DESIGN OF IMPRESSED CURRENT CATHODIC PROTECTION FOR STEEL IMMERSED IN FRESHWATER

ABDELSALAM I S AHDASH

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Mechanical-Materials)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > APRIL 2010

DEDICATION

To my beloved parents, siblings and friends for their endless loves and supports...

ACKNOWLEDGEMENT

Alhamdulillah, praise to be Allah, The Most Gracious and The Most Merciful. First of all, I would like to express my special thanks to Professor. Dr Esah Hamzah for her willingness to be my supervisor in this master's project. Your supports, encouragements, critics, guidance and friendship would never been forgotten. The opportunity to work under your supervision was a great experience.

Special appreciations to Corrtroll company for the unconditional support, assistance and helps.My heartfelt thanks also to my parents and my siblings for the endless loves, supports, tolerance and understanding.

In preparing this project report, I was very lucky to have chances to learn many new knowledge as this is a new field in corrosion protection and materials science and technology for me. Those experiences hoped to be used and fully utilized for my future undertaking.

My sincere appreciation also extends to all my friends for the motivations and all the technicians in materials science laboratory and marine technology laboratory that involved in helping me to carry out all the laboratory works.

ABSTRACT

Impressed current cathodic protection (ICCP) and coating give the optimum protection against corrosion for steel immersed in freshwater. This project presents the results of a study on the effectiveness of coating, impressed current cathodic protection and different environment conditions in preventing corrosion of steel. Experimental tests were carried out on coated and bare steel plates with ICCP and without ICCP by immersing in stagnant and flowing freshwater for one month. The results demonstrated that for coated and bare steel with ICCP and different variable resistance, the values of the potential are sufficient to protect the bare and the coated steel -840mV to -875mV.For coated steel without ICCP immersed in stagnant freshwater the potential has changed from -702 mV to -630mV, but for the bare sample the change in potential was about -10mV this may be due to oxide layer formed on the metal surface. For coated steel without ICCP immersed in flowing freshwater the drop in potential was about -50mV and the bare steel with the same condition was about -100 mV. A good agreement was observed for corrosion rate between weight loss measurement (4.29 mpy) test and electrochemical test (4.27 mpy) for bare steel in stagnant freshwater. The location of the reference electrode has significant implications for the control the potential change of ICCP system, the corrosion potential increases at the top of the sample (60cm below the water) and decrease when the sample was immersed further down to 1 meter in the water level.

ABSTRAK

Salutan dan perlindungan katod arus bekasan (ICCP) dapat memberikan perlindungan yang optimum pada keluli apabila direndam di dalam air bersih. Projek ini bertujuan untuk mengkaji kesan salutan dan perlindungan katod arus bekasan dan keadaan persekitaran yang berbeza pada kakisan keluli. Kajian dijalankan selama sebulan di dalam air genang dan air yang mengalir dengan menggunakan dua jenis keluli iaitu keluli bersalut dan tanpa salutan. Ia dibahagikan kepada dua bahagian iaitu dilengkapi sistem ICCP dan tanpa sistem ICCP. Keputusan kajian menunjukkan nilai upaya pada keluli tanpa salutan dan keluli bersalut yang dilengkapi sistem ICCP adalah mencukupi untuk melindungi keluli- keluli tersebut(-840mVhingga -875mV). Manakala keputusan nilai upaya pada keluli bersalut tanpa sistem ICCP yang direndam di dalam air genang berubah dari -702 mV kepada -630mV. Berlainan pada keluli tanpa salutan iaitu hanya -10mV disebabkan kehadiran lapisan oksida. Keputusan nilai upaya untuk keluli bersalut tanpa dilengkapi sistem ICCP di dalam air mengalir adalah -50mV, manakala bagi keluli salutan adalah -100 mV. Keputusan ujian kehilangan berat dan juga ujian elektrokimia tidak memberikan perbezaaan yang ketara nilai kadar kakisan pada keluli tanpa salutan di dalam air genang iaitu (4.29) mpy untuk ujian kehilangan berat dan (4.27) mpy untuk ujian elektrokimia. Kedududukan elektrod rujukan juga memberikan kesan pada nilai upaya di dalam sistem ICCP ini. Nilai upaya kakisan meningkat apabila kedudukan elektrod rujukan berada di atas sampel (60sm dari paras air) dan menurun apabila diletakkan di bahagian bawah air iaitu (1 meter dari paras air)

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE	i
	DECLATATIONS	ii
	DEDICATION	iii
	ACKNOWLEDGMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	LIST OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiii
	LIST OF APPENDICES	xvi
1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Background of the Study	1
	1.3 Objectives of the Study	3
	1.4 Research Questions	3
	1.5 Significance of the Study	4
	1.6 Scopes of the Study	4
2	LITERATURE REVIEW	5
	2.1 General Review	5
	2.2 Electrochemical Nature of Aqueous Corrosion	6
	2.3 Corrosion Control	9
	2.3.1 Design	9

