Alrefai, Nashat and Ibrahim, Othman and Shehzad, Hafiz Muhammad Faisal and Altigani, Abdelrahman and Abu-ulbeh, Waheeb and Alzaqebah, Malek and Alsmadi, Mutasem K. (2023) An integrated framework based deep learning for cancer classification using microarray datasets. Journal of Ambient Intelligence and Humanized Computing, 14 (3). pp. 2249-2260. ISSN 1868-5137
Full text not available from this repository.
Official URL: http://dx.doi.org/10.1007/s12652-022-04482-9
Abstract
Around the world, cancer is one of the leading reasons of mortality. The importance of earlier detection and prognosis of cancer types is highly significant for patients’ health. In recent research, deep neural networks were trained using gene expression microarray, to classify cancer. Biologists are able to monitor thousands of genes in one experiment using microarray technology. Microarray datasets are considered high-dimensional data, as they are cluttered with irrelevant, redundant, and noisy genes that contribute insignificantly to classification. The most informative genes contributing to cancer classification have been identified using computational intelligence algorithms. In this paper, we propose an integrated framework for cancer classification. This framework is divided into three tasks. Firstly, particle swarm optimization with ensemble learning (PSO-ensemble) reduces the microarray dataset's high dimensionality. Secondly, The Adaptive self-training method (ASTM) is used to solve low-size issues. Finally, a Convolutional Neural Network (CNN) was employed for classification. CNN has the ability to discover the complex non-linear relationships between features and select the most informative. Transfer learning was used sequentially with CNN to integrate the classification procedure because it can reduce the training time and computational complexity. Six microarray datasets are used, namely liver, breast, colon, prostate, central nervous system, and lung. The proposed CNN architecture with transfer learning provided 100% classification accuracy for colon, prostate, CNS and lung microarray datasets, and 97.62%, 95.45% accuracy for liver and breast cancer respectively. Experiments show that our proposed method delivers the highest classification accuracy and reduces training time with the smallest gene subset.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Cancer classification; Convolutional Neural Network; Deep learning; Ensemble learning; Transfer learning. |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | Science |
ID Code: | 106234 |
Deposited By: | Muhamad Idham Sulong |
Deposited On: | 20 Jun 2024 02:14 |
Last Modified: | 20 Jun 2024 02:14 |
Repository Staff Only: item control page