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ABSTRACT

Gas adsorption on zeolites gains remarkable attention in this new era of 
nanotechnology since it has industrial importance in many process industries.  New 
technologies involving catalysis, gas separation, gas purification, gas storage, and 
high temperature gas sensor hold a great promise for industrial applications.  In 
order to develop and design an efficient and economically feasible process, it is 
important to understand the adsorption characteristics of gas on zeolite.  At present, 
there are many studies have been carried out in the area of gas adsorption, but the 
data is fragmented and still far from complete.  Therefore, the aim of this study is to 
address some fundamental aspects of gas adsorption by investigating the structural 
properties and gas adsorption characteristics of different zeolite structures and 
cations in the extra-framework zeolites.  Commercial zeolites representing channel 
types (ZSM-5, zeolite beta, mordenite, and ferrierite) and cage types (NaX, NaY, 
and zeolite A) were used in order to study the effect of structural arrangement on 
gas adsorption. Synthesized zeolite Y (Na-SZ18) was also used as comparison to 
NaY commercial, and for modification study.  Modification using cation exchange 
method was carried out on the cage-type zeolite (Na-SZ18) by exchanging Na+ with 
other cations namely Li+, K+, and Rb+ (alkali metals), Mg2+, Ca2+, and Ba2+ (alkaline 
earth metals), and Mn2+, Ni2+, and Zn2+ (transition metals).  Methane and carbon 
dioxide, the main components of natural gas, were used as adsorbates.  The physical 
and chemical properties of zeolite adsorbents were determined using x-ray 
diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform 
infra-red (FTIR) spectroscopy techniques, and nitrogen adsorption at 77 K.  Gas 
adsorption measurements were carried out using volumetric and gravimetric 
methods.  Gas adsorption characteristics of zeolites were evaluated based on the 
adsorption capacity, adsorption isotherms, heat of adsorption, uptake rate of the 
adsorbates, and FTIR spectra of gas-zeolite interactions.  It was found that cage-type 
zeolites are better adsorbents than channel-type zeolites.  The adsorption of methane 
on Na-SZ18 is 5 times higher while the adsorption of carbon dioxide is 4 times 
higher than ferrierite. The gas adsorption measurements also revealed that 
exchanging Na+ with some metal cations enhanced the adsorption capacity of 
methane (19.8 %) and carbon dioxide (7.48 %) on modified zeolites.  In addition, 
FTIR spectroscopy results also suggested that the extra-framework cation influenced 
the interaction between adsorbates and the zeolite surface.  Finally, the mechanisms 
of gas adsorption were proposed based on zeolite of different structures and metal 
cations.  All these results suggests that structural properties and the cations that 
present in extra-framework zeolites affect the adsorption characteristics of methane 
and carbon dioxide on zeolites.
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ABSTRAK

