and estimated by Grey Wolf Opti-
mization. The experimental rig of the gradient flexible plate was integrated with the data acquisition and
instrumentation to obtain input-output vibration data. The performances of developed models were validated
through one step ahead prediction, mean squared error, and correlation tests. The model was verified using the
pole-zero diagram to confirm its stability for the controller development. Results indicated that the optimum
model to represent the dynamic system of gradient flexible plate was achieved by model order 4 with the mean
squared error of 8.0496×10−6. The correlation results proved that the model was unbiased, and falls within
the 95% confidence level. Likewise, the model was found to be stable as all the poles of transfer function were
within the unit circle. Therefore, the identified model can be confidently used for the controller development to
suppress undesirable vibration in the gradient flexible plate structure.
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1. Introduction

Flexible plate structures have sparked a lot of interest in en-
gineering fields such as automotive, aviation, and shipping,
as well as material handling at airport luggage, industrial
businesses, and supermarkets. Many flexible structures
in real-world applications are formed at various orienta-
tions for instance the aircraft wall [1], car frame and en-
gine elements [2], the conveyor system in food industries
[3], and ship body [4]. This is in line with the industrial
trend of reducing the weight of mechanical structures to
improve system performance while lowering production
costs. However, despite the merits of the flexible structure
such as its lightweight, low cost, quick reaction, and safer
operation, the flexible plate structure is vulnerable to vi-
brational disturbances [5]. The unwanted vibration leads

the plate structural fatigue and durability which affecting
the plate stability and performances which subsequently
endanger to working environment [6, 7]. Therefore, un-
wanted vibration must be reduced in order for the plate’s
performance to be maintained.

Active vibration control (AVC) is a method of suppress-
ing undesired vibration by interfering with the principal
disturbance source [8]. To create a successful active vibra-
tion control scheme, the system modeling must be realistic
enough to replicate the actual dynamic characteristics of
the structure [8]. Thus, to implement AVC, determining
the accurate and appropriate dynamic model of the flexible
plate is crucial. This is a daunting challenge to researchers
and engineers attempting to dampen unwanted vibrations
so that the flexible structure can be utilized effectively.

Newton-Euler and Euler-Lagrange Formulation are

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.6180/jase.202309_26(9).0001


1206 M.H. Hassan

widely used to derive the mathematical model. How-
ever, System Identification (SI) is another alternative to
determine the dynamic model of the system. SI has been
used intensively in flexible structures applications such as
flexible plate modeling [9], flexible beam modeling [10],
and flexible link arm manipulators [11]. Formerly, con-
ventional parametric estimations have been utilized for
modeling the flexible plate structure such as recursive least
squares (RLS) [12]. The growth of evolutionary algorithms
(EA) in optimization efforts, particularly engineering, has
opened up a new research field. The research derived
from these efforts is known as intelligent parametric ap-
proaches. Researchers model the system by using many
different types of evolutionary algorithms such as particle
swarm optimization (PSO) [13], artificial bee colony (ABC)
[14hadi2018modeling], cuckoo search algorithm (CS) [14],
chaotic fractal search algorithm (CFS) [15] and prony al-
gorithm [16]. The simplicity of the parametric modeling
approach makes most researchers consider it.

Grey Wolf Optimization (GWO) is another evolutionary
algorithm that has recently gained popularity in optimiza-
tion research but has not been applied in estimating flexible
plate structure. Due to its exploration and exploitation of
the prey structure, which is effective for solving optimiza-
tion problems [17], it is anticipated that it would be able
to perform better for estimating the dynamic modeling of
flexible plate structures. These exploration and exploitation
processes in the algorithm can prevent the local minima
trap suited for large, complex problem search areas like
flexible plate structure [18]. Compared to GWO, PSO was
widely used in flexible plate structure research because it
requires less computational effort. However, it has prema-
ture convergence, poor global search ability, and to the ease
with which particles fall into the local optimum. This which
could result in the failure of the prediction of dynamic mod-
eling parameters obtainment. Thus, GWO demonstrated
superior global search capabilities that can sort particles
during evolution to find those with the highest fitness value.
Likewise, the GWO algorithm has a simple and straightfor-
ward procedure and does not require prior knowledge of
the problem space [19, 20].

