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ABSTRACT
Software-defined networking (SDN) is a networking architecture with improved 
efficiency achieved by moving networking decisions from the data plane to provide 
them critically at the control plane. In a traditional SDN, typically, a single controller 
is used. However, the complexity of modern networks due to their size and high 
traffic volume with varied quality of service requirements have introduced high 
control message communications overhead on the controller. Similarly, the solution 
found using multiple distributed controllers brings forth the ‘controller placement 
problem’ (CPP). Incorporating switch roles in the CPP modelling during network 
partitioning for controller placement has not been adequately considered by any 
existing CPP techniques. This article proposes the controller placement algorithm 
with network partition based on critical switch awareness (CPCSA). CPCSA 
identifies critical switch in the software defined wide area network (SDWAN) and 
then partition the network based on the criticality. Subsequently, a controller is 
assigned to each partition to improve control messages communication overhead, 
loss, throughput, and flow setup delay. The CPSCSA experimented with real network 
topologies obtained from the Internet Topology Zoo. Results show that CPCSA has 
achieved an aggregate reduction in the controller’s overhead by 73%, loss by 51%, 
and latency by 16% while improving throughput by 16% compared to the benchmark 
algorithms.

Subjects Computer Networks and Communications, Emerging Technologies 
Keywords SDN, Controller placement, Controller overhead, Switch role, Network partition

INTRODUCTION
Software-defined networking (SDN) is an emerging network paradigm offering simple 
network management by separating network control logic and data forwarding elements. 
This way, the control plane (CP) is responsible for providing and enforcing network 
policies on the switches at the data plane (DP). To achieve this, the controller uses a link 
layer discovery protocol (LLDP) to identify the OpenFlow switches connected at the DP
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Figure 1 Control plane architecture. Single control plane architecture (A) and multiple controllers (B).

(Yusuf et al., 2023a). It then continuously monitors them for changes due to events like 
failures or the arrival of new flows. It collects network statistics concerning traffic arrival 
patterns, traffic types, and other changes for various applications like routing, congestion 
control, and security to run their algorithm instances (Isyaku & Bakar, 2023). For any state 
change at DP, the controller must immediately recalculate updated instructions for the DP 
switches, sending them as a packet-out message to all edge switches (for ARP) and a flow- 
mod message to all switches along the same path for installation on their flow tables (Yusuf 
et al., 2023c). Recently, the controller has been experiencing a substantial increase in 
communication overhead due to an exponential growth in new flow arrival rates caused by 
the proliferation of Internet of Things (IoT) devices and the expansion of network size 
(Firouz et al., 2021). Consequently, the DP may frequently encounter state change events 
like link failure (Isyaku et al., 2023), requiring the controller to reconfigure new rules 
(Isyaku et al., 2021).

This process has implications for the workload of the controller. For instance, if a flow 
traverses an average path length of six switches and the network has 100 edge switches, the 
controller is estimated to spend around 6 ms to handle each flow (Zhao et al., 2017a). A 
prior study reports that processing these messages adds an overhead and delay of 
approximately 0.5 and 0.2 ms, respectively. As a result, the cumulative burden on the 
controller amounts to (0.5 * 6 + 0.2 * 100) (Zhao et al., 2017a). Moreover, another study 
highlights a direct correlation between the number of switches in a network and the 
volume of flow setup requests. According to Curtis et al. (2011), configuring a flow route 
for a network with N switches incurs an overall cost of approximately 94 + 144N, with an 
additional 88N byte attributed to flow-removed messages. Thus, CP design is critical to the 
performance of SDN.

A single controller (csCP) design is widely used for small network sizes. However, it 
may fail to give the desired performance due to high control message processing overhead. 
It also exhibits reliability concerns due to a single failure point (SPOF), as the failure 
tendencies are higher when the network is large. As such researchers leverage multiple 
controllers (dmCP), which better performance compared to csCP. Figure 1 illustrates the 
differences between the former and the latter. For example, an extensive network may have
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switches that can generate up to 750 to 20,000 flow per second (Isyaku et al., 2021); others 
say it might reach up to 10 million flow requests per second (Ahmad & Mir, 2021; Yan 
et al., 2021). Unfortunately, this is beyond the capacity of a single controller, as some 
controllers can only accommodate 6,000 flow requests per second (Hu et al., 2017). On the 
other hand, designing the CP with multiple controllers opens up a controller placement 
problem (CPP) challenge. For any given network, the CPP deals with finding and 
optimising (i) the number of controllers in the network. (ii) The controllers should be 
placed strategically on the network to minimise congestion, overhead, and Latency 
between controllers and switches. Heller, Sherwood & Mckeown (2012), who initiated the 
concept of (CPP), built their solution while considering the impact of Latency. The 
solution performs well for small-scale networks; however, it ignores the effects of 
scalability, reliability, and congestion in large networks such as WAN. Assigning 
controllers to switches in an extensive network can exhibit an imbalance distribution of 
load among the controllers. Therefore, for a software-defined wide area network 
(SDWAN), a partitioning algorithm is employed to cluster the network into smaller 
subnets for controller placement (Killi & Rao, 2019).

Several CPP solutions employ network partitioning techniques in their approaches. For 
example, methods such as Killi, Reddy & Rao (2019), Kuang et al. (2018), Liu, Liu & Xie 
(2016), Xiao et al. (2014), Wang et al. (2018), Xiao et al. (2016), Yang et al. (2019a, 2019b) 
and Zhu et al. (2017) are designed based on k-means. A K-median is used by Liu et al.
(2018) and Kobo, Abu-Mahfouz & Hancke (2019), while Xiao et al. (2014, 2016), Aoki & 
Shinomiya (2015, 2016), Zhao & Wu (2017) used Spectral Clustering. Density-based 
Clustering, Affinity Propagation, and Partitioning Around Medoids (PAM) are also used 
in Liao et al. (2017), Zhao et al. (2017b), Bannour, Souihi & Mellouk (2017) and Dvir, 
Haddad & Zilberman (2018). Others hybridised two techniques in their solution (Yang 
et al., 2019a, 2019b; Firouz et al., 2021; Manoharan, 2021). All these techniques share the 
common idea of partitioning the SDWAN into smaller sub-domains, allowing for 
assigning one or more exclusive controllers to cover each subdomain. The k-means 
algorithm is one of the common methodologies used to partition a network topology. It 
uses Euclidean distance as its similarity metric during the partition process. However, 
computing Euclidean distance in real networks is not always possible due to the lack of 
physically connected pathways in some instances. Similarly, the strategy has no generally 
agreed-upon way to determine the first k partitions. The method varies in how it initialises 
the first set of cluster heads. Hence, the initial cluster head selection significantly affects the 
solution quality; thus, it is a significant limitation.