 Penjerapan gas pada zeolit mendapat perhatian yang meluas di dalam era 
teknologi nano kerana ia menawarkan pelbagai kelebihan dalam industri 
pemprosesan.  Teknologi-teknologi baru yang melibatkan pemisahan gas, penulenan 
gas, penstoran gas, dan penderia gas bersuhu tinggi mempunyai lebih peluang untuk 
diaplikasi di dalam industri. Untuk membangun dan merekabentuk proses yang 
cekap dan ekonomi, pengetahuan mengenai sifat-sifat penjerapan gas ke atas zeolit 
adalah sangat penting. Pada masa kini, terdapat banyak kajian yang telah dijalankan 
di dalam bidang penjerapan gas, tetapi maklumat yang ada masih lagi belum 
mencukupi.  Oleh itu, kajian ini dijalankan bertujuan untuk menyelidiki aspek-aspek 
asas penjerapan gas dengan mengkaji sifat-sifat struktur dan ciri-ciri penjerapan 
zeolit berlainan struktur and berbeza kation di kerangka luar.  Zeolit komersil yang 
mewakili jenis sesalur (ZSM-5, zeolit beta, mordenite, dan ferrierite) dan jenis 
sesangkar (NaX, NaY dan zeolit A) digunakan untuk mengkaji kesan susunan 
struktur terhadap penjerapan gas.  Zeolit Y yang disintesis (Na-SZ18) juga 
digunakan sebagai perbandingan kepada NaY komersil, and kajian pengubahsuaian 
zeolit.  Pengubahsuaian menggunakan kaedah pertukaran kation dijalankan terhadap 
zeolit jenis sesangkar (Na-SZ18) dengan menukarkan Na+ dengan kation lain, iaitu 
Li+, K+, and Rb+ (logam alkali), Mg2+, Ca2+, and Ba2+ (logam bumi alkali), and 
Mn2+, Ni2+, and Zn2+ (logam peralihan).  Gas metana dan karbon dioksida, 
komponen utama di dalam gas asli, digunakan digunakan sebagai zat terjerap dalam 
kajian ini.  Ciri-ciri fizikal dan kimia zat penjerap zeolit ditentukan menggunakan 
teknik pembelauan sinar-X (XRD), imbasan elektron mikroskopi (SEM), dan infra-
merah pengubahan Fourier (FTIR) spektroskopi, dan penjerapan nitrogen pada suhu 
77 K.  Pengukuran penjerapan gas dijalankan menggunakan kaedah volumetrik dan 
gravimetrik.  Ciri-ciri penjerapan gas dinilai berdasarkan kepada kapasiti 
penjerapan, penjerapan isotherma, haba penjerapan, kadar penjerapan zat terjerap, 
dan spektra FTIR interaksi gas-zeolit.  Hasil kajian ini mendapati zeolit jenis-
sesangkar mampu menjerap dengan lebih baik berbanding zeolit jenis-sesalur.  
Penjerapan keatas Na-SZ18 5 kali lebih tinggi, manakala penjarapan carbon 
dioksida pula adalah 4 kali ganda melebihi penjerapan ferrierite.  Pengukuran 
penjerapan gas juga menunjukkan pertukaran Na+ dalam zeolit dengan beberapa 
jenis kation logam boleh meningkatkan kapasiti penjerapan metana (19.8 %) dan 
karbon dioksida (7.48 %) keatas zeolit.  Keputusan spectroskopi FTIR juga 
menunjukkan kation tersebut mempengaruhi interaksi antara zat terjerap dan 
permukaan zeolit.  Akhir sekali, mekanisma penjerapan gas dicadangkan 
berdasarkan hasil kajian zeolit berlainan struktur dan kation logam.  Keputusan-
keputusan kajian ini menunjukkan bahawa sifat-sifat struktur dan kation di luar 
kerangka zeolit mempengaruhi ciri-ciri penjerapan gas metana dan karbon dioksida 
pada zeolit.
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CHAPTER 1 

INTRODUCTION

1.1 General Introduction 

Adsorption is a process in which material accumulates at the interface.  In the 

case of gas adsorption, solid and gas are called as adsorbent and adsorbate 

respectively.  According to Dabrowski (2001), this adsorption process is a result of 

intermolecular forces attraction between adsorbate and adsorbent.  The adsorbates 

attract to the surface of adsorbent through van der Waal forces (physical adsorption) 

and chemical bond formation (chemical adsorption). When the intermolecular 

attractive forces between a solid and a gas are greater than those existing between 

molecules of the gas itself, the gas will condense upon the surface of the solid even 

though its pressure may be lower than the vapor pressure corresponding to the 

prevailing temperature.  The adsorption phenomenon is accompanied by an evolution 

of heat (Suzuki, 1990; Dabrowski, 2001). 

