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ABSTRACT 

The objective of this study is to investigate the effects of mixed convection flow dispersed with a hybrid nanofluid over a permeable 
shrinking surface past a stagnation-point region considering the influence of second-order velocity slip and variable viscosity on the 
flow behaviour. For the hybrid nanofluid, water (H2O) is chosen to be the base fluid, while silver (Ag) decorated copper oxide (CuO) 
nanoparticles are employed as the hybrid component. To achieve the mathematical model, a suitable method of similarity 
transformation is applied to convert the partial differential equations (PDEs) model into a system of non-linear ordinary differential 
equations (ODEs). The shooting technique method and bvp4c solver in MAPLE and MATLAB are employed to obtain the analytical 
solutions of the mathematical model. The obtained results, including the impacts of variable viscosity, second-order velocity slip, 
mixed convection parameter, suction, shrinking parameter, and nanofluid volume fraction, are presented through tables and 
figures. The study reveals the existence of dual solutions (upper and lower branches) prior to shrinking sheet 𝜆 < 0. Furthermore, 
the thermal distribution exhibits mixed behaviours with respect to the variable viscosity number and second-order slip parameter, 
while demonstrating an increase with the presence of Ag-𝜙1. The velocity distribution experiences an enhancement with both 𝜙1 
concentration and variable viscosity number. Stability analysis is then employed and shows that the first branch is stable, whereas 
the second branch exhibits an opposite outcome.  

 

Keywords:  
Hybrid nanofluid; mixed convection; 
second-order velocity slip; variable 
viscosity; dual solutions; stability analysis  

Received: 11 Feb. 2023 Revised: 20 Apr. 2023 Accepted: 15 May 2023 Published:  25 May 2023 

 
1. Introduction 
 

In modern times, there is a growing interest in exploring various methods to enhance heat 
transfer efficiency, including modifying boundary conditions, flow geometry, or the thermal 
conductivity of the fluid. However, one significant challenge is that larger suspended particles may 
lead to issues such as erosion and clogging in microchannels. To overcome these limitations, 
researchers have turned to smaller-sized particles, known as nanoparticles, as seen in the case of 
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nanofluids. Nanofluids are specifically designed to improve the thermal conductivity of base fluids 
like water, ethylene glycol, and kerosene, among others. In the realm of nanofluids, a wide range of 
nanoparticles, including copper, oxides, carbides, nitrites, and other chemically stable materials, have 
been generated. These materials exhibit unique chemical and physical properties when reduced to 
nanometer-size. One of the features of nanofluids is their smooth flow through microchannels 
without clogging, resembling the behaviour of liquid molecules. A seminal study by Choi and Eastman 
[1] demonstrated that incorporating a small quantity of nanoparticles into a fluid system can 
effectively double its thermal conductivity performance. This characteristic then has garnered 
significant attention and research efforts in the field of heat transfer studies. 

Further, the combination of two nanoparticles or known as hybrid nanofluid has garnered 
significant attention from researchers due to its profound impact in various industries. This 
innovative approach holds immense potential for applications in automobile or aircraft engines 
coolants, microfluidics systems and lab-on-a-chip devices, fabricate nanocomposite materials, 
medical lubrication, and solar heating. The main motivation behind this combination is to overcome 
the individual weaknesses exhibited by each nanoparticle, such as alumina (Al2O3) boasts excellent 
chemical inertness and stability but has a relatively lower thermal conductivity (k = 40). On the other 
hand, metallic nanoparticles such as silver (Ag) and graphene exhibit significantly higher thermal 
conductivities (Ag with k = 429, graphene with k = 3000). By combining Ag and Al2O3, for instance, 
the limitations of Al2O3 can be offset and leading to improved performance. A carefully designed 
composition of two nanoparticles can balance out vulnerabilities and enhance each other’s positive 
properties. This approach not only enhances physical properties, but also helps minimize production 
costs. Suresh et al., [2] elaborated on the hybrid Cu- Al2O3/water nanofluid and its thermophysical 
properties using a two-step method, presenting a new concept in nanomaterial design that positively 
impacted mechanical and thermal properties. Devi and Devi [3] explored the effect of suction in Cu- 
Al2O3/water flow over a stretching sheet with hydromagnetic effects. A study of nonlinear radiation 
and variable thermal conductivity on a permeable surface of hybrid Cu-Al2O3/water nanofluid was 
intensively examined by Usman et al., [4]. Afridi et al., [5] then studied entropy generation and 
thermal dissipation over a curved surface with hybrid nanofluid flow, while Yahaya et al., [6] 
performed a study of - hybrid nanofluid flow past a permeable stretching and shrinking sheets. Bakar 
et al., [7] reported a higher percentage of hybrid nanofluid performance on the heat transfer rate at 
36.73% compared to the percentage of mono-nanofluid at 27.35%, indicating the rate increment at 
9.38%. Their study also revealed the increasing numbers of nanoparticles volume fraction is showed 
to enhance both solutions of the boundary layer flow as shrinking parameter is possessed to execute 
dual solutions in their study. Recent studies on hybrid nanofluid flow also have been extensively 
analysed by Abbas et al., [8], Gul et al., [9], Hussain et al., [10], Muhammad et al., [11] and Rashidi et 
al., [12]. 