On the other hand, PAM is quite similar to k-means, except that it minimises the impact 
of outliers by selecting a node at the cluster’s centre as the head. Although PAM does not 
require prior knowledge of k, it has a considerably high complexity to the tune of about 
cubic time. Additionally, while these approaches may be suitable for initial controller 
placement, repeatedly segmenting the entire network to adapt to its dynamic nature is 
unrealistic. At the same time, spectral clustering tends to produce small, isolated 
components and clusters of skewed sizes. In addition, all the solutions did not quantify the 
controller’s overhead and response time (RT) in their performance validation.
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In the rapidly evolving landscape of SDN, the efficient placement of controllers plays a 
pivotal role in network performance and reliability. This article addresses this critical 
challenge by introducing an innovative approach that optimises controller placement and 
considers the impact on critical switches within the network. The existing solution did not 
adequately consider the roles of switches in the network. It is important to note that 
switches have different roles; some switchers are very critical, and others are non-critical. 
The former can have a significant impact on the efficient controller placement solution. 
Identifying critical switches is crucial for optimal controller placement during network 
partitioning decisions. Critical switches possess a high degree and betweenness criticality 
measures that tend to send higher flow rule requests to the controller. As a result, they 
often augment the flow setup delay and cause high update operations. This problem results 
in additional overhead on the controller if multiple critical switches reside in the same 
partition. Therefore, this article proposes the Controller placement algorithm with 
network partition based on critical switch awareness (CPCSA) to mitigate these issues. 
CPCSA identifies critical switch in the SDWAN and then partition the network based on 
the criticality. Subsequently, a controller is assigned to each partition to improve control 
messages communication Overhead and other dependent QoS metrics like loss, 
throughput, and flow setup delay. We itemized the contributions of this article as follows.

• We devised a network partitioning model based on the switch role in the network to 
determine the number of controllers.

• A switch to controller placement strategy was introduced based on switch criticality 
factor to improve the control plane’s performance.

• The performance evaluation result of CPCSA using real networks from Internet 
Topology Zoo in comparison to other relevant CPP algorithms.

The remainder of the article is structured as follows: ‘Related Works’ related works in 
SDN. ‘Materials and Method’ analyses the problem. Next, Section 4 presents the proposed 
solution. Then, ‘Results’ describes the experimental setup and performance evaluation. 
Lastly, ‘Conclusion’ concludes the study and makes recommendations for future research.

RELATED WORKS
Selecting a suitable position in SDWAN for controller placement is crucial to its 
performance (Heller, Sherwood & Mckeown, 2012). Inappropriate controller placement 
can increase communication overhead and flow setup delay. Therefore, several CPP 
solutions have been proposed (Yusuf et al., 2023b). The CPP solutions presented in Xiao 
et al. (2014, 2016), Aoki & Shinomiya (2015, 2016) and Zhao & Wu (2017) utilised spectral 
Clustering to partition the wide-area Network into many subnetworks. Some authors infer 
the count of subnets by exploiting the concept of eigenvectors, using the Haversine 
equation to calculate the similarity graph. Each resulting subnetwork is assigned a 
dedicated controller at a location that minimises the control message latency. Researchers 
in Zhao & Wu (2017) formulate the CPP as an integer linear programming (ILP) with the 
optimisation objective of reducing the network cost. They design a heuristic method to
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solve the ILP. However, spectral clustering tends to produce small, isolated components 
and clusters of similar sizes. In addition, all the solutions did not quantify the controller 
overhead and response time (RT) in the performance validation.

In a different approach to formulating a clustering-based CPP (Zhu, Chai & Chen, 
2017), researchers utilise integer programming (IP). They reduce the network’s 
transmission time by employing a modified version of k-means with the shortest path as 
the similarity metric. In Zhao et al. (2017b), the authors formulate a binary variable model 
of the CPP and cluster it using an affinity propagation technique (APT). APT maximised 
similarity across short distances and moderated preference control to a mean value. In 
another approach, Liao et al. (2017) propose density-based controller placement (DBCP) 
to partition a network into various sub-networks. The DBCP grouped tightly connected 
switches within the same subnet and less-connected switches in a different subnet. The 
value of k and members of each subnet is determined based on the distance to a higher- 
density node. Each sub-network is assigned a single controller. In other techniques, 
PAM-B clustering and NSGA-II were utilised by Bannour, Souihi & Mellouk (2017) to 
solve the Network partitioned-based CPP with the multi-objective problem of optimising 
Latency, capacity, and availability. In another approach, using the shortest path as the 
similarity metric (Wang et al., 2018, 2016), partitioned a network for CPP using k-means. 
Starting with a random centroid, the algorithm iterates continuously until it divides the 
network into k clusters. In a similar effort, researchers utilised simulated annealing (SA) 
and the k-median algorithm (Liu et al., 2018) to determine the optimal location for a 
satellite gateway in a 5G network, aiming to reduce latency. The authors implemented a 
clustering strategy to improve connectivity reliability between satellites and controller 
nodes. Also, Kuang et al. (2018) confronts the network partitioning problem by employing 
the k* -means for a CPP. Initialised the partitioning with more than k clusters and later 
merged the nodes into the k clusters recursively based on the shortest path distance and 
cluster load. While in a different approach proposed by Killi, Reddy & Rao (2019), for 
Network partition-based controller placement to reduce latency, the authors utilise a 
k-means algorithm with initialisation based on cooperative game theory. Cooperative 
game with a set of switches as players are used to mimicking the division of the Network 
into subnetworks. The switches attempt to build alliances with other switches to increase 
their value. They also suggest two variations of the cooperative k-means technique to 
create size-balanced partitions. However, these approaches did not consider load balance 
issues. Dvir, Haddad & Zilberman (2018) formulated the CPP as an IP. The network was 
divided into partitions using a k-medoid clustering technique. However, the value of k is 
determined via a brute-force approach. In contrast, CPP was tackled using a k-centre/k- 
median clustering strategy by Kobo, Abu-Mahfouz & Hancke (2019). The authors 
suggested creating a local and global controller hierarchy. When a controller fails, it is 
replaced using the re-election procedure. To assess load balancing (Yang et al., 2019a, 
2019b) defines two distinct cost functions regarding the network topology structure and 
flow traffic distribution. They then hybridise the network partition scheme to tackle the 
problem of where to locate the load-balancing controller. Each of the numerous sub­
domains that comprise the overall Network has one dedicated controller. Finally, a
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simulated annealing partition-based k-means (SAPKM) to address the placement is 
proposed. SAPKM incorporates a centroid-based clustering to achieve load-balancing 
among the controllers. The k-means algorithm uses Euclidean distance as its similarity 
metric. However, the problem is that it is not always possible to compute the Euclidean 
distance in real networks due to the lack of physically connected pathways. Similarly, 
k-means has no agreed-upon way to determine the first k partitions. The method varies in 
how it initialises the first set of clusters head. Thus, the initial cluster head selection 
significantly affects the solution quality in k-means; this is considered a significant 
limitation. On the other hand, PAM is quite like k-means, except that it establishes a node 
in the cluster’s centre as the head to minimise the effects of the outliers. Although they do 
not require prior knowledge of k, they have a significantly higher level of complexity to the 
tune of about cubic time. At the same time, spectral clustering tends to produce small, 
isolated components and clusters of similar sizes.

