
Submitted 18 August 2023
Accepted 24 October 2023
Published 19 December 2023

Corresponding authors
Nura Muhammed Yusuf,
ymnura@atbu.edu.ng
Babangida Isyaku,
bangis4u@gmail.com

Academic editor
Rowayda Sadek

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj-cs.1698

© Copyright
2023 Muhammed Yusuf et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Controller placement with critical switch
aware in software-defined network
(CPCSA)
Nura Muhammed Yusuf1,2, Kamalrulnizam Abu Bakar1, Babangida
Isyaku1,3, Abdelzahir Abdelmaboud4 and Wamda Nagmeldin5

1 Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia, Johor,
Johor Bahru, Malaysia

2 Department of Mathematical Science, Faculty of Sciences, Abubakar Tafawa Balewa University,
Bauchi, Nigeria

3 Department of Computer Science, Faculty of Computing and Information Technology,
Sule Lamido University, Kafin Hausa, Jigawa State, Nigeria

4 Department of Information Systems, King Khalid University, Abha, Saudi Arabia
5 Department of Information Systems, College of Computer Engineering and Sciences, Prince

Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia

ABSTRACT
Software-defined networking (SDN) is a networking architecture with improved
efficiency achieved by moving networking decisions from the data plane to provide
them critically at the control plane. In a traditional SDN, typically, a single controller
is used. However, the complexity of modern networks due to their size and high
traffic volume with varied quality of service requirements have introduced high
control message communications overhead on the controller. Similarly, the solution
found using multiple distributed controllers brings forth the ‘controller placement
problem’ (CPP). Incorporating switch roles in the CPP modelling during network
partitioning for controller placement has not been adequately considered by any
existing CPP techniques. This article proposes the controller placement algorithm
with network partition based on critical switch awareness (CPCSA). CPCSA
identifies critical switch in the software defined wide area network (SDWAN) and
then partition the network based on the criticality. Subsequently, a controller is
assigned to each partition to improve control messages communication overhead,
loss, throughput, and flow setup delay. The CPSCSA experimented with real network
topologies obtained from the Internet Topology Zoo. Results show that CPCSA has
achieved an aggregate reduction in the controller’s overhead by 73%, loss by 51%,
and latency by 16% while improving throughput by 16% compared to the benchmark
algorithms.

Subjects Computer Networks and Communications, Emerging Technologies
Keywords SDN, Controller placement, Controller overhead, Switch role, Network partition

INTRODUCTION
Software-defined networking (SDN) is an emerging network paradigm offering simple
network management by separating network control logic and data forwarding elements.
This way, the control plane (CP) is responsible for providing and enforcing network
policies on the switches at the data plane (DP). To achieve this, the controller uses a link
layer discovery protocol (LLDP) to identify the OpenFlow switches connected at the DP

How to cite this article Muhammed Yusuf N, Abu Bakar K, Isyaku B, Abdelmaboud A, Nagmeldin W. 2023. Controller placement with
critical switch aware in software-defined network (CPCSA). PeerJ Comput. Sci. 9:e1698 DOI 10.7717/peerj-cs.1698

mailto:ymnura@%e2%80%9eatbu.%e2%80%9eedu.%e2%80%9eng
mailto:bangis4u@%e2%80%9egmail.%e2%80%9ecom
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1698
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Distributed Control Plane (dmCP)

Centralize Single Control Plane (scCP)

m \
C ontroller 1 C ontroller 2 C ontroller 3if1

Controller

---------- -------------

Data Plane

Data Plane
Multiple Controllers (b)

Single controller (a)

Figure 1 Control plane architecture. Single control plane architecture (A) and multiple controllers (B).

(Yusuf et al., 2023a). It then continuously monitors them for changes due to events like
failures or the arrival of new flows. It collects network statistics concerning traffic arrival
patterns, traffic types, and other changes for various applications like routing, congestion
control, and security to run their algorithm instances (Isyaku & Bakar, 2023). For any state
change at DP, the controller must immediately recalculate updated instructions for the DP
switches, sending them as a packet-out message to all edge switches (for ARP) and a flow-
mod message to all switches along the same path for installation on their flow tables (Yusuf
et al., 2023c). Recently, the controller has been experiencing a substantial increase in
communication overhead due to an exponential growth in new flow arrival rates caused by
the proliferation of Internet of Things (IoT) devices and the expansion of network size
(Firouz et al., 2021). Consequently, the DP may frequently encounter state change events
like link failure (Isyaku et al., 2023), requiring the controller to reconfigure new rules
(Isyaku et al., 2021).

This process has implications for the workload of the controller. For instance, if a flow
traverses an average path length of six switches and the network has 100 edge switches, the
controller is estimated to spend around 6 ms to handle each flow (Zhao et al., 2017a). A
prior study reports that processing these messages adds an overhead and delay of
approximately 0.5 and 0.2 ms, respectively. As a result, the cumulative burden on the
controller amounts to (0.5 * 6 + 0.2 * 100) (Zhao et al., 2017a). Moreover, another study
highlights a direct correlation between the number of switches in a network and the
volume of flow setup requests. According to Curtis et al. (2011), configuring a flow route
for a network with N switches incurs an overall cost of approximately 94 + 144N, with an
additional 88N byte attributed to flow-removed messages. Thus, CP design is critical to the
performance of SDN.

A single controller (csCP) design is widely used for small network sizes. However, it
may fail to give the desired performance due to high control message processing overhead.
It also exhibits reliability concerns due to a single failure point (SPOF), as the failure
tendencies are higher when the network is large. As such researchers leverage multiple
controllers (dmCP), which better performance compared to csCP. Figure 1 illustrates the
differences between the former and the latter. For example, an extensive network may have

Full-size DOI: 10.7717/peerj-cs.1698/fig-1

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 2/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698/fig-1
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

switches that can generate up to 750 to 20,000 flow per second (Isyaku et al., 2021); others
say it might reach up to 10 million flow requests per second (Ahmad & Mir, 2021; Yan
et al., 2021). Unfortunately, this is beyond the capacity of a single controller, as some
controllers can only accommodate 6,000 flow requests per second (Hu et al., 2017). On the
other hand, designing the CP with multiple controllers opens up a controller placement
problem (CPP) challenge. For any given network, the CPP deals with finding and
optimising (i) the number of controllers in the network. (ii) The controllers should be
placed strategically on the network to minimise congestion, overhead, and Latency
between controllers and switches. Heller, Sherwood & Mckeown (2012), who initiated the
concept of (CPP), built their solution while considering the impact of Latency. The
solution performs well for small-scale networks; however, it ignores the effects of
scalability, reliability, and congestion in large networks such as WAN. Assigning
controllers to switches in an extensive network can exhibit an imbalance distribution of
load among the controllers. Therefore, for a software-defined wide area network
(SDWAN), a partitioning algorithm is employed to cluster the network into smaller
subnets for controller placement (Killi & Rao, 2019).

Several CPP solutions employ network partitioning techniques in their approaches. For
example, methods such as Killi, Reddy & Rao (2019), Kuang et al. (2018), Liu, Liu & Xie
(2016), Xiao et al. (2014), Wang et al. (2018), Xiao et al. (2016), Yang et al. (2019a, 2019b)
and Zhu et al. (2017) are designed based on k-means. A K-median is used by Liu et al.
(2018) and Kobo, Abu-Mahfouz & Hancke (2019), while Xiao et al. (2014, 2016), Aoki &
Shinomiya (2015, 2016), Zhao & Wu (2017) used Spectral Clustering. Density-based
Clustering, Affinity Propagation, and Partitioning Around Medoids (PAM) are also used
in Liao et al. (2017), Zhao et al. (2017b), Bannour, Souihi & Mellouk (2017) and Dvir,
Haddad & Zilberman (2018). Others hybridised two techniques in their solution (Yang
et al., 2019a, 2019b; Firouz et al., 2021; Manoharan, 2021). All these techniques share the
common idea of partitioning the SDWAN into smaller sub-domains, allowing for
assigning one or more exclusive controllers to cover each subdomain. The k-means
algorithm is one of the common methodologies used to partition a network topology. It
uses Euclidean distance as its similarity metric during the partition process. However,
computing Euclidean distance in real networks is not always possible due to the lack of
physically connected pathways in some instances. Similarly, the strategy has no generally
agreed-upon way to determine the first k partitions. The method varies in how it initialises
the first set of cluster heads. Hence, the initial cluster head selection significantly affects the
solution quality; thus, it is a significant limitation.

On the other hand, PAM is quite similar to k-means, except that it minimises the impact
of outliers by selecting a node at the cluster’s centre as the head. Although PAM does not
require prior knowledge of k, it has a considerably high complexity to the tune of about
cubic time. Additionally, while these approaches may be suitable for initial controller
placement, repeatedly segmenting the entire network to adapt to its dynamic nature is
unrealistic. At the same time, spectral clustering tends to produce small, isolated
components and clusters of skewed sizes. In addition, all the solutions did not quantify the
controller’s overhead and response time (RT) in their performance validation.