A tremendous growth of gas adsorption processes has made adsorption 

system a key separation and purification tool in chemical and petrochemical 

industries (Padin et al., 2000; Barbosa et al., 2000; Da Silva and Rodrigues, 2001; 

Hasegawa et al., 2001; Rege and Yang, 2002; Hincapie et al., 2004).  Hence, it 
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generates intense interest in porous material (adsorbents) such as activated carbon, 

zeolite, silica, and alumina since the choice of potential adsorbent can be crucial in 

determining the performance of any adsorption process (Rakoczy and Traa, 2003; 

Bae and Lee, 2005). Although, in principle, porous material can provide all the basic 

requirements for adsorption, in practice the best adsorbent needs to fulfill 

requirements for specific adsorption system.  Current development shows that zeolite 

has gained broad academic and industrial interest stemming from it unique 

combination of properties (Mohamed and Mekkawy, 2003; Clausse et al., 2004; 

Berthomieu et al., 2005).  Furthermore, the fine-tuning of the zeolite structure by all 

sorts of modification methods while maintaining its topology makes zeolite more 

attractive than any other adsorbents (Langmi et al., 2005; Garcia et al., 2005).

So far, adsorption was used in many fields mainly separation and purification 

processes such as gas dehydration, separation and purification of hydrogen from 

steam reformer, separation and purification of air, separation of parrafins, and 

removal of pollutants from the flue gases (Harlfinger et al., 1983; Stelzer et al.,

1998; Tatlier and Erdem-Senatalar, 2004; Chang et al., 2004; Koriabkina et al.,

2005).  However, extensive studies on the zeolitic materials may lead to other 

potential applications in adsorptive natural storage, hydrogen gas storage, high 

temperature gas sensor and semiconductor materials (Langmi et al., 2005; Biloe and 

Goetz, 2001; Nijkamp et al., 2001; Mintova and Bein, 2001; Matranga et al., 1992). 

1.2 Research Background 

The earliest applications of zeolite adsorbents were the drying of refrigerant 

gas and natural gas (van Bekkum et al., 1991).  An exciting new scientific direction 

has emerged through introduction of various zeolites structural frameworks aiming to 

produce highly efficient process.  Thus, the understanding of zeolite structure and 
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structure-properties relationship becomes the basic interest and the most challenging 

task in zeolite research. 

There are numerous types of natural and synthetic zeolites that could be used 

in catalysis and gas adsorption applications.  Natural zeolites have not gained much 

industrial importance due to some limitations in availability and variation in 

chemical composition and physicochemical properties.  However, due to great 

demand of zeolites for industrial applications, synthetic zeolites are produced in large 

quantities.  According to the International Zeolite Association - Structure 

Commission, more than 150 distinct framework structures of zeolite have been 

synthesized.  At the same time, various techniques evolved for identifying and 

characterizing these materials accelerate the development of zeolite as potential 

adsorbent.  In the presence of various structural frameworks, the selection of suitable 

adsorbent would depend on the adsorption capacity and selectivity of zeolite.  

Consequently, this would depend on the properties of adsorbent and adsorbate.

Other factors such as temperature and pressure should also be considered.  As 

reported in literatures, there are several parameters used in order to evaluate the 

performance of zeolites as gas adsorbents (Bellat et al., 1995; Triebe et al., 1996; 

Armor, 1998; Hernandez-Huesca et al., 1999; Pires et al., 2001; Rege and Yang, 

2002; Khelifa et al., 2004).  The measurements of gas adsorption isotherm, gas 

adsorption capacity, and gas uptake rate could also be used to determine the 

characteristics of gas adsorption on zeolite adsorbent. 

In many cases, the adsorbent was further improved by carrying out post-

synthesis treatment (modification) that could change the properties of zeolites at 

molecular level (Vansant, 1987; Bellat et al., 1995; Siantar et al., 1995; Armor, 

1998; Choi et al., 2000; Qian and Yan, 2001; Nery et al., 2003). The modification of 

internal zeolite pore structure for example, is a way of “engineering” the structure of 

zeolites.  Cation exchange and dealumination are the most common methods used to 

modify the physical and chemical properties of zeolites.  However, the selection of 

modification method also depends on the gas adsorption system. Different adsorbates 

that adsorbed at different temperature and pressure may require different methods of 
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modification. In general, the modification should be able to overcome any 

discrepancies related to structural and physicochemical properties of the zeolite. 