Mixed convection is a significant mechanism in heat transfer, drawing interest in various 
technological, industrial, and natural applications. It involves the combined effects of natural and 
forced convections, making it a general case when a flow is influenced by both inner volumetric forces 
and an outer forcing system. In the context of previous studies, Hussain et al., [13] explored that 
Richardson number improves the mixed convection modes as well as the entropy generation tools 
and heat transfer rate. Jarray et al., [14] studied the mixed convection of hybrid Ag-MgO-water 
nanofluid flow in a porous horizontal channel and it is occurred that the size and intensities of mixed 
convection roll-cells increase by Darcy number and decline by nanoparticle volume fractions. Rostami 
et al., [15] explained that the opposing flow of silicon dioxide (SiO2) and aluminium oxide (Al2O3) 
reduced the velocity and thermal boundary layer thicknesses compared to forced convection and 
opposing flow of hybrid nanofluid, while a report of mixed convection flow of hybrid nanofluid near 
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the stagnation point over a curved surface by Khan et al., [16] captivated the nanoparticle volume 
fraction of SiO2-Al2O3 improves the skin friction coefficient and Nusselt number rapidly. In a study by 
Zainal et al., [17], they identified that the mixed convection parameter 𝜆 possessed dual solutions. 
The boundary layer separation occurred in the opposing flow regime, and the nanoparticle volume 
fraction increased the velocity distribution simultaneously. Several other researchers have also 
explored mixed convection flow with hybrid nanofluids, including Elsaid and Abdel-Wahed [18], 
Khashi’ie et al., [19], Patil and Kurkani [20], Rosca et al., [21], Gohar et al., [22], Xia et al., [23], among 
others.  

Fluid dynamics encompasses the study of velocity slip, which occurs in the vertical flow of two-
phase mixtures when there is a difference in velocities between solids and liquids due to slip at the 
interface. Slip factor in boundary condition is considered significance as it employed in modern 
technologies and machineries, such as the conventional slip factor model for impeller discharge, 
where impeller is a rotor used to increase the pressure and flow of a fluid. The degree of slip at the 
boundary conditions is influenced by various interfacial parameters, including liquid densities, liquid-
solid coupling strength, and thermal interface roughness, as stated by Zhu et al., [24]. Later, the 
concept of second-order velocity slip arises from the breakdown of Navier’s slip condition under 
higher shear rates, leading to a rapid increase in slip length. While the slip condition at the boundary 
worked well at a sufficiently low shear rates, second-order velocity slip is found to be crucial in fluid 
flow. Zhu et al., [25] discovered that the first-order velocity slip reduces the boundary layer thickness, 
while the second-order velocity slip acts in the opposite direction. Rosca et al., [26] investigated 
mixed convection stagnation point flow past a vertical plate. Their results confirmed a decrement in 
the skin friction coefficient with both first and second-order velocity slips until a certain value of the 
mixed convection parameter was reached. Yan et al., [27] later confirmed that the higher number of 
velocity slip factor attributed in the decrement of skin friction coefficient. The thermal slip factor, 
however, does not affect the separation of boundary layer. Further, Tulu and Ibrahim [28] stated in 
their study of natural convection flow with hybrid nanofluid, second-order velocity slip and variable 
viscosity over a stretching surface that the second-order slip condition played a physical occurrence 
in the fluid flow where the thermal boundary layer grows, while the momentum boundary layer 
lessens. In this recent year, other studies in hybrid nanofluid flow with second-order slip condition 
are made accessible such as by Waini et al., [30], Gul et al., [30], Abu Bakar et al., [31], Botmart et al., 
[32], Lone et al., [33], Asghar et al. [34], to name a few.  

 
2. Mathematical Modelling 
2.1 Properties of Fluids and Nanofluids 

 
This current study utilizes Ag-CuO/water as the hybrid nanofluid form. The study explores a range 

of nanoparticle volume fractions 𝜙, with the volume of Ag (𝜙1) varying between 1% ≤ 𝜙1 ≤ 4% and 
CuO’s (𝜙2) volume fraction is between 1% ≤ 𝜙2 ≤ 5%. The volume fraction for the hybrid nanofluid 
follows the formulation presented in the work of Xie et al., [35] 

 

𝜙ℎ𝑛𝑓 = 𝜙1 + 𝜙2 =
𝑉𝐴𝑔+𝑉𝐶𝑢𝑂

𝑉𝐴𝑔−𝐶𝑢𝑂
.                   

 
To frame the thermophysical properties, we followed the one suggested by Takabi and Salehi [36] 

and Ghalambaz et al., [37] as listed in Table 1, while Table 2 presented the values of nanoparticles 
properties. Here, the thermophysical characteristics of the fluid is represented at 25ºC and the 
viscosity coefficient of the fluid 𝜇𝑓, is constituted to vary as an inverse function of temperature, which 

is given by Reynolds exponential viscosity model as 𝜇𝑓 = 𝜇0𝑒−𝐵1𝜃(𝜂), see Manjunatha et al., [38] and 
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Venkateswarlu and Satya Narayana [39], where 𝐵1 is the coefficient of variable viscosity. The 
definition of 𝜌, k, 𝛽and 𝐶𝑝 are density, thermal conductivity, thermal expansion and heat capacitance, 

respectively, where the subscript of f, nf and hnf represent fluid, nanofluid and hybrid nanofluid, 
accordingly. 