Based on prior research, the optimization effort employ-
ing evolutionary algorithms has been demonstrated to be
reliable based on the findings in the literature. Despite the
fact that various structures in real application are devel-
oped at varied angles and are not confined to horizontal
and vertical positions, there has been limited research on
the plate structure in a tilted orientation. Besides, the ad-
vantages demonstrated by GWO over PSO serve as the
basis for investigating its capability. Therefore, the study is

aimed to model the flexible plate structure with gradient
of 30° utilizing SI approach based on GWO algorithm. The
attained model will be validated based on input/output
mapping, mean squared error (MSE), correlation test and
pole-zero stability diagram.

2. Experimental setup

The vibration of a plate can be excited and detected with a
suitable experimental setup. In this study, a flexible plate
of dimensions of 50 cm × 50 cm × 0.15 cm with a gradient
of 30◦ was investigated. Fig. 1 represents the experimental
setup that was constructed for this study.

Fig. 1. Experimental rig setup for gradient plate structure
with data acquisition system.

The experimental setup was conducted to obtain the
input-output vibration data set of gradient flexible plate
structure using the National Instruments (NI) data acquisi-
tion system. A magnetic shaker was connected to the func-
tion generator through a power amplifier which generate a
sinusoidal actuation force to excite the experimental gradi-
ent plate rig. Two pieces of piezo-beam type accelerometer
were attached at observation and detection point respec-
tively to acquire the acceleration signal that represents the
vibration of the gradient plate structure. The piezo-beam
type accelerometers were connected to NI data acquisition
system which was mounted on NI Compact-Data Acquisi-
tion (DAQ) which was connected to a personal computer.
A personal computer equipped with a 10th Generation
Intel® CoreTM i3-10105 Processor, 16GB RAM, and MAT-
LAB R2018a software were used to analyze the required
signal obtained from the experiment. Fig. 2 depicts the pro-
cess flow of system integration on the gradient plate struc-
ture. The magnetic shaker that was connected to amplifier
and function generator would initiate vibration on the flex-
ible plate. Then, the vibration data would be captured by
accelerometer and send to computer through DAQ.
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Fig. 2. The layout of experimental setup (blue arrow
indicate the process flow of the system integration on

gradient flexible plate experimental rig).

3. Grey wolf optimization

GWO is categorized as a stochastic and population-based
swarm intelligence algorithm. Grey wolves live in a pack
that consists of alpha, beta, delta, and omega. Alpha is
the leader that holds the responsibility of decision making.
Beta acts as an advisor to the alpha and also acts second in
command. Delta plays various roles in scouting, protecting,
and caretaking the wolf’s pack. Lastly, omega only acts as
the followers of the alpha, beta, and delta. In the optimiza-
tion process, the location of search agents was updated
based on the Eqs. (1) and (2) [17]:

D⃗ = |C⃗.
−→
Xp(t)− X⃗(t)| (1)

X⃗(t − 1) =
−→
Xp(t)− A⃗.D⃗ (2)

Where t indicates the current iteration, both A⃗ and C⃗ are
coefficient vectors,

−→
Xp is the vector position of the prey and

X⃗ as the vector position of the wolf. The coefficient vectors
A⃗ and C⃗ can be expressed by Eqs. (3) and (4) [17]:

D⃗ = 2⃗a.−→r1 − a⃗ (3)

C⃗ = 2.−→r2 (4)

Where the r⃗1 and r⃗2 are random vectors located in problem
space [0,1] while a⃗ linearly decreased from 2 to 0 over the
iteration course. In the GWO algorithm, the position of al-
pha, beta, and delta are always assumed to be an optimum
position which is recorded as the best individual, second-
best individual, and third-best individual, respectively. The
position of omega was relocated according to the location
of alpha, beta, and delta. The Eq. (5) was proposed to
update the position of the omega.