Furthermore, the method should be simple and caused minimum damage to the 

structure.

1.3 Research Motivation and Aims 

Research in the area of gas adsorption is continuously expanding with the use 

of zeolites in several important applications such as catalysis, natural gas storage, 

natural gas purification and hydrocarbon separation (Wegrzyn and Gurevich, 1996; 

Mota, 1999; Biloe et al., 2001; Anpo et al., 2002; Stefanis et al., 2004; Cavenati et

al., 2004).  However, to be more competitive, the adsorptive capability of zeolite 

adsorbent should be improved.  With more than 150 zeolites structures that have 

been synthesized (International Zeolite Association (IZA)-Structure Commission), it 

is very important to understand the characteristics of gas adsorption on zeolite 

adsorbent for the selection of suitable adsorbent for the system. Zeolite was chosen 

due to the fact that it has high porosity and can be employed as selective adsorbent 

(Dabrowski, 2001; Holmberg et al., 2004).  However, current developments show 

the diversification in zeolite compositions and structures (IZA -Structure 

Commission), thus it requires detailed explanation on adsorption phenomena on of 

gases on zeolite adsorbent.

To date, there are limited types of zeolites being used in gas adsorption 

applications (Eldridge, 1993; Choudhary and Mayadevi, 1996; Sakuth et al., 1998; 

Hernandez-Huesca et al., 1999; Jayaraman et al., 2004; Olson et al., 2004; Stefanis et

al., 2004; Diaz et al., 2004).  One of the reasons that limit the use of various zeolites 

is due to lack of understanding on the characteristics of adsorption especially related 

to structural and physicochemical properties of the zeolitic materials.  Hence, it 

requires extensive studies on zeolite adsorbents in order to expand the selection of 
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the material for adsorption application.  Even though it is known that structural 

framework of zeolite would influence the diffusivity of adsorbate, and thus influence 

the adsorption capacity and selectivity, properties that affect the adsorption capacity 

are still not clearly identified since the studies only involve limited number of 

zeolites (Werner and Mersmann, 1994; Exter et al., 1997; Keller et al., 1999; 

Weireld et al., 1999; Yang et al., 2001; Czaplelewski et al., 2002; Langmi et al.,

2003; Kubanek et al., 2005; Maurin et al., 2005).  Therefore, the first objective of 

this research is to study gas adsorption characteristics of structurally different 

zeolites.

In order to achieve this objective, several types of zeolite were selected 

namely A, X, Y, Na-SZ18, ZSM-5, mordenite, ferrierite, and beta.  These zeolites 

were selected to represent different zeolite properties such as pore network system, 

pore size, surface area, pore volume, and zeolite compositions (Si, Al, and Na).

Except for zeolite X, Y, and Na-SZ18, each zeolite has different structural 

framework arrangement that represent different pore network system (one-, two-, 

three-dimensional pore network system, straight and zig-zag channel system).  

Zeolite X, Y, and Na-SZ18 belong to faujasite structure, with the difference in the 

ratio of Si/Al.  In this study, zeolites are divided into two main categories, 

interconnected cage-like voids and uniform channel-like systems in which the 

channel is connected either in one-, two- or three-dimensional system.  Adsorbates 

used in this study are methane and carbon dioxide, main component in natural gas.  

The adsorbates represent small gas molecules with different characteristics; methane 

is non-polar molecules whereas carbon dioxide appears to have a quadrapole 

moment.  Based on the gas adsorption capacity and gas uptake rate, the gas 

adsorption performance of different structural framework was investigated. 

