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In this paper, we utilized a hybrid method for the unsteady flow of the non-Newtonian third-grade fluid that combines the finite
difference with the asymptotic interpolation method. This hybrid method is used to satisfy the semiunbound domain condition of
the fluid flow’s length approaching infinity. The primary issue with this research is how much of the hybrid approach’s error may
be accepted to guarantee that the method is significant. This paper discussed theoretical error analysis for numerical solutions,
including the range and norm of error. The perturbation method’s concept is used to assess the hybrid method’s error. It is
discovered that the hybrid approach’s relative error norm is lower than that of the finite difference method. In terms of the
error standard, the hybrid approach is more consistent. Error analysis is performed to check for the accuracy as well as the
platform for variable mesh size finite difference method in the future research.

1. Introduction

Non-Newtonian fluid flow has always been in the limelight due
to the difficulty of the equation. Physical behaviors and proper-
ties of fluid make researchers believe that there is no equation
with a complete problem variable exist in one equation. Non-
Newtonian fluid problem appears such as in designing body
vest for police [1] and landslides [2]. Differential types, rate type,
and integral type are three types of fluid models in non-
Newtonian fluid [3–5]. The derivatives of the local deformation
tensor with respect to time determine the type of differential.
Materials with limited memory, such as diluted polymeric
solutions, are described using a rate type model. High-
memory materials, such as polymeric melts, are regarded as
integral types. Second, third, and fourth grades are the three
subclasses that make up differential type. The most basic non-
Newtonian fluid subclass, known as second-grade fluid, can
only describe typical stress differences. On the other hand, the
governing equations for third- and fourth-grade fluids are sub-
stantially more complicated, and these fluids can indicate shear

thickening (viscosity increases with higher stress) or thin (vis-
cosity reduces with increased stress).

This present paper focused on differential type of third-
grade fluid. Blood is believed to be a third-grade magnetohy-
drodynamics (MHD) fluid while the arteries are porous [6].
Besides, the applications of non-Newtonian fluid can be seen
in the industrial manufacturing process such as production of
magnetic materials, polymer technology, and metallurgy [7, 8].

The third-grade fluid problem can be seen in Hayat et al.
[9], where the MHD fluid that flows between two porous
plates has been solved using a perturbationmethod to produce
an exact solution. Abelman et al. [10] investigated the third-
grade MHD fluid with rotation of the z-axis and the fluid fill-
ing the porous half-place. The boundary condition (BC) of the
problem included a semi-infinite domain; thus, the BC is con-
verted to a finite domain. The same procedure has been
applied in Hayat and Wang [11] and later is solved numeri-
cally using the MATLAB programming.

The unsteady constants and variables of the accelerated
third-grade MHD are investigated using the homotopy
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analysis method (HAM) [12]. For every fluid problem,
HAM required a different convergence property and only
accurate between finite interval [0, 1] domain as proved by
Van and Robert [13]. Ghani et al. [14] explored an incom-
pressible third-grade MHD fluid in a unidirectional thin film
flow over an oscillating inclined belt embedded in a porous
medium using the ideal homotopy asymptotic method and
the homotopy pertubation method.

Technique of perturbation has been practised to solve
MHD free convection from vertical porous plate with a
diffusion-thermo effect [15]. However, according to Şenol
et al. [16], perturbation methods have a narrow range of
validity and valid for weakly nonlinear problems.

Laplace transform has been used to solve accelerated free
convection rotating flows of second-grade fluid [17]. How-
ever, this analytical method needs more time especially for
large problem system.

Rawi et al. [18] and Gaffar et al. [19] applied Keller-box
method in solving convective boundary layer flow of micropo-
lar Jeffery fluid with prescribed wall temperature and thermal
convection of an incompressible non-Newtonian fluid from a
horizontal circular cylinder. Nevertheless, this method needs
high computational work at each time step [20].

The fluid problem which involved infinite condition can
be found in Rahman et al. [21]. In this research, thermal
radiation and nonuniform heat sources or sinks are taken
into account together with a hybrid nanofluid flow of heat
transmission towards an extending surface. Through simi-
larity transformations, the governing partial differential
equations generated from the Navier-Stokes equations are
transformed into nonlinear ordinary differential equations.
The boundary-value problem solver (bvp4c) in the
MATLAB package is then used to numerically resolve the
model of coupled nonlinear equations.