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 3/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

In the rapidly evolving landscape of SDN, the efficient placement of controllers plays a
pivotal role in network performance and reliability. This article addresses this critical
challenge by introducing an innovative approach that optimises controller placement and
considers the impact on critical switches within the network. The existing solution did not
adequately consider the roles of switches in the network. It is important to note that
switches have different roles; some switchers are very critical, and others are non-critical.
The former can have a significant impact on the efficient controller placement solution.
Identifying critical switches is crucial for optimal controller placement during network
partitioning decisions. Critical switches possess a high degree and betweenness criticality
measures that tend to send higher flow rule requests to the controller. As a result, they
often augment the flow setup delay and cause high update operations. This problem results
in additional overhead on the controller if multiple critical switches reside in the same
partition. Therefore, this article proposes the Controller placement algorithm with
network partition based on critical switch awareness (CPCSA) to mitigate these issues.
CPCSA identifies critical switch in the SDWAN and then partition the network based on
the criticality. Subsequently, a controller is assigned to each partition to improve control
messages communication Overhead and other dependent QoS metrics like loss,
throughput, and flow setup delay. We itemized the contributions of this article as follows.

• We devised a network partitioning model based on the switch role in the network to
determine the number of controllers.

• A switch to controller placement strategy was introduced based on switch criticality
factor to improve the control plane’s performance.

• The performance evaluation result of CPCSA using real networks from Internet
Topology Zoo in comparison to other relevant CPP algorithms.

The remainder of the article is structured as follows: ‘Related Works’ related works in
SDN. ‘Materials and Method’ analyses the problem. Next, Section 4 presents the proposed
solution. Then, ‘Results’ describes the experimental setup and performance evaluation.
Lastly, ‘Conclusion’ concludes the study and makes recommendations for future research.

RELATED WORKS
Selecting a suitable position in SDWAN for controller placement is crucial to its
performance (Heller, Sherwood & Mckeown, 2012). Inappropriate controller placement
can increase communication overhead and flow setup delay. Therefore, several CPP
solutions have been proposed (Yusuf et al., 2023b). The CPP solutions presented in Xiao
et al. (2014, 2016), Aoki & Shinomiya (2015, 2016) and Zhao & Wu (2017) utilised spectral
Clustering to partition the wide-area Network into many subnetworks. Some authors infer
the count of subnets by exploiting the concept of eigenvectors, using the Haversine
equation to calculate the similarity graph. Each resulting subnetwork is assigned a
dedicated controller at a location that minimises the control message latency. Researchers
in Zhao & Wu (2017) formulate the CPP as an integer linear programming (ILP) with the
optimisation objective of reducing the network cost. They design a heuristic method to

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 4/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

solve the ILP. However, spectral clustering tends to produce small, isolated components
and clusters of similar sizes. In addition, all the solutions did not quantify the controller
overhead and response time (RT) in the performance validation.

In a different approach to formulating a clustering-based CPP (Zhu, Chai & Chen,
2017), researchers utilise integer programming (IP). They reduce the network’s
transmission time by employing a modified version of k-means with the shortest path as
the similarity metric. In Zhao et al. (2017b), the authors formulate a binary variable model
of the CPP and cluster it using an affinity propagation technique (APT). APT maximised
similarity across short distances and moderated preference control to a mean value. In
another approach, Liao et al. (2017) propose density-based controller placement (DBCP)
to partition a network into various sub-networks. The DBCP grouped tightly connected
switches within the same subnet and less-connected switches in a different subnet. The
value of k and members of each subnet is determined based on the distance to a higher-
density node. Each sub-network is assigned a single controller. In other techniques,
PAM-B clustering and NSGA-II were utilised by Bannour, Souihi & Mellouk (2017) to
solve the Network partitioned-based CPP with the multi-objective problem of optimising
Latency, capacity, and availability. In another approach, using the shortest path as the
similarity metric (Wang et al., 2018, 2016), partitioned a network for CPP using k-means.
Starting with a random centroid, the algorithm iterates continuously until it divides the
network into k clusters. In a similar effort, researchers utilised simulated annealing (SA)
and the k-median algorithm (Liu et al., 2018) to determine the optimal location for a
satellite gateway in a 5G network, aiming to reduce latency. The authors implemented a
clustering strategy to improve connectivity reliability between satellites and controller
nodes. Also, Kuang et al. (2018) confronts the network partitioning problem by employing
the k* -means for a CPP. Initialised the partitioning with more than k clusters and later
merged the nodes into the k clusters recursively based on the shortest path distance and
cluster load. While in a different approach proposed by Killi, Reddy & Rao (2019), for
Network partition-based controller placement to reduce latency, the authors utilise a
k-means algorithm with initialisation based on cooperative game theory. Cooperative
game with a set of switches as players are used to mimicking the division of the Network
into subnetworks. The switches attempt to build alliances with other switches to increase
their value. They also suggest two variations of the cooperative k-means technique to
create size-balanced partitions. However, these approaches did not consider load balance
issues. Dvir, Haddad & Zilberman (2018) formulated the CPP as an IP. The network was
divided into partitions using a k-medoid clustering technique. However, the value of k is
determined via a brute-force approach. In contrast, CPP was tackled using a k-centre/k-
median clustering strategy by Kobo, Abu-Mahfouz & Hancke (2019). The authors
suggested creating a local and global controller hierarchy. When a controller fails, it is
replaced using the re-election procedure. To assess load balancing (Yang et al., 2019a,
2019b) defines two distinct cost functions regarding the network topology structure and
flow traffic distribution. They then hybridise the network partition scheme to tackle the
problem of where to locate the load-balancing controller. Each of the numerous sub­
domains that comprise the overall Network has one dedicated controller. Finally, a

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 5/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

simulated annealing partition-based k-means (SAPKM) to address the placement is
proposed. SAPKM incorporates a centroid-based clustering to achieve load-balancing
among the controllers. The k-means algorithm uses Euclidean distance as its similarity
metric. However, the problem is that it is not always possible to compute the Euclidean
distance in real networks due to the lack of physically connected pathways. Similarly,
k-means has no agreed-upon way to determine the first k partitions. The method varies in
how it initialises the first set of clusters head. Thus, the initial cluster head selection
significantly affects the solution quality in k-means; this is considered a significant
limitation. On the other hand, PAM is quite like k-means, except that it establishes a node
in the cluster’s centre as the head to minimise the effects of the outliers. Although they do
not require prior knowledge of k, they have a significantly higher level of complexity to the
tune of about cubic time. At the same time, spectral clustering tends to produce small,
isolated components and clusters of similar sizes.

Network clustering for CPP using data field theory (DFT) was proposed by Li et al.
(2019). The DFT considers the strength of the wireless nodes’ transmissions and reception
signal power to determine the controller placement inside each cluster to reduce Latency
and energy. While Ali & Roh (2022) and Ali, Lee & Roh (2019) presents an SDN partition
strategy for controller placement in IoT environments to reduce latency using the
analytical network process (ANP). The authors thoughtfully consider multiple latency-
inducing parameters to guide their ranking and selection process with ANP. However, it’s
worth noting that one parameter that wasn’t considered in their analysis is the controller’s
overhead. This omission is significant as it can impact performance and should ideally be
factored into such an optimization strategy.

Another work (Manoharan, 2021) employed a graph theory to identify the number of
controllers and their initial location. A Depth-First-Search algorithm is applied to
determine Articulation Points (AP) based on two conditions. To obtain the required
number of controllers and placement positions, they utilize APs. Additionally, they
discretize a supervised machine learning concept using Manta-Ray Foraging Optimization
(MRFO) and Salp Swarm Algorithm (SSA) to solve CPP based on network partitioning
(Firouz et al., 2021). However, the lack of a standardized and rich dataset for model
training has been a serious concern in any AI-based solution for SDN problems (Isyaku
et al., 2020; Elsayed et al., 2019). However, privacy and confidentiality issues associated
with Networks have made sharing this data difficult and scarce. Additionally, the
approaches may be suitable for acquiring the first controller placement. However, it is
unrealistic to repeatedly segment the entire Network to meet the evolution of dynamic
network changes. Thus, they lack an adaptable CPP that responds to the dynamics of each
given network. Therefore, based on the discussed literature, it can be conclude that all the
solutions have not adequetely consider the switch's role in the Network to identify and
separate a set of critical from non-critical switches. Recognizing the critical switches is
crucial during network partition decisions for optimum controller placement. Such sets of
switches possess high degree and betweenness criticality measures with many rules in their
flow table entries. As a result, they often augment the flow setup delay and cause more
update operations. The problem leads to additional overhead on the controller if multiple

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 6/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

critical switches are in the same partition. See Table 1 for the summary of these
approaches.

