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ABSTRACT
The spread of infectious illnesses has been a significant factor restricting aquaculture
production. To maximise aquatic animal health, vaccination tactics are very successful
and cost-efficient for protecting fish and aquaculture animals against many disease
pathogens. However, due to the increasing number of immunological cases and
their complexity, it is impossible to manage, analyse, visualise, and interpret such
data without the assistance of advanced computational techniques. Hence, the use
of immunoinformatics tools is crucial, as they not only facilitate the management
of massive amounts of data but also greatly contribute to the creation of fresh
hypotheses regarding immune responses. In recent years, advances in biotechnology
and immunoinformatics have opened up new research avenues for generating novel
vaccines and enhancing existing vaccinations against outbreaks of infectious illnesses,
thereby reducing aquaculture losses. This review focuses on understanding in silico
epitope-based vaccine design, the creation of multi-epitope vaccines, the molecular
interaction of immunogenic vaccines, and the application of immunoinformatics in fish
disease based on the frequency of their application and reliable results. It is believed that
it can bridge the gap between experimental and computational approaches and reduce
the need for experimental research, so that only wet laboratory testing integratedwith in
silico techniques may yield highly promising results and be useful for the development
of vaccines for fish.

Subjects Aquaculture, Fisheries and Fish Science, Bioinformatics, Computational Biology,
Immunology
Keywords Immunoinformatics, Computational biotechnology, Vaccines, Aquaculture, Fish
diseases, Molecular dynamics simulation, In silico epitope-based vaccine design, Molecular
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INTRODUCTION
Millions of farmers, food processors, traders, researchers, technical experts, and leaders
all over the world are engaged in the daunting challenge of feeding a projected nine
billion global population by 2050. Fish and other aquatic products from aquaculture play
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a significant role in meeting the dietary needs of all people, as well as the requirements
of the poorest for food security (Mair et al., 2023). Aquaculture accounts for 49.2% of
total aquaculture and fisheries production on a global scale, with proportions varying by
region and production sector. Aquaculture is essential to meet the world’s need for fish for
several reasons, including overfishing, habitat degradation, climate change, pollution,
and unsustainable fishing practices (Divya & Devi, 2023). However, the sustainable
development of the aquaculture sector is hindered by many factors, with the control
of infectious diseases being one of the most significant challenges, as fish disease outbreaks
have caused enormous economic losses in the aquaculture industry (Tavares-Dias &
Martins, 2017; Peterman & Posadas, 2019; Fernández Sánchez et al., 2022; Abdelrahman et
al., 2023). Losses in fish production, revenue, livelihoods, and international trade (citation)
are major components of economic losses caused by fish disease outbreaks in aquaculture,
emphasizing the need for effective fish disease management strategies.

Despite antibiotics or chemotherapeutics being used for fish disease treatment in
aquaculture, drug resistance issues and safety concerns become obstacles to resolving
fish disease outbreaks (Harikrishnan, Balasundaram & Heo, 2011; Sneeringer, Bowman &
Clancy, 2019). Thus, fish vaccinations have been extensively employed in the aquaculture
industry. Prior to deployment, fish vaccines, like those used in human and veterinary
medicine, must pass stringent tests for safety and efficacy. In safety assessments, potential
adverse effects on vaccinated fish, non-target species, and the environment are evaluated.
These tests ensure that the vaccine does not cause excessive damage to the fish, has no
negative effects on non-target organisms, and does not introduce harmful substances into
the environment (Irshath et al., 2023). The effectiveness of fish vaccines is evaluated both
in the laboratory and in the field. The immune response of the fish is monitored in the
laboratory to corroborate that the vaccine induces an adequate immune response. Trials
are conducted in the field to ensure that the vaccine provides protection against the targeted
pathogen under real-world conditions.

Notably, although vaccines considerably reduce the likelihood of disease outbreaks,
they do not guarantee complete immunity. Individual fish may respond differently
to vaccination, similar to other animals, due to a variety of factors, including genetic
variability, age, nutritional status, stress, and concurrent infections. This is why continuous
monitoring of the efficacy and safety of vaccines is necessary (Zimmermann & Curtis, 2019).
Vaccines are an essential component of the sustainable management of aquaculture, as they
contribute to disease control and fish welfare while reducing the use of antibiotics. They
provide a proactive and preventative approach to health management, which aligns with
the overarching goal of assuring global food security. As is the case with all medications,
the key to their successful application rests in their application in accordance with scientific
research and established guidelines.

A fish vaccine typically contains a substance derived from pathogenic microorganisms
in non-pathogenic forms that act as an antigen. By stimulating the fish’s immune system
to combat a specific pathogen, the system is permitted to create a response, as well as a
‘‘memory’’ to cause the acceleration of the response, when the specific organism that causes
the disease creates future infections (Yanong, 2017;Ma et al., 2019;Kayansamruaj, Areechon
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& Unajak, 2020). Traditional methods were used to develop a variety of vaccines, including
killed whole-cell, live-attenuated, recombinant DNA, subunits, and toxoid vaccines
(Gudding & Van Muiswinkel, 2013; Ma et al., 2019; Bouazzaoui et al., 2021). However,
most authorized and commercial vaccines currently in use in the aquaculture industry are
killed whole-cell vaccines while other vaccine groups are still being studied in live animals
or are in the experimental phase (Adams, 2019; Mohd-Aris et al., 2019).

The killed whole-cell vaccine, also known as bacterin, is among the oldest vaccination
technologies indigenously manufactured by many developing countries (Maeda et al.,
2021). To make such a vaccine, it requires organisms that must be inactivated or that have
died through physical or chemical procedures like inactivation with heat, irradiation with
UV, or inactivation through formalin or chloroform (Lee et al., 2012; Tafalla, Bøgwald
& Dalmo, 2013). When administered to the host, they induce strong protective humoral
immune responses against those pathogens (Damodharan et al., 2021). Using killed whole-
cell vaccines can prevent a number of viral disease outbreaks, which include infectious
necrosis of the pancreas, spleen, and kidney; and pancreatic disease viruses; as well as
bacterial diseases such as Vibriosis, enteric septicaemia of catfish, and Streptococcus
infections (Assefa & Abunna, 2018; Ma et al., 2019).

Live-attenuated vaccines are types of vaccines that contain live microorganisms whose
virulent properties were disabled under specific cultivation conditions to generate a broad
immune response (Abdelhamed, Lawrence & Karsi, 2018; Heckman et al., 2022). Many
scientific studies have focused on these vaccinations, which are being investigated for
commercialization as fish vaccines due to their capacity to combat 209 infectious diseases
caused by recognised and unknown pathogenic microorganisms still under investigation
(Kayansamruaj, Areechon & Unajak, 2020). Unlike killed whole-cell vaccines, live-
attenuated vaccines are able to induce both cell-mediated and humoral immune responses
(Shoemaker et al., 2009; Côté-Gravel, Brouillette & Malouin, 2019). These vaccines with a
minimum dosage are adequate to elicit long-lasting protective immune responses as they
mimic the real infections caused by pathogens. This incident preferentially evokes T-cell
proliferative responses relative to B-cell responses (Tajimi et al., 2019; Muñoz Atienza,
Díaz-Rosales & Tafalla, 2021). Thus, they confer greater adaptive immune protection
in fish compared with the induction of killed whole-cell vaccine or subunit vaccine
(Sudheesh & Cain, 2017;Mohd-Aris et al., 2019). For instance, live-attenuated vaccinations
have prevented herpesvirus disease (Dhar, Manna & Thomas Allnutt, 2014; Huang et
al., 2021), columnaris disease (Shoemaker et al., 2011; Cai & Arias, 2021), and bacterial
kidney disease (Evensen, 2016; Delghandi, El-Matbouli & Menanteau-Ledouble, 2020)
caused by pathogens; KHV Herpesvirus, Flavobacterium columnaris, and Renibacterium
salmoninarum, respectively.

The recombinant DNA vaccine is one of the experimental vaccines now in use and in
research. Using the gene gun technique, the pathogen gene is cloned into the vector before
being introduced into the host. Subsequently, the protein that functions as an antigen
will be synthesised within the host and will elicit an immunological response (Lorenzen
& LaPatra, 2005; Hølvold, Myhr & Dalmo, 2014; Collins, Lorenzen & Collet, 2019). Similar
to live-attenuated vaccines, it induces both humoral and cellular immunity (Nascimento
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& Leite, 2012; Bedekar, Kole & Tripathi, 2020). For instance, Nile tilapia vaccinated with
the recombinant DNA vaccine SL7207-pVAX1-sip had a higher survival rate following
Streptococcus agalactiae infection (Zhu et al., 2017); while flounder fish were conferred with
a protective immune response by administering a vaccine based on DNA that encoded the
VAA gene of Vibrio anguillarum (Xing et al., 2019). This demonstrates that recombinant
DNA vaccines are useful tools in investigating the key factor in the pathogenicity of the
etiological agent to the fish and are economically viable in animals with extremely high
value (Khan et al., 2016;Mzula et al., 2019).

When it is difficult to cultivate an organism, subunit vaccines are advantageous
because they utilise the immunogenic component of the organism. Subunit vaccines
may incorporate toxoids, subcellular fragments, and surface antigens. In comparison to
inactivated, whole-organism vaccinations, these vaccines have limited immunogenicity. To
enhance immunogenicity, adjuvants are necessary (Dadar et al., 2017). Many studies have
reported that subunit vaccines such as recombinant subunit vaccines of grouper sleepy
disease iridovirus (GSDIV) with montanide ISA could be utilised to decrease grouper
mortality due to GSDIV infection (Mahardika et al., 2016). In addition, the efficacy of
three different subunit vaccines against Aeromonas salmonicida infection in rainbow trout
Oncorhynchus mykiss has been shown to significantly lower mortalities after 3 weeks
(Marana et al., 2017). Although subunit vaccinations pose a relatively minimal risk of
negative effects, retaining their antigen in their native form during the purification process
may be difficult. Thus, organisms may be unable to detect antigens, resulting in these
proteins failing to elicit an immune response in the host (Wang, Jiang & Wang, 2016;
Abinaya & Viswanathan, 2021).