 
Table 1  
Correlation properties of hybrid nanofluid, see Abu Bakar et al., [31], Takabi and Salehi [36] and Ghalambaz et 
al., [37] 

Properties Hybrid nanofluid correlations 

Viscosity 𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1 − 𝜙1)2.5(1 − 𝜙2)2.5
 

Heat capacity  (𝜌𝐶𝑝)
ℎ𝑛𝑓

= (1 − 𝜙2) [(1 − 𝜙1)(𝜌𝐶𝑝)
𝑓

+ 𝜙1(𝜌𝐶𝑝)
1

] + 𝜙2(𝜌𝐶𝑝)
2
 

Thermal expansion 
coefficient 

(𝜌𝛽)ℎ𝑛𝑓 = (1 − 𝜙2)[(1 − 𝜙1)(𝜌𝛽)𝑓 + 𝜙1(𝜌𝛽)1] + 𝜙2(𝜌𝛽)2 

Density  𝜌ℎ𝑛𝑓 = (1 − 𝜙2)[(1 − 𝜙1)𝜌𝑓 + 𝜙1𝜌1] + 𝜙2𝜌2 

Thermal conductivity 𝑘ℎ𝑛𝑓

𝑘𝑛𝑓
=

𝑘2+2𝑘𝑛𝑓−2𝜙2(𝑘𝑛𝑓−𝑘2)

𝑘2+2𝑘𝑛𝑓+𝜙2(𝑘𝑛𝑓−𝑘2)
     where 

𝑘𝑛𝑓

𝑘𝑓

=
𝑘1 + 2𝑘𝑛𝑓 − 2𝜙1(𝑘𝑓 − 𝑘1)

𝑘1 + 2𝑘𝑓 + 𝜙1(𝑘𝑓 − 𝑘1)
 

 
Table 2  

Thermophysical properties for selected nanoparticles  
Physical 
Properties 

Density, 𝜌 (kg/m3) Specific heat, 𝐶𝑝 (J/kgK) Thermal conductivity, k (W/mK) 

Water  997.1  4179 0.613 

Ag 10500  235 429 

CuO  6320  531.8 76.5 

Cu  8933  385  401 

 
 

2.2 Formulation of Mathematical Modelling 
 

In this study, we consider the two-dimensional stagnation point flow of a hybrid nanofluid with 
mixed convection flow, second-order velocity slip and variable viscosity past a permeable shrinking 
surface, as employed in Figure 1. To frame the configuration coordinate, the x-axis extends along the 
sheet surface while y-axis is measured to the normal surface. We also assume that the nanoparticle 
shape is in spherical form and the nanoparticle size is uniform. The surface velocity is modulated by 
the expression 𝑈𝑤(𝑥) = 𝑐𝑥, where c represents the plate velocity coefficient. Notably, c distinguishes 
between a shrinking plate at 𝑐 < 0, and a stretching plate at 𝑐 > 0. The dispersion of nanoparticles 
within the base fluid is presumed to attain thermal equilibrium, where the temperature of the fluid 
beneath the sheet is denoted as 𝑇𝑤, while 𝑇∞ represents ambient temperature. It is assumed that 
the hybrid nanofluid exhibit stability as a composite, thereby rendering any concerns regarding 
agglomeration inconsequential. Further, the desired governing equations can be written as follows 
 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                   (1) 

 

𝜌ℎ𝑛𝑓 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = 𝜇ℎ𝑛𝑓𝑇

𝜕2𝑢

𝜕𝑦2 + (𝜌𝛽)ℎ𝑛𝑓(𝑇 − 𝑇𝑤)𝑔 + 𝑈∞
𝜕𝑈∞

𝜕𝑥
𝜌ℎ𝑛𝑓 ,                                                 (2) 
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Fig. 1. Visual representation of shrinking and stretching sheets with hybrid nanofluid 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘ℎ𝑛𝑓

(𝜌𝐶𝑝)
ℎ𝑛𝑓

𝜕2𝑇

𝜕𝑦2 +
𝜇ℎ𝑛𝑓

(𝜌𝐶𝑝)
ℎ𝑛𝑓

𝑇 (
𝜕𝑢

𝜕𝑦
)

2

,                    (3) 

 
subjected to the boundary conditions at 
 
𝑢 = 𝑈𝑤(𝑥) = 𝑐𝑥 + 𝑢𝑠𝑙𝑖𝑝, 𝑣 = 𝑣𝑤, 𝑇 = 𝑇𝑤 at 𝑦 → 0 

𝑢 → 0, 𝑇 → 𝑇∞ as 𝑦 → ∞                                                                             (4) 
 

From Eq. (1)-(4), u and v are the velocities of x- and y-axis direction, T is temperature, g is gravity, 
𝑈∞ = 𝑏𝑥 is the velocity of the inviscid from the plate where b is positive constant and 𝑢𝑠𝑙𝑖𝑝 is slip 

velocity as proposed by Wu [40] and Acharya et al., [41] which is defined by 
 

𝑢𝑠𝑙𝑖𝑝 = (
2

3

3−𝛼1𝑚3

𝛼1
−

1−𝑚2

𝐾𝑛
) 𝜔

𝜕𝑢

𝜕𝑦
− (

𝑚4

4
+

1−𝑚2

2𝐾𝑛
2 ) 𝜔2 𝜕2𝑢

𝜕𝑦2
= 𝐴1

𝜕𝑢

𝜕𝑦
+ 𝐴2

𝜕2𝑢

𝜕𝑦2
,            (5) 

 

where  α1 is the coefficient of momentum accommodation, ω is molecule free mean path, Kn =
ω

m
 is 

the local Knudsen number, A1 =
2

3

3−α1m3

α1
−

1−m2

Kn
 is the first-order slip coefficient and A2 =

m4

4
+

1−m2

2Kn
2  is the second-order slip coefficient. Higher-order terms, such as third-order or fourth-order 

velocity slips have not been considered as the primary objective of our study is to assess the accuracy 
and validity of the approximation for these first and second-order slips in the context of our 
respective fluid flow. By excluding higher-order slip terms, we can focus on the fundamental 
contributions of first and second-order slips to better understand their practical implications and 
applicability in real-world scenarios.   
 