MATERIALS AND METHODS
Analysis of controller overhead
SDN controller overhead refers to the computational and resource requirements imposed
on the SDN controller as it manages and controls the network. Although, the controller
operates based on either proactive or reactive mode. The former may have lower overhead
but may not cope with the real network []. The latter is widely used due to its flexibility in
real-time network. However, any newly arrived Flow nFi at switch si 2 S without
corresponding forwarding rule entries in its flow table will introduce an overhead of
composing and sending a Packet_IN message to its controller SProverhead on the switch.
Likewise, on its part, the controller C also suffers the overhead of computing the required
forwarding rule and subsequent installation in the switches si 2 S flow Table via
Packet_OUT message CProverhead. Due to these overheads, the new flow nFi, will experience
a path setup time delay FSetUpSC, while waiting to be directed by a controller C. The flow/
path setup delay emanates from five sources (i) a queue waiting time wtS at the switch Si
before being served for duration stS, (ii) a switch si to controller C Packet_IN message
propagation time Pin(si, C) (iii) a queue waiting time wtC at controller C before being
served for (iv) a duration stC and (v) controller C to switch S Packet_OUT message
propagation time Pout(C, Si). Therefore, cumulatively, the flow setup time delay is
determined by.

FSetUp — wtS + stS + Pin(Si, C) + wtC + stC + Pout(C, Si) (1)

Equation (1) above fundamentally comprised the switch Si processing overhead, the
controller C processing overhead, and the round-trip time between switch Si, and the
controller C, given by Eqs. (2)- (4), respectively.

SiProverhead — wtS ^ stS (2)
CProverhead — wtC ^ stC (3)
RTT = Pin (S, C) + Pout (C, S) (4)

Considering a network topology with an S set of switches si 2 S and E, as the
communication links between the switches, can be represented as graph G — (S, E). Any
mapping of a set of switches si 2 S with a controller C impose an overhead CProverhead on
the controller that is directly proportional to the cost of the flow rule setup request and
subsequent rule installation in the flow table.

CProverhead ' SProverhead (5)

The SProverhead at the switch Si is determined by the load of the switch due to the new
flow nFi arrival rate from both the external source (Host) and internal source (sj). As stated
in Eq. (5), the overhead SProverhead directly increases the CProverhead. Therefore, if nFhfj)Si,
denote the external new flows arrival rate at the switch si from host h0. Let Xim 2 {0 ,1 }

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 7/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Table 1 Network partitioned-based CPP.

Article Problem Partition/ Network topology properties Performance metrics Weakness
formulation solution considered

approach
Path Switch

role
Metrics Latency Overhead Loss Partition approach Performance

metrics

W ang et al. (2016) MILP Heuristics ✓ X X ✓ ✓ X Not partitioned Throughput and
loss unaccounted

Killi & Rao (2019), Network Spectral ✓ X Eigen ✓ X X Tend to produce small, High CP overhead,
Kuang et al. (2018) partitioning clustering vectors isolated components and Poor load

Yang et al. (2019b), Zhu ✓ X ✓ X X clusters with similar sizes balancing &

et al. (2017) CP overhead and
throughput

Li et al. (2019) Node Burden ✓ ✓ Traversal set ✓ X X

Liu et al. (2018) ILP Spectral
clustering

✓ X Eigen
vectors

✓ X X

Bannour, Souihi & K-Means ✓ X Euclidean ✓ X X Random centre
Mellouk (2017) distance initialisation stage, the

number of cluster
determinations

Modified-AP (Aoki & BIP Affinity ✓ X Shortest ✓ X X Not partitioned
Shinomiya, 2015) propagation distance

Kobo, Abu-Mahfouz & Network Density-based ✓ ✓ Density ✓ X X NA
Hancke (2019) partitioning clustering

A oki & Shinomiya MOCO PAM-B ✓ X Dijkstra ✓ X X Quadratic running time
(2016) complexity

SACA (Xiao et al., 2016) Mathematical K-Median, SA ✓ X Euclidean ✓ X X Random centre

Hu et al. (2017) Network K-Means ✓ X distance ✓ X X initialisation, number of

partitioning cluster determinations,
the use of “means” limit

Zhao & W u (2017) IP K-Mediod X ✓ X X its expression level,
Killi, Reddy & Rao Mathematical K-Means ✓ X ✓ X X Euclidean distance might

(2019), Dvir, Haddad model not get a path physically
& Zilberman (2018) connected path, one size

fits it-all effect, outliers,
and noise

Ali & Roh (2022) Clique-based ✓ X Shortest
distance

✓ X X Too rigid to use in practice.
It tends to produce
maximally cohesive
subgraph

The clique property
cant guarantee
optimum RT

SACKM (Liu, Liu & Xie, Hybridised SA ✓ X Euclidean ✓ X X K-means limitation, SA Ignore the
2016; X iao et al., 2014) with K-Means distance limited memory to track

tested solutions, low
improvement rate,

CP overhead, LB,
and throughput

M anoharan (2021) Data field theory X X Signal strength ✓ X X Interference

Yang et al. (2019a) IP K-Median ✓ X Haversine ✓ X X Random centre

Yan et al. (2021) Mathematical K-means with ✓ X Euclidean ✓ X X initialisation stage, the

model game theory distance number of cluster
determinations,

PHCPA (Yusuf et al., AI MRFO with Salp ✓ X Cosine ✓ X X Lack of sufficient training Increased PPT,
2023a) Swarm Haversine dataset control message

PITS (L iao et al., 2017) Graph theory, DFS - - ------ ✓ X X overhead

GravCPA (Ali, Lee & LP Louvain X Node Euclidean ✓ X X LPA and gravitation are vulnerable to oscillations
Roh, 2019) algorithms Traffic and non-unique results

ECP (Isyaku et al., 2020) MILP Linearization &
Supermodular

X X - - ✓ ✓ X The CP overhead will likely resurface due to not
partitioning the network into smaller clusters.

Elsayed et al. (2019) Greedy None X X X ✓ ✓ X Network properties not
considered

No controller
placement
module

Note:
PITS, Pareto integrated Tabu search; SA, simulated annealing.

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 8/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

variables indicate whether the switch si is under the control of the controller Cm or not,
 ̂ 1 i f s _ _ ̂ c

using Xia = < . - i m . Thus, the nFi arrival rate at Si from host h0 will induce rule[0, iJ si K Cm
computation overhead on the controller equivalent to:

Ŝ 2/(nFh0 ,si)Xim (6)
si2S

Hence if nFh0 ,S., denote the internal new flows arrival rate at the OpenFlow switch Sj
from host Si. The arrival rate will induce rule computation overhead at the SDN controller
Cm equals to

Sj)Xim (7)
si2S

Therefore, for all the OpenFlow switches controlled by the controller Cm, The total
overall overhead on the controller for rules installation in the OpenFlow switch Si is
equal to:

CProverhead y > Fhp, St)Xim + ^}^,inFSi, Sj)Xim + }̂̂ (̂nFSi,Si)Xim + ^^XnFSi, h0 ,)Xim (8)
si2S sisj2S sisj2S si2S

The objective is to minimize the CProverhead to improve the overall FSetUp and other
QoS metrics. High controller overhead directly increases flow setup time which
consequently causes performance retardation, especially for traffic with deadline violation
constraints.

Design of the proposed solution
The proposed controller placement algorithm with critical switch awareness (CPCSA) for
software-defined wide area network partitioned the network based on the switch role and
assigned the required number of controllers to each partition. The operational procedure
of CPCSA consists of three phases, with the output of each phase serving as input to the
next phase. (i) The critical switch identification phase (CSIP) for reading the network
topology to identify critical switches. (ii) Network partition phase (NPP) for partitioning
the discovered topology based on the number of critical switches identified in (CSIP) and
(iii) controller placement and assignment phase (CPAP), which uses the mathematical
concept of facility location method to select a strategic position to place an SDN controller
for each of the partitions formed in (NPP). This way, CPCSA placed an SDN controller in
each partition formed based on the distance between the critical and non-critical switches
within the partition to minimize the communication overhead and delay. ‘Network
topology read phase’, ‘Switch role and critical switch identification phase (CSIP)’, ‘Network
partition based on switch criticality’ and ‘Critical switch aware controller placement
(CSACP)’ provide a detailed description of each phase. At the same time, the flowchart
shown in Fig. 2 presents the overall procedure of the proposed algorithm (CPCSA).