However, structural framework is not the only factors that affect the 

adsorption capacity and selectivity of zeolites.  This is due to the fact that, apart from 

the diffusion of adsorbate, the interaction of adsorbate-adsorbent is equally important 

in the adsorption process.  Hence, this investigation was extended to the 

physicochemical properties of zeolites that include zeolite crystallinity, porosity, and 
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chemical composition.  The samples are initially characterized using methods such as 

x-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) 

spectroscopy, and surface analysis based on nitrogen adsorption (NA).  The 

relationship between these properties and adsorption isotherm, adsorption capacity, 

and gas adsorption uptake provide a fundamental understanding on the effect of 

zeolite physicochemical properties of adsorbent on gas adsorption characteristics.  In 

addition, several equation models were used to determine the thermodynamic and 

kinetic parameters of the material understudied.   

Since the adsorption involves evolving of heat, heat of adsorption was 

calculated in order to determine type of adsorption occurred on the zeolite surface, 

either chemical adsorption or physical adsorption.  Finally, to complete the first 

objective, gas-zeolite interaction were carried out using FTIR spectroscopy method.  

The spectra relatively show the amount adsorbed and the strength of interaction 

between the adsorbate and the adsorbent.  The results reveal some important 

characteristics of adsorption on zeolite adsorbent, which lead to development of 

mechanistic model of gas adsorption on zeolite adsorbent.  After completing the first 

objective, to study gas adsorption characteristic different zeolite structures, one of the 

zeolite understudied was selected for zeolite modification.  The selection was made 

based on the adsorption capacity, thermodynamic and kinetic properties, and gas-

zeolite interaction of different zeolite structures.  

As the adsorption involves the interaction between adsorbate and adsorbent, 

the charge balancing cation (usually sodium) has important roles in the adsorption 

process (Bellat et al., 1995; Armor, 1998; Barbosa et al., 2000; Khelifa et al., 2004; 

Maurin et al., 2005b).  However, there is apparent discrepancy between the results 

obtained since those studies were carried out using different cations, different 

zeolites, different adsorbates, and at different experimental conditions.  Other studies 

on cation exchange only focused on the physical and chemical changes of the zeolitic 

material (Siantar et al., 1995; Huang et al., 1998; Albert and Cheetham, 2000; 

Trigueiro et al., 2002; Öhman et al., 2002; Nery et al., 2003).  Therefore, the second

objective of this research is to study the effect of different cations on gas adsorption 
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characteristics of zeolite adsorbent.  It was carried out by cation exchange method in 

which, sodium that present as charge balancing cations in the extra-framework of 

zeolite of the selected zeolite was replaced by other cations.

This modification method is simple, however it results in some variations to 

the properties of adsorbent without create much defect on the structure.  Cations 

were selected to represent three groups of metals; alkali metal, alkaline earth metal 

and transition metal groups.  Apart from the size and the charge of cation, the amount 

and the locations of cation in three dimensional zeolite matrixes might influence the 

adsorption characteristics of zeolite.  The characterizations were also carried out on 

the modified zeolites to provide useful information on the structure and properties of 

zeolite after modification.  Gas adsorption measurements were carried out to 

determine gas adsorption isotherm, gas adsorption capacity, the uptake rate of 

methane and carbon dioxide.  

The data obtained were used to evaluate the thermodynamic and kinetic 

parameters of gas adsorption on metal cation exchanged zeolites.  The relationship 

between gas adsorption capacity and physicochemical properties of modified zeolite 

were further evaluated in the presence of different cations.  In addition, FTIR 

spectroscopy was used to study the interaction between adsorbates and modified 

adsorbent.  The results would give some indications the effect of cations on 

physicochemical properties and the characteristics of adsorption.  By using methane 

and carbon dioxide, the study would demonstrate the effect of adsorbate properties 

on gas adsorption characteristics.  Finally, the mechanistic model based on the 

presence of different cations in zeolite adsorbent was proposed to provide a better 

insight on the role of cation in gas adsorption. 