The composition of fish vaccines may differ from vaccines intended for human use
with respect to the adjuvants and preservatives that are suitable for aquatic environments.
Humanvaccines are formulatedwith components safe for humanuse.Due to the differences
in fish immune systems, comprehensive research and development are being conducted to
formulate adjuvants to enhance subunit vaccines’ effectiveness in fish species. Meanwhile,
human vaccines are subjected to extensive clinical trials prior to the approval, and the
regulatory requirements for fish vaccines are specific to the aquaculture industry. Fish
vaccines are calibrated to cater to the unique disease profiles and the needs of particular
fish populations to ensure optimal health and protection against diseases.

Immunostimulants or adjuvants are routinely added to vaccinations containing
inactivated pathogens or recombinant antigens to serve as vaccine carriers, thereby
enhancing the vaccine’s efficacy and eliciting a powerful immune response (Tafalla,
Bøgwald & Dalmo, 2013; Huang et al., 2014; Munangándu et al., 2020; Guo & Li, 2021).
However, its effectiveness depends on the method of administration. There are
three methods for administering vaccinations to fish: injection, immersion, and oral
immunisation (Ringøet al., 2014; D’Amico et al., 2021). In general, injection is superior to
oral delivery and immersion vaccination; however, this preference is dependent on the
fish’s size (Embregts & Forlenza, 2016; Bøgwald & Dalmo, 2019). Notably, these approaches
are only used on healthy fish because they are preventative and not curative (Wali & Balkhi,
2016; Miccoli et al., 2021). In general, the advantages and disadvantages of the common
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Table 1 Advantages and disadvantages of different vaccinationmethods that are common in fish farming.

Vaccine
administration

Advantages Disadvantages

Injection • Controlled and precise dosage for optimal immune
stimulation, reducing the risk of under or over-dosing.
•Higher efficacy due to precise delivery of the vaccine
directly into the fish, resulting in a potent immune
response, thus, providing longer-lasting immune protection
against the target pathogen.

• Induces stress due to the mechanical handling of fish
during vaccination, which could potentially lead to
negative physiological responses and reduced immunity.
• Labor-intensive and time-consuming
to vaccinate large numbers of fish.
• Not suitable for small fish.

Immersion • Non-invasive approach, thus, reducing stress and
minimizing the risk of injury during vaccination.
• Less labour-intensive, thus, cost-
effective for large-scale aquaculture.
• Time-efficient for mass vaccination of the cultured
species.

Lower efficacy compared to the injection method due to the
variations in vaccine uptake by different individuals, thus
leading to inconsistent immune responses and protection
levels in the vaccinated population of the cultured species.

Oral • Non-invasive approach, and it is typically
well-tolerated by fish, reducing stress and the
potential risk of injury during vaccination.
• Applicable to vaccinate small fish or fry.
• Oral vaccines can be incorporated into fish feed, thus
making it more practical for small- to large-scale fish
farming.

• Variable uptake of the vaccines through
fish digestive systems leads to inconsistent
immune responses and protection levels in the
vaccinated population of the cultured species.
•Heat-sensitive vaccines could lose their efficacy during
feed processing, storage, or digestion.

methods used to vaccinate fish could be summarized in Table 1. Overall, the selection
of vaccination approach depends on various factors that include the fish species, types
of vaccine, and the scale of the operation. A combination of different administration
approaches or the use of different adjuvants and immunostimulants may be required to
optimize the immune response and to ensure vaccine efficacy in disease prevention. Close
monitoring is essential to evaluate the health status of the vaccinated fish population to
identify potential adverse effects of the vaccines on fish health.

Nonetheless, commercial vaccine development is constrained by cost-effectiveness in
the field. In comparison to terrestrial animals, fish require a higher antigen dose, therefore,
developing cost-effective inactivated viral vaccines has proven problematic (Sommerset
et al., 2005; Muktar & Tesfaye, 2016; Shefat, 2018). For example, live-attenuated vaccines
require proper storage since they are live (Kumru et al., 2014; Prosser et al., 2021; Pambudi
et al., 2022). Similarly, the killed whole-cell vaccine type involved a high manufacturing
cost in cell culture tests, where a significant number of microorganisms are necessary
to produce immunity, and the need for multiple injections may also exist depending on
the distinguishing qualities of the vaccine (Vaughn, Whitehead & Durbin, 2009; Dias et al.,
2013; Rodrigues & Plotkin, 2020). Moreover, when a recombinant DNA vaccine is used as
an alternative, immunologic tolerance (hyporesponsive) may develop because the antigen
is expressed in the host (Liu et al., 2011; Peignier & Parker, 2020) which renders the host
incapable of mounting an immunological response following vaccination (Poolman &
Borrow, 2011; Hobernik & Bros, 2018; Brisse et al., 2020). Furthermore, certain chemical
treatments used in killed whole-cell vaccine development such as formaldehyde may alter
antigenicity. This alteration necessitated the use of adjuvants in single or repeated doses
to lessen the risk of antigenicity. Thus, this phenomenon not only raises production costs
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but also formulation and administration complexity (Furuya et al., 2010; Sanders, Koldijk
& Schuitemaker, 2015;Martínez-Flores et al., 2021).

Certain fish species are too weak to withstand the stress induced by immunisation and
may experience severe side effects after vaccination (Parra, Reyes-Lopez & Tort, 2015;
Mugwanya et al., 2022). Moreover, it is difficult to analyse the relationship between
pathogen and vaccine-induced immunity in fish species (Ángeles Esteban, 2012; Biller-
Takahashi & Urbinati, 2014; Magadan, Sunyer & Boudinot, 2015; Smith, Rise & Christian,
2019a). Moreover, severe issues related to disease might develop at the stages of larvae or
fry in other species, that is, prior to the organism growing sufficiently so that vaccination
can occur or fully operational immune systems can form (Dhar, Manna & Thomas Allnutt,
2014;Muktar & Tesfaye, 2016;Hazreen-Nita et al., 2019). In this regard, the computational
immunology technique, also known as the immunoinformatics approach, is one way that
these limitations can be circumvented and overcome. Immunoinformatics bridges the gap
between computer science and immunology by employing computational resources and
methods to manage and comprehend immunology data. It contributes to the management
of large datasets and aids in the creation of new hypotheses regarding immune responses
(Tomar & De, 2014; Chatanaka et al., 2022; Wong et al., 2022).

While the practical implementation of immunoinformatics in aquaculture has been
established, it is essential to recognise that there are significant differences between fish and
human immune systems (Wang, Chen & Wang, 2019). Understanding these differences is
crucial for the efficient application of immunoinformatics in the development of vaccines
and treatments for fish. The innate immune system of fish, which is recognised as the
first line of defence against a variety of pathogens, plays a more significant role than its
homologue in mammals. Notably, primitive fish species with no jaws, such as lampreys
and hagfish, have a profoundly different immune system than jawed vertebrates. This
system lacks the typical B and T cells and Major Histocompatibility Complex (MHC)
molecules observed in humans and advanced fish species. For adaptive immunity, these
jawless species rely on a unique system of variable lymphocyte receptors (VLRs). Jawed fish,
including cartilaginous (such as sharks) and bony (such as trout) species, have evolved B
and T cells andMHCmolecules, heralding the ‘‘modern’’ emergence of adaptive immunity
(Buchmann, 2014; Mitchell & Criscitiello, 2020; Wang, Chen & Wang, 2019). Despite this,
fish immune systems are less sophisticated than those of mammals, including humans. For
instance, fish have fewer subsets of T cells, and their B cells are less diverse. The disparity
also extends to MHC molecules. Fewer MHC class II molecules are present in fish than in
humans, and their function is not as well understood. Some species, such as the Atlantic
cod, lack MHC II molecules but possess a larger number of MHC I molecules (Boehm,
Iwanami & Hess, 2012). Essentially, these differences highlight the need for predictive
models and algorithms that are uniquely tailored to the immune response pathways of
fish. Ideally, the data used to train these algorithms should be derived from the immune
responses of fish. Taking into consideration these differences will permit the effective
application of immunoinformatics to the development of more effective preventative and
therapeutic measures for aquaculture health management.
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Immunoinformatics has been applied in many research studies, particularly for disease
prevention strategies, such as predicting immune cell populations, modelling immune
responses, and studying autoimmune disorders and allergies. As our understanding of
the immune system has increased in breadth and depth, this approach has naturally
evolved to match this progression, giving rise to a term that encompasses this broader
spectrum of activities. Immunoinformatics has emerged as a game-changing tool in
the development of fish vaccines, addressing major obstacles and accelerating progress.
Identification of immune epitopes within fish pathogens is one of the most important
applications. Using immunoinformatics, researchers can effectively identify these epitopes:
sections of the pathogen’s genetic sequences with the potential to elicit an immune
response in fish (Forouharmehr et al., 2022a; Islam et al., 2022a; Islam et al., 2022b). This
essential knowledge guides the development of vaccines based on epitopes, allowing for
targeted immunisation that induces a specific protective immune response. In addition,
immunoinformatics contributes substantially to the development of epitope-based
vaccines by enabling scientists to select the most immunogenic and conserved epitopes
(Forouharmehr et al., 2022b; Islam et al., 2022a). This strategic approach paves the way for
the development of broad-spectrum vaccines, thereby protecting against multiple pathogen
strains or variants.

The design of vaccines, the focus of this review, also plays a crucial role in zoonosis
prevention. As the interface between humans and animals continues to evolve and become
obscure, particularly in the context of aquaculture, the risk of zoonotic diseases those
transmitted from animals to humans becomes more pressing. Immunoinformatics can
be an indispensable tool for mitigating these hazards and safeguarding public health.
The identification of pathogens at an early stage is a crucial application. This technique
enables the detection of emergent viral, bacterial, or parasitic strains in fish populations
prior to their posing a risk to humans through a combination of genomic sequencing and
computational analysis. By identifying and characterising these potential zoonotic hazards
in advance, measures can be implemented to prevent their spread and protect human
populations. Immunoinformatics facilitates the development of vaccines that can act as
barriers to disease transmission at its origin. These vaccines, designed for fish but effective
against potential human pathogens, can control the disease in fish populations, thereby
reducing the risk of human infection significantly. The same structural understanding and
immune system interaction principles can be applied to the design of therapeutic drugs.
These prospective treatments could combat pathogens that threaten both fish and human
health, thereby serving dual purposes in zoonotic disease control.