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 9/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Figure 2 CPCSA flow chart. Full-size DOI: 10.7717/peerj-cs.1698/fig-2

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 10/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698/fig-2
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Network model and placement metrics
Consider an SDWAN topology modelled as a graph G = (V, E), with V representing a
set of nodes and E the communication links between the nodes. The network node V
comprised a group of OpenFlow switches S and an SDN Controllers C, i.e., S, C 2 V.
The collection of the OpenFlow Switches S includes critical switches (CS) and non-critical
switches (nCS). For controller placement, the technique partitions G into multiple sub­
nets SDWAN_Partitionsi to improve latency performance and reduce a Controller’s
overhead. In this study, we formulate the network partition problem by considering the
switch’s role in the Network. This help in identifying the critical and non-critical switches
in the Network. We defined the set of critical switches (SCS) as:

k
SCS = CSi (9)

i=1

where k represents the Network’s total number of critical switches and gives us the number
of subnets to partition the Network G. At the same time, we can obtain the set of non-
critical switches from

SnCS = S\SCS (10)

Therefore, by partitioning the OpenFlow switches S 2 G into k sub-nets, namely,
SDWAN_Partitionsi V i = 1 , 2 , k according to the number of critical switches CS C V.
The resulting SDWAN_Partitionsj can be defined as:

SDWAN_Partitionsi = (Vi, E;) (11)

Such that:

SDWAN_Partitionsi is a component (12)
k

^ CSi = 1 (13)
i=1

Vi = j 2 k ; SDWAN_Partitionsi n SDWANpartitionsj = { 0 } (14)
k k

L K U Ei (15)
i=1 i=1

Equation (12) indicates that the sub-net of any of the SDN-partition is made up of
connected OpenFlow switches with links. Equation (13) ensures only one critical switch
CSi is assigned to each partition. Equation (14) implies that an OpenFlow switches s; can
only be allocated to a single domain, while Eq. (15) ensures all the network switches are in
one of the subnets. See Table 2 for the summary and description of symbols and notation
used in our model.

Network topology read phase
Algorithm 1 reads a GraphML file containing a network topology of SDWAN located at
graphml_path. An empty graph object stores the network topology as G = (V, E) created

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 11/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Table 2 Notations and symbols.

Notation Description

G SDWAN

E Set of communication links in the network

V Set of network nodes (comparison of both controllers and switches)

C Set of SDN controllers

CProverhead Controller overhead

S Set of OpenFlow switches

SProverhead Switch overhead on the controller

CS Critical switches

nCS Non-critical switches

SCS Set of critical switches

SnCS Set of non-critical switches

SDWAN_Partitionsi Sub-net of OpenFlow Switches

dis Shortest distance between the controller cj and switch si in Sdom ain

k An integer representing the number of CS, SDWAN_Partitions, and C

nF i New flow

(nFS< ,Sj) Number of flow between source and destination

X im { 0 ,1 } binary variables indicating whether the switch s i is under the control of the
controller Cm

Algorithm 1 ReadNetworkGraphTopology graph Cm.

Input: - graphml_path: the path to the GraphML file containing the network topology

Output: - G: a graph object representing the network topology

STAT of Algorithm

1. G ^ new Graph()

2. G ^ read_graphml(graphml_path)

toshscaero
P

h

rn 2 G

4. Compute Nsp a,,Nsth,atptesrtosh

5. Return, G, and Nŝ s isj)

END of Algorithm

in line 1 of the algorithm. V represents a set of switches in the Network, and E the physical
communication links between the nodes. The network switch V comprised some
OpenFlow switches S and SDN controllers’ C, i.e., S, C 2 V. However, the OpenFlow
switches S consist of critical CS and non-critical switches nCS. The study defines a set of
critical switches SCS in Eq. (9). Algorithm 1 reads the file to generate a graph object
representing the network topology in line 2. Then, the algorithm returns the graph object
in line 3 to identify these critical switches. The read_graphml function is a pre-existing
function that reads and parses GraphML files.

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 12/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Switch role and critical switch identification phase (CSIP)
CSIP distinguishes between switches based on their roles to identify critical switches within
a network. Because some switches within the network have a significantly higher frequency
of communication with the SDN controller for rule installation than others. These switches
are called critical switches because they impact the responsiveness of the SDN controller
within the network. Therefore, a switch si 2 Vi with high communication frequency with
SDN controller for rule installation is considered more critical CIs compared to an
ordinary switch.

To establish the criticality of a switch si, we used the switch criticality metrics in a
network, and the switch flow rule requests overhead on the controller. We assume that
information in the network Gi from different sources s; V i = 1,2.., N is propagated in
parallel from the source si to the destination sj along the shortest path (geodesic), denoted
as dij. Based on these assumptions, a switch s; V i = 1,2.., N in a communication network
Gi = (Vi, E) is critical to the extent of its criticality factor siCrf. Therefore, we use the
switch’s connectivity in the network and its flow rule request overhead on the controller to
model the switch criticality factor siCrf .

To determine the switch connectivity in the network, CSIP uses Algorithm 1 to return
the number of shortest paths Nsp passing through the switch starting at si 2 V and ending
at sj 2 V. Thus, we calculate the metric using the formula Eq. (16). On the other hand, to
compute the switch traffic overhead on a controller, we consider the weighted new flow
rule request sent from the source switch to the controller due to a new flow arrival based on
Eq. (6) using Eq. (17). Following that, we compute the switch criticality factor s;Crf using
the formula presented in Eq. (18) using these parameters. Finally, we demonstrate the
procedure for critical switch identification in Algorithm 2.

In (lines 1-2), Algorithm 2 initializes two empty dictionaries, SCS and SnCS. The
dictionaries are used to store critical-switch and non-critical-switch information,
respectively. For each switch si 2 V in the SDWAN G, Algorithm 2 determines whether
the switch si is critical or non-critical using Eq. (9) and by calculating its criticality factor
(s;Crf) using Eq. (18). The total (totaLs;Crf) and average (ave_siCrf) criticality factors for
all switches in the network are also computed (lines 3-8). Algorithm 2 then checks the
criticality factor (s;Crf) of each switch si in the network topology G against the average
criticality factor value (ave_siCrf) (lines 10-11). If (siCrf) is greater than (ave_siCrf), the
switch is classified as critical and added to the set of critical_switch SCS containers along
with its criticality factor. Otherwise, it is classified as non-critical and added to the
collection of non_critical_switch nSCS containers (lines 12-13).

(16)

(17)
si 2S

siCrf = siBC + sinFi (18)

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 13/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Algorithm 2 Critical switch identification.

Input: - G, and Nŝ s isj):

Output- {SCS, SnCS, CS_neighbours, distance}

STAT of Algorithm

1. SCS ^ {}

2. SnCS ^ {}

3. FOR si 2 V :

4. siBC ^ calculate switch connectivity in G using Eq. (16)

5. sinFi ^ calculate switch flow rule request using Eq. (17)

6. siCrf ^ calculate the switch criticality factor using Eq. (18)

7. totaLsiCrf ^ sum_of_values (siCrf)

8. av^siCrf ^ totaLsiBC/length_of_values (siCrf)

9. FOR each si, in (siCrf):

10. IF (siCrf) > av^siCrf:

11. add si and siCrf to SCS.

12. ELSE:

13. add si and siCrf to SnCS.

14. CS_neighbors ^ {}

15. FOR each si, in siCrf:

16. add a list of C S ’s neighbours to CS _neighbours.

17. distance ^ {}

18. FOR each CS in SCS:

19. For si, distance in shortest_path_length from CS in G:

20. add (si, CS) and distance to distance.

21. return SCS, SnCS, CS_neighbours, distance

END of Algorithm

Next, for each critical switch (CS) in the SCS container, Algorithm 2 retrieves the list of
its neighbours and calculates its shortest path distance to all other switches in the network
topology. The resulting information is added to the CS_neighbors and distances containers
(lines 14-20). Finally, Algorithm 2 returns the sets of critical_switch, non_critical_switch,
critical_switch_neighbors, and distances in (line 21).

Network partition based on switch criticality
The study designed a CSANP to partition the SDWAN (G) into smaller networks based on
the number of critical switches (num_CS). The CSANP collects inputs from Algorithm 2,
where the critical switches of G are identified. The input parameters include the set of
critical switches (SCS), non-critical switches (SnCS). The procedure is as shown in
Algorithm 3. CSANP starts by initializing the number of Critical Switches (num_CS) and

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 14/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Algorithm 3 Critical switch aware network partition (CSANP).