To deduce the PDEs in Eq. (1)-(3), the following dimensionless variables are introduced by 
 

𝑢 = 𝑐𝑥 𝑓′(𝜂), 𝑣 = −√𝑐𝜈𝑓𝑓(𝜂), 𝜃 =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝜂 = 𝑦√

𝑐

𝜈𝑓
,.                 (6) 
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where Eq. (1) is satisfied, and Eq. (2) and (3) can simplified to 
 

(1 − 𝐵𝜃)𝐷1𝑓‴ + 𝐷2𝜉𝜃 + 𝑓𝑓″ − (𝑓′)2 + 1 = 0,                   (7) 
 

𝐷3𝜃″ +
(1−𝐵𝜃)

𝐷4
(𝑓″)2 + 𝑃𝑟 𝑓 𝜃′ = 0.                       (8) 

 
The boundary limitation in Eq. (4) can imposed to 
 

𝑓(0) = 𝑆, 𝑓′(0) = 𝜆 + 𝐿1𝑓″(0) + 𝐿2𝑓‴(0), 𝜃′(0) = 0 when 𝜂 = 0 
𝑓′(𝜂) → 1, 𝜃(𝜂) → 0 as 𝜂 → ∞                          (9) 

 
Here, 𝜉 is mixed convection parameter where 𝜉 > 0 represents assisting flow and 𝜉 < 0 denotes 

opposing flow, B is variable viscosity parameter, Pr is Prandtl number, S is suction parameter, 𝜆 is 
stretching/shrinking parameter with 𝜆 < 0 and 𝜆 > 0 are shrinking sheet and stretching sheet, 
respectively. Further, we have first-order velocity slip represented by 𝐿1 while 𝐿2 is second-order 
velocity slip. The description of these parameters, together with 𝐷1, 𝐷2, 𝐷3 and 𝐷4 are described as 
regards 

 

𝐷1 =
𝜇ℎ𝑛𝑓/𝜇𝑓

𝜌ℎ𝑛𝑓/𝜌𝑓
, 𝐷2 =

(𝜌𝛽)ℎ𝑛𝑓/(𝜌𝛽)𝑓

𝜌ℎ𝑛𝑓/𝜌𝑓
, 𝐷3 =

𝑘ℎ𝑛𝑓/𝑘𝑓

(𝜌𝐶𝑝)
ℎ𝑛𝑓

/(𝜌𝐶𝑝)
𝑓

, 𝐷4 = (1 − 𝜙1)2.5(1 − 𝜙2)2.5, 

 𝑆 = −
𝑣𝑤

√𝑐𝜈𝑓
, 𝜉 =

𝐺𝑟𝑥

𝑅𝑒𝑥
, 𝐿1 = 𝐴1√

𝑐

𝜈𝑓
, 𝐿2 = 𝐴2√

𝑐

𝜈𝑓
, 𝑃𝑟 =

𝜈𝑓(𝜌𝐶𝑝)
𝑓

𝑘𝑓
,             (10) 

 
where 𝑅𝑒𝑥 is local Reynolds number and 𝐺𝑟𝑥 is Grashof number, which denoted by 

 

𝑅𝑒𝑥 =
𝑈𝑤(𝑥)𝑥

𝜈𝑓
, Gr𝑥 =

(𝑇𝑤−𝑇∞)𝑔𝛽𝑓𝑥3

𝜈𝑓
2 .                     (11) 

 
The physical quantities of interest refer to the specific parameters or properties that are being 

studied, measure, or analysed in scientific research. Physical quantities of interest that convey the 
essential data for engineers to design apparatus by utilising hybrid nanoparticles are the coefficient 
of skin friction 𝐶𝑓 and Nusselt number 𝑁𝑢𝑥. Following Aly and Pop [42], these quantities are assumed 

to be frame at the lower surface of the plate and can be written in the form of 
 

𝐶𝑓 =
𝜏𝑤

𝜌𝑓𝑈𝑤
2 (𝑥)

, 𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘𝑓(𝑇𝑤−𝑇∞)
,                     (12) 

 

where 𝜏𝑤 = −𝜇ℎ𝑛𝑓
𝜕𝑢

𝜕𝑦
|

𝑦=0
 and 𝑞𝑤 = −𝑘ℎ𝑛𝑓

𝜕𝑇

𝜕𝑦
|

𝑦=0
 are shear stress along the plate and heat flux from 

the plate, accordingly. By employing the similarity variables in Eq. (6), the reduced form of 𝐶𝑓 and 

𝑁𝑢𝑥 can finalised to 
 

𝐶𝑓√𝑅𝑒𝑥 =
1

𝐷4
𝑓″(0), 𝑁𝑢𝑥

1

√𝑅𝑒𝑥
= −𝐷5𝜃′(0),                      (13) 

 

where 𝐷5 =
𝑘ℎ𝑛𝑓

𝑘𝑓
.  



Journal of Advanced Research in Micro and Nano Engineering 

Volume 12, Issue 1 (2023) 1-21 

7 
 

2.3 Procedure of Numerical Approach 
 
The ODEs presented in Eq. (7) and (8) with the corresponding boundary conditions in Eq. (9) are 

numerically solved using the shooting technique in MAPLE software. Shooting technique is a 
numerical approach that transforms a boundary value problem into an initial value problem (IVP). By 
utilizing MAPLE software for the numerical computations, the study can efficiently explore the 
behaviour of the system under different conditions, such as varying nanoparticle volume fractions 
and slip parameters. Bakar et al., [7] and Abu Bakar et al., [43] stated that this transformation involves 
iteratively “shooting” trajectories in different directions until the trajectory that satisfies the 
boundary value problem is obtained. In this process, variables are labelled according to a predefined 
scheme, streamlining the solution process such as 

 

𝑓 = 𝑦1, 𝑓 ′ = 𝑦1
′ = 𝑦2, 𝑓″ = 𝑦2

′ = 𝑦3, 
𝜃 = 𝑦4, 𝜃′ = 𝑦4

′ = 𝑦5. 
 