The FDM is the earliest technique for creating a rectan-
gular grid using space and time coordinates, and it may be
used to gauge how accurate a model is. This approach works
well for solving partial differential equations (PDEs), which
might have variable boundary conditions, be linear or non-
linear, dependant or time-dependent, etc (BCs). The devel-
opment of high-speed computers with vast amounts of
storage has led to the appearance of numerous numerical
solution approaches for PDEs. The FDM is still a useful
method for resolving these issues, nevertheless, due to its
simplicity of usage.

Goud et al. [22] examined for heat radiation in the MHD
flow of a micropolar fluid across a moving vertical porous
plate. The equations are converted to nondimensional, and
the finite difference technique is implemented. In another
study, implicit finite difference method and damped Newton
method were used to solve the problem of the unsteady
third-grade MHD heat transfer with viscous dissipation [23].

In order to estimate an unknown value when a prob-
lem’s sample size approaches infinity, one can utilize the
asymptotic interpolation method (AIM). With enough
parameters, the asymptotic functions used in this method
can accurately reflect a problem’s behavior. The advantage
of AIM is highly accurate approximations are obtained in
only a few iterations [24].

The third grade of fluid flow in rotating frame as shown
in Figure 1 has been addressed by using homotopy analysis
method [25]. After all, there is no exact solution that has
been produced to this fluid problem.

The combination of the FDM and AIM may solve various
models of nonlinear PDEs with an unbounded domain and
produce an accurate result in perspective of the strengths of
both techniques. Thereby, this current work presents a hybrid
finite difference–asymptotic interpolation method to respond
to its infinite boundary condition. This hybrid method has
been applied in Mahadi et al. [26–28]. The advantage of this
hybrid method is the numerical solution obtained will be close
to its exact solution. This hybrid method is suitable for the
problem related to an infinite domain. This present paper
highlights the differential types of third grade which fluid
has a derivative of the tensor with respect to time. The aim
of this paper is to present an error analysis of the hybrid finite
difference and the asymptotic interpolation method.

First, the mathematical formulation is presented. The
nonlinear equation is discretize using the finite difference
method. Later, the nonlinear least square technique is
applied in the asymptotic interpolation method using a spe-
cial function to find the solution when the problem tends to
infinity. Next, an error analysis is conducted. The truncation
error is evaluated in the finite difference system. Besides that,
the modified fluid problem which has an exact solution is
imposed, and the same hybrid algorithm is applied. The
results of the error analysis included an absolute error and
a relative error.

2. Mathematical Formulation

2.1. Governing Equations. An incompressible third-grade
fluid in the space such as in Figure 1, z > 0, is considered.
The plate at z = 0 is moved with a constant acceleration A
in the x-direction for t > 0 and induced in the motion in
the fluid. The fluid and plate are both in the solid body rota-
tion. Initially, they are all at rest. The momentum equations
for such problem of the flow following Aziz et al. [25] are

div V = 0,

ρ
∂V
∂t

+ 2Ω ×V +Ω × Ω × rð Þ
� �

= −∇p + div T,
ð1Þ

where ρ is the density of fluid and V is the velocity of fluid
relative to the rotating frame; meanwhile, ∂V/∂t is rate of
change of V in the frame. Ω is the angular velocity where
it represents the axis of which fluid is rotating. The product
of 2Ω ×V is a Cariolis acceleration. It presents the fluid is
flowing relative to the rotating coordinate system. r is the
radial coordinate with r2 = x2 + y2. Ω × ðΩ × rÞ is centripetal
acceleration (direction of the change in velocity towards the
center), and p is the pressure [12, 25]. T is the extra stress
tensor with

T = −pI + 〠
n

j=1
Sj: ð2Þ
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The tensors Sj are given by

S1 = μA1,
S2 = α1A2 + α2A

2
1,

S3 = β1A3 + β2 A2A1 + A1A2ð Þ + β3 trA2
1

À Á
A1,

ð3Þ

where μ is the coefficient of shear viscosity and α and β are
the material constants [14, 19]. The constitutive equation of
the third-grade fluid is