Input: (G, SCS, SnCS)

Output: SDWAN_Partitions

STAT of Algorithm

1. num_CS = len(SCS)

2. num_nCS = len(SnCS)

3. avr_num_nCS = num_nCS / / num_CS

4. num_CS_plus = num_nCS % num_CS

Add all Critical Switches to SD-WAN partitions

5. SDWAN_Partitions = [[] for _ in range(num_CS)]

Assign non-Critical Switch to Critical Switch based on minimum distance

6. For sj in SnCS:

7. closest_CS = None

8. min_distance = float(‘inf)

9. For i, si in enumerate(SCS):

10. dist = distance[si][sj]

11. If dist < min_distance:

12. min_distance = dist

13. closest_CS = i

14. SDWAN_Partitions[closest_CS] = SDWAN_Partitions[closest_CS] + [sj]

Balance partitions and assign non-Critical Switches to Critical Switch

15. For i, sj in enumerate(SnCS):

16. closest_CS = None

17. min_distance = float(‘inf)

18. For j, si in enumerate(SCS):

19. dist = distance[si][sj]

20. If dist < min_distance:

21. min_distance = dist

22. closest_CS = j

23. cluster_index = closest_CS

24. If len(SDWAN_Partitions[cluster_index]) < avr_num_nCS:

25. SDWAN_Partitions[cluster_index] = SDWAN_Partitions[cluster_index] + [sj]

26. Elif len(SDWAN_Partitions[cluster_index]) < avr_num_nCS + 1 and num_CS_plus > 0:

27. SDWAN_Partitions[cluster_index] = SDWAN_Partitions[cluster_index] + [sj]

28. num_CS_plus -= 1

29. Else:

If no condition is met, create a new partition for the non-Critical switches

30. SDWAN_Partitions = SDWAN_Partitions + [[sj]]

31. return SDWAN_Partitions

END of Algorithm

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 15/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

non-critical switches (num_nCS) on lines 1 and 2. It then calculates the average number of
non-Critical Switches to be associated to each critcal switch and the remaining non-critical
switches (num_CS_plus) on lines 3 and 4. The SDWAN_Partitions list is initialized with
empty lists, where each list represents a partition associated with a critical switch (CS), on
line 5. The algorithm then iterates through each non-critical switch (sj) in SnCS (line 6)
and determines its closest critical switch (CS) based on the minimum distance (lines 7 to
14). The non-critical switch is then assigned to the corresponding partition in
SDWAN_Partitions (line 14). Next, the algorithm iterates through each non-critical switch
again (sj) (line 15) and assigns it to the appropriate partition in SDWAN_Partitions based
on balancing criteria (lines 17 to 29). If a partition has fewer than avr_num_nCS, the
current non-critical switch is added to it (line 24). If the partition has avr_num_nCS and
there are remaining non-critical switches (num_CS_plus), one of them is added to the
partition (lines 26 to 28). If the partition has avr_num_nCS, and there are no remaining
non-critical switches, a new partition is created for the current non-critical switch (line 30).
The process continues until all non-critical switches are assigned to partitions, and the
resulting SDWAN_Partitions list contains the partitions, each associated with its
respective critical switch. Finally, the algorithm returns the list of SDN
[{SDWAN_Partitions}, {SDWAN_Partitions}............... |num_CS|] in line 31. Refer to
the network partition formation phase of Fig. 2 for the flowchart for the algorithm.

Critical switch aware controller placement (CSACP)
The proposed Critical Switch Aware Controller Placement (CSACP) algorithm is
responsible for placing an SDN controller in each of the resulting network partitions
(subnets) produced by CSANP. This placement problem is a variant of a facility location
problem. Therefore, for each of the resulting subnets [{SDWANPartitions1} , . . .
{SDWAN_Partitions|num_cs|}] obtained from the CSANP, we designed a CSACP
algorithm to place the SDN controller on each SDWAN_Partitionsi = (Vi, Ei) within the
shortest distance of each demand point in the subnets. We assigned C to represent the set
of controllers cj 2 C V j = 1,2..., m for the k sub-nets. Next, for each,
V SDWANPartitionsi, our placement model maps the controller cj 2 C V j = 1 , 2 . , m
to the demand points si 2 V, which are the OpenFlow switches, in a way that the dist(sicj)
is the shortest distance between the candidate controller locations j 2 SDWAN_Partitionsi
and the mapped controller cj 2 C. Thus, the proposed CSACP algorithm finds a suitable
position in each resulting partition to place the controller. Algorithm 4 provides a detailed
description of the proposed controller placement method.

1
(19)

si 2 SDWAN_Partitionsi

Such that

si, cj 2 SDWANPartitionsi (20)

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 16/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Algorithm 4 Critical switch aware controller placement (CSACP).

Input:{SCS, SnCS} {SDWAN_Partitions1} , . . . {SDWAN_Partitions|num_CS|}]

Output- controller_positions

STAT of Algorithm

1. controller_positions = { }

2. For SDWAN_Partitions_num, partition in enumerate(SDWAN_Partitions) Do

3. max_critical_switch = null

4. ma^_s;Crf = -1

5. For switch in partition, Do

6. If switch in critical_switch and critical_switch[switch] > ma^_s;Crf Then

7. max_critical_switch = switch

8. max_s;Crf = critical_switch[switch]

9. End If

10. End For

11. distances_within_partition = { }

12. For a node in partition, Do

13. If the node in non_critical_switch, Then

14. distances_within_partition[node] = distances[(node, max_critical_switch)]

15. End If

16. End For

17. min_distance_node = null

18. min_distance = infinity

19. For a node in distances_within_partition, Do

20. If distances_within_partition[node] < min_distance, Then

21. min_distance_node = node

22. min_distance = distances_within_partition[node]

23. End If

24. End For

25. controller_positions[SDWAN_Partitions_num] = (max_critical_switch, min_distance_node)

26. End For

27. return controller_positions.

END of Algorithm

The proposed CSACP algorithm takes inputs from CSANP (Algorithm 2), which
includes the SDWAN partitions, critical and non-critical switches, and their criticality
factors. Each partition is a set of switches within the SDWAN network. The algorithm
initializes an empty dictionary called controller_positions to store the controller positions
for each SDWAN partition in line 1. Then, for each partition in the input set of partitions,
the algorithm identifies the critical switch with the highest criticality factor ma^siCrf. In

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 17/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Table 3 Topologies information and traffic information.

Topologies information Traffic information

Topology Number switches Number of links Density Ave SBF New flow Packet_IN msg size Packet_OUT msg size

Arpanet19728 29

ARNES 34

AsnetAm 65

32 0.0788

47 0.0837

79 0.0380

0.136

0.076

0.044

For every 100,000 Kb 80 bytes 80 bytes

(lines 2-11), Algorithm 4 calculates the distance to the identified critical switch using a
pre-computed distance metric stored in a distance dictionary for each non-critical switch
in the partition. Next, the algorithm finds the non-critical switch within the partition that
has the minimum distance to the identified critical switch and assigns it as the controller
position for that partition. The algorithm then stores the controller position for that
partition in the controller_positions dictionary in (lines 12-26). Finally, the algorithm
returns the controller_positions dictionary as the algorithm output in line 27.

Experimentation setup and performance evaluation of CPCSA
In this section, the performance of CPCSA is evaluated and compared with other
representative solutions in the literature. The study utilizes three (3) real network
topologies obtained from the Internet Topology Zoo (ITZ) (A. G. University o f Adelaide,
2023) and randomly generates topologies for conducting the experiments. The database
provides researchers access to hundreds of real network topologies from various service
providers. Thus, the study selects AsnetAm, Arpanet19728, and ARNES networks for the
experiments. Table 3 gives additional information on other aspects of the chosen network
topologies, which vary in size and structure. The partitioning phase is performed offline
with a script written in Python 3.8.0 and NetworkX components. The experiment uses
Mininet version 2.3.0 to build the topologies of these partitions with an OpenvSwitch for
interaction with a Ryu SDN controller in each partition based on OpenFlow v1.5.1
specifications. The article borrows traffic matrix scenarios in the GEANT network (Uhlig
et al., 2006) for understanding traffic patterns. The traffic matrix of (Uhlig et al., 2006)
describes the traffic between nodes and its transfer speed, highlighting what constitutes a
new flow. A D-ITG utility injects a TCP/UDP flow on 1,024 Mbps transmission lines of the
Mininet architecture to generate the traffic. Hence, the study model, one new flow for every
100,000 KB, exchanged, according to Poisson traffic distribution in terms of Packet Inter
Departure Time (PIDT). The reliance of the packet_IN message on whether the switch
piggybacked the first packet of a flow to a controller (Yusuf et al., 2023c). The article
considers its size and Packet count as in Obadia et al. (2015) to account for it. Additionally,
as proved in Obadia et al. (2015), there must be a packet OUT message (flow_mod Packet)
for every packetIN message; thus, the study considers their sizes and packet count equal.