Network clustering for CPP using data field theory (DFT) was proposed by Li et al.
(2019). The DFT considers the strength of the wireless nodes’ transmissions and reception 
signal power to determine the controller placement inside each cluster to reduce Latency 
and energy. While Ali & Roh (2022) and Ali, Lee & Roh (2019) presents an SDN partition 
strategy for controller placement in IoT environments to reduce latency using the 
analytical network process (ANP). The authors thoughtfully consider multiple latency- 
inducing parameters to guide their ranking and selection process with ANP. However, it’s 
worth noting that one parameter that wasn’t considered in their analysis is the controller’s 
overhead. This omission is significant as it can impact performance and should ideally be 
factored into such an optimization strategy.

Another work (Manoharan, 2021) employed a graph theory to identify the number of 
controllers and their initial location. A Depth-First-Search algorithm is applied to 
determine Articulation Points (AP) based on two conditions. To obtain the required 
number of controllers and placement positions, they utilize APs. Additionally, they 
discretize a supervised machine learning concept using Manta-Ray Foraging Optimization 
(MRFO) and Salp Swarm Algorithm (SSA) to solve CPP based on network partitioning 
(Firouz et al., 2021). However, the lack of a standardized and rich dataset for model 
training has been a serious concern in any AI-based solution for SDN problems (Isyaku 
et al., 2020; Elsayed et al., 2019). However, privacy and confidentiality issues associated 
with Networks have made sharing this data difficult and scarce. Additionally, the 
approaches may be suitable for acquiring the first controller placement. However, it is 
unrealistic to repeatedly segment the entire Network to meet the evolution of dynamic 
network changes. Thus, they lack an adaptable CPP that responds to the dynamics of each 
given network. Therefore, based on the discussed literature, it can be conclude that all the 
solutions have not adequetely consider the switch's role in the Network to identify and 
separate a set of critical from non-critical switches. Recognizing the critical switches is 
crucial during network partition decisions for optimum controller placement. Such sets of 
switches possess high degree and betweenness criticality measures with many rules in their 
flow table entries. As a result, they often augment the flow setup delay and cause more 
update operations. The problem leads to additional overhead on the controller if multiple
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critical switches are in the same partition. See Table 1 for the summary of these 
approaches.

MATERIALS AND METHODS
Analysis of controller overhead
SDN controller overhead refers to the computational and resource requirements imposed 
on the SDN controller as it manages and controls the network. Although, the controller 
operates based on either proactive or reactive mode. The former may have lower overhead 
but may not cope with the real network []. The latter is widely used due to its flexibility in 
real-time network. However, any newly arrived Flow nFi at switch si 2 S without 
corresponding forwarding rule entries in its flow table will introduce an overhead of 
composing and sending a Packet_IN message to its controller SProverhead on the switch. 
Likewise, on its part, the controller C also suffers the overhead of computing the required 
forwarding rule and subsequent installation in the switches si 2 S flow Table via 
Packet_OUT message CProverhead. Due to these overheads, the new flow nFi, will experience 
a path setup time delay FSetUpSC, while waiting to be directed by a controller C. The flow/ 
path setup delay emanates from five sources (i) a queue waiting time wtS at the switch Si 
before being served for duration stS, (ii) a switch si to controller C Packet_IN message 
propagation time Pin(si, C) (iii) a queue waiting time wtC at controller C before being 
served for (iv) a duration stC and (v) controller C to switch S Packet_OUT message 
propagation time Pout(C, Si). Therefore, cumulatively, the flow setup time delay is 
determined by.

FSetUp — wtS +  stS +  Pin(Si, C) +  wtC +  stC +  Pout(C, Si) (1)

Equation (1) above fundamentally comprised the switch Si processing overhead, the 
controller C processing overhead, and the round-trip time between switch Si, and the 
controller C, given by Eqs. (2)- (4), respectively.

SiProverhead — wtS ^  stS (2)
CProverhead — wtC ^  stC (3)
RTT =  Pin (S, C) +  Pout (C, S) (4)

Considering a network topology with an S set of switches si 2 S and E, as the 
communication links between the switches, can be represented as graph G — (S, E). Any 
mapping of a set of switches si 2 S with a controller C impose an overhead CProverhead on 
the controller that is directly proportional to the cost of the flow rule setup request and 
subsequent rule installation in the flow table.

CProverhead ' SProverhead (5)

The SProverhead at the switch Si is determined by the load of the switch due to the new 
flow nFi arrival rate from both the external source (Host) and internal source (sj). As stated 
in Eq. (5), the overhead SProverhead directly increases the CProverhead. Therefore, if nFhfj)Si, 
denote the external new flows arrival rate at the switch si from host h0. Let Xim 2 {0 ,1 }
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Table 1 Network partitioned-based CPP.

Article Problem Partition/ Network topology properties Performance metrics Weakness
formulation solution considered

approach
Path Switch

role
Metrics Latency Overhead Loss Partition approach Performance

metrics

W ang et al. (2016) MILP Heuristics ✓ X X ✓ ✓ X Not partitioned Throughput and 
loss unaccounted

Killi & Rao (2019), Network Spectral ✓ X Eigen ✓ X X Tend to produce small, High CP overhead,
Kuang et al. (2018) partitioning clustering vectors isolated components and Poor load

Yang et al. (2019b), Zhu ✓ X ✓ X X clusters with similar sizes balancing &

et al. (2017) CP overhead and
throughput

Li et al. (2019) Node Burden ✓ ✓ Traversal set ✓ X X

Liu et al. (2018) ILP Spectral
clustering

✓ X Eigen
vectors

✓ X X

Bannour, Souihi & K-Means ✓ X Euclidean ✓ X X Random centre
Mellouk (2017) distance initialisation stage, the 

number of cluster 
determinations

Modified-AP (Aoki & BIP Affinity ✓ X Shortest ✓ X X Not partitioned
Shinomiya, 2015) propagation distance

Kobo, Abu-Mahfouz & Network Density-based ✓ ✓ Density ✓ X X NA
Hancke (2019) partitioning clustering