T = −pI + μ + β3 trA2
1

À ÁÂ Ã
A1 + α1A2 + α2A

2
1 ð4Þ

[9, 23, 25, 29], where A1 and A2 are the kinematic ten-
sors [30] such that

A1 = grad V + grad Vð ÞT =

0 0 ∂u
∂v

0 0 ∂v
∂z

∂u
∂v

∂v
∂z

0

2
66666664

3
77777775
,

A2 =
dA1
dt

+ A1 grad Vð Þ + grad Vð ÞTA1

=

2 ∂u
∂z

� �2
2 ∂u∂v

∂z2

� �
∂2u
∂z∂t

2 ∂u∂v
∂z2

� �
2 ∂v

∂z

� �2 ∂2v
∂z∂t

∂2u
∂z∂t

∂2v
∂z∂t

0

2
66666666664

3
77777777775
:

ð5Þ

From (1),

2Ω ×V = 2Ω ×
i j k

u v 0

�����
����� = 2Ωu − 2Ωv,

Ω × Ω × rð Þ =Ω ×
i j

Ω Ω

x y

��������

��������
= −Ω2x −Ω2y:

ð6Þ

Next, substitute (6) into (1); the equation can be written
in the matrix form

ρ

∂u
∂t

− 2vΩ − xΩ2

∂v
∂t

− 2uΩ − yΩ2

0

2
666664

3
777775 = −

∂p
∂x
∂p
∂y

∂p
∂z

2
66666664

3
77777775
+

∂Txx

∂x
+
∂Txy

∂y
+ ∂Txz

∂z

∂Tyx

∂x
+
∂Tyy

∂y
+
∂Tyz

∂z

∂Tzx

∂x
+
∂Tzy

∂y
+ ∂Tzz

∂z

2
666666664

3
777777775
,

ð7Þ

where Txx, Tyy , and Tzz are normal stress tensor and Txy ,
Txz , Tyx, Tyz , Tzx, and Tzy are shear stress tensors. Substitute
(5) into (4); thus, Equation (7) which represents the third-
grade non-Newtonian fluid in a rotating frame [25] is given
as follows.

∂f
∂τ

+ 2iΩ1 f =
∂2 f
∂η2

+ a
∂3 f
∂η2∂τ

+ 2b 2 ∂2 f
∂η2

 !
∂f
∂η

� �
∂�f
∂η

� �
+ ∂f

∂η

� �2 ∂2�f
∂η2

 !" #
,

ð8Þ

where a = α1/ρðA2/v4Þ1/3 and b = β3/ρðA4/v5Þ1/3. f = u + iv
and �f = u − iv are the complex functions which involve real
and imaginary part of the velocity profile. The boundary
conditions are connected to the constant acceleration:

f η, 0ð Þ = 0,
f 0, τð Þ = τ,

f η, τð Þ⟶ 0, as η⟶∞:

ð9Þ

2.2. Hybrid Finite Difference–Asymptotic Interpolation
Method. The fluid problem in (8) poses a nonlinear equa-
tion, and thus, the forward and central finite differences
are applied to discretize the system with OðΔηÞ and OðΔη2
Þ, respectively. Initially, the problem followed the initial con-
dition as shown in (9). As τ = 2, the forward difference is
applied. Then, (8) is

f n+1i − f ni
Δτ

+ 2iΩ1 f
n
i =

f ni+1 − 2f ni + f ni−1
Δη2

+ a
Δη2Δτ

f n+1i+1 − 2f n+1i + f n+1i−1
À Á

− f ni+1 − 2f ni + f ni−1ð ÞÂ Ã
+ b
Δη4

f ni+1 − 2f ni + f ni−1ð Þ f ni+1 + f ni−1ð Þ �f
n
i+1 + �f

n
i−1

� �

+ b
2Δη4 f ni+1 + f ni−1ð Þ2 �f

n
i+1 − 2�f ni + �f

n
i−1

� �
:

ð10Þ

At the period from τ > 2 until τ = τmax − 1, the central
finite difference is applied, and the equation is shown as

y

z

x

z ≥ 0

𝛺

Figure 1: Graphical representation of fluid flow.
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follows:

f n+1i − f ni
Δτ

+ 2iΩ1 f
n
i =

f ni+1 − 2f ni + f ni−1
Δη2

+ a
Δη2Δτ

f n+1i+1 − 2f n+1i + f n+1i−1
À Á

− f n−1i+1 − 2f n−1i + f n−1i−1
À ÁÂ Ã

+ b
Δη4

f ni+1 − 2f ni + f ni−1ð Þ f ni+1 + f ni−1ð Þ �f
n
i+1 + �f

n
i−1

� �

+ b
2Δη4 f ni+1 + f ni−1ð Þ2 �f

n
i+1 − 2�f ni + �f

n
i−1

� �
:

ð11Þ

The boundary condition at (9) indicated that the
velocity profile tended to be zero while the length tended
to be infinite. The finite difference method has converted
the infinite problem from ½0,∞Þ to finite problem [10,
11]. In the hybrid finite difference–asymptotic interpola-
tion method, the problem is explored with 3 or more dis-
tinct unit lengths such as L = 6,12,18, and the results of
velocity profiles are shown in Tables 1 and 2. Table 1 pre-
sents the real part of fluid’s velocity. Meanwhile, Table 2
presents the imaginary part of fluid’s velocity. The data
illustrates that the velocity for each length are different.

Although the results are converging, the velocity profile
began to slightly show a difference at η ≥ 2. Therefore, an
asymptotic interpolation method is added to the system
using a special function of y = a1 + a2e

−a23L [26–28].
The hybrid approach used the idea of the least square

nonlinear to determine the best fit for each node. Table 3
shows the velocity profile after using the hybrid method.
The results fulfill the condition in (9) where the fluid’s veloc-

ity decreases as length increase. The validation of the hybrid
method can be seen in [28].

2.3. Error Analysis. The theory of perturbation is applied to
evaluate the error of the numerical system. Assumed that
the system has Af ∗ = b + δb with f ∗ = f + δf , where δb and
δf are perturbation of b and f , the truncation error in (8)
is highlighted. When the truncation error is moved to the
right side, the perturbation of b can be described as

δb ≈
u + ivð ÞττΔτ

2 +
u + ivð ÞηηηηΔη2

24 +
u + ivð Þτ

Â Ã
ηηηη

Δη2

24

+
u + ivð Þηη

h i
τττ

Δτ2

6 +
u + ivð Þηη u + ivð Þη u − ivð ÞηηηΔη2

6

+
u + ivð Þη

h i2
u + ivð ÞηηηηΔη2
24 :

ð12Þ

Table 1: Real part of velocity profile at L = 6,12,18.

η L = 6 L = 12 L = 18
0 1 1 1

1 0.3449 0.3449 0.3449

2 0.1163 0.1164 0.1164

3 0.0393 0.03934 0.03934

4 0.0132 0.01337 0.01337

5 0.0040 0.004572 0.004572

6 0 0.001572 0.001572

7 — 0.0005436 0.0005436

8 — 0.000189 0.000189

9 — 0.00006593 0.00006607

10 — 0.00002284 0.00002321

11 — 0.000007159 0.000008194

12 — 0 0.000002905

13 — — 0.000001034

14 — — 0.0000003696

15 — — 0.0000001323

16 — — 0.0000000469

17 — — 0.00000001496

18 — — 0

Table 2: Imaginary part of velocity profile at L = 6,12,18.

η L = 6 L = 12 L = 18
0 0 0 0

1 -0.033190 -0.033190 -0.033190

2 -0.022500 -0.02253 -0.02584

3 -0.011380 -0.01144 -0.01144

4 -0.005033 -0.005175 -0.005175

5 -0.001842 -0.002204 -0.002204

6 0 -0.000904 -0.000904

7 — -0.0003618 -0.0003618

8 — -0.0001423 -0.0001424

9 — -0.00005514 -0.00005531

10 — -0.00002084 -0.00002128

11 — -0.000006963 -0.000008131

12 — 0 -0.000003089

13 — — -0.000001168

14 — — -0.0000004397

15 — — -0.0000001648

16 — — -0.00000006068

17 — — -0.00000001991

18 — — 0

Table 3: Velocity profile via hybrid method.