In general, the experimental approach of this study as given in Figure 1.1 

which involves synthesis of zeolite, characterization of zeolites, gas adsorption 

studies using methane and carbon dioxide as adsorbates, selection of potential 

adsorbent, and modification by metal cation exchange method.  The characterization 
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and gas adsorption studies were also carried out on modified zeolites.  Investigation 

on gas adsorption characteristics was carried out based on the properties of zeolites, 

the adsorption capacity, adsorption isotherm and the gas uptake rate of the zeolites.  

1.4 Thesis Outline 

 The earlier section of this chapter provides brief introduction to the 

adsorption process and its applications.  The research background presents an 

overview of zeolite as an adsorbent and gas adsorption system.  This leads to the 

study on the characteristics of gas adsorption on zeolite adsorbent, which are 

specifically presented in the research motivation and aims.  

Chapter 2 presents the basic theory of gas adsorption and summarizes the 

state-of-art of the related study; zeolite structure and properties, methods of 

modification, and fundamental aspect of gas adsorption on zeolites.  It also gives 

brief description on thermodynamics and kinetics of adsorption that have been used 

as a tool to describe adsorption phenomena in zeolites.  Chapter 3 outlines the 

experimental work of the research.  It consists of list of materials and experimental 

methods used in this study.  It outlines method of zeolite synthesis, basic theory on 

structural and physical characterization and methods to characterize the zeolites 

samples.  In addition, the experimental procedures in gas adsorption study and gas-

zeolite interaction study are depicted in this chapter.
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Figure 1.1: An experimental approach adopted for the study. 
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Results and discussion are divided into two chapters. Chapter 4 focuses on 

structurally different zeolites, discusses the physical and chemical properties of 

different zeolites and its effect on adsorption capacity.  In order to understand 

adsorption characteristics of gases, data on gas adsorption isotherm and gas uptake 

rate were used to obtain the thermodynamic and kinetic parameters of gas adsorption.  

Heat adsorption of a given adsorbate-adsorbent system was calculated in order to 

determine type of adsorption occurred.  The data were also fitted into several 

equation models and the validity and the applicability of models were thoroughly 

discussed.  The gas - zeolite interaction are also discussed in this chapter.  Finally, 

based on the properties and adsorption study of structurally different zeolites, the gas 

adsorption mechanism on zeolite was presented in this chapter.  

Extending the findings in Chapter 4, zeolite modification was carried out 

using cation exchange technique on the selected sample.  The effects of different 

cation on zeolite physical and chemical properties are discussed in the Chapter 5.

Again, adsorptive characteristics of modified exchanged zeolites are discussed and 

evaluations of thermodynamic and kinetic parameters of modified exchanged zeolites 

are presented in this chapter.  In the presence of different cations, gas-zeolite 

interactions are thoroughly evaluated.  Subsequently, the adsorption mechanism 

dependency of metal cations is proposed. 

Chapter 6 states some general conclusions, implications of this work and 

directions on future work. The experimental studies reported in this work provide 

useful information on gas adsorption characteristics of zeolite adsorbent.  Evaluation 

of physical and chemical properties of structurally different zeolites and modified 

exchanged zeolites give a good understanding about zeolite as an adsorbent.
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1.5 Summary 

Unique physical and chemical properties of zeolite and its ability to maintain 

microporosity behavior after modification is the main reason for every study carried 

out on zeolites especially in the area of gas adsorption.  The emergence of new 

applications requires extensive studies on the potential adsorbent such zeolites.

However, insufficient knowledge about physical and chemical properties of zeolite 

and modified zeolites as well as their effect on gas adsorption characteristics may 

limit the usage of the zeolite.  Therefore, this work will address the effect of zeolite 

properties on gas adsorption characteristics in order to get better understanding and 

hence, to be able to engineer those properties to enhance gas adsorption capacity and 

selectivity.
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