This review aims to provide a comprehensive summary of immunoinformatics software
that has been used in recent years which is essential for vaccine design, particularly in
fish vaccine development. The vaccine design is explicated based on in silico epitopes,
develop a multi-epitope vaccine, and investigate how immunogenic vaccines interact
on a molecular level. Through this approach, the applied and valid results of the use of
immunoinformatics to address diseases in fish are examined in relation to how frequently
they occur. Additionally, immune mechanisms and immunoinformatics in fish disease are
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predicted using TLR signalling pathways and may draw the interest of pharmaceutical and
synthetic immunologists in synthesizing and discovering the vaccine’s novel potential.

SURVEY METHODOLOGY
Using Web of Science, Scopus, PubMed, ScienceDirect, and Google Scholar, primary and
secondary literature pertinent to this review’s topic was evaluated. These databases were
used to search for the following terms: ‘‘fish diseases’’ and ‘‘aquaculture’’ in combination
with, ‘‘immunoinformatics’’, ‘‘computational biotechnology’’, ‘‘bioinformatics’’,
‘‘vaccines’’, ‘‘Epitope prediction’’, ‘‘T cell epitope’’, ‘‘B cell epitopes’’, ‘‘adjuvant’’,
‘‘linker’’, ‘‘Structural modelling’’, ‘‘molecular docking’’, ‘‘molecular dynamics simulation’’,
‘‘immune mechanism’’, ‘‘TLR signalling pathways’’, ‘‘multi-epitope vaccine’’ along with
using ‘‘+’’, ‘‘AND’’, and ‘‘OR’’ for a specific search result. The identified articles were
initially examined for relevance to the topic and thoroughly read.

In silico epitope-based vaccine design
Epitope prediction
By preventing and controlling viral illnesses in fish populations, the vaccination approach
may help decrease the use of antibiotics in fish populations (Hoelzer et al., 2018; Ma et
al., 2019). This is because the goal of vaccination is to stimulate the immune system so
that it can form a long-lasting immunological memory and a stronger immune response
when exposed to the pathogen during infections (Palgen et al., 2021). Therefore, the close
relationship between immune system stimulation and the discovery of epitopes was
demonstrated, which is a considerably interesting aspect when formulating vaccines to
create efficacious epitope vaccines (Palatnik-de Sousa, Soares I da & Rosa, 2018). The
design of vaccines based on epitopes required the antigenic peptides visible on the
antigen-presenting cell (APC) and target cell surfaces to be identified (Dudek et al., 2010;
Mugunthan & Harish, 2021). Antigens are any substances that induce immune systems
to create antibodies to combat the issue and serve as sites of interactivity between the
antibody, the B cells and T helper (TH) cells, as well as the molecules of the antigen.
Such a site of interaction is referred to as an epitope (Marshall et al., 2018). Antibodies
recognise antigens via interaction at the molecular level between paratopes (that is, the
residues of the antibody implicated when binding occurs) and the interacting regions
(epitopes) of the targeted molecules (antigens) (Jespersen et al., 2019), as illustrated in
Fig. 1.

B-cell epitopes (BCEs) and T-cell epitopes (TCEs) are the two types of epitopes (TCEs).
The B-cell epitope is a portion of an antigen that is connected to the immunoglobulin or
antibody. B-cells recognise BCEs, which comprise a solvent area exposed to an antigen.
Toxins and pathogens are neutralised by B-cell receptors (BCR), which are secreted
or generated on their surface to target them with great specificity (antibodies) and
thereby identify them for destruction (Sanchez-Trincado, Gomez-Perosanz & Reche, 2017;
Bukhari et al., 2022). In the mapping of B-cell epitopes, predictors based on structures are
becoming more popular because of the growing number of antibody-antigen complexes
in the PDB and IMGT/3Dstructure-DB whose structures are three-dimensional (3D), in
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Figure 1 An antibody with two paratopes. These two paratopes are capable of binding to two pathogens.
Non-covalent chemical interactions between epitopes and paratopes boost antigen–antibody binding.
Created with BioRender.com.

Full-size DOI: 10.7717/peerj.16419/fig-1

addition to the capacity for continuous and discontinuous epitopes (also called linear and
conformational epitopes, respectively) to be anticipated (El-Manzalawy & Honavar, 2010;
Soria-Guerra et al., 2015; Galanis et al., 2021). To predict B cell epitopes, the majority of
the current approaches employ antigen amino acid sequences such as ABCpred (Malik et
al., 2022), IEDB B-cell epitope tools (Vita et al., 2019), SVMTriP(Yao et al., 2012), BCPred
(El-Manzalawy, Dobbs & Honavar, 2008), LBtope (Singh, Ansari & Raghava, 2013), and
BepiPred 2.0 (Jespersen et al., 2017). Meanwhile, the prediction of conformational B cell
epitopes has involved various approaches, such as DiscoTope−2.0, BEpro (formerly known
as PEPITO) (Sweredoski & Baldi, 2008), ElliPro (Ponomarenko et al., 2008), EPCES (Liang
et al., 2009), EPSVR (Liang et al., 2010), EPMeta (Liang et al., 2010), Epitopia (Rubinstein
et al., 2009) and SEPPA (Sun et al., 2009).

In contrast, a T-cell epitope is a peptide obtained via an antigen. They can be
recognised by particular receptors named T-cell receptors (TCR) when they bind to
key histocompatibility complex (MHC) molecules that appear on the surfaces of APC
cells (Sharma & Holt, 2014; Bukhari et al., 2022). TCEs in complex with MHC proteins are
recognised by two group subsets of T cells i.e., T helper (TH) or CD4+ T cells and cytotoxic
T lymphocytes (CTL) or CD8+ T cells with different functionality (Wieczorek et al., 2017;
Marshall et al., 2018). A TH cell response is produced when TCRs on CD4+ T cells become
bound toMHC class II–peptide complexes, which are frequently created in a professionally
made APC. In contrast, CTL responses are elicited when TCRs on CD8+ T cells can fix to
MHC class I–peptide complexes that nucleated cells present (Lundegaard, Lund & Nielsen,
2012; Sanchez-Trincado, Gomez-Perosanz & Reche, 2017). Cytotoxic T lymphocytes (CTL)
that have been activated produce cytokines, which cause them to divide and destroy
the infected cells. Similarly, several of them transform into memory T cells (Kar et al.,
2020) (Fig. 2B). Similarly, active cytokines cause B-cells to develop into plasma cells and
memory B cells. Consequently, the activated plasma cell or B-cell releases antibodies or
immunoglobulins (Igs) that are responsible for clearing the infection. Type of Igs also
differ in the bony fish group, such as teleost fish (IgM, IgD, and IgZ/T), cartilaginous
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Figure 2 Immunological basis of the fish vaccine. (A) Humoral immune response. (B) Cell-mediated
immune response. Created with BioRender.com.

Full-size DOI: 10.7717/peerj.16419/fig-2

fish (IgM, IgW, IgNAR), and lungfish (IgM, IgW, IgN) (Smith, Rise & Christian, 2019)
(Fig. 2A). This fact indicates that the strength of the MHC molecule’s epitope binding is a
key factor in determining T-cell epitope immunogenicity (Mahendran et al., 2016a; Ogishi
& Yotsuyanagi, 2019).

The three crucial stages of immunogenicity in T-cell epitopes are as follows: antigens
are processed, peptides attach to an MHC molecule, and cognate TCRs recognise this.
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When determining a TCE, MHC-peptide binding utilises the greatest selectivity of the
three steps. As a result, the primary basis for anticipating TCEs is peptide-MHC binding
prediction (Sanchez-Trincado, Gomez-Perosanz & Reche, 2017; Antunes et al., 2018; Feng,
Zeng & Ma, 2021). Numerous computationalmethods have been investigated and reviewed
to predict TCEs andMHC-binding peptides, wherein both are computed based on binding
matrices, binding motifs, decision trees, artificial neural networks (ANN), hidden Markov
models (HMM), support vector machines (SVM), homology modelling and protein
docking techniques as well as quantitative structure–activity relationship (QSAR) analysis
(Tong & Ren, 2009; Fleri et al., 2017; Kar et al., 2018). HTL and CTL epitopes can be
predicted using a variety of current bioinformatics tools, such as the IEDB database,
RANKPEP server (Reche et al., 2004), ProPred (Singh & Raghava, 2001; Reynisson et al.,
2020), NetMHCIIpan 3.2 (Jensen et al., 2018), NetCTL−1.2 (Larsen et al., 2007), ProPred1
(Singh & Raghava, 2003), NetMHCpan−4.1 (Reynisson et al., 2020), MHCpred 2.0 (Guan
et al., 2006), EpiJen (Doytchinova, Guan & Flower, 2006), CTLPred and Expitope (Haase et
al., 2015).

Although the majority of the B- and T-cell prediction tools have been developed
and trained using data derived from human and mammalian major histocompatibility
complex (MHC) or human leukocyte antigen (HLA) alleles, these tools are still relevant
and applicable in vaccine design for aquaculture species. Despite the differences
in MHC and HLA alleles between human and fish species, it is noteworthy that
the similarities in the immune mechanisms involving B- and T-cell responses are
crucial in the selection of antigens for vaccine design. The specific MHC for antigen
presentation differ between human and fish species, but the conserved regions in
antigens contribute to stimulating cross-reactive immune responses across species. The
prediction tools are able to identify epitopes within these conserved regions, which
could be recognized by fish immune cells and eventually lead to a specific immune
response against the target pathogen. In addition, the functional similarities of immune
cell receptors (B- and T-cell receptors) between fish and human enables the application
of these tools to predict potential epitopes that are immunogenic in fish, based on the
knowledge of B- and T-cell receptors in human. These tools have been utilized and
demonstrated success in predicting epitopes for vaccine design against tilapia lake virus
(Islam et al., 2022a) and Edwardsiella ictaluri in Nile tilapia (Machimbirike et al., 2022a),
Streptococcus iniae (Forouharmehr et al., 2022a), Flavobacterium columnare (Mahendran
et al., 2016b), and against Ichthyophthirius multifiliis (Ghosh et al., 2023). Nonetheless,
experimental validation studies are indispensable. Candidate epitopes predicted by the
immunoinformatics tools can be chemically synthesized and tested in vitro or in vivo to
evaluate the immunogenicity and efficacy of immune activation in fish.