η Real part, u Imaginary part, v

0 1.0000 0.0000

1 0.3449 -0.0332

2 0.1164 -0.0225

3 0.0393 -0.0114

4 0.0134 -0.0052

5 0.0046 -0.0022

6 0.0010 -0.0009

4 Journal of Applied Mathematics

 4185, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2023/9920157 by N

ational Institutes O
f H

ealth M
alaysia, W

iley O
nline L

ibrary on [12/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



In this paper, error analysis is carried out using two
methods: (1) 6th degree of polynomial curve fit and (2) mod-
ified problem with an exact solution.

Figures 2 and 3 demonstrate the 6th degree of polyno-
mial function for the real part and the imaginary part of
the velocity profile.

Step sizes are chosen to be Δη = 1/4 and Δτ = 1/1000,
where the time step is too small Δτ≪ Δη. Thus, (12) is

reduced by ignoring higher order of Δτ.

δb ≈
u + ivð ÞηηηηΔη2

24 +
u + ivð Þηη u + ivð Þη u − ivð ÞηηηΔη2

6

+
u + ivð Þη

� �2
u + ivð ÞηηηηΔη2
24 :

ð13Þ

1

0.9
y = 0.00028⁎x6 − 0.0064⁎x5 + 0.06⁎x4 − 0.3⁎x3 + 0.84⁎x2 − 1.4⁎x + 1

u

n

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6

Approximate solution
6th degree polynomial

Figure 2: Sixth-degree polynomial fit with real part of velocity profile.

0
×10−4

−0.5 y = 8.2e-007⁎x6 − 1.8e-005⁎x5 + 0.00015⁎x4 − 0.00063⁎x3 + 0.0014⁎x2 − 0.0012⁎x − 7.4e-006

v

n

−1

−1.5

−2

−2.5

−3

−3.5

−4
0 1 2 3 4 5 6

Approximate solution
6th degree polynomial

Figure 3: Sixth-degree polynomial fit with imaginary part of velocity profile.
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Let u1 = uηηηηΔη
2/24, u2 = uηηuηuηηηΔη

2/6, and u3 =
ðuηÞ2uηηηηΔη2/24. The derivatives of the polynomial func-
tion shown in Figure 1 are considered. The condition of
the norm and inequality of ku1 + u2 + u3k ≤ ku1k + ku2k
+ ku3k are satisfied, where ku1 + u2 + u3k = 0:1008 and k
u1k + ku2k + ku3k = 0:3231. Figure 2 shows the 6th-
degree polynomial fit for the imaginary part. The condi-
tion also satisfied where kv1 + v2 + v3k = 0:2755 and kv1k
+ kv2k + kv3k = 0:3159. These numbers confirmed that
the truncation error of the finite difference method is
adequate.

The implicit numerical scheme of the modified third-
grade fluid is carried out with the exact solution shown in
Figure 4 with u = τ/1 + 3η and v = −0:001ητ/eη.

Equation (8) now becomes

∂f
∂τ

+ 2iΩ1 f =
∂2 f
∂η2

+ a
∂3 f

∂η2∂τ

+ 2b 2 ∂2 f
∂η2

 !
∂f
∂η

� �
∂�f
∂η

� �
+ ∂f

∂η

� �2 ∂2�f
∂η2

 !" #
+ g η, τð Þ,

ð14Þ

where

g η, τð Þ = 1
1 + 3η + 2i τ

1 + 3η −
0:001iητ

eτ

� �
−

18τ
1 + 3ηð Þ3

−
0:002iτ

eη
+ 0:001iητ

eη
−

18
1 + 3ηð Þ3 −

0:002i
eη

− 4 −
3τ

1 + 3ηð Þ2 −
0:001iτ

eη
+ 0:001iητ

eη

 !2

Á 18τ
1 + 3ηð Þ3 + 0:002iτ

eη
−
0:001iητ

eη

 !