D⃗α = |C⃗1.X⃗α − X⃗|, D⃗δ = |C⃗ε.X⃗δ − X⃗| [17] (5)

Where X⃗α, β⃗, and X⃗δ were the position vector of alpha, beta,
and delta respectively. C⃗1, C⃗2, and C⃗3 were randomly gen-
erated vectors and X⃗ was the position vector of the current
individual. The equation in Eq. (5) was calculated as the dis-
tances between the position of the current individual and
that individual alpha, beta, and delta, respectively. There-
fore, the final position vectors of the current individual can
be expressed by Eqs. (6) and (7) [17]:

X⃗1 = X⃗α − A⃗1.(D⃗α),

X⃗2 = X⃗β − A⃗2.(D⃗β),

X⃗3 = X⃗δ − A⃗3.(D⃗δ)

(6)

X⃗(t + 1) =
X⃗1 + X⃗2 + X⃗3

3
(7)

Where, A⃗1, A⃗2, and A⃗3 were randomly generated vectors
and t represents the number of iterations. Fig. 3 depicts the
behavior of the GWO algorithm to visualize the algorithm’s
movement.

Fig. 3. Schematic diagram of GWO algorithm [21].

4. System identification

SI is a technique developing an optimum model that repre-
sents the dynamic system of the structure based on the ex-
perimental data acquired. In simple terms, this method de-
velops the approximate model of the real system by using
the experimental input-output data from the real system.
SI consist of four main steps that is data acquisition, model
structure selection, parametric estimation and model vali-
dation. Data acquisition which involved the experimental
input-output data collection was explained in experimental
setup section. The next three steps were explained in the
following section.
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4.1. Model Structure

A range of model structures is available to assist in mod-
eling a system. The choice of a model structure depends
on insight and understanding of the system undergoing
identification and understanding of the SI method. Autore-
gressive Moving Average with Extra Input (ARMAX) pro-
vides higher accuracy with less model order as compared
to autoregressive with exogenous input (ARX) because the
model includes disturbance dynamics. ARMAX models
are useful when dominating disturbances appear early in
the process, such as at the input. Mathematically the model
is given by Eq. (8) [22]:

y(t) =− a1y(t − 1) . . . − any(t − n) + b1u(t − 1) . . .

bnu(t − n) + c1ξ(t − 1) . . . cnξ(t − n) + ξ(t)
(8)

Where y(t) is the output signal and u(t) is the input signal,
respectively while ξ(t) is the zero-mean white noise in
the system. n is the order of the model while a1 . . . an,
b1 . . . bn, and c1 . . . cn were the parameters of the model.
Nevertheless, if the model is acceptable for identifying the
system without the noise term, it can be expressed in the
ARX model. The ARX model structure is the simplest linear
model structure and the most effective estimating approach.
ARX model structure was chosen for this study because
it is simple and noise can be disregarded in the modeling
effort. ARX model structure can be expressed as in Eq. (9)
[22]:

y(t) =− a1y(t − 1) . . . − any(t − n) + b1u(t − 1) . . .

bnu(t − n) + ξ(t)
(9)

4.2. Parametric Estimation

In this work, GWO was used to predict the parametric
model. It began by defining the structure of the model,
then declared the parameters of interest. The process of ob-
taining the parameters would be repeated until the optimal
values were obtained. The process flow was summarized
in the flowchart as shown in Fig. 4.

4.3. Model Validation

The final stage in the SI approach is model validation. Vali-
dation of the produced model is crucial to confirm the best
model that accurately represents a dynamic system of the
gradient flexible plate. For this research, four validation
tests were used: one step ahead prediction (OSA), MSE,
and correlation tests [23]. Pole-zero diagram stability is an
additional test to assess the model’s stability before it can
be utilized for control development. The flowchart for the
validation test and the details of the equation are shown in
Fig. 5.

Fig. 4. Flowchart of GWO algorithm for ARX model
structure optimization.

5. Result and discussions

In this research, the system model was developed using
GWO. The 4000 input-output vibration data obtained from
the experiment were divided equally into two parts in order
to train and test the quality of developed model. Next, the
developed models of the system were validated using MSE,
pole-zero diagram and correlation test. The selection of
the best model is focused on the evaluation results of the
robustness tests which are the lowest MSE, high stability
of the pole-zero diagrams and unbiased for correlation test.
Validation of the model is one of the important processes
to verify the superlative compatible model to personify the
structure of the system.