Construction of multi-epitope vaccine
Adjuvant selection
Peptide-based vaccinations, also known as epitope vaccines, are potential immunothera-
peutic options and have been shown to have considerable advantages over conventional
vaccines in multiple studies. However, when utilised alone in vaccine design, epitope
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vaccines are linked with low protection, which can be overcome by conjugating antigenic
epitopes with adjuvants and helper peptides. Several roles for vaccine adjuvants have been
proposed; (i) dose-sparing strategy; (ii) accelerating seroconversion rates by enhancing
antibody and cell-mediated immune responses; (iii) diversifying the adaptive immune
profile and (iv) enhancing vaccine production by using smaller amounts of antigen
(Honda-Okubo, Baldwin & Petrovsky, 2021; Lemoine et al., 2021). Toll-like receptor (TLR)
agonists, antimicrobial peptides and helper peptides are the most common adjuvants used
in peptide-based vaccine construction (Shanmugam et al., 2012; Gupta et al., 2020). TLRs
also known as pattern recognition receptors, recognise common surface antigens found
on microbes and act as a bridge between innate and adaptive immunity. In addition to
TLR agonists, helper peptides and adjuvants derived from bacteria are used to boost the
immune effects of peptide-based vaccines, including PADRE, Hsp70, β-defensin, bacterial
toxins, cell wall components, flagellin, lipopolysaccharides (LPS), nucleic acids, and CpG
oligodeoxynucleotides (ODN) (Gries et al., 2019; Wang, Chen & Wang, 2019; Wangkahart,
Secombes & Wang, 2019; Liang et al., 2020).

Using bioinformatics in vaccine research and development has allowed for improved
vaccination formulations and adjuvant selection. The development of adjuvants can be
guided by databases including information on PRRs and their ligands. Numerous databases
can be employed to select adjuvants, including:
1. Vaxjo (https://violinet.org/vaxjo/) is a web-based vaccine adjuvant database that includes

approximately 400 vaccines that use an adjuvant against over 80 pathogens, cancers,
or allergies (Sayers et al., 2012).

2. VaccineDA (Vaccine DNA adjuvants). This web-based resource (https://webs.
iiitd.edu.in/raghava/vaccineda/) was developed to design immunomodulatory
oligodeoxynucleotides (IMODN) -based vaccine adjuvants (Nagpal et al., 2015).

3. imRNA (https://webs.iiitd.edu.in/raghava/imrna/) is used to predict and design potential
immunomodulatory RNA-based vaccine adjuvants (Chaudhary et al., 2016).

4. VaxinPAD (https://webs.iiitd.edu.in/raghava/vaxinpad/) employs SVM-based models
to design peptide-based vaccines and allows users to perform virtual screenings that
incorporate data from experimentally validated immunomodulatory peptides (Nagpal
et al., 2018).

Linker selection
Linkers, also known as ‘spacers’, are essential components in the design of multi-epitope
vaccines (MEV) or peptide-based vaccines. They are critical for interdomain interactions,
structural stability and functionality of vaccines. Fusion of epitopes without suitable
linkers can result in negative outcomes such as 3D structural misfolding, low yield in
vaccine production and bioactivity impairment. Despite their importance in recombinant
MEV technology, the selection and rational design of linkers have not yet been thoroughly
investigated. Flexible, rigid, and cleavable linkers are the three groups into which structural
linkers can be categorised. To ensure flexibility of movement and interactivity between
associated protein domains, those in the first linker group contain high levels of small and
hydrophilic amino acids like glycine and serine. In contrast to flexible linkers, rigid linkers
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may be utilised more effectively to maintain the desired stability or bioactivity between
fusion protein domains. Multiple alanine and proline residues in these linkers exhibit a stiff
structure that reduces interactions and separates the functional domains of the designed
antigens (Gräwe et al., 2020). Cleavage linkers, on the other hand, are utilised to divide
domains or peptides by proteolytic cleavage in order to decrease steric hindrance and
achieve the independent biological function of a single domain when the linker is cleaved
(Leung et al., 2020; Poreba, 2020)

Linker selection is influenced by the amino acid arrangement, length, hydrophobicity,
secondary structure, and potential interaction with other immunogenic construct
components. Linker DB which was created by Integrative Bioinformatics VU (IBIVU)
at the Vrije Universiteit of Amsterdam, is the most recent database of linker peptides that
enables the selection of prospective linkers for novel fusion proteins. This system provided
a list of possible linkers based on the user-searched linker length, solvent accessibility,
sequence motif, and protein source. Choosing which criteria to apply enables the user to
opt for the linkers they require, depending on the conformation, adaptability, and stability
needed to ensure the proteins function biologically in their natural environments.

Prediction of vaccine antigenicity, allergenicity, toxicity and
physicochemical properties
When designing and developing efficacious and safe candidates to use as vaccines, the
vaccine constructs need to contain robust antigenicity but retain low toxic and allergenic
levels.With advances in peptide synthesis, it is now feasible to fine-tune the physicochemical
characteristics of peptides by including significant biochemical changes, maximising
peptide functionality to reduce toxicity and allergenicity without limiting therapeutic
effectiveness. A constructed vaccine sequence’s physicochemical properties are often
determined using the PortParam server (https://web.expasy.org/protparam/), which can
compute the composition of amino acids, molecular weights (Mw), isoelectric points (pI),
instability indices, predicted half-lives, and grand averages of hydropathicity (GRAVY).
The isoelectric focusing approach can be employed to induce the isoelectric point (pI)
computations to create buffer systems to purify proteins. Stability is predicted to apply to
proteins when their instability index is below 40. A protein’s aliphatic index (AI) refers
to the relative volume taken up by its aliphatic side chain, which features, for instance,
the amino acids alanine, valine, isoleucine, and leucine. Higher AI values will increase the
thermal stability of globular proteins across a wider temperature range. A lower GRAVY
value indicates a hydrophilicity pattern that is better suited for interaction with water.

The most significant requirement for efficient protein design is the antigenicity of the
vaccine candidate, a high antigenicity score is expected to result in a greater immune
response. A protein’s antigenicity could be predicted by a range of servers, including
Vaxijen (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) and ANTIGENpro
(http://scratch.proteomics.ics.uci.edu/). The former method of predicting antigens is free
from alignment and utilises the transformation of protein sequences through auto cross-
covariance (ACC) to form uniformly developed vectors of the key attributes of amino
acids, thus circumventing the limitations of methods that depend on alignment (Flower
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et al., 2017). It was designed to allow antigen categorization exclusively based on protein
physicochemical characteristics, without relying on sequence alignment. ANTIGENpro
employs a pathogen-independent and sequence-based approach for predicting protein
antigenicity (Magnan et al., 2010). This server predicts the entire protein antigenicity and
the algorithm is trained to utilise reactivity data collected from protein microarray analysis
for five pathogens including fungi, parasites, viruses, bacteria and tumours.

Toxicity is the ability of a material to cause damage in a live organism by destabilising
and interfering with normal cellular activity. The ToxinPred tool (https://crdd.osdd.net/
raghava/toxinpred/) can predict the toxicity of the computationally produced vaccine.
ToxinPred is a support vector machine-based (SVM) approach to predicting peptide
toxicity from sequence information using a position-specific scoring algorithm. ToxinPred
was trained on a collection of known toxic and non-toxic peptides from the Universal
Protein Resource (Gupta et al., 2013). The Toxins and Toxins Target Database (T3DB)
which combines over 42,000 toxin data points with extensive toxin target information, is
another resource that can be used to predict the toxicity of a vaccine candidate. It predicts
if the constructed peptide vaccine may induce hypersensitivity responses. To determine
the allergenicity of the potent vaccine, several services, such as AllerCatPro (Maurer-Stroh
et al., 2019), AlgPred (Sharma et al., 2021), and AllerTop (Dimitrov et al., 2014) can be
used to identify the allergenicity of the potent vaccine. In the former method, a protein’s
allergenic potential is predicted through its three-dimensional structure and the similarity
of its sequence of amino acids to the data in a library of identified protein allergens. AlgPred
allows the prediction of allergen using multiple allergenicity prediction approaches based
on IgE epitope mapping, MAST motif alignment, allergen-representative peptides (ARPs)
BLAST, support vector machines, and hybrid approaches. Finally, AllerTOP−2.0 employs
a technique that is based on a protein’s physicochemical similarity to known allergens.

Structural modelling, assessment, and validation
A strategy based on structures does not rely exclusively on data from binding and
information about sequences; instead, it leverages structural data and computation-based
approaches created in structural biology so that binders of potential suitability can be
identified. Vaccine sequences are received by a website that predicts protein structures so
that three-dimensional structure models can be created once the incorporation of BCEs
and TCEs has occurred by utilising suitable linkers and intramolecular adjuvants. The
molecular structure of MHC molecules and their interactions with peptides can be utilised
to create complex 3D models with other peptides, aiding in the explanation of atomistic
aspects of molecular structures connected to biological system operation.

Emerging developments in machine learning and deep learning offer unprecedented
opportunities for aquaculture, particularly in the development of effective fish vaccines.
These innovations could be used to devise better vaccines for fish. AlphaFold uses deep
learning models to predict the 3D structures of proteins based on their amino acid
sequences. It has tremendous ramifications in fish health management and aquaculture
that cannot be understated as we move from theoretical to practical applications. This
instrument enables researchers to navigate the complexity of protein structures, which serve
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as the blueprint for comprehending the antigen-antibody interaction, the linchpin of the
immune response. Alphafold can predict the structure of several outer membrane proteins
(OMPs), such asmonomeric outermembrane protein A (OmpA), outermembrane protein
34 (Omp34), and a nucleoside-specific outer membrane transporter protein Tsx (OmpTsx)
from rainbow trout (Oncorhynchus mykiss) afflicted with Acinetobacter johnsonii (Bi et al.,
2023). This demonstrates the importance of AlphaFold in the design of subunit vaccines,
which could exploit structural similarities in proteins across pathogens to enhance pathogen
resistance in aquaculture environments. AlphaFold emerges as a potent instrument that
revolutionises the landscape of vaccine development in aquaculture. With accurate protein
structure prediction, we can accelerate the identification of potential vaccine targets and
the development of effective treatments for diseases that threaten aquaculture production.
With a reliable structural model, researchers can design vaccines that expose these epitopes
to the fish immune system in a highly specific manner, thereby increasing the probability
of a robust immune response.