Hence, the ODEs in Eq. (6) and (7) can formulated into 
 
𝑦1

′ = 𝑦2, 𝑦2
′ = 𝑦3, 

𝑦3
′ =

(𝑦2)2 − 𝑦1𝑦3 − 1 − 𝐷2𝜉𝑦4

𝐷1(1 − 𝐵𝑦4)
 

𝑦4
′ = 𝑦5, 𝑦5

′ =
− 𝑃𝑟 𝑦1 𝑦5

𝐷3
−

(1 − 𝐵𝑦4)(𝑦3)2

𝐷3𝐷4
. 

 
Initially, the values are selective to be guessed when the initial conditions are not given. In 

condition of 𝜂 → ∞ at each parameter, the end of boundary layer region is determined when the 
unknown boundary layer values are fixed with the consecutive iterative step length is less than 10−6. 

 
3. Results and Discussions 
 

Prior to our mathematical models in Eq. (7) and (8), a comparison between current and published 
results by Waini et al., [44] and Bachok et al., [45] has been analysed as presented in Table 3. Here, 
a good consensus is achieved where further outputs can be distinguished, accordingly.  

 
Table 3 

Comparison of skin friction coefficient 𝐶𝑓√𝑅𝑒𝑥 against 𝜆 and Cu-volume 

𝜆 𝜙1 
𝐶𝑓√𝑅𝑒𝑥 

Present outcome Waini et al., [44] Bachok et al., [45] 

 

-0.5 

0.05 1.8855299 1.8855 -  

0.1 2.2865004 2.2865 2.2865 

0.2 3.1825937 3.1825 3.1826 

 

0.0 

0.05 1.5539410 1.5539 - 

0.1 1.8843336 1.8843 1.8843 

0.2 2.6226792 2.6227 2.6226 
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Figure 2(a) and 2(b) illustrated the impact of CuO-nanoparticle 𝜙2 against shrinking parameter 𝜆 

on skin friction coefficient 𝐶𝑓√𝑅𝑒𝑥 and Nusselt number 𝑁𝑢𝑥
1

√𝑅𝑒𝑥
, where a non-unique solution is 

observed within a range of 𝜆𝑐 ≤ 𝜆 < 0. The non-unique solution has led to the bifurcation of the 
solution branches into two distinct paths, commonly referred to as the first and second solutions (or 
first and second branches). When a non-linear system has multiple solutions for a given set of 
boundary conditions, the system’s behaviour can diverge into different trajectories. Each branch 
represents a distinct solution and may possess unique characteristics and behaviours. In this study, 
the solution is pertinent into a peak of 𝜆𝑐, where 𝜆𝑐 is the critical value of a solution. In Figure 2, both 
fluid flow and heat transfer rate are significantly expanded against 1% ≤ 𝜙2 ≤ 5% and this 
increment indicating that the nanoparticle volumetric fraction is pressed in the wall direction when 
the viscosity of the buoyancy forces increases. Further, the effect of second-order velocity slip 𝐿2 on 

skin friction coefficient 𝐶𝑓√𝑅𝑒𝑥 and Nusselt number 𝑁𝑢𝑥
1

√𝑅𝑒𝑥
  are visualised in Figure 3(a) and 3(b), 

accordingly, and it is clearly indicated that both boundary layer thicknesses and thermal 
transmittance rate are improving according to the numbers of 𝐿2.  

 

 
(a) Skin friction coefficient 𝐶𝑓𝑅𝑒𝑥

1/2
 

 

 
(b) Nusselt number 𝑁𝑢𝑥 𝑅𝑒𝑥

−1/2
 

Fig. 2. Impact of CuO-𝜙2 on 𝐶𝑓𝑅𝑒𝑥
1/2

 and 𝑁𝑢𝑥𝑅𝑒𝑥
−1/2
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(a) Skin friction coefficient 𝐶𝑓 𝑅𝑒𝑥

1/2
 

 

 
(b) Nusselt number 𝑁𝑢𝑥𝑅𝑒𝑥

−1/2
 

Fig. 3. Impact of 𝐿2 coefficient on 𝐶𝑓 𝑅𝑒𝑥
1/2

 and 𝑁𝑢𝑥𝑅𝑒𝑥
−1/2

 

 

Dual solutions of the skin friction coefficient 𝐶𝑓𝑅𝑒𝑥
1/2

 and Nusselt number 𝑁𝑢𝑥𝑅𝑒𝑥
−1/2

 with 

respect to the suction parameter S, are prominently highlighted in Figure 4(a) and 4(b). These figures 

depict the behaviour of 𝐶𝑓𝑅𝑒𝑥
1/2

 and 𝑁𝑢𝑥𝑅𝑒𝑥
−1/2

 as the suction parameter varies. Similar to the 

patterns in Figure 2 and 3, an increase in the critical point 𝜆𝑐 with S signifies a significant expansion 
in the boundary layer thicknesses and heat transfer rate. This expansion can be attributed to the loss 
of friction when the boundaries of fluid and solid move in a simultaneous velocity at the fluid-solid 
interface. Additionally, it reflects the combined effects of the shrinking sheet’s strength and the 
suction effect at the surface. 
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(a) Skin friction coefficient 𝐶𝑓𝑅𝑒𝑥

1/2
 

 