Table 1 summarizes all the parameters of GWO for the
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Table 1. Parameters of optimum model for GWO modeling.

Parameter Value
Number of search agents 50

Number of iterations 500
Lower and upper boundary -1, 1

Model order 4
MSE for training data 1.3218×10−5

MSE for testing data 8.0496×10−6

Fig. 5. Flowchart of Model Validation.

developed model together with their MSE values. The
optimum model in GWO was determined by varying the
model order, the number of search agents, boundary values,
and iterations. The numerical results of optimum model
order are listed in Table 2. Model order 4 was shown to
be the best model order, with MSEs of 1.3218×10−5 and
8.0496×10−6 for training and testing data, respectively.

Fig. 6 (a)-(b) shows the actual and prediction outputs
of the gradient flexible plate system over time, as well
as the inaccuracy that occurred between the two. From
the results, it showed that there was slight discrepancy
between the actual data and predicted data that is 0.0001%.
The deviation was very small or close to zero. Thus, the
error can be disregarded.

Meanwhile, Fig. 7 shows the estimated outputs in the
frequency domain to further investigate the prediction’s
accuracy. The first three modes of vibration for actual and
estimated outputs were found to have the same values.
Therefore, it was proven that the developed model was able
to imitate the actual output. It can be concluded that the
GWO algorithm was able to predict the output accurately.

Figs. 8 and 9 demonstrate the findings of the investiga-
tions into stability and correlation, respectively. Stability is
essential to ensure that the developed model can be used to
design the controller for the system, specifically for systems
that implement an AVC to suppress the vibration. Based on

the pole-zero diagram, the developed model was proved
to be stable with all the poles (x) of the transfer function
were inside the unit circle.

Correlation test showed the degrees of the relationship
between the two variables. From the results, both auto cor-
relation and cross-correlation tests were found to be within
95% confidence level, confirming the unbiased nature of the
developed model. This indicated that the dynamic model
obtained herein could represent similar flexible gradient
structure with the same setup.

Based on overall model validation, it was demonstrated
that the model derived from the GWO model is suitable
for representing the gradient flexible plate system for con-
troller development. The transfer function of gradient flex-
ible plate system based on GWO modeling was expressed
in Eq. (10);

H(Z)GWO =

0.3562z−1 + 0.1864z−2 + 0.4091z−3 − 0.3334−4

1 − 0.7231z−1 + 0.383−2 − 0.05374z−3 + 0.4484z−4

(10)

6. Conclusions

The parametric modeling technique using GWO for 30◦

gradient flexible plate structure using the SI technique has
been presented. Results have been validated through OSA,
MSE, pole-zero stability, and correlation tests. It was found
that the optimum model to represent the dynamic system
of gradient flexible plate was achieved by model order 4
with the MSE of 8.0496×10−6. Besides, the correlation test
showed the model was unbiased which the graph falls
within the 95% confidence level. It is noted that the devel-
oped model has performed very well in approximating the
system response. The vibration modes of the system have
been detected successfully with the modeling techniques
considered in this investigation. Therefore, the developed
and validated model will be used in subsequent investiga-
tions for the development of vibration control strategies of
gradient flexible plate structures.
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Table 2. Comparison of GWO optimization performance in different number of model order.

Model Order MSE in training data MSE in testing data Stability Correlation Test
2 1.4206×10−5 1.0696×10−5 stable biased
4 1.3218×10−5 8.0496×10−6 stable unbiased
6 1.5621×10−5 6.4077×10−6 stable unbiased
8 4.7609×10−4 4.2140×10−4 unstable biased

10 2.0132×10−4 1.6638×10−4 unstable biased

(a) (b)

Fig. 6. Comparison of Vibration Experimental Output and Estimated Output using GWO for both testing and training data
(a) Actual and prediction outputs of the system in time domain (b) Error between actual and estimated output by GWO

modeling.

Fig. 7. Comparison of Experimental Output and Estimated
Output using GWO in the frequency domain.
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