Similarly, RosettaFold uses machine learning techniques to predict protein structures
and could play a comparable role in the development of aquaculture vaccines. The precise
prediction of the structures of proteins associated with fish diseases could assist in the
development of multi-epitope vaccines. Such vaccines would target multiple proteins or
multiple parts of a pathogen’s protein, evoking a more robust immune response. This is
especially important when considering the enormous variety of pathogens that can affect
fish and the inherent difficulty of designing vaccines that provide protection for a variety
of fish species. Utilising these sophisticated predictive tools could usher in a new era of
fish vaccine development, resulting in not only more effective but also more cost-effective
vaccines. This would considerably improve disease resistance and sustainability within the
aquaculture industry, which is essential given the increasing reliance on aquaculture for
food production worldwide. However, despite the promising potential of these tools, it
is essential to note that their outputs are computational predictions. Consequently, any
vaccines developed based on these predictions must undergo rigorous laboratory testing
and clinical trials to ensure their safety and effectiveness. In addition, ongoing research
and refinement of these computational tools will be necessary to improve their predictive
accuracy, thereby maximising their utility in furthering aquaculture vaccine design.

Predicting protein tertiary structure can be accomplished using one of three methods:
(1) Homology modelling, (2) threading, and (3) ab initio prediction. This method involves
searching the Protein Data Bank (PDB) for structure-based similarities in the sequencing
of the anticipated domains, from which a set of matches is generated according to E-values,
alignment lengths, identities, and total scores. The basis for comparative modelling, which
can be referred to as homology modelling, is the connection between target sequences
and no fewer than one recognised three-dimensional structure belonging to the same
family. Proteins that are aligned and have a higher percentage of identical residues imply
evolutionary relationships. This method consists of several steps: (1) template identification
and initial alignment, (2) alignment correction (3) backbone generation (4) loop and side-
chain modelling, and (5) structure refinement and model evaluation (Fig. 3). Homology
modelling is considered the most reliable method for predicting a protein’s structure.
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Figure 3 Schematic illustration of the basic process of comparative modelling for protein structure
prediction. This method consists of several steps including template identification, initial alignment,
alignment correction, backbone generation, loop and side-chain modelling, structure refinement and
model evaluation.

Full-size DOI: 10.7717/peerj.16419/fig-3

Nevertheless, it can be complicated to identify suitable template structures that have high
coverage of sequences and sequence identities. In general, template structures with a
coverage of less than 35% are considered unreliable templates. EasyModeller 4.0 (Kuntal,
Aparoy & Reddanna, 2010), SWISS-MODEL (Waterhouse et al., 2018), Rosetta (Leman
et al., 2020), and Phyre2 (Kelley et al., 2015) are the most often used internet servers for
homology modelling.

Threading, also known as fold recognition, is an alternative method if homology
modelling cannot be applied. By comparing a template sequence to a collection of structural
folds, this approach returns a list of scores. A known peptide–MHC complex structure is
utilised to predict the binding structures of other peptides to the same MHC molecule by
maximising the alignment of the amino acid sequence and their 3D structural patterns.
I-TASSER (MacCarthy et al., 2022), Phyre2 (Kelley et al., 2015), and RaptorX (Wang et al.,
2016) servers are used for threading modelling. Ab initio protein modelling predicts 3D
structures based on novel folds and can be utilised if the structure of interest is unavailable
or if the sequence identity between the template and the protein of interest is less than
30%. Based on physical principles, this method involves computing all energy parameters
of protein folding and determining the state with the lowest free energy. ROBETTA (Park
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et al., 2018), TrRosetta (Du et al., 2021) and I-TASSER (MacCarthy et al., 2022) are servers
that can be used to predict the ab initio protein structure.

Structural validation is an important step in protein modelling to assure the quality
of the models. Energy minimisation and structural refinement are applied to each
model to enhance the three-dimensional structures’ quality so that structural errors
and steric conflicts in the structure of each protein can be eliminated. Several structure
validation tools (Razali et al., 2016; Razali & Shamsir, 2020) such as PROCHECK
(http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/), Verify3D and ERRAT
(https://saves.mbi.ucla.edu/) can be used to assess model quality before and after refining.
PROCHECK provides a Ramachandran plot that calculates phi–psi torsion angles for
each residue and analyses the overall stereochemical quality of 3D structures of protein
models. Verify3D evaluate the compatibility of an atomic model (3D) with its amino acid
sequence (1D) while the ERRAT server assesses the overall quality factor for nonbonded
atomic interactions. The model quality assessment is critical for determining the overall
correctness of the structure as well as the local accuracy of each protein fragment. Selecting
the best proteinmodelling approach is dependent on the availability of known homologues,
the folds of known structures, and the quality of 3D structures. Figure 4 depicts a schematic
illustration of protein structure decision-making prediction based on several modelling
methodologies.

In addition to the advancements made in protein structure prediction, the development
of self-assembling immunogens is also making headway in the vaccine research landscape.

Self-assembling immunogens, such as virus-like particles (VLPs) and self-assembling
protein nanoparticles (SAPNs), are used in the development of fish vaccines to enhance
their immunogenicity and stability (Ma et al., 2019; Abudula et al., 2020; Nakahira et
al., 2021). These immunogens are formed from the self-assembly of viral or bacterial
proteins, which mimic the shape and size of native virions. Self-assembling peptides
can also act as adjuvants themselves by forming an antigen depot, directing vaccines to
antigen-presenting cells (APCs), and enhancing immune-cell priming (Abudula et al.,
2020). These self-assembling structures, often designed as nanoparticles, mimic the native
size and shape of viruses or bacteria and present multiple copies of an antigen or epitope on
their surface. This form of antigen presentation stimulates a robust immune response by
imitating the repetitive antigenic patterns of many pathogens. The use of self-assembling
immunogens in fish vaccines offers several advantages, including precise antigen display,
enhanced immunogenicity, and stability (Rudra et al., 2010).

Within the field of aquaculture, the potential benefits of self-assembling immunogens
are multifaceted. Primarily, these structures could significantly enhance the immune
response in fish. Due to the repetitive, ordered array of antigens that these nanoparticle
vaccines present, they can stimulate the immune system more effectively, leading to a
more potent and enduring response than traditional vaccines. Moreover, the versatility
of self-assembling immunogens opens doors to designing broad-spectrum or multivalent
vaccines. Such vaccines could potentially combat multiple strains or species of pathogens,
addressing the substantial challenge of pathogenic diversity in aquaculture. On a practical
note, self-assembling immunogens might present advantages in terms of stability and
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Figure 4 Decision-making chart for protein structure prediction method. The prediction of the 3D
structure of a protein can be carried out with one of these three approaches: homology modelling, thread-
ing, or ab initio prediction.

Full-size DOI: 10.7717/peerj.16419/fig-4

scalability. Assuming the initial design and production processes are fine-tuned, these
vaccines could potentially be produced on a large scale andmight exhibit enhanced stability
under a variety of environmental conditions, an essential consideration for aquaculture
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operations worldwide. However, the development of self-assembling immunogens for
fish vaccines is not without challenges. The design and production processes for these
vaccines can be complex, necessitating further research to streamline them. Furthermore,
experimental validation of the safety and efficacy of these vaccines in target fish species
remains paramount. In this context, computational methods could play a significant role.

Self-assembling immunogens can be developed using computational methods such as
AlphaFold and RosettaFold (Castro et al., 2022; Morales-Hernández, Ugidos-Damboriena
& López-Sagaseta, 2022; Olshefsky et al., 2022). These computational methods enable the
design of self-assembling immunogens by predicting the structure of proteins and their
interactions with other proteins. AlphaFold uses deep neural networks to predict protein
structures with high accuracy, while RosettaFold uses a combination of computational
methods to predict protein structures. These computational methods can be used to design
self-assembling immunogens with specific epitopes or antigens, which can enhance their
immunogenicity and specificity.

The use of computational methods in the development of self-assembling immunogens
offers several advantages, including the ability to design immunogens with specific
properties and the ability to optimise immunogenicity and stability (Castro et al., 2022;
Morales-Hernández, Ugidos-Damboriena & López-Sagaseta, 2022; Olshefsky et al., 2022).
These tools could help design self-assembling immunogens by predicting the structures
of antigens and then guiding the design of self-assembling proteins or peptides that best
present these antigens. Overall, self-assembling immunogens provide a promising avenue
for fish vaccine development. Their potential, coupled with the burgeoning capabilities of
machine learning and deep learning tools, underscores an exciting frontier in aquaculture
vaccine design. Nevertheless, it is crucial to maintain a balance between this optimism and a
realistic understanding of the extensive validation and optimisation these novel approaches
require.

Molecular interaction of immunogenic vaccine
Molecular docking and molecular dynamics simulation
Protein-peptide docking is another important tool for predicting the efficacy of a vaccine.
Unlike the costly and lengthy approaches involved in crystallising and structurally resolving
a TCR-MHC complex, the computational tool of molecular docking can efficiently and
cost-effectively enable intermolecular-level interactions within ligand–receptor complexes
to be studied. This prediction is made using a software that includes (1) regeneration of
all possible ligand structure formations, (2) placement of all ligand formations in a cavity
of the active target protein position, and (3) scoring function based on free energy or
binding energy. For molecular docking analysis, numerous software and tools have been
created, including standalone applications such as Autodock Vina (Eberhardt et al., 2021),
Autodock 4 (Santos-Martins et al., 2021), ZDOCK (Vreven et al., 2020), Glide (Alogheli et
al., 2017) and GOLD (Martin et al., 2020). Several online servers, such as RosettaDock
(Marze et al., 2018), ClusPro (Alekseenko et al., 2020), and HADDOCK (Roel-Touris et al.,
2019) are also available to study protein-protein docking interactions. However, these web
servers are not suitable for large-scale studies as they are limited to a single protein-protein
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docking simulation. EpiDOCK (Atanasova et al., 2013) is also one of the structure-based
servers used for MHC binding peptide prediction using dock score-based QM.