	2.3.2	Materials Selection	10	
	2.3.3	Inhibitors	11	
	2.3.4	Protective Coatings	11	
	2.3.5	Cathodic Protection	11	
		2.3.5.1 The Principles of Cathodic	12	
		Protection		
		2.3.5.2 Types of Cathodic Protection	13	
2.4	Current	t Sources	16	
	2.4.1	Transformer/Rectifiers	16	
		2.4.1.1 Circuit Breaker	20	
		2.4.1.2 Transformer	21	
		2.4.1.3 Rectifier Cells	21	
	2.4.2	Rectifier Efficiency	22	
	2.4.3	Engine Generator Sets	23	
	2.4.4	Batteries, Solar and Wind Generators	23	
	2.4.5	Thermoelectric Generators	24	
	2.4.6	Closed Cycle Turbo Generators	25	
2.5	Anode	Materials	25	
	2.5.1	Steel Scrap Anodes	26	
	2.5.2	Cast Iron Scrap Anodes	27	
	2.5.3	Silicon Iron Anodes	27	
	2.5.4	Graphite Anodes	27	
	2.5.5	Magnetite Andes	28	
	2.5.6	Lead Alloy Anodes	28	
	2.5.7	Platinised Titanium Anodes	29	
	2.5.8	Mixed Metal Oxide Based Anodes	29	
	2.5.9	Zinc Anodes	30	
	2.5.10	Aluminium Anodes	31	
2.6	Distrib	uted Anode Cables	31	
2.7	Protect	Protection of Underwater Structure 32		

RESEARCH METHOLOGY 34 34 3.1 Introduction 35 3.2 Impressed Current Design Physical Dimensions of Structure to be 36 3.13.1 Protected 36 3.13.2 Drawing of Structure to be Protected 3.13.3 Electrical Isolation 36 37 3.13.4 Short Circuits 3.13.5 Corrosion History of Structures in the 37 Area 37 3.3 Review pH Data 3.4 Variations in Temperature and Concentration 38 3.5 Current Requirement 38 3.6 Coating Resistance 40 3.7 Selection of Anode Material, Weight and 40 Dimensions 3.8 Calculate Number of Anodes Needed to Satisfy 42 Manufacturer's Current Density Limitations 43 3.9 Determine Total Circuit Resistance 3.10 Calculate Rectifier Voltage to Determine Voltage 43 Output of the Rectifier 44 3.11 Power Source Selection 47 3.12 Monitoring by Measuring of the Potential 48 3.13 Electrochemical Testing 48 3.13.6 Principle of Measurement 50 3.13.7 Preparation of Working Electrode 52 3.14 Immersion Test

3

ix

4	RES	ULTS	AND DISCUSSION	53
	4.1	Chem	ical Composition of Materials Used	53
	4.2	Impre	ssed Current Cathodic Protection	54
		Calcu	lations	
		4.2.1	For Coated Steel Immersed in Stagnant	54
			Freshwater	
		4.2.2	For Bare Steel Immersed in Stagnant	56
			Freshwater	
		4.2.3	For Coated Steel Immersed in Flowing	58
			Freshwater	
		4.2.4	For Bare Steel Immersed in Flowing	60
			Freshwater	
	4.3	Poten	tial Measurement Results	62
		4.3.1	Coated and Bare Steel Immersed in	62
			Stagnant Freshwater with ICCP	
		4.3.2	Coated and Bare Steel Immersed in	64
			Stagnant Freshwater without ICCP	
		4.3.3	Coated and Bare Steel Immersed in	66
			Flowing Freshwater with ICCP	
		4.3.4	Coated and Bare Steel Immersed in	68
			Flowing Freshwater without ICCP	
	4.4	The E	ffectiveness of the Reference Electrode	70
		Locat	ion on The Protection Potrntial Result	
	4.5	Electr	ochemical Result	74
		4.5.1	Visual Inspection	74
		4.5.2	Polarization Result	74
	4.6	Imme	rsion Test Results	76

5	CO	NCLUSTION AND RECOMMENDATIONS	77
	FOI	R FUTURE WORK	
	5.1	Conclusions	77
	5.2	Recommendations for Future work	78
REFERENCES			79
APPENDICES			81
Appendices A - C			81-92

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Comparison between sacrificial anode system and	15
	impressed current system	
2.2	Typical consumption rates of impressed current anode	26
	materials	
3.1	Current density and types of environment	29
3.2	Coated and bare samples immersed in different conditions	44
	of freshwater	
3.3	Potentiostatic polarization test parameters	48
3.4	Immersion test parameters	52
4.1	Chemical composition of low carbon steel	53
4.2	Electrochemical result	75
4.3	The result of corrosion rate of samples without ICCP	76