A oki & Shinomiya MOCO PAM-B ✓ X Dijkstra ✓ X X Quadratic running time
(2016) complexity

SACA (Xiao et al., 2016) Mathematical K-Median, SA ✓ X Euclidean ✓ X X Random centre

Hu et al. (2017) Network K-Means ✓ X distance ✓ X X initialisation, number of

partitioning cluster determinations,
the use of “means” limit

Zhao & W u (2017) IP K-Mediod X ✓ X X its expression level,
Killi, Reddy & Rao Mathematical K-Means ✓ X ✓ X X Euclidean distance might

(2019), Dvir, Haddad model not get a path physically
& Zilberman (2018) connected path, one size 

fits it-all effect, outliers, 
and noise

Ali & Roh (2022) Clique-based ✓ X Shortest
distance

✓ X X Too rigid to use in practice. 
It tends to produce 
maximally cohesive 
subgraph

The clique property 
cant guarantee 
optimum RT

SACKM (Liu, Liu & Xie, Hybridised SA ✓ X Euclidean ✓ X X K-means limitation, SA Ignore the
2016; X iao et al., 2014) with K-Means distance limited memory to track 

tested solutions, low 
improvement rate,

CP overhead, LB, 
and throughput

M anoharan (2021) Data field theory X X Signal strength ✓ X X Interference

Yang et al. (2019a) IP K-Median ✓ X Haversine ✓ X X Random centre

Yan et al. (2021) Mathematical K-means with ✓ X Euclidean ✓ X X initialisation stage, the

model game theory distance number of cluster
determinations,

PHCPA (Yusuf et al., AI MRFO with Salp ✓ X Cosine ✓ X X Lack of sufficient training Increased PPT,
2023a) Swarm Haversine dataset control message

PITS (L iao et al., 2017) Graph theory, DFS - - ------ ✓ X X overhead

GravCPA (Ali, Lee & LP Louvain X Node Euclidean ✓ X X LPA and gravitation are vulnerable to oscillations
Roh, 2019) algorithms Traffic and non-unique results

ECP (Isyaku et al., 2020) MILP Linearization & 
Supermodular

X X - - ✓ ✓ X The CP overhead will likely resurface due to not 
partitioning the network into smaller clusters.

Elsayed et al. (2019) Greedy None X X X ✓ ✓ X Network properties not 
considered

No controller 
placement 
module

Note:
PITS, Pareto integrated Tabu search; SA, simulated annealing.
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variables indicate whether the switch si is under the control of the controller Cm or not,
 ̂ 1 i f  s _ _  ̂ c

using Xia =  < . - i m . Thus, the nFi arrival rate at Si from host h0 will induce rule[ 0, iJ  si K  Cm
computation overhead on the controller equivalent to:

Ŝ 2/(nFh0 ,si )Xim (6)
si2S

Hence if nFh0 ,S., denote the internal new flows arrival rate at the OpenFlow switch Sj 
from host Si. The arrival rate will induce rule computation overhead at the SDN controller 
Cm equals to

Sj )Xim (7)
si2S

Therefore, for all the OpenFlow switches controlled by the controller Cm, The total 
overall overhead on the controller for rules installation in the OpenFlow switch Si is 
equal to:

CProverhead y > Fhp, St )Xim +  ^}^,inFSi, Sj )Xim +  }̂̂ (̂nFSi,Si )Xim +  ^^XnFSi, h0 ,)Xim (8) 
si2S sisj2S sisj2S si2S

The objective is to minimize the CProverhead to improve the overall FSetUp and other 
QoS metrics. High controller overhead directly increases flow setup time which 
consequently causes performance retardation, especially for traffic with deadline violation 
constraints.

Design of the proposed solution
The proposed controller placement algorithm with critical switch awareness (CPCSA) for 
software-defined wide area network partitioned the network based on the switch role and 
assigned the required number of controllers to each partition. The operational procedure 
of CPCSA consists of three phases, with the output of each phase serving as input to the 
next phase. (i) The critical switch identification phase (CSIP) for reading the network 
topology to identify critical switches. (ii) Network partition phase (NPP) for partitioning 
the discovered topology based on the number of critical switches identified in (CSIP) and 
(iii) controller placement and assignment phase (CPAP), which uses the mathematical 
concept of facility location method to select a strategic position to place an SDN controller 
for each of the partitions formed in (NPP). This way, CPCSA placed an SDN controller in 
each partition formed based on the distance between the critical and non-critical switches 
within the partition to minimize the communication overhead and delay. ‘Network 
topology read phase’, ‘Switch role and critical switch identification phase (CSIP)’, ‘Network 
partition based on switch criticality’ and ‘Critical switch aware controller placement 
(CSACP)’ provide a detailed description of each phase. At the same time, the flowchart 
shown in Fig. 2 presents the overall procedure of the proposed algorithm (CPCSA).
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Figure 2 CPCSA flow chart. Full-size DOI: 10.7717/peerj-cs.1698/fig-2
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Network model and placement metrics
Consider an SDWAN topology modelled as a graph G =  (V, E), with V representing a 
set of nodes and E the communication links between the nodes. The network node V 
comprised a group of OpenFlow switches S and an SDN Controllers C, i.e., S, C 2 V. 
The collection of the OpenFlow Switches S includes critical switches (CS) and non-critical 
switches (nCS). For controller placement, the technique partitions G into multiple sub­
nets SDWAN_Partitionsi to improve latency performance and reduce a Controller’s 
overhead. In this study, we formulate the network partition problem by considering the 
switch’s role in the Network. This help in identifying the critical and non-critical switches 
in the Network. We defined the set of critical switches (SCS) as:

k
SCS =  CSi (9)

i=1

where k represents the Network’s total number of critical switches and gives us the number 
of subnets to partition the Network G. At the same time, we can obtain the set of non- 
critical switches from

SnCS =  S\SCS (10)

Therefore, by partitioning the OpenFlow switches S 2 G into k sub-nets, namely, 
SDWAN_Partitionsi V i =  1 , 2 , k according to the number of critical switches CS C V. 
The resulting SDWAN_Partitionsj can be defined as:

SDWAN_Partitionsi =  (Vi, E;) (11)

Such that:

SDWAN_Partitionsi is a component (12)
k

^  CSi =  1 (13)
i=1

Vi =  j 2 k ; SDWAN_Partitionsi n SDWANpartitionsj =  { 0 }  (14)
k k

L K U  Ei (15)
i=1 i=1

Equation (12) indicates that the sub-net of any of the SDN-partition is made up of 
connected OpenFlow switches with links. Equation (13) ensures only one critical switch 
CSi is assigned to each partition. Equation (14) implies that an OpenFlow switches s; can 
only be allocated to a single domain, while Eq. (15) ensures all the network switches are in 
one of the subnets. See Table 2 for the summary and description of symbols and notation 
used in our model.