− 2 −
3τ

1 + 3ηð Þ2 −
0:001iτ

eη
+ 0:001iητ

eη

 !2

Á 18τ
1 + 3ηð Þ3 −

0:002iτ
eη

+ 0:001iητ
eη

 !
:

ð15Þ

Error analysis for finite difference method is performed.
Inequality of ðkδbk/kAk:kAk−1kbkÞ ≤ ðkδxk/kxkÞ ≤ ðkAk:
kAk−1kδbk/kbkÞ is calculated in attempt to discover a rela-
tive change. Equation (13) is highlighted, and the observa-
tion is covered at τ2. This inequality is fulfilled with the
lower bound kδbk/kAk:kAk−1kbk = 0:0001, relative error k
δxk/kxk = 0:0831, and upper bound of kAk:kAk−1kδbk/kbk
= 0:3870. From this exploration, the relative error is notice-
ably small which is at 8.31%. It demonstrated the validity of
the approximate solution by numerical approach of finite
difference method for this modified fluid problem. The fol-
lowing figure portrays the velocity profile after the combina-
tion of the asymptotic interpolation method.

The Newton method concept has been employed in
error analysis for asymptotic interpolation. The least square
nonlinear equation is used to generate three nonlinear equa-
tions from a special function:

〠
3

i=1
yi − a1 − a2e

−a23xi = 0 = F1,

〠
3

i=1
e−a

2
3xi yi − a1 − a2e

−a23xi
� �

= 0 = F2,

〠
3

i=1
yi − a1 − a2e

−a23xi
� �

a3xi a2e
−a23xi

� �
= 0 = F3:

ð16Þ

The results are perturbed as yi + δyi, where δy = δb.
Equation (16) then transformed to

〠
3

i=1
yi + δyi − a∗1 − a∗2 e

−a∗23 xi = 0 = f 1,

〠
3

i=1
e−a

∗2
3 xi yi + δyi − a∗1 − a∗2 e

−a∗23 xi
� �

= 0 = f 2,

〠
3

i=1
yi + δyi − a∗1 − a∗2 e

−a∗23 xi
� �

· a∗3xi a∗2 e
−a∗23 xi

� �
= 0 = f 3,

ð17Þ

where a∗1 , a∗2 , a∗3 are the coefficients at the exact solution and
a1, a2, a3 are the coefficient at the approximate solution. The
small changes of each coefficient are a∗1 = a1 + δa1, a

∗
2 = a2

+ δa2, and a∗3 = a3 + δa3. For the next step, the formulae
below are considered.

F1 a∗ð Þ = 〠
3

i=1
yi − a∗1 − a∗2 e

−a∗23 xi = −〠
3

i=1
δyi = p1,

F2 a∗ð Þ = 〠
3

i=1
e−a

∗2
3 xi yi − a∗1 − a∗2 e

−a∗23 xi
� �

= −〠
3

i=1
e−a

∗2
3 xiδyi = p2,

F3 a∗ð Þ = 〠
3

i=1
yi − a∗1 − a∗2 e

−a∗23 xi
� �

a∗3xi a∗2 e
−a∗23 xi

� �

= −〠
3

i=1
a∗3xi a∗2 e

−a∗23 xi
� �

δyi = p3:

ð18Þ

For pi = 0⟶ f i = Fi, by considering the assumptions
below, let FðaÞ = 0 be an approximate solution; meanwhile,
Fða∗Þ = pða∗Þ is an exact solution, and let a∗ = a + Δa.
Therefore,

F a∗ð Þ − F að Þ = p a∗ð Þ, ð19Þ
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F a∗ð Þ = F a + Δað Þ = F að Þ + ΔaF ′ að Þ +O Δa2
À Á

: ð20Þ

Equation (19) then changed into Δa = ðF ′ðaÞÞ−1pða + Δ
aÞ. By using linearization and by assuming that Δa is very
small, the equation is reduced to ½F ′ðaÞ −K�½Δa1 Δa2 Δa3�T
= R, where K and R are a matrix with coefficient and a vec-
tor without coefficient of Δai. Based on the findings obtained
by Mahadi et al. [26–28], the interest of this error analysis
for asymptotic interpolation is Δa1. The comparison of Δa1
and the error of solution is shown in Table 4. This demon-
strates how closely the two error calculations match up.

The norm of relative error comparison between the
hybrid method and the finite difference method with respect
to the exact solution is shown in Table 5.