LIST OF FIGURES

TABLE NO.	TITLE	PAGE
2.1	Shows corrosion of pipeline	6
2.2	Electrochemical nature of corrosion processes in water	7
2.3	The principle of cathodic protection	13
2.4	(a) Sacrificial anode system	14
	(b) Impressed current system	14
2.5	Operation of a single phase bridge rectifier	19
2.6	Components of a rectifier	22
2.7	Typical zinc anode	30
2.8	Marine structure anode	32
3.1	Flow chart of research methodology	35
3.2	Schematic of coated and bare samples with and without	45
	ICCP in	
	(a) Stagnant freshwater	45
	(b) Flowing freshwater	45
3.3	Actual sites in marine technology laboratory	46
	(a) Stagnant freshwater side	46
	(b) Flowing freshwater side	46
3.4	Wave generator towing tank	46
3.5	Silver- Silver chloride reference electrode	47
	(a) Schematic	47
	(b) Real	47
3.6	Copper- copper sulfate reference electrode	47
	(a) Schematic	47
	(b) Real	47
3.7	Cell kit setup	49

3.8	Photographs of	50
	(a) Connection of specimen to copper wire by	50
	brazing technique	
	(b) Mounting of samples	50
3.9	Photographs of	51
	(a) Working electrode	51
	(b) Typical surface area of a sample	51
4.1	Potential measurement of coated and bare samples in	63
	stagnant freshwater with ICCP	
4.2	Samples with ICCP after 1 month immersion in stagnant	63
	freshwater	
	(a) Coated sample	63
	(b) Bare sample	63
4.3	ICCP anodes after 1 month immersion in stagnant	64
	freshwater for	
	(a) Coated sample	64
	(b) Bare sample	64
4.4	The potential measurement on coated and bare samples in stagnant freshwater without ICCP Samples without ICCP after 1 month immersion in	65
4.5	stagnant freshwater	05
	(a) Coated sample	65
	(h) Coated sample	65
	(c) Bare sample	65
	(d) Bare sample	65
46	Quantitative analysis of XRD pattern of corrosion	66
	products from the bare sample in stagnant freshwater	00
4.7	Potential measurement of coated and bare samples in	67
	flowing freshwater with ICCP	0,
4.8	Samples with ICCP after 1 month immersion in flowing	67
	freshwater	07
	(a) Coated sample	67
	(b) Bare sample	67
	(-) =T	57

4.9	ICCP anodes after 1 month immersion in flowing	68
	freshwater for	
	(a) Coated sample	68
	(b) Bare sample	68
4.10	Potential measurement of coated and bare samples in	69
	flowing freshwater without ICCP	
4.11	Samples without ICCP after 1 month Immersion in	69
	flowing freshwater	
	(a) Coated sample	69
	(b) Coated sample	69
	(c) Bare sample	69
	(d) Bare sample	69
4.12	Effectiveness of reference electrode location on the	71
	samples potential in stagnant freshwater with ICCP	
4.13	Effectiveness of reference electrode location on the	71
	samples potential in stagnant freshwater without ICCP	
4.14	Effectiveness of reference electrode location on the	72
	samples potential in flowing freshwater with ICCP	
4.15	Effectiveness of reference electrode location on the	72
	samples potential in flowing freshwater without ICCP	
4.16	Bar chart for samples immersed in stagnant freshwater	73
4.17	Bar chart for samples immersed in flowing freshwater	71
4.18	(a) A specimen before electrochemical test	74
	(b) A specimen after electrochemical test	74
4.19	Tafel extrapolation curve for bare steel in freshwater	75

LIST OF APPENDICES

APPENCIX	TITLE	PAGE
А	The potential measurement for coated and bare steel in	81
	stagnant and flowing freshwater with and without ICCP	
В	General properties of low carbon steel	85
С	Wave generator towing tank	86

CHAPTER 1

INTRODUCTION

1.1 Introduction

This section discuss about the introduction of the study which are background of the study, purpose and objective of the study, significant of study and scope of study.

1.2 Background of the Study

Corrosion can be defined as destruction or deterioration of the material because of the reaction with the environment. Most of the materials which undergo corrosion are metal, so some insist definition of the corrosion should be specific to the metal. Mars G. Fontana [1] suggest that all material including ceramic, polymer and other non-metallic material which contributes into the corrosion reaction should be taken care.

Corrosion weakens strength and cause failure on material. Protection materials from undergoing corrosion become crucial especially tropical country like Malaysia which has high humility. Cost of the corrosion in United State is around USD\$ 40 billion or RM 140 million annually. Protection need to be done onto the material so that reduce corrosion rate so that less materials and money being wasted.