Network topology read phase
Algorithm 1 reads a GraphML file containing a network topology of SDWAN located at 
graphml_path. An empty graph object stores the network topology as G =  (V, E) created
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Table 2 Notations and symbols.

Notation Description

G SDWAN

E Set of communication links in the network

V Set of network nodes (comparison of both controllers and switches)

C Set of SDN controllers

CProverhead Controller overhead

S Set of OpenFlow switches

SProverhead Switch overhead on the controller

CS Critical switches

nCS Non-critical switches

SCS Set of critical switches

SnCS Set of non-critical switches

SDWAN_Partitionsi Sub-net of OpenFlow Switches

dis Shortest distance between the controller cj and switch si in Sdom ain

k An integer representing the number of CS, SDWAN_Partitions, and C

nF i New flow

( nFS< ,Sj) Number of flow between source and destination

X im { 0 ,1 }  binary variables indicating whether the switch s i is under the control of the 
controller Cm

Algorithm 1 ReadNetworkGraphTopology graph Cm.

Input: - graphml_path: the path to the GraphML file containing the network topology

Output: - G: a graph object representing the network topology

STAT of Algorithm

1. G ^  new Graph()

2. G ^  read_graphml(graphml_path)

toshscaero
P

h

rn 2  G

4. Compute Nsp a,,Nsth,atptesrtosh

5. Return, G, and Nŝ s isj)

END of Algorithm

in line 1 of the algorithm. V represents a set of switches in the Network, and E the physical 
communication links between the nodes. The network switch V comprised some 
OpenFlow switches S and SDN controllers’ C, i.e., S, C 2 V. However, the OpenFlow 
switches S consist of critical CS and non-critical switches nCS. The study defines a set of 
critical switches SCS in Eq. (9). Algorithm 1 reads the file to generate a graph object 
representing the network topology in line 2. Then, the algorithm returns the graph object 
in line 3 to identify these critical switches. The read_graphml function is a pre-existing 
function that reads and parses GraphML files.
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Switch role and critical switch identification phase (CSIP)
CSIP distinguishes between switches based on their roles to identify critical switches within 
a network. Because some switches within the network have a significantly higher frequency 
of communication with the SDN controller for rule installation than others. These switches 
are called critical switches because they impact the responsiveness of the SDN controller 
within the network. Therefore, a switch si 2 Vi with high communication frequency with 
SDN controller for rule installation is considered more critical CIs compared to an 
ordinary switch.

To establish the criticality of a switch si, we used the switch criticality metrics in a 
network, and the switch flow rule requests overhead on the controller. We assume that 
information in the network Gi from different sources s; V i =  1,2.., N is propagated in 
parallel from the source si to the destination sj along the shortest path (geodesic), denoted 
as dij. Based on these assumptions, a switch s; V i =  1,2.., N in a communication network 
Gi =  (Vi, E) is critical to the extent of its criticality factor siCrf. Therefore, we use the 
switch’s connectivity in the network and its flow rule request overhead on the controller to 
model the switch criticality factor siCrf .

To determine the switch connectivity in the network, CSIP uses Algorithm 1 to return 
the number of shortest paths Nsp passing through the switch starting at si 2 V and ending 
at sj 2 V. Thus, we calculate the metric using the formula Eq. (16). On the other hand, to 
compute the switch traffic overhead on a controller, we consider the weighted new flow 
rule request sent from the source switch to the controller due to a new flow arrival based on 
Eq. (6) using Eq. (17). Following that, we compute the switch criticality factor s;Crf using 
the formula presented in Eq. (18) using these parameters. Finally, we demonstrate the 
procedure for critical switch identification in Algorithm 2.

In (lines 1-2), Algorithm 2 initializes two empty dictionaries, SCS and SnCS. The 
dictionaries are used to store critical-switch and non-critical-switch information, 
respectively. For each switch si 2 V in the SDWAN G, Algorithm 2 determines whether 
the switch si is critical or non-critical using Eq. (9) and by calculating its criticality factor 
(s;Crf) using Eq. (18). The total (totaLs;Crf) and average (ave_siCrf) criticality factors for 
all switches in the network are also computed (lines 3-8). Algorithm 2 then checks the 
criticality factor (s;Crf) of each switch si in the network topology G against the average 
criticality factor value (ave_siCrf) (lines 10-11). If (siCrf) is greater than (ave_siCrf), the 
switch is classified as critical and added to the set of critical_switch SCS containers along 
with its criticality factor. Otherwise, it is classified as non-critical and added to the 
collection of non_critical_switch nSCS containers (lines 12-13).

(16)

(17)
si 2S

siCrf =  siBC +  sinFi (18)
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Algorithm 2 Critical switch identification.

Input: - G, and Nŝ s isj):

Output- {SCS, SnCS, CS_neighbours, distance}

STAT of Algorithm

1. SCS ^  {}

2. SnCS ^  {}

3. FOR si 2  V :

4. siBC ^  calculate switch connectivity in G using Eq. (16)

5. sinFi ^  calculate switch flow rule request using Eq. (17)

6. siCrf ^  calculate the switch criticality factor using Eq. (18)

7. totaLsiCrf ^  sum_of_values (siCrf)

8. av^siCrf ^  totaLsiBC/length_of_values (siCrf)

9. FOR each si, in (siCrf):

10. IF (siCrf) > av^siCrf:

11. add si and siCrf to SCS.

12. ELSE:

13. add si and siCrf to SnCS.

14. CS_neighbors ^  {}

15. FOR each si, in siCrf:

16. add a list of C S ’s neighbours to CS _neighbours.

17. distance ^  {}

18. FOR each CS in SCS:

19. For si, distance in shortest_path_length from CS in G:

20. add (si, CS) and distance to distance.

21. return SCS, SnCS, CS_neighbours, distance 

END of Algorithm

Next, for each critical switch (CS) in the SCS container, Algorithm 2 retrieves the list of 
its neighbours and calculates its shortest path distance to all other switches in the network 
topology. The resulting information is added to the CS_neighbors and distances containers 
(lines 14-20). Finally, Algorithm 2 returns the sets of critical_switch, non_critical_switch, 
critical_switch_neighbors, and distances in (line 21).

Network partition based on switch criticality
The study designed a CSANP to partition the SDWAN (G) into smaller networks based on 
the number of critical switches (num_CS). The CSANP collects inputs from Algorithm 2, 
where the critical switches of G are identified. The input parameters include the set of 
critical switches (SCS), non-critical switches (SnCS). The procedure is as shown in 
Algorithm 3. CSANP starts by initializing the number of Critical Switches (num_CS) and
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Algorithm 3 Critical switch aware network partition (CSANP).