Molecular dynamics (MD) simulation is a method for studying the movement of
molecules and atoms in a realistic molecular system by utilising a force field to model
intramolecular and intermolecular interactions at the atomic level. Using this technique,
which numerically solves the time-dependent behaviour of a molecular system on a
microscopic scale, the structure and conformational changes of proteins, as well as their
thermodynamic properties, are examined in depth. It can also be used to investigate
the dynamics and binding mode of novel peptide vaccines, interactions between peptide
vaccines and the receptor binding groove, residue specificity and dissociation of MHC
peptide-protein complexes, and interactions between the T-cell receptor and the MHC–
peptide complex. AMBER (Pang, 2016), GROMACS (Kohnke, Kutzner & Grubmüller,
2020), CHARMM (Kim et al., 2020), and NAMD (Phillips et al., 2020) are some of the
most used force fields and MD simulation programmes for calculating binding free
energies.

The creation of these computational methods will facilitate the molecular analysis of
peptide vaccines and receptor interactions, thereby facilitating the design and development
of possible vaccinations against fish diseases. To design a multi-epitope subunit vaccine
targeting the fish pathogen, the following immunoinformatics steps will be sequentially
applied: (1) screening of the fish pathogen proteome, (2) B- and T-cell epitope prediction,
(3) construction of vaccine by joining together the epitopes, linkers, and adjuvants, (4)
vaccine properties prediction, (5) vaccine 3D structure modelling, (6) molecular docking
with TLRs, and (7) MD simulations for stability (Fig. 5).

Immune mechanism and immunoinformatics in fish disease
Immune mechanism prediction: TLR signalling pathways
To recognise an infection in an innate immune system, the toll-like receptor (TLR) is the
receptor that has been researched extensively (Palti, 2011; Li et al., 2017). These receptors
can also be referred to as a pattern recognition receptor (PRR) family that recognises, firstly,
an external pathogen-associated molecular pattern (PAMP) derived from several types of
microbial pathogen (Zhang & Liang, 2016) and, secondly, an internal damage-associated
molecular pattern (DAMP) created by cells near death or tissues that have suffered damage
(Yu & Feng, 2018). Different TLRs play an essential role in bridging the gap between innate
and adaptive immunity by determining characteristics such as accurate identification and
immune response to hazardous stimuli (El-Zayat, Sibaii & Mannaa, 2019).

Fish TLRs and the components involved in their signalling cascade share significant
structural similarities with the mammalian TLR system. Despite this, the fish TLRs exhibit
unique features and awide range of diversity, which is likely due to their diverse evolutionary
history and habitat. To date, thirteen TLRmembers have been discovered in mammals and
each of which functions as a sensor for different PAMPs (Palti, 2011; Wang et al., 2021).
In addition, TLRs are also present in fish where more than 21 TLRs have been reported
so far (Liao et al., 2017). Fish have been shown to not possess TLR6, TLR10, TLR11, and
TLR12. Furthermore, TLR4 which is absent in many species is found in some cyprinid fish,
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Figure 5 A diagrammatic description of the procedures involved in the in silico design of a multi-
epitope vaccine for fish illnesses. Beginning with proteome retrieval and continuing through multi-
epitope vaccine design and its validation by molecular docking and MD simulation.

Full-size DOI: 10.7717/peerj.16419/fig-5

along with TLR5S, TLR18-TLR20, TLR23, and TLR25-TLR28, which are considered to be
‘‘fish-specific’’ TLRs (Rebl, Goldammer & Seyfert, 2010; Palti, 2011;Wang et al., 2015; He et
al., 2019a).

Recent studies on fish TLRs have concentrated on identifying individual TLR members
in diverse teleost fish species such as TLR7 and TLR8 in Barbel chub (Squaliobarbus
curriculus) (Jin et al., 2018), TLR21, TLR22, and TLR25 in Dabry’s sturgeon (Acipenser
dabryanus) (Qi et al., 2018), TLR1-TLR3, TLR5, TLR7-TLR9. TLR13, TLR22, TLR25,
and TLR26 in Walking catfish (Clarias batrachus) (Priyam et al., 2020). Furthermore,
researchers have also examined what occurs when a pathogenic bacterium, virus, or ligand
is used as a stimulator, with regard to expression profiles and signalling cascade genes
(Jiang et al., 2020; Muduli et al., 2021; Wang et al., 2021). TLR ligands remain substantially
unknown, especially in cartilaginous fish and lobe-finned fish (Nie et al., 2018; Smith, Rise
& Christian, 2019). Several investigations detected TLR2, TLR3, TLR6, and TLR9 in the
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transcriptome data of the grey bamboo shark (Chiloscyllium griseum), (Anandhakumar
et al., 2012; Krishnaswamy et al., 2014) while TLR3 was identified in the immunological
response of the Nigerian spotted lungfish (Protopterus dolloi) (Tacchi, Misra & Salinas,
2013). Among all these TLRs, TLR4, TLR5, TLR9, and TLR14 are regarded as sensors of
bacterial ligands while TLR3, TLR7, TLR8, and TLR22 are presumed viral ligands sensors
(Rebl, Goldammer & Seyfert, 2010; Rauta et al., 2014; Zhang et al., 2014; Wang et al., 2021).
Thus, in this review, the ligand specificity like PAMPs and signal pathways of fish TLRs are
summarised in Fig. 6.

Theoretically, TLRs are activated when they recognise ligands which prompts the
recruitment of adaptor molecules in the cytoplasm and the initiation of signalling cascades
(Kenny & O’Neill, 2008; Luo et al., 2020). Both adaptors MyD88 (myeloid differentiation
primary response 88) and TRIF (TIR-domain-containing adapter-inducing interferon- β)
also known as TICAM-1 (TIR-containing adaptor molecule-1) are signals to downstream
signalling pathways whereas the other one, TIRAP is primarily an adaptor for TLRs to
connect to TRIF and MyD88, respectively (Troutman, Bazan & Pasare, 2012; DeFranco,
2016; Farooq et al., 2021) (Fig. 6). The activation of TLR signalling implicates at least two
different pathways i.e., via the MyD88-dependent pathway which leads to the induction of
various cytokines (IL-6, IL-8, IL-12, and TNF α) and MyD88-independent pathway which
is associated with the induction of IFN andmaturation of dendritic cells (Rauta et al., 2014;
Farooq et al., 2021).

Through the MyD88-dependent pathway, MyD88 utilizes its death domain to interact
with IRAK4 (IL-1 receptor-associated protein kinase 4) to form the MyD88-IRAK4
complex. This complex then phosphorylates IRAK2 or IRAK1 and recruits TRAF6 (tumour
necrosis factor receptor-associated factor 6) via ubiquitination (Cao, Henzel & Gao, 1996;
Fitzgerald & Kagan, 2020). Studies have reported that IRAK2 has been lost or not identified
in fish (Zhang et al., 2014; Rebl et al., 2019), however, another study has stated that IRAK2
was found in the West Indian Ocean coelacanth (Latimeria chalumnae) genome (Li et al.,
2018). Following ubiquitination, TRAF6 interacts and activates the TAB1/TAK1/TAB2
complex whereby TAB1 activates TAK1 (transforming growth factor-β-activated kinase 1)
while TAB2 serves as an adaptor that connects TAK1 to TRAF6. TAK1 is then coupled to
the IKK complex which leads to IKKßphosphorylation and the subsequent translocation
of the NF-κßcomplex into the nucleus. NF-κßcomplex containing p50 and p65 combines
with gene transcription to induce proinflammatory cytokines such as IL-6, IL-8, IL-12, and
TNFα (Rebl, Goldammer & Seyfert, 2010; Rauta et al., 2014; Farooq et al., 2021).

TAK1 simultaneously phosphorylates MAPKs (mitogen-activated protein kinases)
and induces the activation of AP-1 (activating protein-1) (Xu & Lei, 2021). For example,
MaTLR14, a fish-specific TLR14 was identified in an Asian swamp eel (Monopterus
albus) which increased TRAF6 expression and phosphorylation of ERK (extracellular
signal-regulated kinase) and p65, thereby activating the NF-κßcomplex and AP-1. As a
result, this phenomenon stimulated the production of proinflammatory cytokines such as
IL-6 and TNF α (Zhang et al., 2014; Liu et al., 2022). Additionally, TLR14 was identified
in the majority of fish orders, including pufferfish, zebrafish, flounder, golden pompano,
and lamprey (Rebl, Goldammer & Seyfert, 2010; Wu et al., 2019; Sousa et al., 2022), and
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Figure 6 Schematic illustration of immunemechanisms activation in different fish species (boxed by
dotted lines) through Toll-like receptor (TLR) signalling pathways.Modified from Rauta et al. (2014),
Rebl, Goldammer & Seyfert (2010), and Zhang et al. (2014). Created with BioRender.com.

Full-size DOI: 10.7717/peerj.16419/fig-6

interestingly, it shared similar features to TLR6 and TLR10 of mammals, despite the
absence of both TLRs in fish signalling cascades (Rauta et al., 2014; Liao et al., 2017).
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Additionally, nearly every poikilothermic vertebrate (for instance, an amphibian or a
fish) has exhibited TLR22, although it is not present in mammals. TLR22 has a vital part
to the role in activating adaptive immunity and initiating innate immunity. In addition,
the MyD88 adapter is required to initiate the signalling cascade (Paria et al., 2018; Ji et
al., 2020; Gao et al., 2021a). Similarly, to TLR4, TLR5 activates the MyD88-dependent
pathway and consists of two distinct forms, the membrane TLR5 (TLR5M) and soluble
TLR5 (TLR5S). Together, they detected the bacterial flagellin, despite having opposing
roles in stimulating the signalling cascade. The flagellin induced the basal activation of
NF-κßvia TLR5M, causing the activation of TLR5S expression in the liver. TLR5S is
efficient in binding to circulating flagellin and transporting the latter to the membrane
TLR5 factor, which amplifies the signalling of danger in positive loop feedback pathways
(Rebl, Goldammer & Seyfert, 2010; Zhang et al., 2014; Jiang et al., 2017; Jiang et al., 2020;He
et al., 2019b). This phenomenon is observed in the stimulation of Vibrio parahaemolyticus
flagellin in orange-spotted grouper (Epinephelus coioides) (Bai et al., 2017; He et al., 2019a)
and large yellow croaker (Larimichthys crocea) (Jiang et al., 2020) as well as Yersinia ruckeri
stimulation in rainbow trout (Oncorhynchus mykiss) (Wangkahart, Secombes & Wang,
2019) and channel catfish (Ictalurus punctatus) (Jiang et al., 2017).