 
(b) Nusselt number 𝑁𝑢𝑥𝑅𝑒𝑥

−1/2
 

Fig. 4. Impact of S parameter on 𝐶𝑓𝑅𝑒𝑥
1/2

 and 𝑁𝑢𝑥 𝑅𝑒𝑥
−1/2

 

 
The effect of variable viscosity parameter B on dimensionless velocity and temperature profiles, 

𝑓 ′(𝜂) and 𝜃(𝜂), are visualised in Figure 5(a) and 5(b), respectively. It is conveyed that the boundary 
layer thickness increases. This implies that the temperature difference between the ambient fluid 
and the flow surface is higher before the intensification of B. In the pattern of temperature profiles, 
the second branch of the solution depicts an increment, while the first solution behaves conversely, 
with the thickness of the boundary layer decreasing and increasing simultaneously. Figure 6(a) and 

6(b) then employed the 𝑓 ′(𝜂) and 𝜃(𝜂) against mixed convection parameter 𝜉, where two different 
patterns are observed in the dimensionless velocity profiles as both first and second branches of 
solutions experience an increment in thermal transmittance rate. This phenomenon is attributed to 
a significant temperature gradient, which impacts the buoyancy level and directly influences the fluid 
convection. Initially, buoyancy forces drive the fluid flow by possessing a favourable temperature 
gradient. However, as the temperature rises, both thickness of the boundary layer and temperature 

profile incline. Consequently, there is a decrease in the second branch of 𝑓 ′(𝜂)and an acceleration in 
heating flow in 𝜃(𝜂). Figure 7(a) and 7(b) plotted suction parameter S against velocity and 
temperature profiles where a mixed pattern is observed as in Figure 7(a) while the branches of 
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temperature profiles declined according to S number. Prior to this, a brief description can be made 
that the suction on boundary layer quickens the motion of hybrid nanoparticle and decrease the 
velocity gradient at the surface. The impact of suction is, simultaneously, triggering the buoyancy 
forces which lead to the movement of heated fluid towards the wall and created a delay in velocity 
and temperature gradients, hence occurring most solutions in both profiles to decrease. 

 

  
(a) Velocity profiles 𝑓′(𝜂)         (b) Temperature profiles 𝜃(𝜂) 

Fig. 5. Impact of viscosity parameter B on flow profiles 

 

  
(a) Velocity profiles 𝑓 ′(𝜂)        (b) Temperature profiles 𝜃(𝜂) 

Fig. 6. Impact of mixed convection parameter 𝜉 on flow profiles 
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(a) Velocity profiles 𝑓 ′(𝜂)        (b) Temperature profiles 𝜃(𝜂) 

Fig. 7. Impact of suction parameter S on flow profiles 

 
Figure 8(a) and 8(b) determined the impact of shrinking parameter 𝜆 on the dimensionless 

profiles of velocity 𝑓 ′(𝜂) and temperature 𝜃(𝜂), accordingly. The lowest temperature in the first 
branch is conceived prior to the highest number of 𝜆, while the other solutions in both profiles 
possessed both incline and decline. This can be explained due to the hybridity in the shrinking surface 
boosted the velocity distribution but dragged away the first branch of heat transfer rate.  

 

  
(a) Velocity profiles 𝑓 ′(𝜂)        (b) Temperature profiles 𝜃(𝜂) 

Fig. 8. Impact of shrinking parameter 𝜆 on flow profiles 
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(a) Velocity profiles 𝑓 ′(𝜂)        (b) Temperature profiles 𝜃(𝜂) 

Fig. 9. Impact of Ag-nanoparticle volume fraction 𝜙1 on flow profiles 
 

Further, all solutions in velocity and temperature profiles are showing an enhancement as 
presented in Figure 9(a) and 9(b), respectively, versus the Ag-nanoparticle volume fraction 𝜙1. 
Physically, the development of viscous forces in the nanofluid was triggered by each additional 
number of nanoparticle volume fraction 𝜙. As a result of the resistance engendered between the 
fluid particles, the heat transfer rate in temperature profiles increased while the velocity of the fluid 
particles decreased. Figure 10(a) and 10(b) then emphasized the flow profiles against second-order 
velocity slip 𝐿2, while Figure 11 portrayed the influence of Prandtl number Pr on temperature 
distribution profiles 𝜃(𝜂).  
 

  
(a) Velocity profiles 𝑓′(𝜂)       (b) Temperature profiles 𝜃(𝜂) 

Fig. 10. Impact of second-order velocity slip parameter 𝐿2on flow profiles 
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Fig. 11. Impact of Prandtl number Pr on temperature 
profiles 𝜃(𝜂) 

 

Based on Figure 10(a) and 10(b), most solutions exhibit a decreasing trend before experiencing 
an increase in fluid motion resistance due to 𝐿2. Naturally, velocity and temperature distributions at 
a distance from the wall show a positive tendency. However, as the number of 𝐿2 increases, the fluid 
flow and momentum boundary layer thicknesses are delayed due to the resistance of fluid motion. 
This justifies the decrement behaviour in Figure 10(a) and 10(b). From Figure 11, the 𝜃(𝜂) decreases 
significantly with higher Pr number, as it can reduce thermal diffusivity and weakens heat diffusion 
inside the fluid. Figure 12(a) and 12(b) then present the percentage of heat transmittance rate within 
the mono- and hybrid-nanofluids flow, considering Ag-𝜙1 = 5% and 0% ≤ CuO − 𝜙2 ≤ 5%. It is 
evident that the percentage of heat transfer rate for mono-nanofluid is the lowest compared to the 
hybrid nanofluid. The heat transmittance rate difference in Figure 12(b) shows a gap of 13.89%, 
whereas the heat transfer difference rate between mono- and hybrid-nanofluid in Figure 12(a) 
slightly increases by 1.79%. Therefore, it is worth concluding that each increasing number of Ag-𝜙1  
results in a consistent rate compared to CuO-𝜙2. 
 