Input: (G, SCS, SnCS)

Output: SDWAN_Partitions 

STAT of Algorithm

1. num_CS = len(SCS)

2. num_nCS = len(SnCS)

3. avr_num_nCS = num_nCS / /  num_CS

4. num_CS_plus = num_nCS % num_CS

# Add all Critical Switches to SD-WAN partitions

5. SDWAN_Partitions = [[] for _  in range(num_CS)]

# Assign non-Critical Switch to Critical Switch based on minimum distance

6. For sj in SnCS:

7. closest_CS = None

8. min_distance = float(‘inf )

9. For i, si in enumerate(SCS):

10. dist = distance[si][sj]

11. If dist < min_distance:

12. min_distance = dist

13. closest_CS = i

14. SDWAN_Partitions[closest_CS] = SDWAN_Partitions[closest_CS] + [sj]

# Balance partitions and assign non-Critical Switches to Critical Switch

15. For i, sj in enumerate(SnCS):

16. closest_CS = None

17. min_distance = float(‘inf )

18. For j, si in enumerate(SCS):

19. dist = distance[si][sj]

20. If dist < min_distance:

21. min_distance = dist

22. closest_CS = j

23. cluster_index = closest_CS

24. If len(SDWAN_Partitions[cluster_index]) < avr_num_nCS:

25. SDWAN_Partitions[cluster_index] = SDWAN_Partitions[cluster_index] + [sj]

26. Elif len(SDWAN_Partitions[cluster_index]) < avr_num_nCS + 1 and num_CS_plus > 0:

27. SDWAN_Partitions[cluster_index] = SDWAN_Partitions[cluster_index] + [sj]

28. num_CS_plus -= 1

29. Else:

# If no condition is met, create a new partition for the non-Critical switches

30. SDWAN_Partitions = SDWAN_Partitions + [[sj]]

31. return SDWAN_Partitions 

END of Algorithm

Muhammed Yusuf et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1698 15/28

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.1698


PeerJ Computer Science

non-critical switches (num_nCS) on lines 1 and 2. It then calculates the average number of
non-Critical Switches to be associated to each critcal switch and the remaining non-critical 
switches (num_CS_plus) on lines 3 and 4. The SDWAN_Partitions list is initialized with 
empty lists, where each list represents a partition associated with a critical switch (CS), on 
line 5. The algorithm then iterates through each non-critical switch (sj) in SnCS (line 6) 
and determines its closest critical switch (CS) based on the minimum distance (lines 7 to 
14). The non-critical switch is then assigned to the corresponding partition in 
SDWAN_Partitions (line 14). Next, the algorithm iterates through each non-critical switch 
again (sj) (line 15) and assigns it to the appropriate partition in SDWAN_Partitions based 
on balancing criteria (lines 17 to 29). If a partition has fewer than avr_num_nCS, the 
current non-critical switch is added to it (line 24). If the partition has avr_num_nCS and 
there are remaining non-critical switches (num_CS_plus), one of them is added to the 
partition (lines 26 to 28). If the partition has avr_num_nCS, and there are no remaining 
non-critical switches, a new partition is created for the current non-critical switch (line 30). 
The process continues until all non-critical switches are assigned to partitions, and the 
resulting SDWAN_Partitions list contains the partitions, each associated with its 
respective critical switch. Finally, the algorithm returns the list of SDN
[{SDWAN_Partitions}, {SDWAN_Partitions}............... |num_CS|] in line 31. Refer to
the network partition formation phase of Fig. 2 for the flowchart for the algorithm.

Critical switch aware controller placement (CSACP)
The proposed Critical Switch Aware Controller Placement (CSACP) algorithm is 
responsible for placing an SDN controller in each of the resulting network partitions 
(subnets) produced by CSANP. This placement problem is a variant of a facility location 
problem. Therefore, for each of the resulting subnets [{SDWANPartitions1} , . . .  
{SDWAN_Partitions|num_cs|}] obtained from the CSANP, we designed a CSACP 
algorithm to place the SDN controller on each SDWAN_Partitionsi =  (Vi, Ei) within the 
shortest distance of each demand point in the subnets. We assigned C to represent the set 
of controllers cj 2 C V j =  1,2..., m for the k sub-nets. Next, for each,
V SDWANPartitionsi, our placement model maps the controller cj 2 C V j =  1 , 2 . ,  m 
to the demand points si 2 V, which are the OpenFlow switches, in a way that the dist(sicj) 
is the shortest distance between the candidate controller locations j 2 SDWAN_Partitionsi 
and the mapped controller cj 2 C. Thus, the proposed CSACP algorithm finds a suitable 
position in each resulting partition to place the controller. Algorithm 4 provides a detailed 
description of the proposed controller placement method.

1
(19)

si 2 SDWAN_Partitionsi

Such that

si, cj 2 SDWANPartitionsi (20)
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Algorithm 4 Critical switch aware controller placement (CSACP).

Input:{SCS, SnCS} {SDWAN_Partitions1} , . . .  {SDWAN_Partitions|num_CS|}]

Output- controller_positions 

STAT of Algorithm

1. controller_positions = { }

2. For SDWAN_Partitions_num, partition in enumerate(SDWAN_Partitions) Do

3. max_critical_switch = null

4. ma^_s;Crf = -1

5. For switch in partition, Do

6. If switch in critical_switch and critical_switch[switch] > ma^_s;Crf Then

7. max_critical_switch = switch

8. max_s;Crf = critical_switch[switch]

9. End If

10. End For

11. distances_within_partition = { }

12. For a node in partition, Do

13. If the node in non_critical_switch, Then

14. distances_within_partition[node] = distances[(node, max_critical_switch)]

15. End If

16. End For

17. min_distance_node = null

18. min_distance = infinity

19. For a node in distances_within_partition, Do

20. If distances_within_partition[node] < min_distance, Then

21. min_distance_node = node

22. min_distance = distances_within_partition[node]

23. End If

24. End For

25. controller_positions[SDWAN_Partitions_num] = (max_critical_switch, min_distance_node)

26. End For

27. return controller_positions.

END of Algorithm

The proposed CSACP algorithm takes inputs from CSANP (Algorithm 2), which 
includes the SDWAN partitions, critical and non-critical switches, and their criticality 
factors. Each partition is a set of switches within the SDWAN network. The algorithm 
initializes an empty dictionary called controller_positions to store the controller positions 
for each SDWAN partition in line 1. Then, for each partition in the input set of partitions, 
the algorithm identifies the critical switch with the highest criticality factor ma^siCrf. In
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Table 3 Topologies information and traffic information.