We start off the evaluation of CPCSA by providing a visual representation of its
controller placement result in Fig. 3. We then presented the overhead incurred by the
controller placed in a network using the proposed CPCSA compared to other related CPP

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 18/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

solutions in Fig. 4. While in Fig. 5, the study investigates the impact of CPCSA on fault
tolerance by evaluating the rate of control packet loss. Lastly, the evaluation of Throughput
and average switch-to-controller Latency is done in Figs. 6 and 7, respectively. We conduct
all the experiments on a machine with Intel(R) Core (TM) i7-10750H CPU @ 2.60 GHz,
2.59 GHz, and 16.0 GB memory.

RESULTS
Network partitions and controller placement positions
The diagrams presented in Figs. 3A- 3I illustrate the network partitions and selected
positions for controller placement as determined by the proposed CPCSA algorithm.
Figure 3 depicts the outcomes of the controller placement output when applied to the
Arpanet19728, ARNES, and AsnetAm topologies. As demonstrated in Figs. 3A, 3E, and 3I,
before network partitioning, node 4, node 7, and node 22 are designated as the controller
positions. This selection occurs based on the switch criticality factors siCrf ranging from
0.25, 0.50-0.61, to 0.59-0.66 in the respective topologies. Conversely, as shown in Figs. 3B,
3F and 3J, when the switch criticality factors are 0.25, 0.18-0.49, and 0.27-0.55 in the
corresponding networks, the networks are partitioned into two subnets. Consequently, in
Arpanet19728, nodes 4 and 13 are chosen as the controller positions, while in ARNES,
nodes 7 and 30 are selected. In the AsnetAM topology, the controller positions are nodes
22 and 7. Furthermore, by reducing the switch criticality factors siCrf to 0.22, 0.14-0.15,
and 0.15-0.25, the respective networks experienced partitioning into four subnets. This
resulted in the inclusion of nodes 23 and 28 as additional controller positions in the
Arpanet19728 topology. Similarly, in the case of ARNES, nodes 23 and 29 were selected as
new placements, while for AsnetAM topology, CPCSA chooses nodes 8 and 26 to place the
new controllers. Please refer to Figs. 3D, 3H, and 3L for visualization

Controller overhead
Figure 4 shows the accumulated controller’s rule installation overhead in the
Arpanet19728, ARNES, and AsnetAm network topologies with SPDA (Guo et al., 2022),
gravCPA (Wang, Ni &Liu, 2022), and the proposed CPCSA, respectively. The experiment
results show that CPCSA incurred lower rule installation overhead than SPDA (Guo et al.,
2022) and gravCPA (Wang, Ni & Liu, 2022) in all the topologies. As shown in Fig. 4A, the
proposed CPCSA had reduced the SDN controller’s overhead compared to SPDA and
gravCPA in the AsnetAM topology by 63% and 49%, respectively. Meanwhile, in Fig. 4B,
with the Arnes topology, the proposed technique is shown to cut the overhead by 54% and
36%. Lastly, CPCSA minimizes the overhead of SPDA (Guo et al., 2022) and gravCPA
(Wang, Ni & Liu, 2022) by 63% and 51% in the Arpanet19728 topology, as revealed in
Fig. 4C. The achievement of the overhead reduction is attributable to the control of the
number of critical switches CPCSA assigns to a single SDN controller. A switch is critical if
it continually appears along the shortest path of many dissimilar host-to-destination
communicating pairs. This type of switch receives an augmented number of rule
installation instructions from the controller on what to do with the flow. Because, by

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 19/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

C PCSA OB A rp illtl 19728 Topology

£) SOWAN Partitwra 0 (controllerjx»mon»: 4)

(a)With sCrF = 0 .26

C PC SA on Arpanet 19728 Topology

Arpanetl9728 Topology
CPCSA OB Arpanet 19728 Topology

SDWAN Parlitions 0 (contro)ler_po*itions 4)
SDWAN_Partmo«s 1 (c«itroller_positK>ns: 13)

(b)With sCrF = 0.25
I

SDWAN_Partrtioo» 0 (controfef_paubons: 4)
SOWAN.PtttOons 1 (controller _po&ftom: 13)
SDWAN_Part*>ons 2 (cootro»cr_pos4>on»: 23)

CPCSA on Arpanet 19728 Topology CPCSA on Arpanet 19728 Topolog)

(c)With sCrF =0.24
ARNES Topology

CPCSA on Arpanet 19728 Topology

CPCSA ob Arpanet 1972* t opology

I

SOWAN_PartAcn» 0 (coofroior_poa«bon»: 4)
SDWAN_Part*or» 1 (cowrote* .pooibora 13)
SOWAN_Partibons 2 (controls*_povbcm 23)
SDWAN_Partit>cn» 3 (controfc?r_posit>om 28)

(d)With sCrF = 0.22

CPCSAon Arpanet 19728 Topology

Figure 3 (A -D) Arpanet topology; (E -H) Arnes topology; (I-L) AsnetAm topology. Full-size DOI: 10.7717/peerj-cs.1698/fig-3

default, flows are usually routed along the shortest path from the source to the destination
host in most networks. Thus, the controller with a higher number of critical switches in a
partitioned SDWAN incurs higher overhead. The additional controller overhead will
amount to the number of switches assigned to the controllers by a factor of their generated
control traffic.

Control packet loss
In this section, this study measures the impact of control packet loss during switch-to-
controller communication to verify CPCSA’s fault-tolerance benefits. High control plane
overhead can induce a network problem, which can cause some switches to lose
connections with their controllers, resulting in dropped packets. The study expects CPCSA
to reduce the possibility of Network failures owing to excessive controller overhead, which
can lead to substantial packet loss. Because, by design, the CPCSA differentiates among

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 20/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698/fig-3
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Figure 4 (A -D) Overhead. Effect of flows installation cost on the overhead on the number of controllers.
Full-size DOI: 10.7717/peerj-cs.1698/fig-4

network switches and restricts the number of critical switches for each partition. We use
Python 3.8.0 with NetworkX and Matplotlib library components for simulation. However,
unlike the previous experiments with real network topologies, fully connected networks
are randomly generated using Barabasi-Albert (BA) model. After 50 repeated experiments,
the average results findings in comparison to alternative approaches are shown in Fig. 5.
The y and x-axis in Fig. 5 display the average control packet loss as a function of the x-axis
representation of the total network nodes, n. As expected, CPCSA has the lowest average

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 21/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698/fig-4
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Figure 5 (A and B) Packet loss result. Comparison of packet loss. Full-size DOI: 10.7717/peerj-cs.1698/fig-5

packet loss rate of the four routing algorithms due to minimising the controller’s overhead.
On DBCB, the proposed CPCSA reduced packet loss by 31%, while on SPDA and
gravCPA, it reduced it by 61%. The minimum controller’s overhead correlates better with
preventing network failure and lower control packet loss. Therefore, a low average control
packet loss indicates the technique’s ability to avoid network faults due to high overhead.

Throughput
Figure 6 displays the network throughput evaluation result between the proposed CPCSA
and the benchmark algorithms. The Throughput metric gives information about the
performance of the techniques regarding the number of control data packets sent from a
source host and successfully delivered at the destination host during a transmission period
(Guo et al., 2022). The throughput metric is relevant in assessing CPCSA performance
about how it reacts to network-changing events that can trigger flow setup requests or
failure. Figure 6A shows the result of CPCSA’s throughput with different numbers of
controllers. Figure 6B shows the CPCSA’s Throughput vs that of gravCPA (Ali, Lee & Roh,
2019) and SPDA (Obadia et al., 2015). As can be seen from Fig. 6B, CPCSA outperformed
the benchmarked reference algorithms. Comparatively, the algorithm improved the
throughput achieved by gravCPA and SPDA by 16% and 18%, respectively. This
improvement indicates that the methodology adopted by CPCSA to minimise the
controller’s overhead significantly influenced the control packet delivery rate. Thus, this
analysis affirms the research question: “Can controlling the number of critical switches
under the control of an SDN controller improve the Quality of Service in a network?”

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 22/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698/fig-5
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Figure 6 (A and B) Throughput. Comparison of throughput. Full-size DOI: 10.7717/peerj-cs.1698/fig-6

Switch to controller average latency
In this subsection, the study demonstrates how the average switch-controller latencies
respond when a controller is appropriately placed in the subnets of the network partitioned
while considering critical switches. For validation and revelation of results, the study
compares the performance of CPCSA with that of other controller placement solutions
that incorporate a network partitioning strategy and allocation of a controller to each
subnetwork. In the experiments, we ensure that all the benchmarked algorithms deploy the
same number of controllers as CPCSA in the network for a fair evaluation. Therefore,
given a controller cj 2 C and the switches si 2 SDWAN_Partitionsi in the sub-network,
the CPCSA uses the relation in Eq. (17) to measure the latency metrics. Based on the result
obtained, Fig. 7 displays the relationships between the average switch-controller latencies
with the number of controllers and partitions varying from 1 to 4 on three (3) topologies.
As shown in Fig. 7, the result exhibits a monotonic decreasing trend in the switch-
controller Latency with an increasing number of partitions and controllers. We observed
this pattern throughout all four (4) algorithms under study. i.e., Increasing the number of
controllers and partitions causes all the compared algorithms to behave identically
regarding average switch-controller control packet processing delay. However, CPCSA
performs significantly better when compared to SPDA, DBCP, and gravCPA algorithms.
As shown in Fig. 7A, the proposed CPCSA reduces the average switch-to-controller
Latency by 27%, 12%, and 3%, respectively, compared to SPDA (Guo et al., 2022), DBCP
(Liao et al., 2017), and gravCPA (Wang, Ni & Liu, 2022) algorithms when the Algorithms
partitioned the network into 4.