In contrast to the three TLR family members TLR7, TLR8, and TLR9, bacterial and
viral PAMPs do not induce their cell signalling cascades in endosomes after being activated
by lipopolysaccharides (LPS). The MyD88-dependent pathway considerably elevated
their expression levels in all investigated tissues of Nile tilapia (Oreochromis niloticus) and
mandarin fish (Siniperca chuatsi) (Gao et al., 2021b; Wang et al., 2021). In addition, the
foregoing results indicate that the MyD88-dependent pathway in fish is comparable to all
TLRs except TLR3 (Rauta et al., 2014; Zhang et al., 2014; Fitzgerald & Kagan, 2020).

In addition, TLR4 in zebrafish (Danio rerio) uses alternative adaptor proteins such as
TIRAP to recruit MyD88 to activate IRAK following the induction of LPS and PAMPs,
as depicted in Fig. 6 (Rauta et al., 2014; Li et al., 2017; Loes et al., 2021). In addition to
TIRAP, additional adaptor molecules, such as SARM (sterile alpha and HEAT/Armadillo
motif-containing protein), have been identified in zebrafish. SARM is the only adaptor
protein that inhibits TLR signalling by interacting with TRIF (red arrow in Fig. 6). Its
expression inhibited the function of TRIF via the TLR3 and TLR4 pathways, whereas its
silencing had the opposite effect (Peng et al., 2010; Kanwal et al., 2014; Loring & Thompson,
2020; Luo et al., 2020).

The recruitment of TRIF to TLR4 and TLR3 occurs, thereby promoting an alternative
avenue which results in IRF3, NF-ß, AP-1, MAPKs, and IRF3 (interferon regulatory factor
3) being activated to produce proinflammatory cytokines and/or IFN1 (type I interferon)
(Kawasaki & Kawai, 2014; Hu et al., 2015; Nie et al., 2018). In addition, NF-κßin the
TRIF-dependent pathway can be activated via the recruitment of RIP1 and TRAF6 via the
C-terminal RHIM domain and the TRAF6 binding motif, respectively (Zhang et al., 2020;
Liu et al., 2021). Intriguingly, the activation of NF-κßin carp TRIF was consistent with the
findings in large yellow cracker, orange-spotted grouper, and zebrafish, indicating that fish
TRIF in the NF-κß-mediating signalling cascade has a conserved function (Zhang et al.,
2020; Liu et al., 2021; Zou et al., 2021).
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Unlike TLR4, TLR3 interacts directly with TICAM-1 (also known as TRIF) in the
MyD88-independent pathway. The TLR3-TICAM-1 signalling pathway is one of the most
important immune responses to RNA virus infection (Rebl, Goldammer & Seyfert, 2010;
Nie et al., 2018;Geng et al., 2021). As a result, it induces IFN1 production by activating IFN3
and IFN7 via an interaction with TRAF3 and TRAF6 (Li et al., 2017; Geng et al., 2021). As
shown in Fig. 6. TLR3 has been identified in numerous fish species, such as channel catfish
(Ictalurus punctatus), rare minnow (Gobiocypris rarus), pufferfish (Takifugu rubripes),
zebrafish (Danio rerio), and rainbow trout (Oncorhynchus mykiss).

To conclude, the TLR cascade involves the recruitment of components whose functions
resemble each other or are identical in every species of vertebrate apart from fish, whose
attributes are unique. More downstream components of this signalling cascade must be
studied in bony fish (teleost fish, cartilaginous fish and lungfish) to elucidate the functional
similarities and divergences of TLR signalling in a fish with bones or a mammal. The
importance of this is due to TLR working to connect innate and adaptive immunity, which
should facilitate the understanding of how a fish vaccine functions.

Multi-epitope vaccine and treatment
Compared to conventional vaccinology, epitope-based chimeric (subunit) vaccines using
an immunoinformatics approach offer many advantages such as not requiring microbial
culturing, being less expensive to develop, taking less time to produce, outperforming
numerous wet-lab experiments, and being specific and stable because they do not contain
the entire organism (Kar et al., 2020; Naz et al., 2020; Bukhari et al., 2022). Due to the
occurrence of MHC variants, an epitope-based vaccine targeting limited MHC alleles
typically does not have the desired or equivalent effect on the fish population. Consequently,
very promiscuous epitopes can simultaneously bind different alleles, allowing for the
immunological response sought in a diverse fish population (Wegner, 2008; Patronov &
Doytchinova, 2013; Radwan et al., 2020; Šimková et al., 2021). This approach, termed a
multi-epitope vaccine, consists of a set of peptides that overlap, and it induces an immune
response according to a short immunogenic sequence (Zhang et al., 2012).

A multi-epitope vaccine also uses certain design principles, such as TH, B-cell, and CTL
epitopes, which can cause strong cellular and humoral immunity at the same time; many
MHC-restricted epitopes, which a TCR from a different subset of T-cells can recognize;
and many epitopes from different forms of antigens, which increases the number of
bacteria and viruses that can be targetedFurthermore, multi-epitope vaccines involve the
introduction of an adjuvant-capable element able to boost immunogenicity and offer
durable immune responses. Moreover, undesirable elements that might cause an abnormal
immune response or a detrimental side effect can be eliminated (Saadi, Karkhah & Nouri,
2017; Zhang, 2018; Sami et al., 2021; Sanches et al., 2021).

Recently, an in-silico method was able to accurately predict epitopes and multi-
epitopes with remarkable responsiveness against Streptococcus agalactiae, Streptococcus
iniae, Edwardsiella tarda, and Flavobacterium columnarie individually (Forouharmehr
et al., 2022b; Islam, Mou & Sanjida, 2022). Pathogenic bacteria such as Streptococcus
agalactiae have caused streptococcus’s disease in tilapia aquaculture (Toranzo, Magariños &
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Romalde, 2005; Su et al., 2016; Sirimanapong et al., 2018). Tilapia species such asNile tilapia,
Oreochromi s niloticus Linn. that are infected with Streptococcus agalactiae typically exhibit
various symptoms such as dark skin pigment, dermal haemorrhages, hyperaemic gills, eye
lesions, erratic swimming, spinal curvature, and diffuse epithelial tissue proliferation
(Geng et al., 2012; Su et al., 2016; Yi et al., 2019). In addition, the currently available
vaccines have limits in protecting fish against catastrophic death when infected with
different strains of Streptococci sp. (Pereira et al., 2013; Mishra et al., 2018; Pumchan et al.,
2020). Utilizing immunoinformatics, a strategy to design a multi-epitope vaccine was
implemented to address this problem. As a result, two of five antigenic proteins (45F2 and
42E2) were predicted as the best candidates for constructing a multi-epitope vaccine and
were subsequently shown to successfully protect against streptococcus’s disease in tilapia
(Pumchan et al., 2020).

Similarly, the most recent study reported by Forouharmehr et al. (2022b) described
the effectiveness of multi-epitope vaccinations that employ a number of immunogenic
proteins. The prediction of the epitopes involved six immunogenic Streptococcus iniae
proteins: GAPDH, MtsB, ENO, Sip11, FBA, and SCPI. In this context, the most suitable
multi-epitope vaccine was constructed by foreseeing various epitopes, such as the B-cell,
T-cell, and IFN γ epitopes of the immunogenic proteins and interleukin-8 (IL-8). An
analysis was also conducted of the vaccine’s antigenicity, physicochemical attributes, and
secondary and tertiary structural forms, as well as different aspects deemed vital in the
vaccine’s development. Additionally, this study revealed that the developed vaccine’s IL-8
domain had the highest level of binding affinity when docking with its receptor, and this
was adapted with success so that it could be expressed in Escherichia coli. As a result, a
stable vaccine with an antigenicity score of 0.936 and a 45-kDa molecular weight has been
developed. This multi-epitope vaccine looks to be an effective candidate for preventing
Streptococcus iniae infections in fish.

Additional pathogenic bacteria such as Edwardsiella tarda and Flavobacterium columnare
also cause Edwardsiellosis and Columnaris diseases in the majority of fish species resulting
in a high mortality rate among distinct populations of fish of varying ages (Sudheesh et al.,
2012; Declercq et al., 2013; Hirai et al., 2015; Zhou et al., 2018). The E. tarda-infected fish
displayed symptoms such as abnormal swimming, spiral movement, and floating near the
water’s surface. This virulent intracellular pathogen poses serious threats, particularly in
the farming of catfish, flounder, turbot, yellowtail, and tilapia species (Park, Aoki & Jung,
2012; Mahendran et al., 2016a; Miniero Davies et al., 2018). In the meantime, columnaris
disease caused by F. columnare mostly affects fish species such as goldfish, channel catfish,
eels, tilapia, carp, perch, and salmonids. This virulent bacterium is found in the individual
gill filaments and causes yellowish-brown lesions on the gills, fin, and skin (Arias et al.,
2012; Zhu et al., 2012; Mahendran et al., 2016a; Mitiku, 2018). The need for novel vaccines
against edwardsiellosis and columnaris illnesses has increased as a result of these concerns.
Various antibiotics, including colistin, rifampin, oxacillin, and penicillin, have been used
to control edwardsiellosis (Mahendran et al., 2016a), whilst quinolones and tetracyclines
are used against columnaris infection (Mitiku, 2018). In spite of this, the extensive use of
antibiotics results in the evolution of various drug resistances and has caused the enormous
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deaths of farmed and wild fishes owing to bacterial infection (Kumar et al., 2012; Beck et
al., 2015; Abd El-Tawab et al., 2020; Preena, Dharmaratnam & Swaminathan, 2022).

Although vaccines for columnaris treatment are now available, there is a risk of reversion
in certain cases of live attenuated vaccines. Similarly, the possibility of amonovalent vaccine
to protect all the susceptible fish hosts from Edwardsiella sp. is impossible. This is because
the bacterium possesses different host-based genotypes such as serological, genetic, and
antigenic heterogenous (Park, Aoki & Jung, 2012; Mahendran et al., 2016a; Buján, Toranzo
& Magariños, 2018; Bothammal et al., 2021). Therefore, this risk of reversion could be
prevented by predicting the B-cell and T-cell epitopes in peptide sequences and then
developing an effectivemulti-epitopes vaccination using an immunoinformatics technique.
The docked structure of peptide-MHC I complexes has been successfully modelled using
two and five CTL epitopes of outer membrane proteins (OMPs) from E. tarda and F.
columnare, respectively, according to a prior study described by Mahendran et al. (2016a).
Their interactions were studied using immunoinformatics tools. In addition, infection
by other bacterial strains of Edwardsiella sp. in fish has also been reported recently. A
multi-epitope chimeric protein, EiCh is composed of eleven B-cell epitopes and seven
MHC II epitopes that were successfully constructed and expressed in E. coli BL-21 (DE3).
As a consequence, 49.32-kDa recombinant EiCh protein induced a potent antibody
response against E. ictaluri in Nile tilapia and striped catfish. This finding indicates that
the immunoinformatics strategy for vaccine formulation studied in this study is essential
for treating Edwardsiella sp. infections in fish species (Machimbirike et al., 2022b).