Topologies information Traffic information

Topology Number switches Number of links Density Ave SBF New flow Packet_IN msg size Packet_OUT msg size

Arpanet19728 29 

ARNES 34 

AsnetAm 65

32 0.0788 

47 0.0837 

79 0.0380

0.136

0.076

0.044

For every 100,000 Kb 80 bytes 80 bytes

(lines 2-11), Algorithm 4 calculates the distance to the identified critical switch using a 
pre-computed distance metric stored in a distance dictionary for each non-critical switch 
in the partition. Next, the algorithm finds the non-critical switch within the partition that 
has the minimum distance to the identified critical switch and assigns it as the controller 
position for that partition. The algorithm then stores the controller position for that 
partition in the controller_positions dictionary in (lines 12-26). Finally, the algorithm 
returns the controller_positions dictionary as the algorithm output in line 27.

Experimentation setup and performance evaluation of CPCSA
In this section, the performance of CPCSA is evaluated and compared with other 
representative solutions in the literature. The study utilizes three (3) real network 
topologies obtained from the Internet Topology Zoo (ITZ) (A. G. University o f  Adelaide, 
2023) and randomly generates topologies for conducting the experiments. The database 
provides researchers access to hundreds of real network topologies from various service 
providers. Thus, the study selects AsnetAm, Arpanet19728, and ARNES networks for the 
experiments. Table 3 gives additional information on other aspects of the chosen network 
topologies, which vary in size and structure. The partitioning phase is performed offline 
with a script written in Python 3.8.0 and NetworkX components. The experiment uses 
Mininet version 2.3.0 to build the topologies of these partitions with an OpenvSwitch for 
interaction with a Ryu SDN controller in each partition based on OpenFlow v1.5.1 
specifications. The article borrows traffic matrix scenarios in the GEANT network (Uhlig 
et al., 2006) for understanding traffic patterns. The traffic matrix of (Uhlig et al., 2006) 
describes the traffic between nodes and its transfer speed, highlighting what constitutes a 
new flow. A D-ITG utility injects a TCP/UDP flow on 1,024 Mbps transmission lines of the 
Mininet architecture to generate the traffic. Hence, the study model, one new flow for every 
100,000 KB, exchanged, according to Poisson traffic distribution in terms of Packet Inter 
Departure Time (PIDT). The reliance of the packet_IN message on whether the switch 
piggybacked the first packet of a flow to a controller (Yusuf et al., 2023c). The article 
considers its size and Packet count as in Obadia et al. (2015) to account for it. Additionally, 
as proved in Obadia et al. (2015), there must be a packet OUT message (flow_mod Packet) 
for every packetIN message; thus, the study considers their sizes and packet count equal.

We start off the evaluation of CPCSA by providing a visual representation of its 
controller placement result in Fig. 3. We then presented the overhead incurred by the 
controller placed in a network using the proposed CPCSA compared to other related CPP
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solutions in Fig. 4. While in Fig. 5, the study investigates the impact of CPCSA on fault 
tolerance by evaluating the rate of control packet loss. Lastly, the evaluation of Throughput 
and average switch-to-controller Latency is done in Figs. 6 and 7, respectively. We conduct 
all the experiments on a machine with Intel(R) Core (TM) i7-10750H CPU @ 2.60 GHz, 
2.59 GHz, and 16.0 GB memory.

RESULTS
Network partitions and controller placement positions
The diagrams presented in Figs. 3A- 3I illustrate the network partitions and selected 
positions for controller placement as determined by the proposed CPCSA algorithm. 
Figure 3 depicts the outcomes of the controller placement output when applied to the 
Arpanet19728, ARNES, and AsnetAm topologies. As demonstrated in Figs. 3A, 3E, and 3I, 
before network partitioning, node 4, node 7, and node 22 are designated as the controller 
positions. This selection occurs based on the switch criticality factors siCrf ranging from 
0.25, 0.50-0.61, to 0.59-0.66 in the respective topologies. Conversely, as shown in Figs. 3B, 
3F and 3J, when the switch criticality factors are 0.25, 0.18-0.49, and 0.27-0.55 in the 
corresponding networks, the networks are partitioned into two subnets. Consequently, in 
Arpanet19728, nodes 4 and 13 are chosen as the controller positions, while in ARNES, 
nodes 7 and 30 are selected. In the AsnetAM topology, the controller positions are nodes 
22 and 7. Furthermore, by reducing the switch criticality factors siCrf to 0.22, 0.14-0.15, 
and 0.15-0.25, the respective networks experienced partitioning into four subnets. This 
resulted in the inclusion of nodes 23 and 28 as additional controller positions in the 
Arpanet19728 topology. Similarly, in the case of ARNES, nodes 23 and 29 were selected as 
new placements, while for AsnetAM topology, CPCSA chooses nodes 8 and 26 to place the 
new controllers. Please refer to Figs. 3D, 3H, and 3L for visualization

Controller overhead
Figure 4 shows the accumulated controller’s rule installation overhead in the 
Arpanet19728, ARNES, and AsnetAm network topologies with SPDA (Guo et al., 2022), 
gravCPA (Wang, Ni &Liu, 2022), and the proposed CPCSA, respectively. The experiment 
results show that CPCSA incurred lower rule installation overhead than SPDA (Guo et al., 
2022) and gravCPA (Wang, Ni & Liu, 2022) in all the topologies. As shown in Fig. 4A, the 
proposed CPCSA had reduced the SDN controller’s overhead compared to SPDA and 
gravCPA in the AsnetAM topology by 63% and 49%, respectively. Meanwhile, in Fig. 4B, 
with the Arnes topology, the proposed technique is shown to cut the overhead by 54% and 
36%. Lastly, CPCSA minimizes the overhead of SPDA (Guo et al., 2022) and gravCPA 
(Wang, Ni & Liu, 2022) by 63% and 51% in the Arpanet19728 topology, as revealed in 
Fig. 4C. The achievement of the overhead reduction is attributable to the control of the 
number of critical switches CPCSA assigns to a single SDN controller. A switch is critical if 
it continually appears along the shortest path of many dissimilar host-to-destination 
communicating pairs. This type of switch receives an augmented number of rule 
installation instructions from the controller on what to do with the flow. Because, by
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Figure 3 (A -D ) Arpanet topology; (E -H ) Arnes topology; (I-L) AsnetAm topology. Full-size DOI: 10.7717/peerj-cs.1698/fig-3

default, flows are usually routed along the shortest path from the source to the destination 
host in most networks. Thus, the controller with a higher number of critical switches in a 
partitioned SDWAN incurs higher overhead. The additional controller overhead will 
amount to the number of switches assigned to the controllers by a factor of their generated 
control traffic.