The relative error norm of the hybrid method is smaller
than that of the finite difference method. As a result, it is
suggested that one of the numerical methods for improving
performance when handling an infinite domain of boundary
conditions is the hybrid method. The two error analyses
mentioned above real-time error analysis which do not
require the knowledge of exact solution. Thus, these error
analysis can be used for adaptive finite difference method
where the grid size can be adjusted in real time to achieve
user-supplied error tolerance.

3. Results

The third-grade non-Newtonian fluid in a rotating frame is
studied. A novel hybrid method that combines the finite dif-
ference method with asymptotic interpolation is intended to
improve the finite difference results. This method’s objective
is to satisfy the boundary condition. The numerical solution
is approximated using the least square nonlinear approach
for a specific special function. The results are reported in
Tables 1–3.

The real part of fluid velocity is shown in Table 1 for dif-
ferent lengths such as L = 6, L = 12, and L = 18. The number
of data will increase as the lengths increase. The fluid has
zero velocity at L = 6, when η = 6. In comparison to L = 12
and L = 18, the fluid has a low velocity which is not equal

to zero. These data show that the fluid still have velocity even
small as the problem’s length increase. Table 2 displays the
fluid velocity for the imaginary part of the problem as well
as the same explanations. These findings demonstrate that
the exact velocity can be determined after certain length iter-
ations. Table 3 shows the fluid velocity after utilizing the
hybrid technique, which incorporates length iterations and
the relevant special function. These results satisfy the bound-
ary condition in (9) as proved by the fact that at L = 6, the
velocity tends to a low number that is not equal to zero.

The polynomial fit, as illustrated in Figures 2 and 3, for
the real and imaginary parts, respectively, has been used to
conduct error analysis. The polynomial curve fit is employed
to identify the ideal graph for the finite difference process’s
evaluation of the truncation error. Instances where the left
side’s value is lower than the right side satisfy the norm
and inequality requirement.

The modified problem is created, and the error analysis
is performed for the finite difference method and asymptotic
interpolation. The modified problem has the exact solution
given in Figure 4. The results of the hybrid approach are
shown in Figure 5. The relative inaccuracy found is within

Table 4: Comparison of Δa1 and error of solution.

η Δa1 Error of solution

2.0 0.0841 0.0815

2.5 0.0841 0.0868

3.0 0.0840 0.0844

3.5 0.0839 0.0789

4.0 0.0835 0.0727

Table 5: Comparison of norm of relative error.

Velocity profile Finite difference method Hybrid method

u 2.97E-01 3.74E-02

v 2.69E-01 6.67E-03

0

−1

−2

−3

−4
1

0.5

0 0
2

4
6

u v

1

0.8

0.6

0.4

0.2

0
1

0.5

0 0
2

4
6

L L
t t

×10−4

Figure 4: Exact solution.
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the acceptable range. As a result, the finite difference
method’s output is accurate. Next, a1 is the main focus of
the error analysis for asymptotic interpolation. Table 4 dem-
onstrates that the Δa1 error of solution between the exact
and hybrid approaches is relatively small.

The norm of relative errors between the hybrid approach
and the finite difference method is shown in Table 5. It dem-
onstrates that the hybrid method’s norm of relative error is
small for both the real and imaginary parts.

4. Summary and Conclusions

The paper centered on a hybrid technique for responding to
a semi-infinite boundary condition for unsteady flow of a
non-Newtonian third-grade fluid. The present paper exam-
ined the error of the approximate solution to ensure that
the hybrid method is effective in solving the problem. There
are two approaches to error analysis. First, the perturbation
method is applied to the fluid problem. Truncation errors
in finite difference are investigated, as well as the 6th degree
of polynomial functions. Second, the exact solution to a
modified fluid problem is identified. The exact solution, as
well as the results of the finite difference method, the hybrid
finite difference method, and asymptotic interpolation
method, is presented. The findings of this investigation indi-
cate the following:

(i) The hybrid approach has a low relative error norm

(ii) It suggests that for an indefinite problem, the hybrid
method could produce accurate solutions

(iii) These real-time error analysis techniques can be
used to design an adjustable mesh size finite differ-
ence approach with user-supplied error tolerance

The problem of non-Newtonian fluid flow has been
addressed using the hybrid finite difference–asymptotic

interpolation method. This method is useful for complicated
geometry problem in real-time simulation with infinite
domain.
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