 
 

(a) Ag-𝜙1 = 5% and 0% ≤ CuO − 𝜙2 ≤ 5% 
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(a) CuO-𝜙2 = 5% and 0% ≤ Ag − 𝜙1 ≤ 5% 

Fig. 12. Heat transfer rate for mono- and hybrid-nanofluids 

 
 

4. Stability Analysis 
4.1 Mathematical Modelling for Stability Analysis 
 

Stability analysis is conducted to distinguish the realizable physical solution between two 
branches of solutions associated with the shrinking parameter 𝜆. To assess this condition, Weidman 
et al., [46] and Merkin [47] proposed employing Eq. (2)-(4) in an unsteady state while keeping Eq. (1) 
constant. Prior to this, a new dimensionless time variable in the form of 𝜏 is introduced along with 
the similarity variables in Eq. (6) 
 

𝑢 = 𝑐𝑥 𝑓′(𝜂), 𝑣 = −√𝑐𝜈𝑓𝑓(𝜂), 𝜃 =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝜂 = √

𝑐

𝜈𝑓
𝑦, 𝜏 = 𝑐𝑡,                        (14) 

 
where t represents time. In general cases, steady flow occurs when the flow parameters at any point 
in the fluid remain constant over time. However, unsteady flow can occur when the flow parameters, 
such as velocity, pressure, and density, are time-dependent and subjected to time-varying boundary 
conditions, oscillatory motions, or transient disturbances, see Bakar et al., [48]. Thus, with the 
consideration of our unsteady mathematical models and Eq. (14), we have 
 

(1 − 𝐵𝜃)𝐷1
𝜕3𝑓

𝜕𝜂3 + 𝑓
𝜕2𝑓

𝜕𝜂2 − (
𝜕𝑓

𝜕𝜂
)

2

+ 1 + 𝐷2𝜉𝜃 −
𝜕2𝑓

𝜕𝜏𝜕𝜂
= 0,                        (15) 

 

𝐷3
𝜕2𝜃

𝜕𝜂2 + 𝑃𝑟 𝑓
𝜕𝜃

𝜕𝜂
+

(1−𝐵𝜃)

𝐷4
(

𝜕2𝑓

𝜕𝜂2)
2

−
𝜕𝜃

𝜕𝜏
= 0,                             (16) 

 
with the boundary conditions of 
 

𝑓(0, 𝜏) = 𝑆,
𝜕𝑓(0, 𝜏)

𝜕𝜂
= 𝜆 + 𝐿1

𝜕2𝑓

𝜕𝜂2
+ 𝐿2

𝜕3𝑓

𝜕𝜂3
, 𝜃(0, 𝜏) = 1 at 𝜂 = 0, 

𝜕𝑓(𝜏,𝜂)

𝜕𝜂
→ 1, 𝜃(𝜏, 𝜂) → 0 as 𝜂 → ∞.                     (17) 
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The temporal stability analysis is then proposed as, see Weidman et al., [46] and Merkin [47] 
 
𝑓(𝜂, 𝜏) = 𝑓0(𝜂) + 𝑒−𝜀𝜏𝐹(𝜂),  𝜃(𝜂, 𝜏) = 𝜃0(𝜂) + 𝑒−𝜀𝜏𝐺(𝜂).                         (18) 
 

Here 𝑓0 and 𝜃0 are the small relatives of 𝐹(𝜂) and 𝐺(𝜂), accordingly, and 𝜀 denotes the elusive 
eigenvalue parameter, signifying the growth or decay rate of a disturbance. Eigenvalues play a pivotal 
role in discerning the stability of a fixed point within a solution. If a solution’s fixed point is stable and 
subjected to initial disturbances, it will eventually return to its original position and remain there, as 
elaborated by Abu Bakar et al., [49], Bakar et al., [50] and Ismail et al., [51]. The solution of 
eigenvalues provides an infinite set of 𝜀1 < 𝜀2 < 𝜀3 <. .., where the negative or positive numbers of 
𝜀 represent the rate of expansion or deterioration of a disturbance rate. For instance, a positive 
number of 𝜀 indicates a decaying of the disturbance growth, resulting in a stable solution; and vice 
versa.  
 
Further, the following linearized equations are obtained by adopting Eq. (18) into Eq. (15)-(17) such 
as the following 
 
(1 − 𝐵𝐺)𝐷1𝐹‴ − 𝑓0𝐹″ + 𝑓0

″𝐹 − 2𝑓0
′𝐹′ + 𝐷2𝜉𝐺 + 𝜀𝐹′ = 0,                        (19) 

 

𝐷3𝐺″ + 𝑃𝑟(𝑓0𝐺 ′ + 𝜃0
′ 𝐹) + 2 (

1−𝐵𝐺

𝐷4
) 𝑓0

″𝐹″ + 𝜀𝐺 = 0,                          (20) 

 
prior to the boundary conditions at 
 
𝐹(0) = 0, 𝐹′(0) = 𝐿1𝐹″(0) + 𝐿2𝐹‴(0), 𝐺(0) = 0 when 𝜂 = 0 
𝐹′(∞) → 0, 𝐺(∞) → 0 when 𝜂 → ∞.                    (21) 
 
Later, Harris et al., [52] emphasized that the condition of 𝐹′(𝜂) → 0 in Eq. (21) has been set at rest 

and replaced with the condition of 𝐹″(𝜂) = 1 as 𝜂 → ∞. 
 