Control packet loss
In this section, this study measures the impact of control packet loss during switch-to- 
controller communication to verify CPCSA’s fault-tolerance benefits. High control plane 
overhead can induce a network problem, which can cause some switches to lose 
connections with their controllers, resulting in dropped packets. The study expects CPCSA 
to reduce the possibility of Network failures owing to excessive controller overhead, which 
can lead to substantial packet loss. Because, by design, the CPCSA differentiates among
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Figure 4 (A -D ) Overhead. Effect of flows installation cost on the overhead on the number of controllers.
Full-size DOI: 10.7717/peerj-cs.1698/fig-4

network switches and restricts the number of critical switches for each partition. We use 
Python 3.8.0 with NetworkX and Matplotlib library components for simulation. However, 
unlike the previous experiments with real network topologies, fully connected networks 
are randomly generated using Barabasi-Albert (BA) model. After 50 repeated experiments, 
the average results findings in comparison to alternative approaches are shown in Fig. 5. 
The y and x-axis in Fig. 5 display the average control packet loss as a function of the x-axis 
representation of the total network nodes, n. As expected, CPCSA has the lowest average
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Figure 5 (A and B) Packet loss result. Comparison of packet loss. Full-size DOI: 10.7717/peerj-cs.1698/fig-5

packet loss rate of the four routing algorithms due to minimising the controller’s overhead. 
On DBCB, the proposed CPCSA reduced packet loss by 31%, while on SPDA and 
gravCPA, it reduced it by 61%. The minimum controller’s overhead correlates better with 
preventing network failure and lower control packet loss. Therefore, a low average control 
packet loss indicates the technique’s ability to avoid network faults due to high overhead.

Throughput
Figure 6 displays the network throughput evaluation result between the proposed CPCSA 
and the benchmark algorithms. The Throughput metric gives information about the 
performance of the techniques regarding the number of control data packets sent from a 
source host and successfully delivered at the destination host during a transmission period 
(Guo et al., 2022). The throughput metric is relevant in assessing CPCSA performance 
about how it reacts to network-changing events that can trigger flow setup requests or 
failure. Figure 6A shows the result of CPCSA’s throughput with different numbers of 
controllers. Figure 6B shows the CPCSA’s Throughput vs that of gravCPA (Ali, Lee & Roh, 
2019) and SPDA (Obadia et al., 2015). As can be seen from Fig. 6B, CPCSA outperformed 
the benchmarked reference algorithms. Comparatively, the algorithm improved the 
throughput achieved by gravCPA and SPDA by 16% and 18%, respectively. This 
improvement indicates that the methodology adopted by CPCSA to minimise the 
controller’s overhead significantly influenced the control packet delivery rate. Thus, this 
analysis affirms the research question: “Can controlling the number of critical switches 
under the control of an SDN controller improve the Quality of Service in a network?”
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Figure 6 (A and B) Throughput. Comparison of throughput. Full-size DOI: 10.7717/peerj-cs.1698/fig-6

Switch to controller average latency
In this subsection, the study demonstrates how the average switch-controller latencies 
respond when a controller is appropriately placed in the subnets of the network partitioned 
while considering critical switches. For validation and revelation of results, the study 
compares the performance of CPCSA with that of other controller placement solutions 
that incorporate a network partitioning strategy and allocation of a controller to each 
subnetwork. In the experiments, we ensure that all the benchmarked algorithms deploy the 
same number of controllers as CPCSA in the network for a fair evaluation. Therefore, 
given a controller cj 2 C and the switches si 2 SDWAN_Partitionsi in the sub-network, 
the CPCSA uses the relation in Eq. (17) to measure the latency metrics. Based on the result 
obtained, Fig. 7 displays the relationships between the average switch-controller latencies 
with the number of controllers and partitions varying from 1 to 4 on three (3) topologies. 
As shown in Fig. 7, the result exhibits a monotonic decreasing trend in the switch- 
controller Latency with an increasing number of partitions and controllers. We observed 
this pattern throughout all four (4) algorithms under study. i.e., Increasing the number of 
controllers and partitions causes all the compared algorithms to behave identically 
regarding average switch-controller control packet processing delay. However, CPCSA 
performs significantly better when compared to SPDA, DBCP, and gravCPA algorithms. 
As shown in Fig. 7A, the proposed CPCSA reduces the average switch-to-controller 
Latency by 27%, 12%, and 3%, respectively, compared to SPDA (Guo et al., 2022), DBCP 
(Liao et al., 2017), and gravCPA (Wang, Ni & Liu, 2022) algorithms when the Algorithms 
partitioned the network into 4.
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Figure 7 (A and B) Latency. Relationship between switch to controller latency. Full-size DOI: 10.7717/peerj-cs.1698/fig-7

CONCLUSIONS
The controller placement algorithm with network partition based on critical switch 
awareness (CPCSA) is a novel approach to address the challenge of transient congestion 
due to controllers’ overhead in the existing controller placement problems (CPP) solutions 
in SDN. CPCSA identifies the set of critical switches in a network to guide the network 
partition procedure for finding the optimal number of controllers and placement in the 
network. The algorithm has been implemented and evaluated in a laboratory testbed in a 
series of comparative experiments with similar solutions using multiple Real life network 
topologies from ITZ. The comparative experiments demonstrate CPCSA’s effectiveness in 
reducing control message overhead, control packet loss, switch-to-controller latency, and 
improved throughput. The results show that the proposed solution has achieved an 
aggregate reduction in the controller’s overhead by 73%, loss by 51%, and latency by 16% 
while improving throughput by 16% compared to the benchmark algorithms. However, 
the proposed scheme does not support heterogeneous controllers and has no defense 
mechanism against vulnerabilities such as DDOS, common-mode fault, etc.

For future research, we plan to update the CPCSA controller placement model with 
traffic flow behavioural quality of service requirements for consideration. It would be 
intriguing to employ machine learning techniques such as deep learning to study flow 
behaviour based on flow history for the classification. Considering this would support 
designing a controller placement with traffic dynamics awareness. The aim is to partition 
the network and place a controller while considering the traffic pattern in the network. 
Another exploration avenue could be integrating the algorithm with heterogeneous 
controllers’ support. We can see the motivation for these from many perspectives. First, a
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homogeneous CP provides a potential security risk due to the controllers’ common-mode 
fault, often known as a common vulnerability point. Assume enemies are aware of the 
vulnerability of one controller; in this instance, they can easily knock down the entire 
network by exploiting the controller’s shared vulnerability. Second, interoperability 
between various controller platforms and traditional IP networks can encourage and 
facilitate the commercial adoption of SDN globally. Very little research has examined this 
direction thus far. Therefore, undertaking further research in this direction will be a 
valuable contribution.
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