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 23/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698/fig-6
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Number of Controllers

(a)

S P D ^ ^ B d BCBI IgravCPAl ICFCSa I
i -----------------1 *— -— i ■ i----L

Number of Controllers

(b)
Figure 7 (A and B) Latency. Relationship between switch to controller latency. Full-size DOI: 10.7717/peerj-cs.1698/fig-7

CONCLUSIONS
The controller placement algorithm with network partition based on critical switch
awareness (CPCSA) is a novel approach to address the challenge of transient congestion
due to controllers’ overhead in the existing controller placement problems (CPP) solutions
in SDN. CPCSA identifies the set of critical switches in a network to guide the network
partition procedure for finding the optimal number of controllers and placement in the
network. The algorithm has been implemented and evaluated in a laboratory testbed in a
series of comparative experiments with similar solutions using multiple Real life network
topologies from ITZ. The comparative experiments demonstrate CPCSA’s effectiveness in
reducing control message overhead, control packet loss, switch-to-controller latency, and
improved throughput. The results show that the proposed solution has achieved an
aggregate reduction in the controller’s overhead by 73%, loss by 51%, and latency by 16%
while improving throughput by 16% compared to the benchmark algorithms. However,
the proposed scheme does not support heterogeneous controllers and has no defense
mechanism against vulnerabilities such as DDOS, common-mode fault, etc.

For future research, we plan to update the CPCSA controller placement model with
traffic flow behavioural quality of service requirements for consideration. It would be
intriguing to employ machine learning techniques such as deep learning to study flow
behaviour based on flow history for the classification. Considering this would support
designing a controller placement with traffic dynamics awareness. The aim is to partition
the network and place a controller while considering the traffic pattern in the network.
Another exploration avenue could be integrating the algorithm with heterogeneous
controllers’ support. We can see the motivation for these from many perspectives. First, a

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 24/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698/fig-7
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

homogeneous CP provides a potential security risk due to the controllers’ common-mode
fault, often known as a common vulnerability point. Assume enemies are aware of the
vulnerability of one controller; in this instance, they can easily knock down the entire
network by exploiting the controller’s shared vulnerability. Second, interoperability
between various controller platforms and traditional IP networks can encourage and
facilitate the commercial adoption of SDN globally. Very little research has examined this
direction thus far. Therefore, undertaking further research in this direction will be a
valuable contribution.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work is funded by Deanship of Scientific Research at King Khalid University through
the large group Research Project under grant number (RGP.2/175/44). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Deanship of Scientific Research at King Khalid University through large group Research
Project: RGP.2/175/44.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
• Nura Muhammed Yusuf conceived and designed the experiments, performed the

experiments, performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.

• Kamalrulnizam Abu Bakar conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, authored or reviewed drafts of the article, and approved
the final draft.

• Babangida Isyaku performed the experiments, analyzed the data, performed the
computation work, authored or reviewed drafts of the article, and approved the final
draft.

• Abdelzahir Abdelmaboud performed the computation work, prepared figures and/or
tables, and approved the final draft.

• Wamda Nagmeldin performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data and code are available in the Supplemental Files.

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 25/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698%23supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1698#supplemental-information.

REFERENCES
A. G. University of Adelaide. 2023. The Internet topology zoo—dataset. Available at https://

ieeexplore.ieee.org/abstract/document/6027859/% 0Ahttp://topology-zoo.org/dataset.html.

Ahmad S, Mir AH. 2021. Scalability, consistency, reliability and security in SDN controllers: a
survey of diverse SDN controllers. Journal o f Network and Systems M anagement 29(1):1-59
DOI 10.1007/s10922-020-09575-4.

Ali J, Lee S, Roh BH. 2019. Poster: using the analytical network process for controller placement in
software defined networks. In: MobiSys 2019-Proceedings o f the 17th Annual International
Conference on M obile Systems, Applications, and Services. Piscataway: IEEE, 545-546.

Ali J, Roh BH. 2022. An effective approach for controller placement in software-defined internet-
of-things (SD-IoT). Sensors 22(8):2992 DOI 10.3390/s22082992.

Aoki H, Shinomiya N. 2015. Network partitioning problem for effective management of
multi-domain SDN networks. International Journal on Advances in Networks and Services
8(3 & 4):1 7 1 -181.

Aoki H, Shinomiya N. 2016. Controller placement problem to enhance performance in multi­
domain SDN networks. In: CICN 2016 Fifteenth International Conference on Networks (includes
SOFTNETWORKING 2016). Piscataway: IEEE, 95-101.

Bannour F, Souihi S, Mellouk A. 2017. Scalability and reliability aware SDN controller placement
strategies. In: 2017 13th International Conference on Network and Service Management, CNSM
2017. Piscataway: IEEE, 1-4.

Curtis AR, Mogul JC, Tourrilhes J, Yalagandula P, Sharma P, Banerjee S. 2011. DevoFlow:
scaling flow management for high-performance networks. Computer Communication Review
41(4):254-265 DOI 10.1145/2043164.2018466.

Dvir A, Haddad Y, Zilberman A. 2018. Wireless controller placement problem. In: CCNC 2018­
2018 15th IEEE Annual Consumer Communications & Networking Conference. Piscataway:
IEEE, 1-4.

Elsayed MS, Le-Khac NA, Dev S, Jurcut AD. 2019. Machine-learning techniques for detecting
attacks in SDN. In: Proceedings o f the IEEE 7th International Conference on Computer Science
and Network Technology (ICCSNT 2019). Piscataway: IEEE, 277-281.

Firouz N, Masdari M, Sangar AB, Majidzadeh K. 2021. A novel controller placement algorithm
based on network portioning concept and a hybrid discrete optimization algorithm for multi­
controller software-defined networks. Cluster Computing 24(3):2511-2544
DOI 10.1007/s10586-021-03264-w.

Guo J, Yang L, Rincon D, Sallent S, Chen Q, Liu X. 2022. Static placement and dynamic
assignment of SDN controllers in LEO satellite networks. IEEE Transactions on Network and
Service M anagement 19(4):4975-4988 DOI 10.1109/TNSM.2022.3184989.

Heller B, Sherwood R, Mckeown N. 2012. The controller placement problem. Computer
Communication Review 42(4):473-478 DOI 10.1145/2377677.2377767.

Hu T, Guo Z, Baker T, Lan J. 2017. Multi-controller based software-defined networking: a survey.
IEEE Access 99 :1 DOI 10.1109/ACCESS.2018.2814738.

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 26/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698%23supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1698%23supplemental-information
https://ieeexplore.ieee.org/abstract/document/6027859/%0Ahttp://topology-zoo.org/dataset.html
https://ieeexplore.ieee.org/abstract/document/6027859/%0Ahttp://topology-zoo.org/dataset.html
http://dx.doi.org/10.1007/s10922-020-09575-4
http://dx.doi.org/10.3390/s22082992
http://dx.doi.org/10.1145/2043164.2018466
http://dx.doi.org/10.1007/s10586-021-03264-w
http://dx.doi.org/10.1109/TNSM.2022.3184989
http://dx.doi.org/10.1145/2377677.2377767
http://dx.doi.org/10.1109/ACCESS.2018.2814738
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Isyaku B, Bakar KBA. 2023. Managing smart technologies with software-defined networks for
routing and security challenges: a survey. Computer Systems Science and Engineering
47(2) :1839-1879 DOI 10.32604/csse.2023.040456.

Isyaku B, Bin Abu Bakar K, Nagmeldin W, Abdelmaboud A, Saeed F, Ghaleb FA. 2023. Reliable
failure restoration with Bayesian congestion aware for software defined networks. Computer
Systems Science and Engineering 46(3):3729-3748 DOI 10.32604/csse.2023.034509.

Isyaku B, Bin Abu Bakar K, Yusuf MN, Mohd Zahid MS. 2021. Software defined networking
failure recovery with flow table aware and flows classification. In: 2021 IEEE 11th IEEE
Symposium on Computer Applications & Industrial Electronics (ISCAIE). Piscataway: IEEE,
337-342.