In addition to bacterial illnesses, viral infections have a negative impact on aquaculture
productivity. For instance, viral encephalopathy and retinopathy are caused by the nervous
necrosis virus (NNV), leading to extensive death rates in commercially farmed species of
fish that can exceed 100% (Hazreen-Nita et al., 2019; Kaushik, 2020; Michel-Todó et al.,
2020). In this regard, an in-silicomethod was utilised to design an epitope-based vaccine to
protect grouper and sea bass fish species from NNV infections. Six antigenic epitopes were
selected from a pool of one thousand and conjugated with adjuvant and linker peptides. As
a result, the model of an engineered epitope-based vaccine showed good binding to toll-like
receptor-5 (TLR5), a crucial elicitor of the immune response. This prediction would be
useful prior to cloning and purifying the NNV 248-specific protein (Joshi et al., 2021).

In addition to affecting marine and shellfish species, the marine birnavirus (MABV)
outbreak has a significant economic impact on aquaculture production (Mancheva et al.,
2021; Fu et al., 2022). In shorter periods in standard culture conditions, MABV is the most
pathogenic virus to have resulted in complete mortality, hence the limitations on being
able to prevent this virus (Crane & Hyatt, 2011; Diggles, 2016; Chen et al., 2019; Islam, Mou
& Sanjida, 2022). Thus, an immuno-informatics method was employed to construct an
epitope-based vaccine against MABV by recognising the most pathogenic and antigenic
proteins of MABV; RNA-dependent RNA polymerase (RdRp), polyprotein (PP), and
major capsid protein VP2 (MCPVP2) of MABV. For all the proteins, the leading three
CTL epitopes with the most appropriate adjuvants and linkers to ensure non-allergenity,
immunogenity, and better solubility were anticipated so that the multi-epitope birnavirus
(MEBV) could be designed. Using E. coli K12 as a model, codon optimisation was
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conducted to improve the translational efficiency of the vaccine design. The codon was
ultimately modified, and in silico cloning using the E. coli K12 expression host, pET28a (+)
vector, was effective. This potential peptide vaccine might be an effective MABV preventive
strategy (Islam, Mou & Sanjida, 2022).

Using immunoinformatics methodologies prior to conducting wet-lab trials, the design
of multi-epitope vaccines is a successful method for combating the majority of infectious
diseases, it may be concluded. This demonstrates that this method is one of the most
effective ways to manage bacterial and viral infections in commercial fish species.

Fish vaccine design based on immunoinformatics approach: promising
strategies
As we consider the future of immunoinformatics in fish vaccine design, it will be of the
utmost importance to cultivate collaboration and knowledge sharing within this field.
Several promising strategies can be employed to achieve this goal:
i. The establishment of open-access platforms for researchers to share their data,

methodologies, and immunoinformatics tools is essential to fostering knowledge
exchange. These platforms could include preprint servers for early dissemination
of research findings, data repositories for sharing raw datasets, and open-source
bioinformatics software repositories. The collective exchange of information could
accelerate progress in this field by minimising duplication of effort and allowing
scientists to iterate on previous work.

ii. Promoting international collaborations could be instrumental in combining diverse
skills, resources, and points of view. Networks that facilitate collaboration between
immunologists, bioinformaticians, and aquaculture specialists, among others, would
expedite the integration of diverse ideas and methodologies, thereby fostering
innovation in the field.

iii. Introducing capacity-building programmes and workshops in immunoinformatics and
related disciplines would equip researchers with the necessary knowledge and skills,
particularly those in regions with limited resources. This would enable more scientists
to contribute to the field and cultivate a research community that is more globally
representative.

iv. Policymakers can provide impetus by creating policies that promote data exchange,
collaboration, and research in this field. Furthermore, the allocation of funds specifically
for aquaculture immunoinformatics research would stimulate activity and promote
innovation in this field.

v. Promoting collaboration between public research institutions and private industry
could pool resources and expertise, thereby accelerating the translation of research
findings into practical applications, such as novel fish vaccines.

vi. Ethics and Governance: As collaborations expand and research becomes more data-
driven, it is crucial to establish robust ethical and governance frameworks. These
protocols should include data privacy, intellectual property rights, and equitable
benefit-sharing in order to ensure the ethical and efficient execution of collaborations.
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Attention should be given to the potential of immunoinformatics and multi-epitope
vaccine design to improve vaccine manufacturing capacity, particularly in low- and
middle-income countries (LMICs). These computational approaches, which rely on
accessible and affordable digital resources rather than costly laboratory infrastructure,
have the potential to revolutionise vaccine development in environments with limited
resources. Immunoinformatics can reduce the cost of vaccine development, a crucial factor
for LMICs. It facilitates the antigen discovery procedure by enabling researchers to predict
antigenic components of a pathogen that are likely to elicit a robust immune response using
computational methods. This avoids the costly and time-consuming process of empirical
experimentation, making the development of vaccines more affordable for institutions
with limited resources. Moreover, multi-epitope vaccines, which contain sequences
from multiple epitopes, provide additional benefits. They are typically manufactured
synthetically, allowing LMICs to potentially produce their ownvaccines instead of relying on
imports. This factor could result in substantial cost savings and increase local biotechnology
expertise.

In addition, the reduced cold chain requirements of multi-epitope vaccines, as a result
of their increased thermal stability, could alleviate the logistical challenges associated
with vaccine distribution in LMICs. In these regions, where maintaining the necessary
low-temperature conditions is often challenging, overcoming cold chain constraints is
a pressing necessity. Lastly, the adaptability of multi-epitope vaccine design can pave
the way for the development of custom vaccines. These could be modified to target
specific pathogen strains prevalent in certain geographic regions, enabling more effective
and targeted immunisation strategies. Implementing these strategies could considerably
increase collaboration and information exchange in the field of immunoinformatics-based
fish vaccine design. By doing so, we can foster a global, collaborative research community
with the common objective of developingmore effective and sustainable aquaculture health
management solutions.

CONCLUSIONS
Vaccination is fundamental to the sustainablemanagement of aquaculture, playing a crucial
role in preventing disease outbreaks and the overuse of antibiotics in fish.However, research
and development on vaccines for aquatic animals are still in their infancy, highlighting the
pressing need for enhanced strategies. The development of species-specific vaccines requires
a comprehensive understanding of fish immune systems, including B-cells, T-cells, MHC
molecules, and TLR signalling pathways; however, traditional approaches are often costly
and time-consuming. Immunoinformatics is a prospective alternative for more effective
vaccine design, capable of addressing the complexities of emerging and re-emerging
diseases, antigenic diversity, and personalised immunisation requirements. This strategy
employs high-performance tools for identifying multi-epitope vaccines, thereby providing
a platform for examining variations in immune adaptations among fish species. However,
there are gaps and limitations in the discipline.

Despite the promise of immunoinformatics, the accuracy of these predictions is
inextricably linked to the precision of the data and the sophistication of the algorithms
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employed. Inaccuracies in high-throughput sequence data highlight the need for robust
data cleansing methods and verification protocols; without them, subsequent analyses may
be erroneous. Future research should concentrate on refining the computational techniques
used in immunoinformatics and developing bettermethods for integrating these techniques
with conventional laboratory testing. This will not only result in a more precise vaccine
design based on epitopes, but it will also promote a targeted, cost-effective, and safer
approach to fish vaccination. Moreover, the establishment of a comprehensive database
of fish immune responses at the individual, species, and population levels could provide
valuable insights for vaccine design and delivery strategies. Although immunoinformatics
is a promising instrument for vaccine development, it must be continuously refined and
validated. In order to push the boundaries of aquatic animal health management in the
coming years, it will be essential to adopt this technology and simultaneously address its
gaps and limitations.

Considering the undeniable fact that the increase in immunoinformatics studies
following COVID-19 has broadened our understanding and presented numerous potential
vaccine candidates, the true value of these findings cannot be confirmed without laboratory
validation. Computational analysis and in silico modelling are essential instruments, but
they are only the first step in a multi-step process leading to the development of a viable
vaccine. The majority of published immunoinformatics studies are indeed predominantly
computational, and their contribution to actual vaccine development can be limited in
the absence of experimental validation. The prediction of potential antigens or epitopes
is based on our current knowledge of protein structure and immune response, both of
which are still active research areas. In addition, immunoinformatics tools are imperfect
and frequently operate based on assumptions that may not always be true. Therefore,
experimental data must always validate bioinformatics predictions.

Determining the protective efficacy of identified vaccine candidates in aquaculture
is difficult due to the complexity of immune responses in aquatic organisms and the
difference between their immune systems and those ofmammals. Important is experimental
validation in the form of laboratory and field evaluations. These include, but are not limited
to, epitope mapping, evaluating for immune response in cell cultures or fish, and observing
the progression of disease resistance in vaccinated populations. Although the redundancy
of theoretical vaccine papers can be a cause for concern, it is essential to remember that
these studies still contribute to our collective knowledge and may serve as the foundation
for future experimental research. Increasing accessibility to computational tools and
techniques has democratised scientific research, allowing more scientists to contribute
their findings. As these findings are tested and validated in the laboratory, we will be able
to enhance the predictive power of immunoinformatics by refining our tools and models.

To ensure that immunoinformatics research effectively contributes to the development
of essential vaccines, it is crucial to encourage the laboratory application of these
computational findings. This can be accomplished by encouraging collaboration between
computational and experimental biologists, promoting funding for validation studies, and
emphasising the publication of studies that include both computational and experimental
components. In conclusion, although the influx of theoretical vaccine papers provides a
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plethora of potential vaccine candidates, it is essential to take these findings to the next level
by conducting the necessary experimental validations to advance vaccine development in
the aquaculture field.
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