 
4.2 Smallest Number of Eigenvalue 𝜀 
 

The bvp4c solver in MATLAB software is utilized to compute the smallest eigenvalue 𝜀 as 
described by Eq. (19)-(21). Specifically, bvp4c is a finite different code that employs the three-stage 
Lobatto Illa formula. This collocation formula provides a continuous solution in fourth-order accuracy 
within the uniform integration interval. Before obtaining the continuous polynomial solution, error 
control and selection of mesh number rely on this approach, as emphasized by Kierzenka and 
Shampine [53]. As a result, Table 4 presents a comparison of the smallest eigenvalue 𝜀 for two 
different amounts of hybrid nanoparticles volume fraction between Ag and CuO, while the list of 𝜀 
number series against second-order velocity slip 𝐿2 and mixed convection parameter 𝜉 are presented 
in Table 5 and 6, respectively. A series of positive amounts are observed in all first branch of solution, 
while the second solution is distinguished to be in a series of negative numbers as can be noticed in 
these three tables. Thus, from the definition of eigenvalue 𝜀, a firm conclusion can be drawn as the 
first branch is stable and the second solution is unstable. 
 
 
 



Journal of Advanced Research in Micro and Nano Engineering 

Volume 12, Issue 1 (2023) 1-21 

17 
 

Table 4  
Two amount of hybrid nanoparticles and smallest eigenvalue 𝜀 

 

𝜙1 
 

𝜙2 
 

𝜆 
 

 𝜀 
First branch of solution Second branch of solution 

 
 

5% 

 
1% 

-2.5 1.40713 -1.16439 

-2.6 0.85281 -0.63387 

-2.7 0.44823 -0.21172 

 
 5% 

-2.7 1.70310 -1.42352 

-2.8 1.28013 -0.86708 

-2.9 0.87577 -0.44671 

Consideration of S = 1.5, 𝐿1 = 𝐿2 = 0.1, Pr = 6.2, 𝜉 = 0.5 and B = 2.0. 

 
Table 5 
Second-order velocity slip 𝐿2 and smallest eigenvalue 𝜀 

 

𝐿2        𝜆 
 𝜀 

First branch of solution Second branch of solution 

0.2 
-2.7 1.92483 -1.02923 

-2.8 1.59629 -0.79482 

0.4 
-2.8 2.49721 -1.23740 

-2.9 2.20880 -0.84545 

Consideration of 𝜙1 = 1%, 𝜙2 = 5%, S = 1.5, 𝐿1 = 0.1, Pr = 6.2, 𝜉 = 0.5 and B = 2.0. 

 
Table 6  
Mixed convection parameter 𝜉 and smallest eigenvalue 𝜀 

 

𝜉     𝜆 
 𝜀    

First branch of solution Second branch of solution 

1.5 
-2.88 1.32458 -0.83726 

-2.98 1.13375 -0.63131 

2.5 
-3.05 1.69360 -0.96888 

-3.15 1.55508 -0.89545 

Consideration of 𝜙1 = 1%, 𝜙2 = 5%, S = 1.5, 𝐿1 = 𝐿2 = 0.1, Pr = 6.2 and B = 2.0. 

 
 

5. Conclusions 
 

A steady, two-dimensional flow of hybrid Ag-CuO/H2O nanofluid with the effect of second-order 
velocity slip and variable viscosity on mixed convection flow past a permeable shrinking stagnation-
point region is thoroughly scrutinized in this current work. Two nanoparticles of Ag (silver) and CuO 
(copper oxide) are dispersed in the water to form the condition of hybrid nanofluid. The current 
findings in this study are possessed based on the rendered system of ODEs from a non-linear PDEs 
via similarity transformation method, which then are employed in shooting technique and bvp4c 
solver in Maple and MATLAB software, accordingly. The performing parameters – specifically 
nanoparticle volume fraction 𝜙, shrinking parameter 𝜆, variable viscosity parameter B, suction 
parameter S, second-order velocity slip 𝐿2 and mixed convection parameter 𝜉 are found to 
significantly affected the flow field. The final conclusions that can be drawn from this work are 

i) Two branches of solutions are possessed prior to the shrinking surface 𝜆 < 0.  
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ii) The range of 𝜆𝑐 is significantly expanded as the number of CuO-nanoparticle-𝜙2, suction 
parameter S and second-order velocity slip 𝐿2 increase. 

iii) Velocity profiles distribution is found to be align with Ag-nanoparticle-𝜙1 and variable 
viscosity parameter B, while behaved conversely with second-order velocity slip 𝐿2. Prior 
to the influence of shrinking parameter 𝜆, suction parameter S and mixed convection 
parameter 𝜉, both solutions of velocity profiles performed mixed patterns.  

iv) Temperature profiles distribution showed an increment for both branches of solutions 
against mixed convection parameter 𝜉 and Ag-nanoparticle-𝜙1. In the meantime, mixed 
behaviours are observed for variable viscosity parameter B, second-order velocity slip 𝐿2  
and shrinking parameter 𝜆, while thermal profiles are declining with conjunction of 
suction parameter S and Prandtl number Pr. 

v) Stability analysis is performed on the mathematical model due to dual solutions, and the 
first branch showed the most stable compared to the second branch as time evolved. 

 
In conclusion, this research aims to shed light on the interplay between hybrid nanofluid 

dynamics, second-order velocity slip, and variable viscosity, contributing valuable insights to the field 
of mixed convection studies. The integration of Ag-CuO nanoparticles with H2O offers exciting 
possibilities for various technological and biomedical applications. By presenting numerical outcomes 
and data analysis, it is hope that this research presents the understanding of mixed convection flow 
with hybrid nanofluid in practical engineering and scientific domains.  
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