Isyaku B, Mohd Zahid MS, Bte Kamat M, Abu Bakar K, Ghaleb FA. 2020. Software defined
networking flow table management of OpenFlow switches performance and security challenges:
a survey. Future Internet 12(9):147 DOI 10.3390/fi12090147.

Killi BPR, Rao SV. 2019. Controller placement in software defined networks: a comprehensive
survey. Computer Networks 163(3):106883 DOI 10.1016/j.comnet.2019.106883.

Killi BR, Reddy EA, Rao SV. 2019. Game theory based network partitioning approaches for
controller placement in SDN. Lecture Notes in Computer Science 11227 :245-267
DOI 10.1007/978-3-030-10659-1.

Kobo HI, Abu-Mahfouz AM, Hancke GP. 2019. Efficient controller placement and reelection
mechanism in distributed control system for software defined wireless sensor networks.
Transactions on Emerging Telecommunications Technologies 30(6):1-19 DOI 10.1002/ett.3588.

Kuang H, Qiu Y, Li R, Liu X. 2018. A hierarchical K-means algorithm for controller placement in
SDN-based WAN architecture. In: Proceedings o f the 10th International Conference on
M easuring Technology and Mechatronics Autom ation ICMTMA 2018. vol. 2018: Piscataway:
IEEE, 263-267.

Li F, Xu X, Han X, Gao S, Wang Y. 2019. Adaptive controller placement in software defined
wireless networks. China Communications 16(11):81-92 DOI 10.23919/JCC.2019.11.007.

Liao J, Sun H, Wang J, Qi Q, Li K, Li T. 2017. Density cluster based approach for controller
placement problem in large-scale software defined networkings. Computer Networks
112(4):24-35 DOI 10.1016/j.comnet.2016.10.014.

Liu J, Liu J, Xie R. 2016. Reliability-based controller placement algorithm in software defined
networking. Computer Science and Information Systems 13(2):547-560
DOI 10.2298/CSIS160225014L.

Liu J, Shi Y, Zhao L, Cao Y, Sun W, Kato N. 2018. Joint placement of controllers and gateways in
SDN-enabled 5G-satellite integrated network. IEEE Journal on Selected Areas in
Communications 36(2):221-232 DOI 10.1109/JSAC.2018.2804019.

Manoharan GRR. 2021. Enhanced optimal placements of multi-controllers in SDN. Journal o f
Am bient Intelligence and H um anized Computing 12(7):8187-8204
DOI 10.1007/s12652-020-02554-2.

Obadia M, Bouet M, Rougier JL, Iannone L. 2015. A greedy approach for minimizing SDN
control overhead. In: 1st IEEE Conference on Network Softwarization Software-Defined
Infrastructures Networks, Clouds, IoT Services NETSOFT 2015. Piscataway: IEEE.

Uhlig S, Quoitin B, Lepropre J, Balon S. 2006. Providing public intradomain traffic matrices to
the research community. Computer Communication Review 36(1):83-86
DOI 10.1145/1111322.1111341.

Wang C, Ni H, Liu L. 2022. GravCPA: controller placement algorithm based on traffic gravitation
in SDN. Journal o f Control Science and Engineering 2022(9):1-12 DOI 10.1155/2022/9307689.

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 27/28

https://peerj.com/computer-science/
http://dx.doi.org/10.32604/csse.2023.040456
http://dx.doi.org/10.32604/csse.2023.034509
http://dx.doi.org/10.3390/fi12090147
http://dx.doi.org/10.1016/j.comnet.2019.106883
http://dx.doi.org/10.1007/978-3-030-10659-1
http://dx.doi.org/10.1002/ett.3588
http://dx.doi.org/10.23919/JCC.2019.11.007
http://dx.doi.org/10.1016/j.comnet.2016.10.014
http://dx.doi.org/10.2298/CSIS160225014L
http://dx.doi.org/10.1109/JSAC.2018.2804019
http://dx.doi.org/10.1007/s12652-020-02554-2
http://dx.doi.org/10.1145/1111322.1111341
http://dx.doi.org/10.1155/2022/9307689
http://dx.doi.org/10.7717/peerj-cs.1698

PeerJ Computer Science

Wang G, Zhao Y, Huang J, Duan Q, Li J. 2016. A K-means-based network partition algorithm for
controller placement in software defined network. In: 2016 IEEE International Conference on
Communications ICC 2016. Piscataway: IEEE.

Wang G, Zhao Y, Huang J, Wu Y. 2018. An effective approach to controller placement in software
defined wide area networks. IEEE Transactions on Network and Service M anagement 15(1):344-
355 DOI 10.1109/TNSM.2017.2785660.

Xiao P, Li Z, Guo S, Qi H, Qu W, Yu H. 2016. A K self-adaptive SDN controller placement for
wide area networks. Frontiers o f Inform ation Technology & Electronic Engineering 17(7):620-
633 DOI 10.1631/FITEE.1500350.

Xiao P, Qu W, Qi H, Li Z, Xu Y. 2014. The SDN controller placement problem for WAN. In: 2014
IEEE/CIC International Conference on Communications in China, ICCC2014. Piscataway: IEEE,
220-224.

Yan B, Liu Q, Shen J, Liang D, Zhao B, Ouyang L. 2021. A survey of low-latency transmission
strategies in software defined networking. Computer Science Review 40(6):100386
DOI 10.1016/j.cosrev.2021.100386.

Yang K, Guo D, Zhang B, Zhao B. 2019a. Multi-controller placement for load balancing in
SDWAN. IEEE Access 7 :167278-167289 DOI 10.1109/ACCESS.2019.2953723.

Yang K, Zhang B, Guo D, Lin M, de Cola T. 2019b. Partitioned controller placement in SDWANs
for reliability maximization with latency constraints. In: 2019 IEEE GLOBECOM Work. GC
Workshops 2019-Proceedings. Piscataway: IEEE.

Yusuf MN, Bakar Kbin A, Isyaku B, Osman AH, Nasser M, Elhaj FA. 2023a. Adaptive path
selection algorithm with flow classification for software-defined networks. M athematics
11(6):1404 DOI 10.3390/math11061404.

Yusuf MN, Bin Abu Bakar K, Isyaku B, Mukhlif F. 2023b. Distributed controller placement in
software-defined networks with consistency and interoperability problems. Journal o f Electrical
and Computer Engineering 2023 :1-33 DOI 10.1155/2023/6466996.

Yusuf MN, Bin Abu Bakar K, Isyaku B, Saheed AL. 2023c. Review of path selection algorithms
with link quality and critical switch aware for heterogeneous traffic in SDN. International
Journal ofE lectrical and Computer Engineering Systems 14(3):345-470
DOI 10.32985/IJECES.14.3.12.

Zhao G, Huang L, Yu Z, Xu H, Wang P. 2017a. On the effect of flow table size and controller
capacity on SDN network throughput. In: 2017 IEEE International Conference on
Communications. Piscataway: IEEE, 1-6.

Zhao J, Qu H, Zhao J, Luan Z, Guo Y. 2017b. Towards controller placement problem for
software-defined network using affinity propagation. Electronics Letters 53(14):928-929
DOI 10.1049/el.2017.0093.

Zhao Z, Wu B. 2017. Scalable SDN architecture with distributed placement of controllers for
WAN. Concurrency and Computation: Practice and Experience 29(16):1-9
DOI 10.1002/cpe.4030.

Zhu L, Chai R, Chen Q. 2017. Control plane delay minimization based SDN controller placement
scheme. In: 2017 9th International Conference on Wireless Communications and Signal
Processing, WCSP 2017-Proceedings. vol. 2017: Piscataway: IEEE, 1-6.

Zhu T, Feng D, Wang F, Hua Y, Shi Q, Xie Y, Wan Y. 2017. A congestion-aware and robust
multicast protocol in SDN-based data center networks. Journal o f Network and Computer
Applications 95(1):105-117 DOI 10.1016/j.jnca.2017.07.013.

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 28/28

https://peerj.com/computer-science/
http://dx.doi.org/10.1109/TNSM.2017.2785660
http://dx.doi.org/10.1631/FITEE.1500350
http://dx.doi.org/10.1016/j.cosrev.2021.100386
http://dx.doi.org/10.1109/ACCESS.2019.2953723
http://dx.doi.org/10.3390/math11061404
http://dx.doi.org/10.1155/2023/6466996
http://dx.doi.org/10.32985/IJECES.14.3.12
http://dx.doi.org/10.1049/el.2017.0093
http://dx.doi.org/10.1002/cpe.4030
http://dx.doi.org/10.1016/j.jnca.2017.07.013
http://dx.doi.org/10.7717/peerj-cs.1698

